1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar 4 * Copyright (C) 2005-2006 Thomas Gleixner 5 * 6 * This file contains driver APIs to the irq subsystem. 7 */ 8 9 #define pr_fmt(fmt) "genirq: " fmt 10 11 #include <linux/irq.h> 12 #include <linux/kthread.h> 13 #include <linux/module.h> 14 #include <linux/random.h> 15 #include <linux/interrupt.h> 16 #include <linux/slab.h> 17 #include <linux/sched.h> 18 #include <linux/sched/rt.h> 19 #include <linux/sched/task.h> 20 #include <uapi/linux/sched/types.h> 21 #include <linux/task_work.h> 22 23 #include "internals.h" 24 25 #ifdef CONFIG_IRQ_FORCED_THREADING 26 __read_mostly bool force_irqthreads; 27 28 static int __init setup_forced_irqthreads(char *arg) 29 { 30 force_irqthreads = true; 31 return 0; 32 } 33 early_param("threadirqs", setup_forced_irqthreads); 34 #endif 35 36 static void __synchronize_hardirq(struct irq_desc *desc) 37 { 38 bool inprogress; 39 40 do { 41 unsigned long flags; 42 43 /* 44 * Wait until we're out of the critical section. This might 45 * give the wrong answer due to the lack of memory barriers. 46 */ 47 while (irqd_irq_inprogress(&desc->irq_data)) 48 cpu_relax(); 49 50 /* Ok, that indicated we're done: double-check carefully. */ 51 raw_spin_lock_irqsave(&desc->lock, flags); 52 inprogress = irqd_irq_inprogress(&desc->irq_data); 53 raw_spin_unlock_irqrestore(&desc->lock, flags); 54 55 /* Oops, that failed? */ 56 } while (inprogress); 57 } 58 59 /** 60 * synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs) 61 * @irq: interrupt number to wait for 62 * 63 * This function waits for any pending hard IRQ handlers for this 64 * interrupt to complete before returning. If you use this 65 * function while holding a resource the IRQ handler may need you 66 * will deadlock. It does not take associated threaded handlers 67 * into account. 68 * 69 * Do not use this for shutdown scenarios where you must be sure 70 * that all parts (hardirq and threaded handler) have completed. 71 * 72 * Returns: false if a threaded handler is active. 73 * 74 * This function may be called - with care - from IRQ context. 75 */ 76 bool synchronize_hardirq(unsigned int irq) 77 { 78 struct irq_desc *desc = irq_to_desc(irq); 79 80 if (desc) { 81 __synchronize_hardirq(desc); 82 return !atomic_read(&desc->threads_active); 83 } 84 85 return true; 86 } 87 EXPORT_SYMBOL(synchronize_hardirq); 88 89 /** 90 * synchronize_irq - wait for pending IRQ handlers (on other CPUs) 91 * @irq: interrupt number to wait for 92 * 93 * This function waits for any pending IRQ handlers for this interrupt 94 * to complete before returning. If you use this function while 95 * holding a resource the IRQ handler may need you will deadlock. 96 * 97 * This function may be called - with care - from IRQ context. 98 */ 99 void synchronize_irq(unsigned int irq) 100 { 101 struct irq_desc *desc = irq_to_desc(irq); 102 103 if (desc) { 104 __synchronize_hardirq(desc); 105 /* 106 * We made sure that no hardirq handler is 107 * running. Now verify that no threaded handlers are 108 * active. 109 */ 110 wait_event(desc->wait_for_threads, 111 !atomic_read(&desc->threads_active)); 112 } 113 } 114 EXPORT_SYMBOL(synchronize_irq); 115 116 #ifdef CONFIG_SMP 117 cpumask_var_t irq_default_affinity; 118 119 static bool __irq_can_set_affinity(struct irq_desc *desc) 120 { 121 if (!desc || !irqd_can_balance(&desc->irq_data) || 122 !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity) 123 return false; 124 return true; 125 } 126 127 /** 128 * irq_can_set_affinity - Check if the affinity of a given irq can be set 129 * @irq: Interrupt to check 130 * 131 */ 132 int irq_can_set_affinity(unsigned int irq) 133 { 134 return __irq_can_set_affinity(irq_to_desc(irq)); 135 } 136 137 /** 138 * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space 139 * @irq: Interrupt to check 140 * 141 * Like irq_can_set_affinity() above, but additionally checks for the 142 * AFFINITY_MANAGED flag. 143 */ 144 bool irq_can_set_affinity_usr(unsigned int irq) 145 { 146 struct irq_desc *desc = irq_to_desc(irq); 147 148 return __irq_can_set_affinity(desc) && 149 !irqd_affinity_is_managed(&desc->irq_data); 150 } 151 152 /** 153 * irq_set_thread_affinity - Notify irq threads to adjust affinity 154 * @desc: irq descriptor which has affitnity changed 155 * 156 * We just set IRQTF_AFFINITY and delegate the affinity setting 157 * to the interrupt thread itself. We can not call 158 * set_cpus_allowed_ptr() here as we hold desc->lock and this 159 * code can be called from hard interrupt context. 160 */ 161 void irq_set_thread_affinity(struct irq_desc *desc) 162 { 163 struct irqaction *action; 164 165 for_each_action_of_desc(desc, action) 166 if (action->thread) 167 set_bit(IRQTF_AFFINITY, &action->thread_flags); 168 } 169 170 static void irq_validate_effective_affinity(struct irq_data *data) 171 { 172 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK 173 const struct cpumask *m = irq_data_get_effective_affinity_mask(data); 174 struct irq_chip *chip = irq_data_get_irq_chip(data); 175 176 if (!cpumask_empty(m)) 177 return; 178 pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n", 179 chip->name, data->irq); 180 #endif 181 } 182 183 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask, 184 bool force) 185 { 186 struct irq_desc *desc = irq_data_to_desc(data); 187 struct irq_chip *chip = irq_data_get_irq_chip(data); 188 int ret; 189 190 if (!chip || !chip->irq_set_affinity) 191 return -EINVAL; 192 193 ret = chip->irq_set_affinity(data, mask, force); 194 switch (ret) { 195 case IRQ_SET_MASK_OK: 196 case IRQ_SET_MASK_OK_DONE: 197 cpumask_copy(desc->irq_common_data.affinity, mask); 198 case IRQ_SET_MASK_OK_NOCOPY: 199 irq_validate_effective_affinity(data); 200 irq_set_thread_affinity(desc); 201 ret = 0; 202 } 203 204 return ret; 205 } 206 207 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask, 208 bool force) 209 { 210 struct irq_chip *chip = irq_data_get_irq_chip(data); 211 struct irq_desc *desc = irq_data_to_desc(data); 212 int ret = 0; 213 214 if (!chip || !chip->irq_set_affinity) 215 return -EINVAL; 216 217 if (irq_can_move_pcntxt(data)) { 218 ret = irq_do_set_affinity(data, mask, force); 219 } else { 220 irqd_set_move_pending(data); 221 irq_copy_pending(desc, mask); 222 } 223 224 if (desc->affinity_notify) { 225 kref_get(&desc->affinity_notify->kref); 226 schedule_work(&desc->affinity_notify->work); 227 } 228 irqd_set(data, IRQD_AFFINITY_SET); 229 230 return ret; 231 } 232 233 int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force) 234 { 235 struct irq_desc *desc = irq_to_desc(irq); 236 unsigned long flags; 237 int ret; 238 239 if (!desc) 240 return -EINVAL; 241 242 raw_spin_lock_irqsave(&desc->lock, flags); 243 ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force); 244 raw_spin_unlock_irqrestore(&desc->lock, flags); 245 return ret; 246 } 247 248 int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m) 249 { 250 unsigned long flags; 251 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 252 253 if (!desc) 254 return -EINVAL; 255 desc->affinity_hint = m; 256 irq_put_desc_unlock(desc, flags); 257 /* set the initial affinity to prevent every interrupt being on CPU0 */ 258 if (m) 259 __irq_set_affinity(irq, m, false); 260 return 0; 261 } 262 EXPORT_SYMBOL_GPL(irq_set_affinity_hint); 263 264 static void irq_affinity_notify(struct work_struct *work) 265 { 266 struct irq_affinity_notify *notify = 267 container_of(work, struct irq_affinity_notify, work); 268 struct irq_desc *desc = irq_to_desc(notify->irq); 269 cpumask_var_t cpumask; 270 unsigned long flags; 271 272 if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL)) 273 goto out; 274 275 raw_spin_lock_irqsave(&desc->lock, flags); 276 if (irq_move_pending(&desc->irq_data)) 277 irq_get_pending(cpumask, desc); 278 else 279 cpumask_copy(cpumask, desc->irq_common_data.affinity); 280 raw_spin_unlock_irqrestore(&desc->lock, flags); 281 282 notify->notify(notify, cpumask); 283 284 free_cpumask_var(cpumask); 285 out: 286 kref_put(¬ify->kref, notify->release); 287 } 288 289 /** 290 * irq_set_affinity_notifier - control notification of IRQ affinity changes 291 * @irq: Interrupt for which to enable/disable notification 292 * @notify: Context for notification, or %NULL to disable 293 * notification. Function pointers must be initialised; 294 * the other fields will be initialised by this function. 