xref: /openbmc/linux/kernel/irq/manage.c (revision a3cbcadf)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
4  * Copyright (C) 2005-2006 Thomas Gleixner
5  *
6  * This file contains driver APIs to the irq subsystem.
7  */
8 
9 #define pr_fmt(fmt) "genirq: " fmt
10 
11 #include <linux/irq.h>
12 #include <linux/kthread.h>
13 #include <linux/module.h>
14 #include <linux/random.h>
15 #include <linux/interrupt.h>
16 #include <linux/irqdomain.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/sched/rt.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/isolation.h>
22 #include <uapi/linux/sched/types.h>
23 #include <linux/task_work.h>
24 
25 #include "internals.h"
26 
27 #if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT)
28 __read_mostly bool force_irqthreads;
29 EXPORT_SYMBOL_GPL(force_irqthreads);
30 
31 static int __init setup_forced_irqthreads(char *arg)
32 {
33 	force_irqthreads = true;
34 	return 0;
35 }
36 early_param("threadirqs", setup_forced_irqthreads);
37 #endif
38 
39 static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip)
40 {
41 	struct irq_data *irqd = irq_desc_get_irq_data(desc);
42 	bool inprogress;
43 
44 	do {
45 		unsigned long flags;
46 
47 		/*
48 		 * Wait until we're out of the critical section.  This might
49 		 * give the wrong answer due to the lack of memory barriers.
50 		 */
51 		while (irqd_irq_inprogress(&desc->irq_data))
52 			cpu_relax();
53 
54 		/* Ok, that indicated we're done: double-check carefully. */
55 		raw_spin_lock_irqsave(&desc->lock, flags);
56 		inprogress = irqd_irq_inprogress(&desc->irq_data);
57 
58 		/*
59 		 * If requested and supported, check at the chip whether it
60 		 * is in flight at the hardware level, i.e. already pending
61 		 * in a CPU and waiting for service and acknowledge.
62 		 */
63 		if (!inprogress && sync_chip) {
64 			/*
65 			 * Ignore the return code. inprogress is only updated
66 			 * when the chip supports it.
67 			 */
68 			__irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE,
69 						&inprogress);
70 		}
71 		raw_spin_unlock_irqrestore(&desc->lock, flags);
72 
73 		/* Oops, that failed? */
74 	} while (inprogress);
75 }
76 
77 /**
78  *	synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
79  *	@irq: interrupt number to wait for
80  *
81  *	This function waits for any pending hard IRQ handlers for this
82  *	interrupt to complete before returning. If you use this
83  *	function while holding a resource the IRQ handler may need you
84  *	will deadlock. It does not take associated threaded handlers
85  *	into account.
86  *
87  *	Do not use this for shutdown scenarios where you must be sure
88  *	that all parts (hardirq and threaded handler) have completed.
89  *
90  *	Returns: false if a threaded handler is active.
91  *
92  *	This function may be called - with care - from IRQ context.
93  *
94  *	It does not check whether there is an interrupt in flight at the
95  *	hardware level, but not serviced yet, as this might deadlock when
96  *	called with interrupts disabled and the target CPU of the interrupt
97  *	is the current CPU.
98  */
99 bool synchronize_hardirq(unsigned int irq)
100 {
101 	struct irq_desc *desc = irq_to_desc(irq);
102 
103 	if (desc) {
104 		__synchronize_hardirq(desc, false);
105 		return !atomic_read(&desc->threads_active);
106 	}
107 
108 	return true;
109 }
110 EXPORT_SYMBOL(synchronize_hardirq);
111 
112 /**
113  *	synchronize_irq - wait for pending IRQ handlers (on other CPUs)
114  *	@irq: interrupt number to wait for
115  *
116  *	This function waits for any pending IRQ handlers for this interrupt
117  *	to complete before returning. If you use this function while
118  *	holding a resource the IRQ handler may need you will deadlock.
119  *
120  *	Can only be called from preemptible code as it might sleep when
121  *	an interrupt thread is associated to @irq.
122  *
123  *	It optionally makes sure (when the irq chip supports that method)
124  *	that the interrupt is not pending in any CPU and waiting for
125  *	service.
126  */
127 void synchronize_irq(unsigned int irq)
128 {
129 	struct irq_desc *desc = irq_to_desc(irq);
130 
131 	if (desc) {
132 		__synchronize_hardirq(desc, true);
133 		/*
134 		 * We made sure that no hardirq handler is
135 		 * running. Now verify that no threaded handlers are
136 		 * active.
137 		 */
138 		wait_event(desc->wait_for_threads,
139 			   !atomic_read(&desc->threads_active));
140 	}
141 }
142 EXPORT_SYMBOL(synchronize_irq);
143 
144 #ifdef CONFIG_SMP
145 cpumask_var_t irq_default_affinity;
146 
147 static bool __irq_can_set_affinity(struct irq_desc *desc)
148 {
149 	if (!desc || !irqd_can_balance(&desc->irq_data) ||
150 	    !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
151 		return false;
152 	return true;
153 }
154 
155 /**
156  *	irq_can_set_affinity - Check if the affinity of a given irq can be set
157  *	@irq:		Interrupt to check
158  *
159  */
160 int irq_can_set_affinity(unsigned int irq)
161 {
162 	return __irq_can_set_affinity(irq_to_desc(irq));
163 }
164 
165 /**
166  * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
167  * @irq:	Interrupt to check
168  *
169  * Like irq_can_set_affinity() above, but additionally checks for the
170  * AFFINITY_MANAGED flag.
171  */
172 bool irq_can_set_affinity_usr(unsigned int irq)
173 {
174 	struct irq_desc *desc = irq_to_desc(irq);
175 
176 	return __irq_can_set_affinity(desc) &&
177 		!irqd_affinity_is_managed(&desc->irq_data);
178 }
179 
180 /**
181  *	irq_set_thread_affinity - Notify irq threads to adjust affinity
182  *	@desc:		irq descriptor which has affinity changed
183  *
184  *	We just set IRQTF_AFFINITY and delegate the affinity setting
185  *	to the interrupt thread itself. We can not call
186  *	set_cpus_allowed_ptr() here as we hold desc->lock and this
187  *	code can be called from hard interrupt context.
188  */
189 void irq_set_thread_affinity(struct irq_desc *desc)
190 {
191 	struct irqaction *action;
192 
193 	for_each_action_of_desc(desc, action)
194 		if (action->thread)
195 			set_bit(IRQTF_AFFINITY, &action->thread_flags);
196 }
197 
198 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
199 static void irq_validate_effective_affinity(struct irq_data *data)
200 {
201 	const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
202 	struct irq_chip *chip = irq_data_get_irq_chip(data);
203 
204 	if (!cpumask_empty(m))
205 		return;
206 	pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
207 		     chip->name, data->irq);
208 }
209 
210 static inline void irq_init_effective_affinity(struct irq_data *data,
211 					       const struct cpumask *mask)
212 {
213 	cpumask_copy(irq_data_get_effective_affinity_mask(data), mask);
214 }
215 #else
216 static inline void irq_validate_effective_affinity(struct irq_data *data) { }
217 static inline void irq_init_effective_affinity(struct irq_data *data,
218 					       const struct cpumask *mask) { }
219 #endif
220 
221 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
222 			bool force)
223 {
224 	struct irq_desc *desc = irq_data_to_desc(data);
225 	struct irq_chip *chip = irq_data_get_irq_chip(data);
226 	int ret;
227 
228 	if (!chip || !chip->irq_set_affinity)
229 		return -EINVAL;
230 
231 	/*
232 	 * If this is a managed interrupt and housekeeping is enabled on
233 	 * it check whether the requested affinity mask intersects with
234 	 * a housekeeping CPU. If so, then remove the isolated CPUs from
235 	 * the mask and just keep the housekeeping CPU(s). This prevents
236 	 * the affinity setter from routing the interrupt to an isolated
237 	 * CPU to avoid that I/O submitted from a housekeeping CPU causes
238 	 * interrupts on an isolated one.
239 	 *
240 	 * If the masks do not intersect or include online CPU(s) then
241 	 * keep the requested mask. The isolated target CPUs are only
242 	 * receiving interrupts when the I/O operation was submitted
243 	 * directly from them.
244 	 *
245 	 * If all housekeeping CPUs in the affinity mask are offline, the
246 	 * interrupt will be migrated by the CPU hotplug code once a
247 	 * housekeeping CPU which belongs to the affinity mask comes
248 	 * online.
249 	 */
250 	if (irqd_affinity_is_managed(data) &&
251 	    housekeeping_enabled(HK_FLAG_MANAGED_IRQ)) {
252 		const struct cpumask *hk_mask, *prog_mask;
253 
254 		static DEFINE_RAW_SPINLOCK(tmp_mask_lock);
255 		static struct cpumask tmp_mask;
256 
257 		hk_mask = housekeeping_cpumask(HK_FLAG_MANAGED_IRQ);
258 
259 		raw_spin_lock(&tmp_mask_lock);
260 		cpumask_and(&tmp_mask, mask, hk_mask);
261 		if (!cpumask_intersects(&tmp_mask, cpu_online_mask))
262 			prog_mask = mask;
263 		else
264 			prog_mask = &tmp_mask;
265 		ret = chip->irq_set_affinity(data, prog_mask, force);
266 		raw_spin_unlock(&tmp_mask_lock);
267 	} else {
268 		ret = chip->irq_set_affinity(data, mask, force);
269 	}
270 	switch (ret) {
271 	case IRQ_SET_MASK_OK:
272 	case IRQ_SET_MASK_OK_DONE:
273 		cpumask_copy(desc->irq_common_data.affinity, mask);
274 		fallthrough;
275 	case IRQ_SET_MASK_OK_NOCOPY:
276 		irq_validate_effective_affinity(data);
277 		irq_set_thread_affinity(desc);
278 		ret = 0;
279 	}
280 
281 	return ret;
282 }
283 
284 #ifdef CONFIG_GENERIC_PENDING_IRQ
285 static inline int irq_set_affinity_pending(struct irq_data *data,
286 					   const struct cpumask *dest)
287 {
288 	struct irq_desc *desc = irq_data_to_desc(data);
289 
290 	irqd_set_move_pending(data);
291 	irq_copy_pending(desc, dest);
292 	return 0;
293 }
294 #else
295 static inline int irq_set_affinity_pending(struct irq_data *data,
296 					   const struct cpumask *dest)
297 {
298 	return -EBUSY;
299 }
300 #endif
301 
302 static int irq_try_set_affinity(struct irq_data *data,
303 				const struct cpumask *dest, bool force)
304 {
305 	int ret = irq_do_set_affinity(data, dest, force);
306 
307 	/*
308 	 * In case that the underlying vector management is busy and the
309 	 * architecture supports the generic pending mechanism then utilize
310 	 * this to avoid returning an error to user space.
311 	 */
312 	if (ret == -EBUSY && !force)
313 		ret = irq_set_affinity_pending(data, dest);
314 	return ret;
315 }
316 
317 static bool irq_set_affinity_deactivated(struct irq_data *data,
318 					 const struct cpumask *mask, bool force)
319 {
320 	struct irq_desc *desc = irq_data_to_desc(data);
321 
322 	/*
323 	 * Handle irq chips which can handle affinity only in activated
324 	 * state correctly
325 	 *
326 	 * If the interrupt is not yet activated, just store the affinity
327 	 * mask and do not call the chip driver at all. On activation the
328 	 * driver has to make sure anyway that the interrupt is in a
329 	 * usable state so startup works.
330 	 */
331 	if (!IS_ENABLED(CONFIG_IRQ_DOMAIN_HIERARCHY) ||
332 	    irqd_is_activated(data) || !irqd_affinity_on_activate(data))
333 		return false;
334 
335 	cpumask_copy(desc->irq_common_data.affinity, mask);
336 	irq_init_effective_affinity(data, mask);
337 	irqd_set(data, IRQD_AFFINITY_SET);
338 	return true;
339 }
340 
341 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
342 			    bool force)
343 {
344 	struct irq_chip *chip = irq_data_get_irq_chip(data);
345 	struct irq_desc *desc = irq_data_to_desc(data);
346 	int ret = 0;
347 
348 	if (!chip || !chip->irq_set_affinity)
349 		return -EINVAL;
350 
351 	if (irq_set_affinity_deactivated(data, mask, force))
352 		return 0;
353 
354 	if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) {
355 		ret = irq_try_set_affinity(data, mask, force);
356 	} else {
357 		irqd_set_move_pending(data);
358 		irq_copy_pending(desc, mask);
359 	}
360 
361 	if (desc->affinity_notify) {
362 		kref_get(&desc->affinity_notify->kref);
363 		if (!schedule_work(&desc->affinity_notify->work)) {
364 			/* Work was already scheduled, drop our extra ref */
365 			kref_put(&desc->affinity_notify->kref,
366 				 desc->affinity_notify->release);
367 		}
368 	}
369 	irqd_set(data, IRQD_AFFINITY_SET);
370 
371 	return ret;
372 }
373 
374 /**
375  * irq_update_affinity_desc - Update affinity management for an interrupt
376  * @irq:	The interrupt number to update
377  * @affinity:	Pointer to the affinity descriptor
378  *
379  * This interface can be used to configure the affinity management of
380  * interrupts which have been allocated already.
381  *
382  * There are certain limitations on when it may be used - attempts to use it
383  * for when the kernel is configured for generic IRQ reservation mode (in
384  * config GENERIC_IRQ_RESERVATION_MODE) will fail, as it may conflict with
385  * managed/non-managed interrupt accounting. In addition, attempts to use it on
386  * an interrupt which is already started or which has already been configured
387  * as managed will also fail, as these mean invalid init state or double init.
388  */
389 int irq_update_affinity_desc(unsigned int irq,
390 			     struct irq_affinity_desc *affinity)
391 {
392 	struct irq_desc *desc;
393 	unsigned long flags;
394 	bool activated;
395 	int ret = 0;
396 
397 	/*
398 	 * Supporting this with the reservation scheme used by x86 needs
399 	 * some more thought. Fail it for now.
400 	 */
401 	if (IS_ENABLED(CONFIG_GENERIC_IRQ_RESERVATION_MODE))
402 		return -EOPNOTSUPP;
403 
404 	desc = irq_get_desc_buslock(irq, &flags, 0);
405 	if (!desc)
406 		return -EINVAL;
407 
408 	/* Requires the interrupt to be shut down */
409 	if (irqd_is_started(&desc->irq_data)) {
410 		ret = -EBUSY;
411 		goto out_unlock;
412 	}
413 
414 	/* Interrupts which are already managed cannot be modified */
415 	if (irqd_affinity_is_managed(&desc->irq_data)) {
416 		ret = -EBUSY;
417 		goto out_unlock;
418 	}
419 
420 	/*
421 	 * Deactivate the interrupt. That's required to undo
422 	 * anything an earlier activation has established.
423 	 */
424 	activated = irqd_is_activated(&desc->irq_data);
425 	if (activated)
426 		irq_domain_deactivate_irq(&desc->irq_data);
427 
428 	if (affinity->is_managed) {
429 		irqd_set(&desc->irq_data, IRQD_AFFINITY_MANAGED);
430 		irqd_set(&desc->irq_data, IRQD_MANAGED_SHUTDOWN);
431 	}
432 
433 	cpumask_copy(desc->irq_common_data.affinity, &affinity->mask);
434 
435 	/* Restore the activation state */
436 	if (activated)
437 		irq_domain_activate_irq(&desc->irq_data, false);
438 
439 out_unlock:
440 	irq_put_desc_busunlock(desc, flags);
441 	return ret;
442 }
443 
444 static int __irq_set_affinity(unsigned int irq, const struct cpumask *mask,
445 			      bool force)
446 {
447 	struct irq_desc *desc = irq_to_desc(irq);
448 	unsigned long flags;
449 	int ret;
450 
451 	if (!desc)
452 		return -EINVAL;
453 
454 	raw_spin_lock_irqsave(&desc->lock, flags);
455 	ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
456 	raw_spin_unlock_irqrestore(&desc->lock, flags);
457 	return ret;
458 }
459 
460 /**
461  * irq_set_affinity - Set the irq affinity of a given irq
462  * @irq:	Interrupt to set affinity
463  * @cpumask:	cpumask
464  *
465  * Fails if cpumask does not contain an online CPU
466  */
467 int irq_set_affinity(unsigned int irq, const struct cpumask *cpumask)
468 {
469 	return __irq_set_affinity(irq, cpumask, false);
470 }
471 EXPORT_SYMBOL_GPL(irq_set_affinity);
472 
473 /**
474  * irq_force_affinity - Force the irq affinity of a given irq
475  * @irq:	Interrupt to set affinity
476  * @cpumask:	cpumask
477  *
478  * Same as irq_set_affinity, but without checking the mask against
479  * online cpus.
480  *
481  * Solely for low level cpu hotplug code, where we need to make per
482  * cpu interrupts affine before the cpu becomes online.
483  */
484 int irq_force_affinity(unsigned int irq, const struct cpumask *cpumask)
485 {
486 	return __irq_set_affinity(irq, cpumask, true);
487 }
488 EXPORT_SYMBOL_GPL(irq_force_affinity);
489 
490 int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m)
491 {
492 	unsigned long flags;
493 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
494 
495 	if (!desc)
496 		return -EINVAL;
497 	desc->affinity_hint = m;
498 	irq_put_desc_unlock(desc, flags);
499 	/* set the initial affinity to prevent every interrupt being on CPU0 */
500 	if (m)
501 		__irq_set_affinity(irq, m, false);
502 	return 0;
503 }
504 EXPORT_SYMBOL_GPL(irq_set_affinity_hint);
505 
506 static void irq_affinity_notify(struct work_struct *work)
507 {
508 	struct irq_affinity_notify *notify =
509 		container_of(work, struct irq_affinity_notify, work);
510 	struct irq_desc *desc = irq_to_desc(notify->irq);
511 	cpumask_var_t cpumask;
512 	unsigned long flags;
513 
514 	if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
515 		goto out;
516 
517 	raw_spin_lock_irqsave(&desc->lock, flags);
518 	if (irq_move_pending(&desc->irq_data))
519 		irq_get_pending(cpumask, desc);
520 	else
521 		cpumask_copy(cpumask, desc->irq_common_data.affinity);
522 	raw_spin_unlock_irqrestore(&desc->lock, flags);
523 
524 	notify->notify(notify, cpumask);
525 
526 	free_cpumask_var(cpumask);
527 out:
528 	kref_put(&notify->kref, notify->release);
529 }
530 
531 /**
532  *	irq_set_affinity_notifier - control notification of IRQ affinity changes
533  *	@irq:		Interrupt for which to enable/disable notification
534  *	@notify:	Context for notification, or %NULL to disable
535  *			notification.  Function pointers must be initialised;
536  *			the other fields will be initialised by this function.
537  *
538  *	Must be called in process context.  Notification may only be enabled
539  *	after the IRQ is allocated and must be disabled before the IRQ is
540  *	freed using free_irq().