295 * 296 * Must be called in process context. Notification may only be enabled 297 * after the IRQ is allocated and must be disabled before the IRQ is 298 * freed using free_irq(). 299 */ 300 int 301 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify) 302 { 303 struct irq_desc *desc = irq_to_desc(irq); 304 struct irq_affinity_notify *old_notify; 305 unsigned long flags; 306 307 /* The release function is promised process context */ 308 might_sleep(); 309 310 if (!desc) 311 return -EINVAL; 312 313 /* Complete initialisation of *notify */ 314 if (notify) { 315 notify->irq = irq; 316 kref_init(¬ify->kref); 317 INIT_WORK(¬ify->work, irq_affinity_notify); 318 } 319 320 raw_spin_lock_irqsave(&desc->lock, flags); 321 old_notify = desc->affinity_notify; 322 desc->affinity_notify = notify; 323 raw_spin_unlock_irqrestore(&desc->lock, flags); 324 325 if (old_notify) 326 kref_put(&old_notify->kref, old_notify->release); 327 328 return 0; 329 } 330 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier); 331 332 #ifndef CONFIG_AUTO_IRQ_AFFINITY 333 /* 334 * Generic version of the affinity autoselector. 335 */ 336 int irq_setup_affinity(struct irq_desc *desc) 337 { 338 struct cpumask *set = irq_default_affinity; 339 int ret, node = irq_desc_get_node(desc); 340 static DEFINE_RAW_SPINLOCK(mask_lock); 341 static struct cpumask mask; 342 343 /* Excludes PER_CPU and NO_BALANCE interrupts */ 344 if (!__irq_can_set_affinity(desc)) 345 return 0; 346 347 raw_spin_lock(&mask_lock); 348 /* 349 * Preserve the managed affinity setting and a userspace affinity 350 * setup, but make sure that one of the targets is online. 351 */ 352 if (irqd_affinity_is_managed(&desc->irq_data) || 353 irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) { 354 if (cpumask_intersects(desc->irq_common_data.affinity, 355 cpu_online_mask)) 356 set = desc->irq_common_data.affinity; 357 else 358 irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET); 359 } 360 361 cpumask_and(&mask, cpu_online_mask, set); 362 if (node != NUMA_NO_NODE) { 363 const struct cpumask *nodemask = cpumask_of_node(node); 364 365 /* make sure at least one of the cpus in nodemask is online */ 366 if (cpumask_intersects(&mask, nodemask)) 367 cpumask_and(&mask, &mask, nodemask); 368 } 369 ret = irq_do_set_affinity(&desc->irq_data, &mask, false); 370 raw_spin_unlock(&mask_lock); 371 return ret; 372 } 373 #else 374 /* Wrapper for ALPHA specific affinity selector magic */ 375 int irq_setup_affinity(struct irq_desc *desc) 376 { 377 return irq_select_affinity(irq_desc_get_irq(desc)); 378 } 379 #endif 380 381 /* 382 * Called when a bogus affinity is set via /proc/irq 383 */ 384 int irq_select_affinity_usr(unsigned int irq) 385 { 386 struct irq_desc *desc = irq_to_desc(irq); 387 unsigned long flags; 388 int ret; 389 390 raw_spin_lock_irqsave(&desc->lock, flags); 391 ret = irq_setup_affinity(desc); 392 raw_spin_unlock_irqrestore(&desc->lock, flags); 393 return ret; 394 } 395 #endif 396 397 /** 398 * irq_set_vcpu_affinity - Set vcpu affinity for the interrupt 399 * @irq: interrupt number to set affinity 400 * @vcpu_info: vCPU specific data or pointer to a percpu array of vCPU 401 * specific data for percpu_devid interrupts 402 * 403 * This function uses the vCPU specific data to set the vCPU 404 * affinity for an irq. The vCPU specific data is passed from 405 * outside, such as KVM. One example code path is as below: 406 * KVM -> IOMMU -> irq_set_vcpu_affinity(). 407 */ 408 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info) 409 { 410 unsigned long flags; 411 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 412 struct irq_data *data; 413 struct irq_chip *chip; 414 int ret = -ENOSYS; 415 416 if (!desc) 417 return -EINVAL; 418 419 data = irq_desc_get_irq_data(desc); 420 do { 421 chip = irq_data_get_irq_chip(data); 422 if (chip && chip->irq_set_vcpu_affinity) 423 break; 424 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 425 data = data->parent_data; 426 #else 427 data = NULL; 428 #endif 429 } while (data); 430 431 if (data) 432 ret = chip->irq_set_vcpu_affinity(data, vcpu_info); 433 irq_put_desc_unlock(desc, flags); 434 435 return ret; 436 } 437 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity); 438 439 void __disable_irq(struct irq_desc *desc) 440 { 441 if (!desc->depth++) 442 irq_disable(desc); 443 } 444 445 static int __disable_irq_nosync(unsigned int irq) 446 { 447 unsigned long flags; 448 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 449 450 if (!desc) 451 return -EINVAL; 452 __disable_irq(desc); 453 irq_put_desc_busunlock(desc, flags); 454 return 0; 455 } 456 457 /** 458 * disable_irq_nosync - disable an irq without waiting 459 * @irq: Interrupt to disable 460 * 461 * Disable the selected interrupt line. Disables and Enables are 462 * nested. 463 * Unlike disable_irq(), this function does not ensure existing 464 * instances of the IRQ handler have completed before returning. 465 * 466 * This function may be called from IRQ context. 467 */ 468 void disable_irq_nosync(unsigned int irq) 469 { 470 __disable_irq_nosync(irq); 471 } 472 EXPORT_SYMBOL(disable_irq_nosync); 473 474 /** 475 * disable_irq - disable an irq and wait for completion 476 * @irq: Interrupt to disable 477 * 478 * Disable the selected interrupt line. Enables and Disables are 479 * nested. 480 * This function waits for any pending IRQ handlers for this interrupt 481 * to complete before returning. If you use this function while 482 * holding a resource the IRQ handler may need you will deadlock. 483 * 484 * This function may be called - with care - from IRQ context. 485 */ 486 void disable_irq(unsigned int irq) 487 { 488 if (!__disable_irq_nosync(irq)) 489 synchronize_irq(irq); 490 } 491 EXPORT_SYMBOL(disable_irq); 492 493 /** 494 * disable_hardirq - disables an irq and waits for hardirq completion 495 * @irq: Interrupt to disable 496 * 497 * Disable the selected interrupt line. Enables and Disables are 498 * nested. 499 * This function waits for any pending hard IRQ handlers for this 500 * interrupt to complete before returning. If you use this function while 501 * holding a resource the hard IRQ handler may need you will deadlock. 502 * 503 * When used to optimistically disable an interrupt from atomic context 504 * the return value must be checked. 505 * 506 * Returns: false if a threaded handler is active. 507 * 508 * This function may be called - with care - from IRQ context. 509 */ 510 bool disable_hardirq(unsigned int irq) 511 { 512 if (!__disable_irq_nosync(irq)) 513 return synchronize_hardirq(irq); 514 515 return false; 516 } 517 EXPORT_SYMBOL_GPL(disable_hardirq); 518 519 void __enable_irq(struct irq_desc *desc) 520 { 521 switch (desc->depth) { 522 case 0: 523 err_out: 524 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n", 525 irq_desc_get_irq(desc)); 526 break; 527 case 1: { 528 if (desc->istate & IRQS_SUSPENDED) 529 goto err_out; 530 /* Prevent probing on this irq: */ 531 irq_settings_set_noprobe(desc); 532 /* 533 * Call irq_startup() not irq_enable() here because the 534 * interrupt might be marked NOAUTOEN. So irq_startup() 535 * needs to be invoked when it gets enabled the first 536 * time. If it was already started up, then irq_startup() 537 * will invoke irq_enable() under the hood. 538 */ 539 irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE); 540 break; 541 } 542 default: 543 desc->depth--; 544 } 545 } 546 547 /** 548 * enable_irq - enable handling of an irq 549 * @irq: Interrupt to enable 550 * 551 * Undoes the effect of one call to disable_irq(). If this 552 * matches the last disable, processing of interrupts on this 553 * IRQ line is re-enabled. 554 * 555 * This function may be called from IRQ context only when 556 * desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL ! 