541  */
542 int
543 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
544 {
545 	struct irq_desc *desc = irq_to_desc(irq);
546 	struct irq_affinity_notify *old_notify;
547 	unsigned long flags;
548 
549 	/* The release function is promised process context */
550 	might_sleep();
551 
552 	if (!desc || desc->istate & IRQS_NMI)
553 		return -EINVAL;
554 
555 	/* Complete initialisation of *notify */
556 	if (notify) {
557 		notify->irq = irq;
558 		kref_init(&notify->kref);
559 		INIT_WORK(&notify->work, irq_affinity_notify);
560 	}
561 
562 	raw_spin_lock_irqsave(&desc->lock, flags);
563 	old_notify = desc->affinity_notify;
564 	desc->affinity_notify = notify;
565 	raw_spin_unlock_irqrestore(&desc->lock, flags);
566 
567 	if (old_notify) {
568 		if (cancel_work_sync(&old_notify->work)) {
569 			/* Pending work had a ref, put that one too */
570 			kref_put(&old_notify->kref, old_notify->release);
571 		}
572 		kref_put(&old_notify->kref, old_notify->release);
573 	}
574 
575 	return 0;
576 }
577 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
578 
579 #ifndef CONFIG_AUTO_IRQ_AFFINITY
580 /*
581  * Generic version of the affinity autoselector.
582  */
583 int irq_setup_affinity(struct irq_desc *desc)
584 {
585 	struct cpumask *set = irq_default_affinity;
586 	int ret, node = irq_desc_get_node(desc);
587 	static DEFINE_RAW_SPINLOCK(mask_lock);
588 	static struct cpumask mask;
589 
590 	/* Excludes PER_CPU and NO_BALANCE interrupts */
591 	if (!__irq_can_set_affinity(desc))
592 		return 0;
593 
594 	raw_spin_lock(&mask_lock);
595 	/*
596 	 * Preserve the managed affinity setting and a userspace affinity
597 	 * setup, but make sure that one of the targets is online.
598 	 */
599 	if (irqd_affinity_is_managed(&desc->irq_data) ||
600 	    irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
601 		if (cpumask_intersects(desc->irq_common_data.affinity,
602 				       cpu_online_mask))
603 			set = desc->irq_common_data.affinity;
604 		else
605 			irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
606 	}
607 
608 	cpumask_and(&mask, cpu_online_mask, set);
609 	if (cpumask_empty(&mask))
610 		cpumask_copy(&mask, cpu_online_mask);
611 
612 	if (node != NUMA_NO_NODE) {
613 		const struct cpumask *nodemask = cpumask_of_node(node);
614 
615 		/* make sure at least one of the cpus in nodemask is online */
616 		if (cpumask_intersects(&mask, nodemask))
617 			cpumask_and(&mask, &mask, nodemask);
618 	}
619 	ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
620 	raw_spin_unlock(&mask_lock);
621 	return ret;
622 }
623 #else
624 /* Wrapper for ALPHA specific affinity selector magic */
625 int irq_setup_affinity(struct irq_desc *desc)
626 {
627 	return irq_select_affinity(irq_desc_get_irq(desc));
628 }
629 #endif /* CONFIG_AUTO_IRQ_AFFINITY */
630 #endif /* CONFIG_SMP */
631 
632 
633 /**
634  *	irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
635  *	@irq: interrupt number to set affinity
636  *	@vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
637  *	            specific data for percpu_devid interrupts
638  *
639  *	This function uses the vCPU specific data to set the vCPU
640  *	affinity for an irq. The vCPU specific data is passed from
641  *	outside, such as KVM. One example code path is as below:
642  *	KVM -> IOMMU -> irq_set_vcpu_affinity().
643  */
644 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
645 {
646 	unsigned long flags;
647 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
648 	struct irq_data *data;
649 	struct irq_chip *chip;
650 	int ret = -ENOSYS;
651 
652 	if (!desc)
653 		return -EINVAL;
654 
655 	data = irq_desc_get_irq_data(desc);
656 	do {
657 		chip = irq_data_get_irq_chip(data);
658 		if (chip && chip->irq_set_vcpu_affinity)
659 			break;
660 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
661 		data = data->parent_data;
662 #else
663 		data = NULL;
664 #endif
665 	} while (data);
666 
667 	if (data)
668 		ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
669 	irq_put_desc_unlock(desc, flags);
670 
671 	return ret;
672 }
673 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
674 
675 void __disable_irq(struct irq_desc *desc)
676 {
677 	if (!desc->depth++)
678 		irq_disable(desc);
679 }
680 
681 static int __disable_irq_nosync(unsigned int irq)
682 {
683 	unsigned long flags;
684 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
685 
686 	if (!desc)
687 		return -EINVAL;
688 	__disable_irq(desc);
689 	irq_put_desc_busunlock(desc, flags);
690 	return 0;
691 }
692 
693 /**
694  *	disable_irq_nosync - disable an irq without waiting
695  *	@irq: Interrupt to disable
696  *
697  *	Disable the selected interrupt line.  Disables and Enables are
698  *	nested.
699  *	Unlike disable_irq(), this function does not ensure existing
700  *	instances of the IRQ handler have completed before returning.
701  *
702  *	This function may be called from IRQ context.
703  */
704 void disable_irq_nosync(unsigned int irq)
705 {
706 	__disable_irq_nosync(irq);
707 }
708 EXPORT_SYMBOL(disable_irq_nosync);
709 
710 /**
711  *	disable_irq - disable an irq and wait for completion
712  *	@irq: Interrupt to disable
713  *
714  *	Disable the selected interrupt line.  Enables and Disables are
715  *	nested.
716  *	This function waits for any pending IRQ handlers for this interrupt
717  *	to complete before returning. If you use this function while
718  *	holding a resource the IRQ handler may need you will deadlock.
719  *
720  *	This function may be called - with care - from IRQ context.
721  */
722 void disable_irq(unsigned int irq)
723 {
724 	if (!__disable_irq_nosync(irq))
725 		synchronize_irq(irq);
726 }
727 EXPORT_SYMBOL(disable_irq);
728 
729 /**
730  *	disable_hardirq - disables an irq and waits for hardirq completion
731  *	@irq: Interrupt to disable
732  *
733  *	Disable the selected interrupt line.  Enables and Disables are
734  *	nested.
735  *	This function waits for any pending hard IRQ handlers for this
736  *	interrupt to complete before returning. If you use this function while
737  *	holding a resource the hard IRQ handler may need you will deadlock.
738  *
739  *	When used to optimistically disable an interrupt from atomic context
740  *	the return value must be checked.
741  *
742  *	Returns: false if a threaded handler is active.
743  *
744  *	This function may be called - with care - from IRQ context.
745  */
746 bool disable_hardirq(unsigned int irq)
747 {
748 	if (!__disable_irq_nosync(irq))
749 		return synchronize_hardirq(irq);
750 
751 	return false;
752 }
753 EXPORT_SYMBOL_GPL(disable_hardirq);
754 
755 /**
756  *	disable_nmi_nosync - disable an nmi without waiting
757  *	@irq: Interrupt to disable
758  *
759  *	Disable the selected interrupt line. Disables and enables are
760  *	nested.
761  *	The interrupt to disable must have been requested through request_nmi.
762  *	Unlike disable_nmi(), this function does not ensure existing
763  *	instances of the IRQ handler have completed before returning.
764  */
765 void disable_nmi_nosync(unsigned int irq)
766 {
767 	disable_irq_nosync(irq);
768 }
769 
770 void __enable_irq(struct irq_desc *desc)
771 {
772 	switch (desc->depth) {
773 	case 0:
774  err_out:
775 		WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
776 		     irq_desc_get_irq(desc));
777 		break;
778 	case 1: {
779 		if (desc->istate & IRQS_SUSPENDED)
780 			goto err_out;
781 		/* Prevent probing on this irq: */
782 		irq_settings_set_noprobe(desc);
783 		/*
784 		 * Call irq_startup() not irq_enable() here because the
785 		 * interrupt might be marked NOAUTOEN. So irq_startup()
786 		 * needs to be invoked when it gets enabled the first
787 		 * time. If it was already started up, then irq_startup()
788 		 * will invoke irq_enable() under the hood.
789 		 */
790 		irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
791 		break;
792 	}
793 	default:
794 		desc->depth--;
795 	}
796 }
797 
798 /**
799  *	enable_irq - enable handling of an irq
800  *	@irq: Interrupt to enable
801  *
802  *	Undoes the effect of one call to disable_irq().  If this
803  *	matches the last disable, processing of interrupts on this
804  *	IRQ line is re-enabled.
805  *
806  *	This function may be called from IRQ context only when
807  *	desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
808  */
809 void enable_irq(unsigned int irq)
810 {
811 	unsigned long flags;
812 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
813 
814 	if (!desc)
815 		return;
816 	if (WARN(!desc->irq_data.chip,
817 		 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
818 		goto out;
819 
820 	__enable_irq(desc);
821 out:
822 	irq_put_desc_busunlock(desc, flags);
823 }
824 EXPORT_SYMBOL(enable_irq);
825 
826 /**
827  *	enable_nmi - enable handling of an nmi
828  *	@irq: Interrupt to enable
829  *
830  *	The interrupt to enable must have been requested through request_nmi.
831  *	Undoes the effect of one call to disable_nmi(). If this
832  *	matches the last disable, processing of interrupts on this
833  *	IRQ line is re-enabled.
834  */
835 void enable_nmi(unsigned int irq)
836 {
837 	enable_irq(irq);
838 }
839 
840 static int set_irq_wake_real(unsigned int irq, unsigned int on)
841 {
842 	struct irq_desc *desc = irq_to_desc(irq);
843 	int ret = -ENXIO;
844 
845 	if (irq_desc_get_chip(desc)->flags &  IRQCHIP_SKIP_SET_WAKE)
846 		return 0;
847 
848 	if (desc->irq_data.chip->irq_set_wake)
849 		ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
850 
851 	return ret;
852 }
853 
854 /**
855  *	irq_set_irq_wake - control irq power management wakeup
856  *	@irq:	interrupt to control
857  *	@on:	enable/disable power management wakeup
858  *
859  *	Enable/disable power management wakeup mode, which is
860  *	disabled by default.  Enables and disables must match,
861  *	just as they match for non-wakeup mode support.
862  *
863  *	Wakeup mode lets this IRQ wake the system from sleep
864  *	states like "suspend to RAM".
865  *
866  *	Note: irq enable/disable state is completely orthogonal
867  *	to the enable/disable state of irq wake. An irq can be
868  *	disabled with disable_irq() and still wake the system as
869  *	long as the irq has wake enabled. If this does not hold,
870  *	then the underlying irq chip and the related driver need
871  *	to be investigated.
872  */
873 int irq_set_irq_wake(unsigned int irq, unsigned int on)
874 {
875 	unsigned long flags;
876 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
877 	int ret = 0;
878 
879 	if (!desc)
880 		return -EINVAL;
881 
882 	/* Don't use NMIs as wake up interrupts please */
883 	if (desc->istate & IRQS_NMI) {
884 		ret = -EINVAL;
885 		goto out_unlock;
886 	}
887 
888 	/* wakeup-capable irqs can be shared between drivers that
889 	 * don't need to have the same sleep mode behaviors.
890 	 */
891 	if (on) {
892 		if (desc->wake_depth++ == 0) {
893 			ret = set_irq_wake_real(irq, on);
894 			if (ret)
895 				desc->wake_depth = 0;
896 			else
897 				irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
898 		}
899 	} else {
900 		if (desc->wake_depth == 0) {
901 			WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
902 		} else if (--desc->wake_depth == 0) {
903 			ret = set_irq_wake_real(irq, on);
904 			if (ret)
905 				desc->wake_depth = 1;
906 			else
907 				irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
908 		}
909 	}
910 
911 out_unlock:
912 	irq_put_desc_busunlock(desc, flags);
913 	return ret;
914 }
915 EXPORT_SYMBOL(irq_set_irq_wake);
916 
917 /*
918  * Internal function that tells the architecture code whether a
919  * particular irq has been exclusively allocated or is available
920  * for driver use.
921  */
922 int can_request_irq(unsigned int irq, unsigned long irqflags)
923 {
924 	unsigned long flags;
925 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
926 	int canrequest = 0;
927 
928 	if (!desc)
929 		return 0;
930 
931 	if (irq_settings_can_request(desc)) {
932 		if (!desc->action ||
933 		    irqflags & desc->action->flags & IRQF_SHARED)
934 			canrequest = 1;
935 	}
936 	irq_put_desc_unlock(desc, flags);
937 	return canrequest;
938 }
939 
940 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
941 {
942 	struct irq_chip *chip = desc->irq_data.chip;
943 	int ret, unmask = 0;
944 
945 	if (!chip || !chip->irq_set_type) {
946 		/*
947 		 * IRQF_TRIGGER_* but the PIC does not support multiple
948 		 * flow-types?
949 		 */
950 		pr_debug("No set_type function for IRQ %d (%s)\n",
951 			 irq_desc_get_irq(desc),
952 			 chip ? (chip->name ? : "unknown") : "unknown");
953 		return 0;
954 	}
955 
956 	if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
957 		if (!irqd_irq_masked(&desc->irq_data))
958 			mask_irq(desc);
959 		if (!irqd_irq_disabled(&desc->irq_data))
960 			unmask = 1;
961 	}
962 
963 	/* Mask all flags except trigger mode */
964 	flags &= IRQ_TYPE_SENSE_MASK;
965 	ret = chip->irq_set_type(&desc->irq_data, flags);
966 
967 	switch (ret) {
968 	case IRQ_SET_MASK_OK:
969 	case IRQ_SET_MASK_OK_DONE:
970 		irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
971 		irqd_set(&desc->irq_data, flags);
972 		fallthrough;
973 
974 	case IRQ_SET_MASK_OK_NOCOPY:
975 		flags = irqd_get_trigger_type(&desc->irq_data);
976 		irq_settings_set_trigger_mask(desc, flags);
977 		irqd_clear(&desc->irq_data, IRQD_LEVEL);
978 		irq_settings_clr_level(desc);
979 		if (flags & IRQ_TYPE_LEVEL_MASK) {
980 			irq_settings_set_level(desc);
981 			irqd_set(&desc->irq_data, IRQD_LEVEL);
982 		}
983 
984 		ret = 0;
985 		break;
986 	default:
987 		pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n",
988 		       flags, irq_desc_get_irq(desc), chip->irq_set_type);
989 	}
990 	if (unmask)
991 		unmask_irq(desc);
992 	return ret;
993 }
994 
995 #ifdef CONFIG_HARDIRQS_SW_RESEND
996 int irq_set_parent(int irq, int parent_irq)
997 {
998 	unsigned long flags;
999 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
1000 
1001 	if (!desc)
1002 		return -EINVAL;
1003 
1004 	desc->parent_irq = parent_irq;
1005 
1006 	irq_put_desc_unlock(desc, flags);
1007 	return 0;
1008 }
1009 EXPORT_SYMBOL_GPL(irq_set_parent);
1010 #endif
1011 
1012 /*
1013  * Default primary interrupt handler for threaded interrupts. Is
1014  * assigned as primary handler when request_threaded_irq is called
1015  * with handler == NULL. Useful for oneshot interrupts.
1016  */
1017 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
1018 {
1019 	return IRQ_WAKE_THREAD;
1020 }
1021 
1022 /*
1023  * Primary handler for nested threaded interrupts. Should never be
1024  * called.
1025  */
1026 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
1027 {
1028 	WARN(1, "Primary handler called for nested irq %d\n", irq);
1029 	return IRQ_NONE;
1030 }
1031 
1032 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
1033 {
1034 	WARN(1, "Secondary action handler called for irq %d\n", irq);
1035 	return IRQ_NONE;
1036 }
1037 
1038 static int irq_wait_for_interrupt(struct irqaction *action)
1039 {
1040 	for (;;) {
1041 		set_current_state(TASK_INTERRUPTIBLE);
1042 
1043 		if (kthread_should_stop()) {
1044 			/* may need to run one last time */
1045 			if (test_and_clear_bit(IRQTF_RUNTHREAD,
1046 					       &action->thread_flags)) {
1047 				__set_current_state(TASK_RUNNING);
1048 				return 0;
1049 			}
1050 			__set_current_state(TASK_RUNNING);
1051 			return -1;
1052 		}
1053 
1054 		if (test_and_clear_bit(IRQTF_RUNTHREAD,
1055 				       &action->thread_flags)) {
1056 			__set_current_state(TASK_RUNNING);
1057 			return 0;
1058 		}
1059 		schedule();
1060 	}
1061 }
1062 
1063 /*
1064  * Oneshot interrupts keep the irq line masked until the threaded
1065  * handler finished. unmask if the interrupt has not been disabled and
1066  * is marked MASKED.
1067  */
1068 static void irq_finalize_oneshot(struct irq_desc *desc,
1069 				 struct irqaction *action)
1070 {
1071 	if (!(desc->istate & IRQS_ONESHOT) ||
1072 	    action->handler == irq_forced_secondary_handler)
1073 		return;
1074 again:
1075 	chip_bus_lock(desc);
1076 	raw_spin_lock_irq(&desc->lock);
1077 
1078 	/*
1079 	 * Implausible though it may be we need to protect us against
1080 	 * the following scenario:
1081 	 *
1082 	 * The thread is faster done than the hard interrupt handler
1083 	 * on the other CPU. If we unmask the irq line then the
1084 	 * interrupt can come in again and masks the line, leaves due
1085 	 * to IRQS_INPROGRESS and the irq line is masked forever.
1086 	 *
1087 	 * This also serializes the state of shared oneshot handlers
1088 	 * versus "desc->threads_oneshot |= action->thread_mask;" in
1089 	 * irq_wake_thread(). See the comment there which explains the
1090 	 * serialization.
1091 	 */
1092 	if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
1093 		raw_spin_unlock_irq(&desc->lock);
1094 		chip_bus_sync_unlock(desc);
1095 		cpu_relax();
1096 		goto again;
1097 	}
1098 
1099 	/*
1100 	 * Now check again, whether the thread should run. Otherwise
1101 	 * we would clear the threads_oneshot bit of this thread which
1102 	 * was just set.
1103 	 */
1104 	if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1105 		goto out_unlock;
1106 
1107 	desc->threads_oneshot &= ~action->thread_mask;
1108 
1109 	if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
1110 	    irqd_irq_masked(&desc->irq_data))
1111 		unmask_threaded_irq(desc);
1112 
1113 out_unlock:
1114 	raw_spin_unlock_irq(&desc->lock);
1115 	chip_bus_sync_unlock(desc);
1116 }
1117 
1118 #ifdef CONFIG_SMP
1119 /*
1120  * Check whether we need to change the affinity of the interrupt thread.
1121  */
1122 static void
1123 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
1124 {
1125 	cpumask_var_t mask;
1126 	bool valid = true;
1127 
1128 	if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
1129 		return;
1130 
1131 	/*
1132 	 * In case we are out of memory we set IRQTF_AFFINITY again and
1133 	 * try again next time
1134 	 */
1135 	if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
1136 		set_bit(IRQTF_AFFINITY, &action->thread_flags);
1137 		return;
1138 	}
1139 
1140 	raw_spin_lock_irq(&desc->lock);
1141 	/*
1142 	 * This code is triggered unconditionally. Check the affinity
1143 	 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
1144 	 */
1145 	if (cpumask_available(desc->irq_common_data.affinity)) {
1146 		const struct cpumask *m;
1147 
1148 		m = irq_data_get_effective_affinity_mask(&desc->irq_data);
1149 		cpumask_copy(mask, m);
1150 	} else {
1151 		valid = false;
1152 	}
1153 	raw_spin_unlock_irq(&desc->lock);
1154 
1155 	if (valid)
1156 		set_cpus_allowed_ptr(current, mask);
1157 	free_cpumask_var(mask);
1158 }
1159 #else
1160 static inline void
1161 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
1162 #endif
1163 
1164 /*
1165  * Interrupts which are not explicitly requested as threaded
1166  * interrupts rely on the implicit bh/preempt disable of the hard irq
1167  * context. So we need to disable bh here to avoid deadlocks and other
1168  * side effects.