557 */ 558 void enable_irq(unsigned int irq) 559 { 560 unsigned long flags; 561 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 562 563 if (!desc) 564 return; 565 if (WARN(!desc->irq_data.chip, 566 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq)) 567 goto out; 568 569 __enable_irq(desc); 570 out: 571 irq_put_desc_busunlock(desc, flags); 572 } 573 EXPORT_SYMBOL(enable_irq); 574 575 static int set_irq_wake_real(unsigned int irq, unsigned int on) 576 { 577 struct irq_desc *desc = irq_to_desc(irq); 578 int ret = -ENXIO; 579 580 if (irq_desc_get_chip(desc)->flags & IRQCHIP_SKIP_SET_WAKE) 581 return 0; 582 583 if (desc->irq_data.chip->irq_set_wake) 584 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on); 585 586 return ret; 587 } 588 589 /** 590 * irq_set_irq_wake - control irq power management wakeup 591 * @irq: interrupt to control 592 * @on: enable/disable power management wakeup 593 * 594 * Enable/disable power management wakeup mode, which is 595 * disabled by default. Enables and disables must match, 596 * just as they match for non-wakeup mode support. 597 * 598 * Wakeup mode lets this IRQ wake the system from sleep 599 * states like "suspend to RAM". 600 */ 601 int irq_set_irq_wake(unsigned int irq, unsigned int on) 602 { 603 unsigned long flags; 604 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 605 int ret = 0; 606 607 if (!desc) 608 return -EINVAL; 609 610 /* wakeup-capable irqs can be shared between drivers that 611 * don't need to have the same sleep mode behaviors. 612 */ 613 if (on) { 614 if (desc->wake_depth++ == 0) { 615 ret = set_irq_wake_real(irq, on); 616 if (ret) 617 desc->wake_depth = 0; 618 else 619 irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE); 620 } 621 } else { 622 if (desc->wake_depth == 0) { 623 WARN(1, "Unbalanced IRQ %d wake disable\n", irq); 624 } else if (--desc->wake_depth == 0) { 625 ret = set_irq_wake_real(irq, on); 626 if (ret) 627 desc->wake_depth = 1; 628 else 629 irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE); 630 } 631 } 632 irq_put_desc_busunlock(desc, flags); 633 return ret; 634 } 635 EXPORT_SYMBOL(irq_set_irq_wake); 636 637 /* 638 * Internal function that tells the architecture code whether a 639 * particular irq has been exclusively allocated or is available 640 * for driver use. 641 */ 642 int can_request_irq(unsigned int irq, unsigned long irqflags) 643 { 644 unsigned long flags; 645 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 646 int canrequest = 0; 647 648 if (!desc) 649 return 0; 650 651 if (irq_settings_can_request(desc)) { 652 if (!desc->action || 653 irqflags & desc->action->flags & IRQF_SHARED) 654 canrequest = 1; 655 } 656 irq_put_desc_unlock(desc, flags); 657 return canrequest; 658 } 659 660 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags) 661 { 662 struct irq_chip *chip = desc->irq_data.chip; 663 int ret, unmask = 0; 664 665 if (!chip || !chip->irq_set_type) { 666 /* 667 * IRQF_TRIGGER_* but the PIC does not support multiple 668 * flow-types? 669 */ 670 pr_debug("No set_type function for IRQ %d (%s)\n", 671 irq_desc_get_irq(desc), 672 chip ? (chip->name ? : "unknown") : "unknown"); 673 return 0; 674 } 675 676 if (chip->flags & IRQCHIP_SET_TYPE_MASKED) { 677 if (!irqd_irq_masked(&desc->irq_data)) 678 mask_irq(desc); 679 if (!irqd_irq_disabled(&desc->irq_data)) 680 unmask = 1; 681 } 682 683 /* Mask all flags except trigger mode */ 684 flags &= IRQ_TYPE_SENSE_MASK; 685 ret = chip->irq_set_type(&desc->irq_data, flags); 686 687 switch (ret) { 688 case IRQ_SET_MASK_OK: 689 case IRQ_SET_MASK_OK_DONE: 690 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK); 691 irqd_set(&desc->irq_data, flags); 692 693 case IRQ_SET_MASK_OK_NOCOPY: 694 flags = irqd_get_trigger_type(&desc->irq_data); 695 irq_settings_set_trigger_mask(desc, flags); 696 irqd_clear(&desc->irq_data, IRQD_LEVEL); 697 irq_settings_clr_level(desc); 698 if (flags & IRQ_TYPE_LEVEL_MASK) { 699 irq_settings_set_level(desc); 700 irqd_set(&desc->irq_data, IRQD_LEVEL); 701 } 702 703 ret = 0; 704 break; 705 default: 706 pr_err("Setting trigger mode %lu for irq %u failed (%pF)\n", 707 flags, irq_desc_get_irq(desc), chip->irq_set_type); 708 } 709 if (unmask) 710 unmask_irq(desc); 711 return ret; 712 } 713 714 #ifdef CONFIG_HARDIRQS_SW_RESEND 715 int irq_set_parent(int irq, int parent_irq) 716 { 717 unsigned long flags; 718 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 719 720 if (!desc) 721 return -EINVAL; 722 723 desc->parent_irq = parent_irq; 724 725 irq_put_desc_unlock(desc, flags); 726 return 0; 727 } 728 EXPORT_SYMBOL_GPL(irq_set_parent); 729 #endif 730 731 /* 732 * Default primary interrupt handler for threaded interrupts. Is 733 * assigned as primary handler when request_threaded_irq is called 734 * with handler == NULL. Useful for oneshot interrupts. 735 */ 736 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id) 737 { 738 return IRQ_WAKE_THREAD; 739 } 740 741 /* 742 * Primary handler for nested threaded interrupts. Should never be 743 * called. 744 */ 745 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id) 746 { 747 WARN(1, "Primary handler called for nested irq %d\n", irq); 748 return IRQ_NONE; 749 } 750 751 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id) 752 { 753 WARN(1, "Secondary action handler called for irq %d\n", irq); 754 return IRQ_NONE; 755 } 756 757 static int irq_wait_for_interrupt(struct irqaction *action) 758 { 759 set_current_state(TASK_INTERRUPTIBLE); 760 761 while (!kthread_should_stop()) { 762 763 if (test_and_clear_bit(IRQTF_RUNTHREAD, 764 &action->thread_flags)) { 765 __set_current_state(TASK_RUNNING); 766 return 0; 767 } 768 schedule(); 769 set_current_state(TASK_INTERRUPTIBLE); 770 } 771 __set_current_state(TASK_RUNNING); 772 return -1; 773 } 774 775 /* 776 * Oneshot interrupts keep the irq line masked until the threaded 777 * handler finished. unmask if the interrupt has not been disabled and 778 * is marked MASKED. 779 */ 780 static void irq_finalize_oneshot(struct irq_desc *desc, 781 struct irqaction *action) 782 { 783 if (!(desc->istate & IRQS_ONESHOT) || 784 action->handler == irq_forced_secondary_handler) 785 return; 786 again: 787 chip_bus_lock(desc); 788 raw_spin_lock_irq(&desc->lock); 789 790 /* 791 * Implausible though it may be we need to protect us against 792 * the following scenario: 793 * 794 * The thread is faster done than the hard interrupt handler 795 * on the other CPU. If we unmask the irq line then the 796 * interrupt can come in again and masks the line, leaves due 797 * to IRQS_INPROGRESS and the irq line is masked forever. 798 * 799 * This also serializes the state of shared oneshot handlers 800 * versus "desc->threads_onehsot |= action->thread_mask;" in 801 * irq_wake_thread(). See the comment there which explains the 802 * serialization. 803 */ 804 if (unlikely(irqd_irq_inprogress(&desc->irq_data))) { 805 raw_spin_unlock_irq(&desc->lock); 806 chip_bus_sync_unlock(desc); 807 cpu_relax(); 808 goto again; 809 } 810 811 /* 812 * Now check again, whether the thread should run. Otherwise 813 * we would clear the threads_oneshot bit of this thread which 814 * was just set. 815 */ 816 if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags)) 817 goto out_unlock; 818 819 desc->threads_oneshot &= ~action->thread_mask; 820 821 if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) && 822 irqd_irq_masked(&desc->irq_data)) 823 unmask_threaded_irq(desc); 824 825 out_unlock: 826 raw_spin_unlock_irq(&desc->lock); 827 chip_bus_sync_unlock(desc); 828 } 829 830 #ifdef CONFIG_SMP 831 /* 832 * Check whether we need to change the affinity of the interrupt thread. 833 */ 834 static void 835 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) 836 { 837 cpumask_var_t mask; 838 bool valid = true; 839 840 if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags)) 841 return; 842 843 /* 844 * In case we are out of memory we set IRQTF_AFFINITY again and 845 * try again next time 846 */ 847 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) { 848 set_bit(IRQTF_AFFINITY, &action->thread_flags); 849 return; 850 } 851 852 raw_spin_lock_irq(&desc->lock); 853 /* 854 * This code is triggered unconditionally. Check the affinity 855 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out. 856 */ 857 if (cpumask_available(desc->irq_common_data.affinity)) { 858 const struct cpumask *m; 859 860 m = irq_data_get_effective_affinity_mask(&desc->irq_data); 861 cpumask_copy(mask, m); 862 } else { 863 valid = false; 864 } 865 raw_spin_unlock_irq(&desc->lock); 866 867 if (valid) 868 set_cpus_allowed_ptr(current, mask); 869 free_cpumask_var(mask); 870 } 871 #else 872 static inline void 873 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { } 874 #endif 875 876 /* 877 * Interrupts which are not explicitely requested as threaded 878 * interrupts rely on the implicit bh/preempt disable of the hard irq 879 * context. So we need to disable bh here to avoid deadlocks and other 880 * side effects. 