1169  */
1170 static irqreturn_t
1171 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
1172 {
1173 	irqreturn_t ret;
1174 
1175 	local_bh_disable();
1176 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1177 		local_irq_disable();
1178 	ret = action->thread_fn(action->irq, action->dev_id);
1179 	if (ret == IRQ_HANDLED)
1180 		atomic_inc(&desc->threads_handled);
1181 
1182 	irq_finalize_oneshot(desc, action);
1183 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1184 		local_irq_enable();
1185 	local_bh_enable();
1186 	return ret;
1187 }
1188 
1189 /*
1190  * Interrupts explicitly requested as threaded interrupts want to be
1191  * preemptible - many of them need to sleep and wait for slow busses to
1192  * complete.
1193  */
1194 static irqreturn_t irq_thread_fn(struct irq_desc *desc,
1195 		struct irqaction *action)
1196 {
1197 	irqreturn_t ret;
1198 
1199 	ret = action->thread_fn(action->irq, action->dev_id);
1200 	if (ret == IRQ_HANDLED)
1201 		atomic_inc(&desc->threads_handled);
1202 
1203 	irq_finalize_oneshot(desc, action);
1204 	return ret;
1205 }
1206 
1207 static void wake_threads_waitq(struct irq_desc *desc)
1208 {
1209 	if (atomic_dec_and_test(&desc->threads_active))
1210 		wake_up(&desc->wait_for_threads);
1211 }
1212 
1213 static void irq_thread_dtor(struct callback_head *unused)
1214 {
1215 	struct task_struct *tsk = current;
1216 	struct irq_desc *desc;
1217 	struct irqaction *action;
1218 
1219 	if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
1220 		return;
1221 
1222 	action = kthread_data(tsk);
1223 
1224 	pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
1225 	       tsk->comm, tsk->pid, action->irq);
1226 
1227 
1228 	desc = irq_to_desc(action->irq);
1229 	/*
1230 	 * If IRQTF_RUNTHREAD is set, we need to decrement
1231 	 * desc->threads_active and wake possible waiters.
1232 	 */
1233 	if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1234 		wake_threads_waitq(desc);
1235 
1236 	/* Prevent a stale desc->threads_oneshot */
1237 	irq_finalize_oneshot(desc, action);
1238 }
1239 
1240 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
1241 {
1242 	struct irqaction *secondary = action->secondary;
1243 
1244 	if (WARN_ON_ONCE(!secondary))
1245 		return;
1246 
1247 	raw_spin_lock_irq(&desc->lock);
1248 	__irq_wake_thread(desc, secondary);
1249 	raw_spin_unlock_irq(&desc->lock);
1250 }
1251 
1252 /*
1253  * Interrupt handler thread
1254  */
1255 static int irq_thread(void *data)
1256 {
1257 	struct callback_head on_exit_work;
1258 	struct irqaction *action = data;
1259 	struct irq_desc *desc = irq_to_desc(action->irq);
1260 	irqreturn_t (*handler_fn)(struct irq_desc *desc,
1261 			struct irqaction *action);
1262 
1263 	if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD,
1264 					&action->thread_flags))
1265 		handler_fn = irq_forced_thread_fn;
1266 	else
1267 		handler_fn = irq_thread_fn;
1268 
1269 	init_task_work(&on_exit_work, irq_thread_dtor);
1270 	task_work_add(current, &on_exit_work, TWA_NONE);
1271 
1272 	irq_thread_check_affinity(desc, action);
1273 
1274 	while (!irq_wait_for_interrupt(action)) {
1275 		irqreturn_t action_ret;
1276 
1277 		irq_thread_check_affinity(desc, action);
1278 
1279 		action_ret = handler_fn(desc, action);
1280 		if (action_ret == IRQ_WAKE_THREAD)
1281 			irq_wake_secondary(desc, action);
1282 
1283 		wake_threads_waitq(desc);
1284 	}
1285 
1286 	/*
1287 	 * This is the regular exit path. __free_irq() is stopping the
1288 	 * thread via kthread_stop() after calling
1289 	 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the
1290 	 * oneshot mask bit can be set.
1291 	 */
1292 	task_work_cancel(current, irq_thread_dtor);
1293 	return 0;
1294 }
1295 
1296 /**
1297  *	irq_wake_thread - wake the irq thread for the action identified by dev_id
1298  *	@irq:		Interrupt line
1299  *	@dev_id:	Device identity for which the thread should be woken
1300  *
1301  */
1302 void irq_wake_thread(unsigned int irq, void *dev_id)
1303 {
1304 	struct irq_desc *desc = irq_to_desc(irq);
1305 	struct irqaction *action;
1306 	unsigned long flags;
1307 
1308 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1309 		return;
1310 
1311 	raw_spin_lock_irqsave(&desc->lock, flags);
1312 	for_each_action_of_desc(desc, action) {
1313 		if (action->dev_id == dev_id) {
1314 			if (action->thread)
1315 				__irq_wake_thread(desc, action);
1316 			break;
1317 		}
1318 	}
1319 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1320 }
1321 EXPORT_SYMBOL_GPL(irq_wake_thread);
1322 
1323 static int irq_setup_forced_threading(struct irqaction *new)
1324 {
1325 	if (!force_irqthreads)
1326 		return 0;
1327 	if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1328 		return 0;
1329 
1330 	/*
1331 	 * No further action required for interrupts which are requested as
1332 	 * threaded interrupts already
1333 	 */
1334 	if (new->handler == irq_default_primary_handler)
1335 		return 0;
1336 
1337 	new->flags |= IRQF_ONESHOT;
1338 
1339 	/*
1340 	 * Handle the case where we have a real primary handler and a
1341 	 * thread handler. We force thread them as well by creating a
1342 	 * secondary action.
1343 	 */
1344 	if (new->handler && new->thread_fn) {
1345 		/* Allocate the secondary action */
1346 		new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1347 		if (!new->secondary)
1348 			return -ENOMEM;
1349 		new->secondary->handler = irq_forced_secondary_handler;
1350 		new->secondary->thread_fn = new->thread_fn;
1351 		new->secondary->dev_id = new->dev_id;
1352 		new->secondary->irq = new->irq;
1353 		new->secondary->name = new->name;
1354 	}
1355 	/* Deal with the primary handler */
1356 	set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1357 	new->thread_fn = new->handler;
1358 	new->handler = irq_default_primary_handler;
1359 	return 0;
1360 }
1361 
1362 static int irq_request_resources(struct irq_desc *desc)
1363 {
1364 	struct irq_data *d = &desc->irq_data;
1365 	struct irq_chip *c = d->chip;
1366 
1367 	return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1368 }
1369 
1370 static void irq_release_resources(struct irq_desc *desc)
1371 {
1372 	struct irq_data *d = &desc->irq_data;
1373 	struct irq_chip *c = d->chip;
1374 
1375 	if (c->irq_release_resources)
1376 		c->irq_release_resources(d);
1377 }
1378 
1379 static bool irq_supports_nmi(struct irq_desc *desc)
1380 {
1381 	struct irq_data *d = irq_desc_get_irq_data(desc);
1382 
1383 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
1384 	/* Only IRQs directly managed by the root irqchip can be set as NMI */
1385 	if (d->parent_data)
1386 		return false;
1387 #endif
1388 	/* Don't support NMIs for chips behind a slow bus */
1389 	if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock)
1390 		return false;
1391 
1392 	return d->chip->flags & IRQCHIP_SUPPORTS_NMI;
1393 }
1394 
1395 static int irq_nmi_setup(struct irq_desc *desc)
1396 {
1397 	struct irq_data *d = irq_desc_get_irq_data(desc);
1398 	struct irq_chip *c = d->chip;
1399 
1400 	return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL;
1401 }
1402 
1403 static void irq_nmi_teardown(struct irq_desc *desc)
1404 {
1405 	struct irq_data *d = irq_desc_get_irq_data(desc);
1406 	struct irq_chip *c = d->chip;
1407 
1408 	if (c->irq_nmi_teardown)
1409 		c->irq_nmi_teardown(d);
1410 }
1411 
1412 static int
1413 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1414 {
1415 	struct task_struct *t;
1416 
1417 	if (!secondary) {
1418 		t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1419 				   new->name);
1420 	} else {
1421 		t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1422 				   new->name);
1423 	}
1424 
1425 	if (IS_ERR(t))
1426 		return PTR_ERR(t);
1427 
1428 	sched_set_fifo(t);
1429 
1430 	/*
1431 	 * We keep the reference to the task struct even if
1432 	 * the thread dies to avoid that the interrupt code
1433 	 * references an already freed task_struct.
1434 	 */
1435 	new->thread = get_task_struct(t);
1436 	/*
1437 	 * Tell the thread to set its affinity. This is
1438 	 * important for shared interrupt handlers as we do
1439 	 * not invoke setup_affinity() for the secondary
1440 	 * handlers as everything is already set up. Even for
1441 	 * interrupts marked with IRQF_NO_BALANCE this is
1442 	 * correct as we want the thread to move to the cpu(s)
1443 	 * on which the requesting code placed the interrupt.
1444 	 */
1445 	set_bit(IRQTF_AFFINITY, &new->thread_flags);
1446 	return 0;
1447 }
1448 
1449 /*
1450  * Internal function to register an irqaction - typically used to
1451  * allocate special interrupts that are part of the architecture.
1452  *
1453  * Locking rules:
1454  *
1455  * desc->request_mutex	Provides serialization against a concurrent free_irq()
1456  *   chip_bus_lock	Provides serialization for slow bus operations
1457  *     desc->lock	Provides serialization against hard interrupts
1458  *
1459  * chip_bus_lock and desc->lock are sufficient for all other management and
1460  * interrupt related functions. desc->request_mutex solely serializes
1461  * request/free_irq().
1462  */
1463 static int
1464 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1465 {
1466 	struct irqaction *old, **old_ptr;
1467 	unsigned long flags, thread_mask = 0;
1468 	int ret, nested, shared = 0;
1469 
1470 	if (!desc)
1471 		return -EINVAL;
1472 
1473 	if (desc->irq_data.chip == &no_irq_chip)
1474 		return -ENOSYS;
1475 	if (!try_module_get(desc->owner))
1476 		return -ENODEV;
1477 
1478 	new->irq = irq;
1479 
1480 	/*
1481 	 * If the trigger type is not specified by the caller,
1482 	 * then use the default for this interrupt.
1483 	 */
1484 	if (!(new->flags & IRQF_TRIGGER_MASK))
1485 		new->flags |= irqd_get_trigger_type(&desc->irq_data);
1486 
1487 	/*
1488 	 * Check whether the interrupt nests into another interrupt
1489 	 * thread.
1490 	 */
1491 	nested = irq_settings_is_nested_thread(desc);
1492 	if (nested) {
1493 		if (!new->thread_fn) {
1494 			ret = -EINVAL;
1495 			goto out_mput;
1496 		}
1497 		/*
1498 		 * Replace the primary handler which was provided from
1499 		 * the driver for non nested interrupt handling by the
1500 		 * dummy function which warns when called.
1501 		 */
1502 		new->handler = irq_nested_primary_handler;
1503 	} else {
1504 		if (irq_settings_can_thread(desc)) {
1505 			ret = irq_setup_forced_threading(new);
1506 			if (ret)
1507 				goto out_mput;
1508 		}
1509 	}
1510 
1511 	/*
1512 	 * Create a handler thread when a thread function is supplied
1513 	 * and the interrupt does not nest into another interrupt
1514 	 * thread.
1515 	 */
1516 	if (new->thread_fn && !nested) {
1517 		ret = setup_irq_thread(new, irq, false);
1518 		if (ret)
1519 			goto out_mput;
1520 		if (new->secondary) {
1521 			ret = setup_irq_thread(new->secondary, irq, true);
1522 			if (ret)
1523 				goto out_thread;
1524 		}
1525 	}
1526 
1527 	/*
1528 	 * Drivers are often written to work w/o knowledge about the
1529 	 * underlying irq chip implementation, so a request for a
1530 	 * threaded irq without a primary hard irq context handler
1531 	 * requires the ONESHOT flag to be set. Some irq chips like
1532 	 * MSI based interrupts are per se one shot safe. Check the
1533 	 * chip flags, so we can avoid the unmask dance at the end of
1534 	 * the threaded handler for those.
1535 	 */
1536 	if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1537 		new->flags &= ~IRQF_ONESHOT;
1538 
1539 	/*
1540 	 * Protects against a concurrent __free_irq() call which might wait
1541 	 * for synchronize_hardirq() to complete without holding the optional
1542 	 * chip bus lock and desc->lock. Also protects against handing out
1543 	 * a recycled oneshot thread_mask bit while it's still in use by
1544 	 * its previous owner.
1545 	 */
1546 	mutex_lock(&desc->request_mutex);
1547 
1548 	/*
1549 	 * Acquire bus lock as the irq_request_resources() callback below
1550 	 * might rely on the serialization or the magic power management
1551 	 * functions which are abusing the irq_bus_lock() callback,
1552 	 */
1553 	chip_bus_lock(desc);
1554 
1555 	/* First installed action requests resources. */
1556 	if (!desc->action) {
1557 		ret = irq_request_resources(desc);
1558 		if (ret) {
1559 			pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1560 			       new->name, irq, desc->irq_data.chip->name);
1561 			goto out_bus_unlock;
1562 		}
1563 	}
1564 
1565 	/*
1566 	 * The following block of code has to be executed atomically
1567 	 * protected against a concurrent interrupt and any of the other
1568 	 * management calls which are not serialized via
1569 	 * desc->request_mutex or the optional bus lock.
1570 	 */
1571 	raw_spin_lock_irqsave(&desc->lock, flags);
1572 	old_ptr = &desc->action;
1573 	old = *old_ptr;
1574 	if (old) {
1575 		/*
1576 		 * Can't share interrupts unless both agree to and are
1577 		 * the same type (level, edge, polarity). So both flag
1578 		 * fields must have IRQF_SHARED set and the bits which
1579 		 * set the trigger type must match. Also all must
1580 		 * agree on ONESHOT.
1581 		 * Interrupt lines used for NMIs cannot be shared.
1582 		 */
1583 		unsigned int oldtype;
1584 
1585 		if (desc->istate & IRQS_NMI) {
1586 			pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n",
1587 				new->name, irq, desc->irq_data.chip->name);
1588 			ret = -EINVAL;
1589 			goto out_unlock;
1590 		}
1591 
1592 		/*
1593 		 * If nobody did set the configuration before, inherit
1594 		 * the one provided by the requester.
1595 		 */
1596 		if (irqd_trigger_type_was_set(&desc->irq_data)) {
1597 			oldtype = irqd_get_trigger_type(&desc->irq_data);
1598 		} else {
1599 			oldtype = new->flags & IRQF_TRIGGER_MASK;
1600 			irqd_set_trigger_type(&desc->irq_data, oldtype);
1601 		}
1602 
1603 		if (!((old->flags & new->flags) & IRQF_SHARED) ||
1604 		    (oldtype != (new->flags & IRQF_TRIGGER_MASK)) ||
1605 		    ((old->flags ^ new->flags) & IRQF_ONESHOT))
1606 			goto mismatch;
1607 
1608 		/* All handlers must agree on per-cpuness */
1609 		if ((old->flags & IRQF_PERCPU) !=
1610 		    (new->flags & IRQF_PERCPU))
1611 			goto mismatch;
1612 
1613 		/* add new interrupt at end of irq queue */
1614 		do {
1615 			/*
1616 			 * Or all existing action->thread_mask bits,
1617 			 * so we can find the next zero bit for this
1618 			 * new action.
1619 			 */
1620 			thread_mask |= old->thread_mask;
1621 			old_ptr = &old->next;
1622 			old = *old_ptr;
1623 		} while (old);
1624 		shared = 1;
1625 	}
1626 
1627 	/*
1628 	 * Setup the thread mask for this irqaction for ONESHOT. For
1629 	 * !ONESHOT irqs the thread mask is 0 so we can avoid a
1630 	 * conditional in irq_wake_thread().
1631 	 */
1632 	if (new->flags & IRQF_ONESHOT) {
1633 		/*
1634 		 * Unlikely to have 32 resp 64 irqs sharing one line,
1635 		 * but who knows.
1636 		 */
1637 		if (thread_mask == ~0UL) {
1638 			ret = -EBUSY;
1639 			goto out_unlock;
1640 		}
1641 		/*
1642 		 * The thread_mask for the action is or'ed to
1643 		 * desc->thread_active to indicate that the
1644 		 * IRQF_ONESHOT thread handler has been woken, but not
1645 		 * yet finished. The bit is cleared when a thread
1646 		 * completes. When all threads of a shared interrupt
1647 		 * line have completed desc->threads_active becomes
1648 		 * zero and the interrupt line is unmasked. See
1649 		 * handle.c:irq_wake_thread() for further information.
1650 		 *
1651 		 * If no thread is woken by primary (hard irq context)
1652 		 * interrupt handlers, then desc->threads_active is
1653 		 * also checked for zero to unmask the irq line in the
1654 		 * affected hard irq flow handlers
1655 		 * (handle_[fasteoi|level]_irq).
1656 		 *
1657 		 * The new action gets the first zero bit of
1658 		 * thread_mask assigned. See the loop above which or's
1659 		 * all existing action->thread_mask bits.
1660 		 */
1661 		new->thread_mask = 1UL << ffz(thread_mask);
1662 
1663 	} else if (new->handler == irq_default_primary_handler &&
1664 		   !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1665 		/*
1666 		 * The interrupt was requested with handler = NULL, so
1667 		 * we use the default primary handler for it. But it
1668 		 * does not have the oneshot flag set. In combination
1669 		 * with level interrupts this is deadly, because the
1670 		 * default primary handler just wakes the thread, then
1671 		 * the irq lines is reenabled, but the device still
1672 		 * has the level irq asserted. Rinse and repeat....
1673 		 *
1674 		 * While this works for edge type interrupts, we play
1675 		 * it safe and reject unconditionally because we can't
1676 		 * say for sure which type this interrupt really
1677 		 * has. The type flags are unreliable as the
1678 		 * underlying chip implementation can override them.
1679 		 */
1680 		pr_err("Threaded irq requested with handler=NULL and !ONESHOT for %s (irq %d)\n",
1681 		       new->name, irq);
1682 		ret = -EINVAL;
1683 		goto out_unlock;
1684 	}
1685 
1686 	if (!shared) {
1687 		init_waitqueue_head(&desc->wait_for_threads);
1688 
1689 		/* Setup the type (level, edge polarity) if configured: */
1690 		if (new->flags & IRQF_TRIGGER_MASK) {
1691 			ret = __irq_set_trigger(desc,
1692 						new->flags & IRQF_TRIGGER_MASK);
1693 
1694 			if (ret)
1695 				goto out_unlock;
1696 		}
1697 
1698 		/*
1699 		 * Activate the interrupt. That activation must happen
1700 		 * independently of IRQ_NOAUTOEN. request_irq() can fail
1701 		 * and the callers are supposed to handle
1702 		 * that. enable_irq() of an interrupt requested with
1703 		 * IRQ_NOAUTOEN is not supposed to fail. The activation
1704 		 * keeps it in shutdown mode, it merily associates
1705 		 * resources if necessary and if that's not possible it
1706 		 * fails. Interrupts which are in managed shutdown mode
1707 		 * will simply ignore that activation request.