881 */ 882 static irqreturn_t 883 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action) 884 { 885 irqreturn_t ret; 886 887 local_bh_disable(); 888 ret = action->thread_fn(action->irq, action->dev_id); 889 irq_finalize_oneshot(desc, action); 890 local_bh_enable(); 891 return ret; 892 } 893 894 /* 895 * Interrupts explicitly requested as threaded interrupts want to be 896 * preemtible - many of them need to sleep and wait for slow busses to 897 * complete. 898 */ 899 static irqreturn_t irq_thread_fn(struct irq_desc *desc, 900 struct irqaction *action) 901 { 902 irqreturn_t ret; 903 904 ret = action->thread_fn(action->irq, action->dev_id); 905 irq_finalize_oneshot(desc, action); 906 return ret; 907 } 908 909 static void wake_threads_waitq(struct irq_desc *desc) 910 { 911 if (atomic_dec_and_test(&desc->threads_active)) 912 wake_up(&desc->wait_for_threads); 913 } 914 915 static void irq_thread_dtor(struct callback_head *unused) 916 { 917 struct task_struct *tsk = current; 918 struct irq_desc *desc; 919 struct irqaction *action; 920 921 if (WARN_ON_ONCE(!(current->flags & PF_EXITING))) 922 return; 923 924 action = kthread_data(tsk); 925 926 pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n", 927 tsk->comm, tsk->pid, action->irq); 928 929 930 desc = irq_to_desc(action->irq); 931 /* 932 * If IRQTF_RUNTHREAD is set, we need to decrement 933 * desc->threads_active and wake possible waiters. 934 */ 935 if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags)) 936 wake_threads_waitq(desc); 937 938 /* Prevent a stale desc->threads_oneshot */ 939 irq_finalize_oneshot(desc, action); 940 } 941 942 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action) 943 { 944 struct irqaction *secondary = action->secondary; 945 946 if (WARN_ON_ONCE(!secondary)) 947 return; 948 949 raw_spin_lock_irq(&desc->lock); 950 __irq_wake_thread(desc, secondary); 951 raw_spin_unlock_irq(&desc->lock); 952 } 953 954 /* 955 * Interrupt handler thread 956 */ 957 static int irq_thread(void *data) 958 { 959 struct callback_head on_exit_work; 960 struct irqaction *action = data; 961 struct irq_desc *desc = irq_to_desc(action->irq); 962 irqreturn_t (*handler_fn)(struct irq_desc *desc, 963 struct irqaction *action); 964 965 if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD, 966 &action->thread_flags)) 967 handler_fn = irq_forced_thread_fn; 968 else 969 handler_fn = irq_thread_fn; 970 971 init_task_work(&on_exit_work, irq_thread_dtor); 972 task_work_add(current, &on_exit_work, false); 973 974 irq_thread_check_affinity(desc, action); 975 976 while (!irq_wait_for_interrupt(action)) { 977 irqreturn_t action_ret; 978 979 irq_thread_check_affinity(desc, action); 980 981 action_ret = handler_fn(desc, action); 982 if (action_ret == IRQ_HANDLED) 983 atomic_inc(&desc->threads_handled); 984 if (action_ret == IRQ_WAKE_THREAD) 985 irq_wake_secondary(desc, action); 986 987 wake_threads_waitq(desc); 988 } 989 990 /* 991 * This is the regular exit path. __free_irq() is stopping the 992 * thread via kthread_stop() after calling 993 * synchronize_irq(). So neither IRQTF_RUNTHREAD nor the 994 * oneshot mask bit can be set. We cannot verify that as we 995 * cannot touch the oneshot mask at this point anymore as 996 * __setup_irq() might have given out currents thread_mask 997 * again. 998 */ 999 task_work_cancel(current, irq_thread_dtor); 1000 return 0; 1001 } 1002 1003 /** 1004 * irq_wake_thread - wake the irq thread for the action identified by dev_id 1005 * @irq: Interrupt line 1006 * @dev_id: Device identity for which the thread should be woken 1007 * 1008 */ 1009 void irq_wake_thread(unsigned int irq, void *dev_id) 1010 { 1011 struct irq_desc *desc = irq_to_desc(irq); 1012 struct irqaction *action; 1013 unsigned long flags; 1014 1015 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1016 return; 1017 1018 raw_spin_lock_irqsave(&desc->lock, flags); 1019 for_each_action_of_desc(desc, action) { 1020 if (action->dev_id == dev_id) { 1021 if (action->thread) 1022 __irq_wake_thread(desc, action); 1023 break; 1024 } 1025 } 1026 raw_spin_unlock_irqrestore(&desc->lock, flags); 1027 } 1028 EXPORT_SYMBOL_GPL(irq_wake_thread); 1029 1030 static int irq_setup_forced_threading(struct irqaction *new) 1031 { 1032 if (!force_irqthreads) 1033 return 0; 1034 if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT)) 1035 return 0; 1036 1037 new->flags |= IRQF_ONESHOT; 1038 1039 /* 1040 * Handle the case where we have a real primary handler and a 1041 * thread handler. We force thread them as well by creating a 1042 * secondary action. 1043 */ 1044 if (new->handler != irq_default_primary_handler && new->thread_fn) { 1045 /* Allocate the secondary action */ 1046 new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 1047 if (!new->secondary) 1048 return -ENOMEM; 1049 new->secondary->handler = irq_forced_secondary_handler; 1050 new->secondary->thread_fn = new->thread_fn; 1051 new->secondary->dev_id = new->dev_id; 1052 new->secondary->irq = new->irq; 1053 new->secondary->name = new->name; 1054 } 1055 /* Deal with the primary handler */ 1056 set_bit(IRQTF_FORCED_THREAD, &new->thread_flags); 1057 new->thread_fn = new->handler; 1058 new->handler = irq_default_primary_handler; 1059 return 0; 1060 } 1061 1062 static int irq_request_resources(struct irq_desc *desc) 1063 { 1064 struct irq_data *d = &desc->irq_data; 1065 struct irq_chip *c = d->chip; 1066 1067 return c->irq_request_resources ? c->irq_request_resources(d) : 0; 1068 } 1069 1070 static void irq_release_resources(struct irq_desc *desc) 1071 { 1072 struct irq_data *d = &desc->irq_data; 1073 struct irq_chip *c = d->chip; 1074 1075 if (c->irq_release_resources) 1076 c->irq_release_resources(d); 1077 } 1078 1079 static int 1080 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary) 1081 { 1082 struct task_struct *t; 1083 struct sched_param param = { 1084 .sched_priority = MAX_USER_RT_PRIO/2, 1085 }; 1086 1087 if (!secondary) { 1088 t = kthread_create(irq_thread, new, "irq/%d-%s", irq, 1089 new->name); 1090 } else { 1091 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq, 1092 new->name); 1093 param.sched_priority -= 1; 1094 } 1095 1096 if (IS_ERR(t)) 1097 return PTR_ERR(t); 1098 1099 sched_setscheduler_nocheck(t, SCHED_FIFO, ¶m); 1100 1101 /* 1102 * We keep the reference to the task struct even if 1103 * the thread dies to avoid that the interrupt code 1104 * references an already freed task_struct. 1105 */ 1106 get_task_struct(t); 1107 new->thread = t; 1108 /* 1109 * Tell the thread to set its affinity. This is 1110 * important for shared interrupt handlers as we do 1111 * not invoke setup_affinity() for the secondary 1112 * handlers as everything is already set up. Even for 1113 * interrupts marked with IRQF_NO_BALANCE this is 1114 * correct as we want the thread to move to the cpu(s) 1115 * on which the requesting code placed the interrupt. 1116 */ 1117 set_bit(IRQTF_AFFINITY, &new->thread_flags); 1118 return 0; 1119 } 1120 1121 /* 1122 * Internal function to register an irqaction - typically used to 1123 * allocate special interrupts that are part of the architecture. 1124 * 1125 * Locking rules: 1126 * 1127 * desc->request_mutex Provides serialization against a concurrent free_irq() 1128 * chip_bus_lock Provides serialization for slow bus operations 1129 * desc->lock Provides serialization against hard interrupts 1130 * 1131 * chip_bus_lock and desc->lock are sufficient for all other management and 1132 * interrupt related functions. desc->request_mutex solely serializes 1133 * request/free_irq(). 