1708 		 */
1709 		ret = irq_activate(desc);
1710 		if (ret)
1711 			goto out_unlock;
1712 
1713 		desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1714 				  IRQS_ONESHOT | IRQS_WAITING);
1715 		irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1716 
1717 		if (new->flags & IRQF_PERCPU) {
1718 			irqd_set(&desc->irq_data, IRQD_PER_CPU);
1719 			irq_settings_set_per_cpu(desc);
1720 			if (new->flags & IRQF_NO_DEBUG)
1721 				irq_settings_set_no_debug(desc);
1722 		}
1723 
1724 		if (noirqdebug)
1725 			irq_settings_set_no_debug(desc);
1726 
1727 		if (new->flags & IRQF_ONESHOT)
1728 			desc->istate |= IRQS_ONESHOT;
1729 
1730 		/* Exclude IRQ from balancing if requested */
1731 		if (new->flags & IRQF_NOBALANCING) {
1732 			irq_settings_set_no_balancing(desc);
1733 			irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1734 		}
1735 
1736 		if (!(new->flags & IRQF_NO_AUTOEN) &&
1737 		    irq_settings_can_autoenable(desc)) {
1738 			irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1739 		} else {
1740 			/*
1741 			 * Shared interrupts do not go well with disabling
1742 			 * auto enable. The sharing interrupt might request
1743 			 * it while it's still disabled and then wait for
1744 			 * interrupts forever.
1745 			 */
1746 			WARN_ON_ONCE(new->flags & IRQF_SHARED);
1747 			/* Undo nested disables: */
1748 			desc->depth = 1;
1749 		}
1750 
1751 	} else if (new->flags & IRQF_TRIGGER_MASK) {
1752 		unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1753 		unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1754 
1755 		if (nmsk != omsk)
1756 			/* hope the handler works with current  trigger mode */
1757 			pr_warn("irq %d uses trigger mode %u; requested %u\n",
1758 				irq, omsk, nmsk);
1759 	}
1760 
1761 	*old_ptr = new;
1762 
1763 	irq_pm_install_action(desc, new);
1764 
1765 	/* Reset broken irq detection when installing new handler */
1766 	desc->irq_count = 0;
1767 	desc->irqs_unhandled = 0;
1768 
1769 	/*
1770 	 * Check whether we disabled the irq via the spurious handler
1771 	 * before. Reenable it and give it another chance.
1772 	 */
1773 	if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1774 		desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1775 		__enable_irq(desc);
1776 	}
1777 
1778 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1779 	chip_bus_sync_unlock(desc);
1780 	mutex_unlock(&desc->request_mutex);
1781 
1782 	irq_setup_timings(desc, new);
1783 
1784 	/*
1785 	 * Strictly no need to wake it up, but hung_task complains
1786 	 * when no hard interrupt wakes the thread up.
1787 	 */
1788 	if (new->thread)
1789 		wake_up_process(new->thread);
1790 	if (new->secondary)
1791 		wake_up_process(new->secondary->thread);
1792 
1793 	register_irq_proc(irq, desc);
1794 	new->dir = NULL;
1795 	register_handler_proc(irq, new);
1796 	return 0;
1797 
1798 mismatch:
1799 	if (!(new->flags & IRQF_PROBE_SHARED)) {
1800 		pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1801 		       irq, new->flags, new->name, old->flags, old->name);
1802 #ifdef CONFIG_DEBUG_SHIRQ
1803 		dump_stack();
1804 #endif
1805 	}
1806 	ret = -EBUSY;
1807 
1808 out_unlock:
1809 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1810 
1811 	if (!desc->action)
1812 		irq_release_resources(desc);
1813 out_bus_unlock:
1814 	chip_bus_sync_unlock(desc);
1815 	mutex_unlock(&desc->request_mutex);
1816 
1817 out_thread:
1818 	if (new->thread) {
1819 		struct task_struct *t = new->thread;
1820 
1821 		new->thread = NULL;
1822 		kthread_stop(t);
1823 		put_task_struct(t);
1824 	}
1825 	if (new->secondary && new->secondary->thread) {
1826 		struct task_struct *t = new->secondary->thread;
1827 
1828 		new->secondary->thread = NULL;
1829 		kthread_stop(t);
1830 		put_task_struct(t);
1831 	}
1832 out_mput:
1833 	module_put(desc->owner);
1834 	return ret;
1835 }
1836 
1837 /*
1838  * Internal function to unregister an irqaction - used to free
1839  * regular and special interrupts that are part of the architecture.
1840  */
1841 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1842 {
1843 	unsigned irq = desc->irq_data.irq;
1844 	struct irqaction *action, **action_ptr;
1845 	unsigned long flags;
1846 
1847 	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1848 
1849 	mutex_lock(&desc->request_mutex);
1850 	chip_bus_lock(desc);
1851 	raw_spin_lock_irqsave(&desc->lock, flags);
1852 
1853 	/*
1854 	 * There can be multiple actions per IRQ descriptor, find the right
1855 	 * one based on the dev_id:
1856 	 */
1857 	action_ptr = &desc->action;
1858 	for (;;) {
1859 		action = *action_ptr;
1860 
1861 		if (!action) {
1862 			WARN(1, "Trying to free already-free IRQ %d\n", irq);
1863 			raw_spin_unlock_irqrestore(&desc->lock, flags);
1864 			chip_bus_sync_unlock(desc);
1865 			mutex_unlock(&desc->request_mutex);
1866 			return NULL;
1867 		}
1868 
1869 		if (action->dev_id == dev_id)
1870 			break;
1871 		action_ptr = &action->next;
1872 	}
1873 
1874 	/* Found it - now remove it from the list of entries: */
1875 	*action_ptr = action->next;
1876 
1877 	irq_pm_remove_action(desc, action);
1878 
1879 	/* If this was the last handler, shut down the IRQ line: */
1880 	if (!desc->action) {
1881 		irq_settings_clr_disable_unlazy(desc);
1882 		/* Only shutdown. Deactivate after synchronize_hardirq() */
1883 		irq_shutdown(desc);
1884 	}
1885 
1886 #ifdef CONFIG_SMP
1887 	/* make sure affinity_hint is cleaned up */
1888 	if (WARN_ON_ONCE(desc->affinity_hint))
1889 		desc->affinity_hint = NULL;
1890 #endif
1891 
1892 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1893 	/*
1894 	 * Drop bus_lock here so the changes which were done in the chip
1895 	 * callbacks above are synced out to the irq chips which hang
1896 	 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq().
1897 	 *
1898 	 * Aside of that the bus_lock can also be taken from the threaded
1899 	 * handler in irq_finalize_oneshot() which results in a deadlock
1900 	 * because kthread_stop() would wait forever for the thread to
1901 	 * complete, which is blocked on the bus lock.
1902 	 *
1903 	 * The still held desc->request_mutex() protects against a
1904 	 * concurrent request_irq() of this irq so the release of resources
1905 	 * and timing data is properly serialized.
1906 	 */
1907 	chip_bus_sync_unlock(desc);
1908 
1909 	unregister_handler_proc(irq, action);
1910 
1911 	/*
1912 	 * Make sure it's not being used on another CPU and if the chip
1913 	 * supports it also make sure that there is no (not yet serviced)
1914 	 * interrupt in flight at the hardware level.
1915 	 */
1916 	__synchronize_hardirq(desc, true);
1917 
1918 #ifdef CONFIG_DEBUG_SHIRQ
1919 	/*
1920 	 * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1921 	 * event to happen even now it's being freed, so let's make sure that
1922 	 * is so by doing an extra call to the handler ....
1923 	 *
1924 	 * ( We do this after actually deregistering it, to make sure that a
1925 	 *   'real' IRQ doesn't run in parallel with our fake. )
1926 	 */
1927 	if (action->flags & IRQF_SHARED) {
1928 		local_irq_save(flags);
1929 		action->handler(irq, dev_id);
1930 		local_irq_restore(flags);
1931 	}
1932 #endif
1933 
1934 	/*
1935 	 * The action has already been removed above, but the thread writes
1936 	 * its oneshot mask bit when it completes. Though request_mutex is
1937 	 * held across this which prevents __setup_irq() from handing out
1938 	 * the same bit to a newly requested action.
1939 	 */
1940 	if (action->thread) {
1941 		kthread_stop(action->thread);
1942 		put_task_struct(action->thread);
1943 		if (action->secondary && action->secondary->thread) {
1944 			kthread_stop(action->secondary->thread);
1945 			put_task_struct(action->secondary->thread);
1946 		}
1947 	}
1948 
1949 	/* Last action releases resources */
1950 	if (!desc->action) {
1951 		/*
1952 		 * Reacquire bus lock as irq_release_resources() might
1953 		 * require it to deallocate resources over the slow bus.
1954 		 */
1955 		chip_bus_lock(desc);
1956 		/*
1957 		 * There is no interrupt on the fly anymore. Deactivate it
1958 		 * completely.
1959 		 */
1960 		raw_spin_lock_irqsave(&desc->lock, flags);
1961 		irq_domain_deactivate_irq(&desc->irq_data);
1962 		raw_spin_unlock_irqrestore(&desc->lock, flags);
1963 
1964 		irq_release_resources(desc);
1965 		chip_bus_sync_unlock(desc);
1966 		irq_remove_timings(desc);
1967 	}
1968 
1969 	mutex_unlock(&desc->request_mutex);
1970 
1971 	irq_chip_pm_put(&desc->irq_data);
1972 	module_put(desc->owner);
1973 	kfree(action->secondary);
1974 	return action;
1975 }
1976 
1977 /**
1978  *	free_irq - free an interrupt allocated with request_irq
1979  *	@irq: Interrupt line to free
1980  *	@dev_id: Device identity to free
1981  *
1982  *	Remove an interrupt handler. The handler is removed and if the
1983  *	interrupt line is no longer in use by any driver it is disabled.
1984  *	On a shared IRQ the caller must ensure the interrupt is disabled
1985  *	on the card it drives before calling this function. The function
1986  *	does not return until any executing interrupts for this IRQ
1987  *	have completed.