1134 */ 1135 static int 1136 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new) 1137 { 1138 struct irqaction *old, **old_ptr; 1139 unsigned long flags, thread_mask = 0; 1140 int ret, nested, shared = 0; 1141 1142 if (!desc) 1143 return -EINVAL; 1144 1145 if (desc->irq_data.chip == &no_irq_chip) 1146 return -ENOSYS; 1147 if (!try_module_get(desc->owner)) 1148 return -ENODEV; 1149 1150 new->irq = irq; 1151 1152 /* 1153 * If the trigger type is not specified by the caller, 1154 * then use the default for this interrupt. 1155 */ 1156 if (!(new->flags & IRQF_TRIGGER_MASK)) 1157 new->flags |= irqd_get_trigger_type(&desc->irq_data); 1158 1159 /* 1160 * Check whether the interrupt nests into another interrupt 1161 * thread. 1162 */ 1163 nested = irq_settings_is_nested_thread(desc); 1164 if (nested) { 1165 if (!new->thread_fn) { 1166 ret = -EINVAL; 1167 goto out_mput; 1168 } 1169 /* 1170 * Replace the primary handler which was provided from 1171 * the driver for non nested interrupt handling by the 1172 * dummy function which warns when called. 1173 */ 1174 new->handler = irq_nested_primary_handler; 1175 } else { 1176 if (irq_settings_can_thread(desc)) { 1177 ret = irq_setup_forced_threading(new); 1178 if (ret) 1179 goto out_mput; 1180 } 1181 } 1182 1183 /* 1184 * Create a handler thread when a thread function is supplied 1185 * and the interrupt does not nest into another interrupt 1186 * thread. 1187 */ 1188 if (new->thread_fn && !nested) { 1189 ret = setup_irq_thread(new, irq, false); 1190 if (ret) 1191 goto out_mput; 1192 if (new->secondary) { 1193 ret = setup_irq_thread(new->secondary, irq, true); 1194 if (ret) 1195 goto out_thread; 1196 } 1197 } 1198 1199 /* 1200 * Drivers are often written to work w/o knowledge about the 1201 * underlying irq chip implementation, so a request for a 1202 * threaded irq without a primary hard irq context handler 1203 * requires the ONESHOT flag to be set. Some irq chips like 1204 * MSI based interrupts are per se one shot safe. Check the 1205 * chip flags, so we can avoid the unmask dance at the end of 1206 * the threaded handler for those. 1207 */ 1208 if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE) 1209 new->flags &= ~IRQF_ONESHOT; 1210 1211 /* 1212 * Protects against a concurrent __free_irq() call which might wait 1213 * for synchronize_irq() to complete without holding the optional 1214 * chip bus lock and desc->lock. 1215 */ 1216 mutex_lock(&desc->request_mutex); 1217 1218 /* 1219 * Acquire bus lock as the irq_request_resources() callback below 1220 * might rely on the serialization or the magic power management 1221 * functions which are abusing the irq_bus_lock() callback, 1222 */ 1223 chip_bus_lock(desc); 1224 1225 /* First installed action requests resources. */ 1226 if (!desc->action) { 1227 ret = irq_request_resources(desc); 1228 if (ret) { 1229 pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n", 1230 new->name, irq, desc->irq_data.chip->name); 1231 goto out_bus_unlock; 1232 } 1233 } 1234 1235 /* 1236 * The following block of code has to be executed atomically 1237 * protected against a concurrent interrupt and any of the other 1238 * management calls which are not serialized via 1239 * desc->request_mutex or the optional bus lock. 1240 */ 1241 raw_spin_lock_irqsave(&desc->lock, flags); 1242 old_ptr = &desc->action; 1243 old = *old_ptr; 1244 if (old) { 1245 /* 1246 * Can't share interrupts unless both agree to and are 1247 * the same type (level, edge, polarity). So both flag 1248 * fields must have IRQF_SHARED set and the bits which 1249 * set the trigger type must match. Also all must 1250 * agree on ONESHOT. 1251 */ 1252 unsigned int oldtype; 1253 1254 /* 1255 * If nobody did set the configuration before, inherit 1256 * the one provided by the requester. 1257 */ 1258 if (irqd_trigger_type_was_set(&desc->irq_data)) { 1259 oldtype = irqd_get_trigger_type(&desc->irq_data); 1260 } else { 1261 oldtype = new->flags & IRQF_TRIGGER_MASK; 1262 irqd_set_trigger_type(&desc->irq_data, oldtype); 1263 } 1264 1265 if (!((old->flags & new->flags) & IRQF_SHARED) || 1266 (oldtype != (new->flags & IRQF_TRIGGER_MASK)) || 1267 ((old->flags ^ new->flags) & IRQF_ONESHOT)) 1268 goto mismatch; 1269 1270 /* All handlers must agree on per-cpuness */ 1271 if ((old->flags & IRQF_PERCPU) != 1272 (new->flags & IRQF_PERCPU)) 1273 goto mismatch; 1274 1275 /* add new interrupt at end of irq queue */ 1276 do { 1277 /* 1278 * Or all existing action->thread_mask bits, 1279 * so we can find the next zero bit for this 1280 * new action. 1281 */ 1282 thread_mask |= old->thread_mask; 1283 old_ptr = &old->next; 1284 old = *old_ptr; 1285 } while (old); 1286 shared = 1; 1287 } 1288 1289 /* 1290 * Setup the thread mask for this irqaction for ONESHOT. For 1291 * !ONESHOT irqs the thread mask is 0 so we can avoid a 1292 * conditional in irq_wake_thread(). 1293 */ 1294 if (new->flags & IRQF_ONESHOT) { 1295 /* 1296 * Unlikely to have 32 resp 64 irqs sharing one line, 1297 * but who knows. 1298 */ 1299 if (thread_mask == ~0UL) { 1300 ret = -EBUSY; 1301 goto out_unlock; 1302 } 1303 /* 1304 * The thread_mask for the action is or'ed to 1305 * desc->thread_active to indicate that the 1306 * IRQF_ONESHOT thread handler has been woken, but not 1307 * yet finished. The bit is cleared when a thread 1308 * completes. When all threads of a shared interrupt 1309 * line have completed desc->threads_active becomes 1310 * zero and the interrupt line is unmasked. See 1311 * handle.c:irq_wake_thread() for further information. 1312 * 1313 * If no thread is woken by primary (hard irq context) 1314 * interrupt handlers, then desc->threads_active is 1315 * also checked for zero to unmask the irq line in the 1316 * affected hard irq flow handlers 1317 * (handle_[fasteoi|level]_irq). 1318 * 1319 * The new action gets the first zero bit of 1320 * thread_mask assigned. See the loop above which or's 1321 * all existing action->thread_mask bits. 1322 */ 1323 new->thread_mask = 1UL << ffz(thread_mask); 1324 1325 } else if (new->handler == irq_default_primary_handler && 1326 !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) { 1327 /* 1328 * The interrupt was requested with handler = NULL, so 1329 * we use the default primary handler for it. But it 1330 * does not have the oneshot flag set. In combination 1331 * with level interrupts this is deadly, because the 1332 * default primary handler just wakes the thread, then 1333 * the irq lines is reenabled, but the device still 1334 * has the level irq asserted. Rinse and repeat.... 1335 * 1336 * While this works for edge type interrupts, we play 1337 * it safe and reject unconditionally because we can't 1338 * say for sure which type this interrupt really 1339 * has. The type flags are unreliable as the 1340 * underlying chip implementation can override them. 1341 */ 1342 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for irq %d\n", 1343 irq); 1344 ret = -EINVAL; 1345 goto out_unlock; 1346 } 1347 1348 if (!shared) { 1349 init_waitqueue_head(&desc->wait_for_threads); 1350 1351 /* Setup the type (level, edge polarity) if configured: */ 1352 if (new->flags & IRQF_TRIGGER_MASK) { 1353 ret = __irq_set_trigger(desc, 1354 new->flags & IRQF_TRIGGER_MASK); 1355 1356 if (ret) 1357 goto out_unlock; 1358 } 1359 1360 /* 1361 * Activate the interrupt. That activation must happen 1362 * independently of IRQ_NOAUTOEN. request_irq() can fail 1363 * and the callers are supposed to handle 1364 * that. enable_irq() of an interrupt requested with 1365 * IRQ_NOAUTOEN is not supposed to fail. The activation 1366 * keeps it in shutdown mode, it merily associates 1367 * resources if necessary and if that's not possible it 1368 * fails. Interrupts which are in managed shutdown mode 1369 * will simply ignore that activation request. 1370 */ 1371 ret = irq_activate(desc); 1372 if (ret) 1373 goto out_unlock; 1374 1375 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \ 1376 IRQS_ONESHOT | IRQS_WAITING); 1377 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS); 1378 1379 if (new->flags & IRQF_PERCPU) { 1380 irqd_set(&desc->irq_data, IRQD_PER_CPU); 1381 irq_settings_set_per_cpu(desc); 1382 } 1383 1384 if (new->flags & IRQF_ONESHOT) 1385 desc->istate |= IRQS_ONESHOT; 1386 1387 /* Exclude IRQ from balancing if requested */ 1388 if (new->flags & IRQF_NOBALANCING) { 1389 irq_settings_set_no_balancing(desc); 1390 irqd_set(&desc->irq_data, IRQD_NO_BALANCING); 1391 } 1392 1393 if (irq_settings_can_autoenable(desc)) { 1394 irq_startup(desc, IRQ_RESEND, IRQ_START_COND); 1395 } else { 1396 /* 1397 * Shared interrupts do not go well with disabling 1398 * auto enable. The sharing interrupt might request 1399 * it while it's still disabled and then wait for 1400 * interrupts forever. 1401 */ 1402 WARN_ON_ONCE(new->flags & IRQF_SHARED); 1403 /* Undo nested disables: */ 1404 desc->depth = 1; 1405 } 1406 1407 } else if (new->flags & IRQF_TRIGGER_MASK) { 1408 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK; 1409 unsigned int omsk = irqd_get_trigger_type(&desc->irq_data); 1410 1411 if (nmsk != omsk) 1412 /* hope the handler works with current trigger mode */ 1413 pr_warn("irq %d uses trigger mode %u; requested %u\n", 1414 irq, omsk, nmsk); 1415 } 1416 1417 *old_ptr = new; 1418 1419 irq_pm_install_action(desc, new); 1420 1421 /* Reset broken irq detection when installing new handler */ 1422 desc->irq_count = 0; 1423 desc->irqs_unhandled = 0; 1424 1425 /* 1426 * Check whether we disabled the irq via the spurious handler 1427 * before. Reenable it and give it another chance. 1428 */ 1429 if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) { 1430 desc->istate &= ~IRQS_SPURIOUS_DISABLED; 1431 __enable_irq(desc); 1432 } 1433 1434 raw_spin_unlock_irqrestore(&desc->lock, flags); 1435 chip_bus_sync_unlock(desc); 1436 mutex_unlock(&desc->request_mutex); 1437 1438 irq_setup_timings(desc, new); 1439 1440 /* 1441 * Strictly no need to wake it up, but hung_task complains 1442 * when no hard interrupt wakes the thread up. 1443 */ 1444 if (new->thread) 1445 wake_up_process(new->thread); 1446 if (new->secondary) 1447 wake_up_process(new->secondary->thread); 1448 1449 register_irq_proc(irq, desc); 1450 new->dir = NULL; 1451 register_handler_proc(irq, new); 1452 return 0; 1453 1454 mismatch: 1455 if (!(new->flags & IRQF_PROBE_SHARED)) { 1456 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n", 1457 irq, new->flags, new->name, old->flags, old->name); 1458 #ifdef CONFIG_DEBUG_SHIRQ 1459 dump_stack(); 1460 #endif 1461 } 1462 ret = -EBUSY; 1463 1464 out_unlock: 1465 raw_spin_unlock_irqrestore(&desc->lock, flags); 1466 1467 if (!desc->action) 1468 irq_release_resources(desc); 1469 out_bus_unlock: 1470 chip_bus_sync_unlock(desc); 1471 mutex_unlock(&desc->request_mutex); 1472 1473 out_thread: 1474 if (new->thread) { 1475 struct task_struct *t = new->thread; 1476 1477 new->thread = NULL; 1478 kthread_stop(t); 1479 put_task_struct(t); 1480 } 1481 if (new->secondary && new->secondary->thread) { 1482 struct task_struct *t = new->secondary->thread; 1483 1484 new->secondary->thread = NULL; 1485 kthread_stop(t); 1486 put_task_struct(t); 1487 } 1488 out_mput: 1489 module_put(desc->owner); 1490 return ret; 1491 } 1492 1493 /** 1494 * setup_irq - setup an interrupt 1495 * @irq: Interrupt line to setup 1496 * @act: irqaction for the interrupt 1497 * 1498 * Used to statically setup interrupts in the early boot process. 1499 */ 1500 int setup_irq(unsigned int irq, struct irqaction *act) 1501 { 1502 int retval; 1503 struct irq_desc *desc = irq_to_desc(irq); 1504 1505 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1506 return -EINVAL; 1507 1508 retval = irq_chip_pm_get(&desc->irq_data); 1509 if (retval < 0) 1510 return retval; 1511 1512 retval = __setup_irq(irq, desc, act); 1513 1514 if (retval) 1515 irq_chip_pm_put(&desc->irq_data); 1516 1517 return retval; 1518 } 1519 EXPORT_SYMBOL_GPL(setup_irq); 1520 1521 /* 1522 * Internal function to unregister an irqaction - used to free 1523 * regular and special interrupts that are part of the architecture. 1524 */ 1525 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id) 1526 { 1527 unsigned irq = desc->irq_data.irq; 1528 struct irqaction *action, **action_ptr; 1529 unsigned long flags; 1530 1531 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq); 1532 1533 if (!desc) 1534 return NULL; 1535 1536 mutex_lock(&desc->request_mutex); 1537 chip_bus_lock(desc); 1538 raw_spin_lock_irqsave(&desc->lock, flags); 1539 1540 /* 1541 * There can be multiple actions per IRQ descriptor, find the right 1542 * one based on the dev_id: 1543 */ 1544 action_ptr = &desc->action; 1545 for (;;) { 1546 action = *action_ptr; 1547 1548 if (!action) { 1549 WARN(1, "Trying to free already-free IRQ %d\n", irq); 1550 raw_spin_unlock_irqrestore(&desc->lock, flags); 1551 chip_bus_sync_unlock(desc); 1552 mutex_unlock(&desc->request_mutex); 1553 return NULL; 1554 } 1555 1556 if (action->dev_id == dev_id) 1557 break; 1558 action_ptr = &action->next; 1559 } 1560 1561 /* Found it - now remove it from the list of entries: */ 1562 *action_ptr = action->next; 1563 1564 irq_pm_remove_action(desc, action); 1565 1566 /* If this was the last handler, shut down the IRQ line: */ 1567 if (!desc->action) { 1568 irq_settings_clr_disable_unlazy(desc); 1569 irq_shutdown(desc); 1570 } 1571 1572 #ifdef CONFIG_SMP 1573 /* make sure affinity_hint is cleaned up */ 1574 if (WARN_ON_ONCE(desc->affinity_hint)) 1575 desc->affinity_hint = NULL; 1576 #endif 1577 1578 raw_spin_unlock_irqrestore(&desc->lock, flags); 1579 /* 1580 * Drop bus_lock here so the changes which were done in the chip 1581 * callbacks above are synced out to the irq chips which hang 1582 * behind a slow bus (I2C, SPI) before calling synchronize_irq(). 1583 * 1584 * Aside of that the bus_lock can also be taken from the threaded 1585 * handler in irq_finalize_oneshot() which results in a deadlock 1586 * because synchronize_irq() would wait forever for the thread to 1587 * complete, which is blocked on the bus lock. 1588 * 1589 * The still held desc->request_mutex() protects against a 1590 * concurrent request_irq() of this irq so the release of resources 1591 * and timing data is properly serialized. 1592 */ 1593 chip_bus_sync_unlock(desc); 1594 1595 unregister_handler_proc(irq, action); 1596 1597 /* Make sure it's not being used on another CPU: */ 1598 synchronize_irq(irq); 1599 1600 #ifdef CONFIG_DEBUG_SHIRQ 1601 /* 1602 * It's a shared IRQ -- the driver ought to be prepared for an IRQ 1603 * event to happen even now it's being freed, so let's make sure that 1604 * is so by doing an extra call to the handler .... 1605 * 1606 * ( We do this after actually deregistering it, to make sure that a 1607 * 'real' IRQ doesn't run in * parallel with our fake. ) 1608 */ 1609 if (action->flags & IRQF_SHARED) { 1610 local_irq_save(flags); 1611 action->handler(irq, dev_id); 1612 local_irq_restore(flags); 1613 } 1614 #endif 1615 1616 if (action->thread) { 1617 kthread_stop(action->thread); 1618 put_task_struct(action->thread); 1619 if (action->secondary && action->secondary->thread) { 1620 kthread_stop(action->secondary->thread); 1621 put_task_struct(action->secondary->thread); 1622 } 1623 } 1624 1625 /* Last action releases resources */ 1626 if (!desc->action) { 1627 /* 1628 * Reaquire bus lock as irq_release_resources() might 1629 * require it to deallocate resources over the slow bus. 1630 */ 1631 chip_bus_lock(desc); 1632 irq_release_resources(desc); 1633 chip_bus_sync_unlock(desc); 1634 irq_remove_timings(desc); 1635 } 1636 1637 mutex_unlock(&desc->request_mutex); 1638 1639 irq_chip_pm_put(&desc->irq_data); 1640 module_put(desc->owner); 1641 kfree(action->secondary); 1642 return action; 1643 } 1644 1645 /** 1646 * remove_irq - free an interrupt 1647 * @irq: Interrupt line to free 1648 * @act: irqaction for the interrupt 1649 * 1650 * Used to remove interrupts statically setup by the early boot process. 1651 */ 1652 void remove_irq(unsigned int irq, struct irqaction *act) 1653 { 1654 struct irq_desc *desc = irq_to_desc(irq); 1655 1656 if (desc && !WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1657 __free_irq(desc, act->dev_id); 1658 } 1659 EXPORT_SYMBOL_GPL(remove_irq); 1660 1661 /** 1662 * free_irq - free an interrupt allocated with request_irq 1663 * @irq: Interrupt line to free 1664 * @dev_id: Device identity to free 1665 * 1666 * Remove an interrupt handler. The handler is removed and if the 1667 * interrupt line is no longer in use by any driver it is disabled. 1668 * On a shared IRQ the caller must ensure the interrupt is disabled 1669 * on the card it drives before calling this function. The function 1670 * does not return until any executing interrupts for this IRQ 1671 * have completed. 1672 * 1673 * This function must not be called from interrupt context. 1674 * 1675 * Returns the devname argument passed to request_irq. 1676 */ 1677 const void *free_irq(unsigned int irq, void *dev_id) 1678 { 1679 struct irq_desc *desc = irq_to_desc(irq); 1680 struct irqaction *action; 1681 const char *devname; 1682 1683 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1684 return NULL; 1685 1686 #ifdef CONFIG_SMP 1687 if (WARN_ON(desc->affinity_notify)) 1688 desc->affinity_notify = NULL; 1689 #endif 1690 1691 action = __free_irq(desc, dev_id); 1692 1693 if (!action) 1694 return NULL; 1695 1696 devname = action->name; 1697 kfree(action); 1698 return devname; 1699 } 1700 EXPORT_SYMBOL(free_irq); 1701 1702 /** 1703 * request_threaded_irq - allocate an interrupt line 1704 * @irq: Interrupt line to allocate 1705 * @handler: Function to be called when the IRQ occurs. 1706 * Primary handler for threaded interrupts 1707 * If NULL and thread_fn != NULL the default 1708 * primary handler is installed 1709 * @thread_fn: Function called from the irq handler thread 1710 * If NULL, no irq thread is created 1711 * @irqflags: Interrupt type flags 1712 * @devname: An ascii name for the claiming device 1713 * @dev_id: A cookie passed back to the handler function 1714 * 1715 * This call allocates interrupt resources and enables the 1716 * interrupt line and IRQ handling. From the point this 1717 * call is made your handler function may be invoked. Since 1718 * your handler function must clear any interrupt the board 1719 * raises, you must take care both to initialise your hardware 1720 * and to set up the interrupt handler in the right order. 1721 * 1722 * If you want to set up a threaded irq handler for your device 1723 * then you need to supply @handler and @thread_fn. @handler is 1724 * still called in hard interrupt context and has to check 1725 * whether the interrupt originates from the device. If yes it 1726 * needs to disable the interrupt on the device and return 1727 * IRQ_WAKE_THREAD which will wake up the handler thread and run 1728 * @thread_fn. This split handler design is necessary to support 1729 * shared interrupts. 1730 * 1731 * Dev_id must be globally unique. Normally the address of the 1732 * device data structure is used as the cookie. Since the handler 1733 * receives this value it makes sense to use it. 1734 * 1735 * If your interrupt is shared you must pass a non NULL dev_id 1736 * as this is required when freeing the interrupt. 1737 * 1738 * Flags: 1739 * 1740 * IRQF_SHARED Interrupt is shared 1741 * IRQF_TRIGGER_* Specify active edge(s) or level 1742 * 1743 */ 1744 int request_threaded_irq(unsigned int irq, irq_handler_t handler, 1745 irq_handler_t thread_fn, unsigned long irqflags, 1746 const char *devname, void *dev_id) 1747 { 1748 struct irqaction *action; 1749 struct irq_desc *desc; 1750 int retval; 1751 1752 if (irq == IRQ_NOTCONNECTED) 1753 return -ENOTCONN; 1754 1755 /* 1756 * Sanity-check: shared interrupts must pass in a real dev-ID, 1757 * otherwise we'll have trouble later trying to figure out 1758 * which interrupt is which (messes up the interrupt freeing 1759 * logic etc). 1760 * 1761 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and 1762 * it cannot be set along with IRQF_NO_SUSPEND. 1763 */ 1764 if (((irqflags & IRQF_SHARED) && !dev_id) || 1765 (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) || 1766 ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND))) 1767 return -EINVAL; 1768 1769 desc = irq_to_desc(irq); 1770 if (!desc) 1771 return -EINVAL; 1772 1773 if (!irq_settings_can_request(desc) || 1774 WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1775 return -EINVAL; 1776 1777 if (!handler) { 1778 if (!thread_fn) 1779 return -EINVAL; 1780 handler = irq_default_primary_handler; 1781 } 1782 1783 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 1784 if (!action) 1785 return -ENOMEM; 1786 1787 action->handler = handler; 1788 action->thread_fn = thread_fn; 1789 action->flags = irqflags; 1790 action->name = devname; 1791 action->dev_id = dev_id; 1792 1793 retval = irq_chip_pm_get(&desc->irq_data); 1794 if (retval < 0) { 1795 kfree(action); 1796 return retval; 1797 } 1798 1799 retval = __setup_irq(irq, desc, action); 1800 1801 if (retval) { 1802 irq_chip_pm_put(&desc->irq_data); 1803 kfree(action->secondary); 1804 kfree(action); 1805 } 1806 1807 #ifdef CONFIG_DEBUG_SHIRQ_FIXME 1808 if (!retval && (irqflags & IRQF_SHARED)) { 1809 /* 1810 * It's a shared IRQ -- the driver ought to be prepared for it 1811 * to happen immediately, so let's make sure.... 1812 * We disable the irq to make sure that a 'real' IRQ doesn't 1813 * run in parallel with our fake. 1814 */ 1815 unsigned long flags; 1816 1817 disable_irq(irq); 1818 local_irq_save(flags); 1819 1820 handler(irq, dev_id); 1821 1822 local_irq_restore(flags); 1823 enable_irq(irq); 1824 } 1825 #endif 1826 return retval; 1827 } 1828 EXPORT_SYMBOL(request_threaded_irq); 1829 1830 /** 1831 * request_any_context_irq - allocate an interrupt line 1832 * @irq: Interrupt line to allocate 1833 * @handler: Function to be called when the IRQ occurs. 1834 * Threaded handler for threaded interrupts. 1835 * @flags: Interrupt type flags 1836 * @name: An ascii name for the claiming device 1837 * @dev_id: A cookie passed back to the handler function 1838 * 1839 * This call allocates interrupt resources and enables the 1840 * interrupt line and IRQ handling. It selects either a 1841 * hardirq or threaded handling method depending on the 1842 * context. 1843 * 1844 * On failure, it returns a negative value. On success, 1845 * it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED. 1846 */ 1847 int request_any_context_irq(unsigned int irq, irq_handler_t handler, 1848 unsigned long flags, const char *name, void *dev_id) 1849 { 1850 struct irq_desc *desc; 1851 int ret; 1852 1853 if (irq == IRQ_NOTCONNECTED) 1854 return -ENOTCONN; 1855 1856 desc = irq_to_desc(irq); 1857 if (!desc) 1858 return -EINVAL; 1859 1860 if (irq_settings_is_nested_thread(desc)) { 1861 ret = request_threaded_irq(irq, NULL, handler, 1862 flags, name, dev_id); 1863 return !ret ? IRQC_IS_NESTED : ret; 1864 } 1865 1866 ret = request_irq(irq, handler, flags, name, dev_id); 1867 return !ret ? IRQC_IS_HARDIRQ : ret; 1868 } 1869 EXPORT_SYMBOL_GPL(request_any_context_irq); 1870 1871 void enable_percpu_irq(unsigned int irq, unsigned int type) 1872 { 1873 unsigned int cpu = smp_processor_id(); 1874 unsigned long flags; 1875 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 1876 1877 if (!desc) 1878 return; 1879 1880 /* 1881 * If the trigger type is not specified by the caller, then 1882 * use the default for this interrupt. 1883 */ 1884 type &= IRQ_TYPE_SENSE_MASK; 1885 if (type == IRQ_TYPE_NONE) 1886 type = irqd_get_trigger_type(&desc->irq_data); 1887 1888 if (type != IRQ_TYPE_NONE) { 1889 int ret; 1890 1891 ret = __irq_set_trigger(desc, type); 1892 1893 if (ret) { 1894 WARN(1, "failed to set type for IRQ%d\n", irq); 1895 goto out; 1896 } 1897 } 1898 1899 irq_percpu_enable(desc, cpu); 1900 out: 1901 irq_put_desc_unlock(desc, flags); 1902 } 1903 EXPORT_SYMBOL_GPL(enable_percpu_irq); 1904 1905 /** 1906 * irq_percpu_is_enabled - Check whether the per cpu irq is enabled 1907 * @irq: Linux irq number to check for 1908 * 1909 * Must be called from a non migratable context. Returns the enable 1910 * state of a per cpu interrupt on the current cpu. 1911 */ 1912 bool irq_percpu_is_enabled(unsigned int irq) 1913 { 1914 unsigned int cpu = smp_processor_id(); 1915 struct irq_desc *desc; 1916 unsigned long flags; 1917 bool is_enabled; 1918 1919 desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 1920 if (!desc) 1921 return false; 1922 1923 is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled); 1924 irq_put_desc_unlock(desc, flags); 1925 1926 return is_enabled; 1927 } 1928 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled); 1929 1930 void disable_percpu_irq(unsigned int irq) 1931 { 1932 unsigned int cpu = smp_processor_id(); 1933 unsigned long flags; 1934 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 1935 1936 if (!desc) 1937 return; 1938 1939 irq_percpu_disable(desc, cpu); 1940 irq_put_desc_unlock(desc, flags); 1941 } 1942 EXPORT_SYMBOL_GPL(disable_percpu_irq); 1943 1944 /* 1945 * Internal function to unregister a percpu irqaction. 1946 */ 1947 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id) 1948 { 1949 struct irq_desc *desc = irq_to_desc(irq); 1950 struct irqaction *action; 1951 unsigned long flags; 1952 1953 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq); 1954 1955 if (!desc) 1956 return NULL; 1957 1958 raw_spin_lock_irqsave(&desc->lock, flags); 1959 1960 action = desc->action; 1961 if (!action || action->percpu_dev_id != dev_id) { 1962 WARN(1, "Trying to free already-free IRQ %d\n", irq); 1963 goto bad; 1964 } 1965 1966 if (!cpumask_empty(desc->percpu_enabled)) { 1967 WARN(1, "percpu IRQ %d still enabled on CPU%d!\n", 1968 irq, cpumask_first(desc->percpu_enabled)); 1969 goto bad; 1970 } 1971 1972 /* Found it - now remove it from the list of entries: */ 1973 desc->action = NULL; 1974 1975 raw_spin_unlock_irqrestore(&desc->lock, flags); 1976 1977 unregister_handler_proc(irq, action); 1978 1979 irq_chip_pm_put(&desc->irq_data); 1980 module_put(desc->owner); 1981 return action; 1982 1983 bad: 1984 raw_spin_unlock_irqrestore(&desc->lock, flags); 1985 return NULL; 1986 } 1987 1988 /** 1989 * remove_percpu_irq - free a per-cpu interrupt 1990 * @irq: Interrupt line to free 1991 * @act: irqaction for the interrupt 1992 * 1993 * Used to remove interrupts statically setup by the early boot process. 1994 */ 1995 void remove_percpu_irq(unsigned int irq, struct irqaction *act) 1996 { 1997 struct irq_desc *desc = irq_to_desc(irq); 1998 1999 if (desc && irq_settings_is_per_cpu_devid(desc)) 2000 __free_percpu_irq(irq, act->percpu_dev_id); 2001 } 2002 2003 /** 2004 * free_percpu_irq - free an interrupt allocated with request_percpu_irq 2005 * @irq: Interrupt line to free 2006 * @dev_id: Device identity to free 2007 * 2008 * Remove a percpu interrupt handler. The handler is removed, but 2009 * the interrupt line is not disabled. This must be done on each 2010 * CPU before calling this function. The function does not return 2011 * until any executing interrupts for this IRQ have completed. 2012 * 2013 * This function must not be called from interrupt context. 2014 */ 2015 void free_percpu_irq(unsigned int irq, void __percpu *dev_id) 2016 { 2017 struct irq_desc *desc = irq_to_desc(irq); 2018 2019 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2020 return; 2021 2022 chip_bus_lock(desc); 2023 kfree(__free_percpu_irq(irq, dev_id)); 2024 chip_bus_sync_unlock(desc); 2025 } 2026 EXPORT_SYMBOL_GPL(free_percpu_irq); 2027 2028 /** 2029 * setup_percpu_irq - setup a per-cpu interrupt 2030 * @irq: Interrupt line to setup 2031 * @act: irqaction for the interrupt 2032 * 2033 * Used to statically setup per-cpu interrupts in the early boot process. 2034 */ 2035 int setup_percpu_irq(unsigned int irq, struct irqaction *act) 2036 { 2037 struct irq_desc *desc = irq_to_desc(irq); 2038 int retval; 2039 2040 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2041 return -EINVAL; 2042 2043 retval = irq_chip_pm_get(&desc->irq_data); 2044 if (retval < 0) 2045 return retval; 2046 2047 retval = __setup_irq(irq, desc, act); 2048 2049 if (retval) 2050 irq_chip_pm_put(&desc->irq_data); 2051 2052 return retval; 2053 } 2054 2055 /** 2056 * __request_percpu_irq - allocate a percpu interrupt line 2057 * @irq: Interrupt line to allocate 2058 * @handler: Function to be called when the IRQ occurs. 2059 * @flags: Interrupt type flags (IRQF_TIMER only) 2060 * @devname: An ascii name for the claiming device 2061 * @dev_id: A percpu cookie passed back to the handler function 2062 * 2063 * This call allocates interrupt resources and enables the 2064 * interrupt on the local CPU. If the interrupt is supposed to be 2065 * enabled on other CPUs, it has to be done on each CPU using 2066 * enable_percpu_irq(). 2067 * 2068 * Dev_id must be globally unique. It is a per-cpu variable, and 2069 * the handler gets called with the interrupted CPU's instance of 2070 * that variable. 2071 */ 2072 int __request_percpu_irq(unsigned int irq, irq_handler_t handler, 2073 unsigned long flags, const char *devname, 2074 void __percpu *dev_id) 2075 { 2076 struct irqaction *action; 2077 struct irq_desc *desc; 2078 int retval; 2079 2080 if (!dev_id) 2081 return -EINVAL; 2082 2083 desc = irq_to_desc(irq); 2084 if (!desc || !irq_settings_can_request(desc) || 2085 !irq_settings_is_per_cpu_devid(desc)) 2086 return -EINVAL; 2087 2088 if (flags && flags != IRQF_TIMER) 2089 return -EINVAL; 2090 2091 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2092 if (!action) 2093 return -ENOMEM; 2094 2095 action->handler = handler; 2096 action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND; 2097 action->name = devname; 2098 action->percpu_dev_id = dev_id; 2099 2100 retval = irq_chip_pm_get(&desc->irq_data); 2101 if (retval < 0) { 2102 kfree(action); 2103 return retval; 2104 } 2105 2106 retval = __setup_irq(irq, desc, action); 2107 2108 if (retval) { 2109 irq_chip_pm_put(&desc->irq_data); 2110 kfree(action); 2111 } 2112 2113 return retval; 2114 } 2115 EXPORT_SYMBOL_GPL(__request_percpu_irq); 2116 2117 /** 2118 * irq_get_irqchip_state - returns the irqchip state of a interrupt. 2119 * @irq: Interrupt line that is forwarded to a VM 2120 * @which: One of IRQCHIP_STATE_* the caller wants to know about 2121 * @state: a pointer to a boolean where the state is to be storeed 2122 * 2123 * This call snapshots the internal irqchip state of an 2124 * interrupt, returning into @state the bit corresponding to 2125 * stage @which 2126 * 2127 * This function should be called with preemption disabled if the 2128 * interrupt controller has per-cpu registers. 2129 */ 2130 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which, 2131 bool *state) 2132 { 2133 struct irq_desc *desc; 2134 struct irq_data *data; 2135 struct irq_chip *chip; 2136 unsigned long flags; 2137 int err = -EINVAL; 2138 2139 desc = irq_get_desc_buslock(irq, &flags, 0); 2140 if (!desc) 2141 return err; 2142 2143 data = irq_desc_get_irq_data(desc); 2144 2145 do { 2146 chip = irq_data_get_irq_chip(data); 2147 if (chip->irq_get_irqchip_state) 2148 break; 2149 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 2150 data = data->parent_data; 2151 #else 2152 data = NULL; 2153 #endif 2154 } while (data); 2155 2156 if (data) 2157 err = chip->irq_get_irqchip_state(data, which, state); 2158 2159 irq_put_desc_busunlock(desc, flags); 2160 return err; 2161 } 2162 EXPORT_SYMBOL_GPL(irq_get_irqchip_state); 2163 2164 /** 2165 * irq_set_irqchip_state - set the state of a forwarded interrupt. 2166 * @irq: Interrupt line that is forwarded to a VM 2167 * @which: State to be restored (one of IRQCHIP_STATE_*) 2168 * @val: Value corresponding to @which 2169 * 2170 * This call sets the internal irqchip state of an interrupt, 2171 * depending on the value of @which. 2172 * 2173 * This function should be called with preemption disabled if the 2174 * interrupt controller has per-cpu registers. 2175 */ 2176 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which, 2177 bool val) 2178 { 2179 struct irq_desc *desc; 2180 struct irq_data *data; 2181 struct irq_chip *chip; 2182 unsigned long flags; 2183 int err = -EINVAL; 2184 2185 desc = irq_get_desc_buslock(irq, &flags, 0); 2186 if (!desc) 2187 return err; 2188 2189 data = irq_desc_get_irq_data(desc); 2190 2191 do { 2192 chip = irq_data_get_irq_chip(data); 2193 if (chip->irq_set_irqchip_state) 2194 break; 2195 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 2196 data = data->parent_data; 2197 #else 2198 data = NULL; 2199 #endif 2200 } while (data); 2201 2202 if (data) 2203 err = chip->irq_set_irqchip_state(data, which, val); 2204 2205 irq_put_desc_busunlock(desc, flags); 2206 return err; 2207 } 2208 EXPORT_SYMBOL_GPL(irq_set_irqchip_state); 2209