1988  *
1989  *	This function must not be called from interrupt context.
1990  *
1991  *	Returns the devname argument passed to request_irq.
1992  */
1993 const void *free_irq(unsigned int irq, void *dev_id)
1994 {
1995 	struct irq_desc *desc = irq_to_desc(irq);
1996 	struct irqaction *action;
1997 	const char *devname;
1998 
1999 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2000 		return NULL;
2001 
2002 #ifdef CONFIG_SMP
2003 	if (WARN_ON(desc->affinity_notify))
2004 		desc->affinity_notify = NULL;
2005 #endif
2006 
2007 	action = __free_irq(desc, dev_id);
2008 
2009 	if (!action)
2010 		return NULL;
2011 
2012 	devname = action->name;
2013 	kfree(action);
2014 	return devname;
2015 }
2016 EXPORT_SYMBOL(free_irq);
2017 
2018 /* This function must be called with desc->lock held */
2019 static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc)
2020 {
2021 	const char *devname = NULL;
2022 
2023 	desc->istate &= ~IRQS_NMI;
2024 
2025 	if (!WARN_ON(desc->action == NULL)) {
2026 		irq_pm_remove_action(desc, desc->action);
2027 		devname = desc->action->name;
2028 		unregister_handler_proc(irq, desc->action);
2029 
2030 		kfree(desc->action);
2031 		desc->action = NULL;
2032 	}
2033 
2034 	irq_settings_clr_disable_unlazy(desc);
2035 	irq_shutdown_and_deactivate(desc);
2036 
2037 	irq_release_resources(desc);
2038 
2039 	irq_chip_pm_put(&desc->irq_data);
2040 	module_put(desc->owner);
2041 
2042 	return devname;
2043 }
2044 
2045 const void *free_nmi(unsigned int irq, void *dev_id)
2046 {
2047 	struct irq_desc *desc = irq_to_desc(irq);
2048 	unsigned long flags;
2049 	const void *devname;
2050 
2051 	if (!desc || WARN_ON(!(desc->istate & IRQS_NMI)))
2052 		return NULL;
2053 
2054 	if (WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2055 		return NULL;
2056 
2057 	/* NMI still enabled */
2058 	if (WARN_ON(desc->depth == 0))
2059 		disable_nmi_nosync(irq);
2060 
2061 	raw_spin_lock_irqsave(&desc->lock, flags);
2062 
2063 	irq_nmi_teardown(desc);
2064 	devname = __cleanup_nmi(irq, desc);
2065 
2066 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2067 
2068 	return devname;
2069 }
2070 
2071 /**
2072  *	request_threaded_irq - allocate an interrupt line
2073  *	@irq: Interrupt line to allocate
2074  *	@handler: Function to be called when the IRQ occurs.
2075  *		  Primary handler for threaded interrupts
2076  *		  If NULL and thread_fn != NULL the default
2077  *		  primary handler is installed
2078  *	@thread_fn: Function called from the irq handler thread
2079  *		    If NULL, no irq thread is created
2080  *	@irqflags: Interrupt type flags
2081  *	@devname: An ascii name for the claiming device
2082  *	@dev_id: A cookie passed back to the handler function
2083  *
2084  *	This call allocates interrupt resources and enables the
2085  *	interrupt line and IRQ handling. From the point this
2086  *	call is made your handler function may be invoked. Since
2087  *	your handler function must clear any interrupt the board
2088  *	raises, you must take care both to initialise your hardware
2089  *	and to set up the interrupt handler in the right order.
2090  *
2091  *	If you want to set up a threaded irq handler for your device
2092  *	then you need to supply @handler and @thread_fn. @handler is
2093  *	still called in hard interrupt context and has to check
2094  *	whether the interrupt originates from the device. If yes it
2095  *	needs to disable the interrupt on the device and return
2096  *	IRQ_WAKE_THREAD which will wake up the handler thread and run
2097  *	@thread_fn. This split handler design is necessary to support
2098  *	shared interrupts.
2099  *
2100  *	Dev_id must be globally unique. Normally the address of the
2101  *	device data structure is used as the cookie. Since the handler
2102  *	receives this value it makes sense to use it.
2103  *
2104  *	If your interrupt is shared you must pass a non NULL dev_id
2105  *	as this is required when freeing the interrupt.
2106  *
2107  *	Flags:
2108  *
2109  *	IRQF_SHARED		Interrupt is shared
2110  *	IRQF_TRIGGER_*		Specify active edge(s) or level
2111  *
2112  */
2113 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
2114 			 irq_handler_t thread_fn, unsigned long irqflags,
2115 			 const char *devname, void *dev_id)
2116 {
2117 	struct irqaction *action;
2118 	struct irq_desc *desc;
2119 	int retval;
2120 
2121 	if (irq == IRQ_NOTCONNECTED)
2122 		return -ENOTCONN;
2123 
2124 	/*
2125 	 * Sanity-check: shared interrupts must pass in a real dev-ID,
2126 	 * otherwise we'll have trouble later trying to figure out
2127 	 * which interrupt is which (messes up the interrupt freeing
2128 	 * logic etc).
2129 	 *
2130 	 * Also shared interrupts do not go well with disabling auto enable.
2131 	 * The sharing interrupt might request it while it's still disabled
2132 	 * and then wait for interrupts forever.
2133 	 *
2134 	 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
2135 	 * it cannot be set along with IRQF_NO_SUSPEND.
2136 	 */
2137 	if (((irqflags & IRQF_SHARED) && !dev_id) ||
2138 	    ((irqflags & IRQF_SHARED) && (irqflags & IRQF_NO_AUTOEN)) ||
2139 	    (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
2140 	    ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
2141 		return -EINVAL;
2142 
2143 	desc = irq_to_desc(irq);
2144 	if (!desc)
2145 		return -EINVAL;
2146 
2147 	if (!irq_settings_can_request(desc) ||
2148 	    WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2149 		return -EINVAL;
2150 
2151 	if (!handler) {
2152 		if (!thread_fn)
2153 			return -EINVAL;
2154 		handler = irq_default_primary_handler;
2155 	}
2156 
2157 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2158 	if (!action)
2159 		return -ENOMEM;
2160 
2161 	action->handler = handler;
2162 	action->thread_fn = thread_fn;
2163 	action->flags = irqflags;
2164 	action->name = devname;
2165 	action->dev_id = dev_id;
2166 
2167 	retval = irq_chip_pm_get(&desc->irq_data);
2168 	if (retval < 0) {
2169 		kfree(action);
2170 		return retval;
2171 	}
2172 
2173 	retval = __setup_irq(irq, desc, action);
2174 
2175 	if (retval) {
2176 		irq_chip_pm_put(&desc->irq_data);
2177 		kfree(action->secondary);
2178 		kfree(action);
2179 	}
2180 
2181 #ifdef CONFIG_DEBUG_SHIRQ_FIXME
2182 	if (!retval && (irqflags & IRQF_SHARED)) {
2183 		/*
2184 		 * It's a shared IRQ -- the driver ought to be prepared for it
2185 		 * to happen immediately, so let's make sure....
2186 		 * We disable the irq to make sure that a 'real' IRQ doesn't
2187 		 * run in parallel with our fake.
2188 		 */
2189 		unsigned long flags;
2190 
2191 		disable_irq(irq);
2192 		local_irq_save(flags);
2193 
2194 		handler(irq, dev_id);
2195 
2196 		local_irq_restore(flags);
2197 		enable_irq(irq);
2198 	}
2199 #endif
2200 	return retval;
2201 }
2202 EXPORT_SYMBOL(request_threaded_irq);
2203 
2204 /**
2205  *	request_any_context_irq - allocate an interrupt line
2206  *	@irq: Interrupt line to allocate
2207  *	@handler: Function to be called when the IRQ occurs.
2208  *		  Threaded handler for threaded interrupts.
2209  *	@flags: Interrupt type flags
2210  *	@name: An ascii name for the claiming device
2211  *	@dev_id: A cookie passed back to the handler function
2212  *
2213  *	This call allocates interrupt resources and enables the
2214  *	interrupt line and IRQ handling. It selects either a
2215  *	hardirq or threaded handling method depending on the
2216  *	context.
2217  *
2218  *	On failure, it returns a negative value. On success,
2219  *	it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
2220  */
2221 int request_any_context_irq(unsigned int irq, irq_handler_t handler,
2222 			    unsigned long flags, const char *name, void *dev_id)
2223 {
2224 	struct irq_desc *desc;
2225 	int ret;
2226 
2227 	if (irq == IRQ_NOTCONNECTED)
2228 		return -ENOTCONN;
2229 
2230 	desc = irq_to_desc(irq);
2231 	if (!desc)
2232 		return -EINVAL;
2233 
2234 	if (irq_settings_is_nested_thread(desc)) {
2235 		ret = request_threaded_irq(irq, NULL, handler,
2236 					   flags, name, dev_id);
2237 		return !ret ? IRQC_IS_NESTED : ret;
2238 	}
2239 
2240 	ret = request_irq(irq, handler, flags, name, dev_id);
2241 	return !ret ? IRQC_IS_HARDIRQ : ret;
2242 }
2243 EXPORT_SYMBOL_GPL(request_any_context_irq);
2244 
2245 /**
2246  *	request_nmi - allocate an interrupt line for NMI delivery
2247  *	@irq: Interrupt line to allocate
2248  *	@handler: Function to be called when the IRQ occurs.
2249  *		  Threaded handler for threaded interrupts.
2250  *	@irqflags: Interrupt type flags
2251  *	@name: An ascii name for the claiming device
2252  *	@dev_id: A cookie passed back to the handler function
2253  *
2254  *	This call allocates interrupt resources and enables the
2255  *	interrupt line and IRQ handling. It sets up the IRQ line
2256  *	to be handled as an NMI.
2257  *
2258  *	An interrupt line delivering NMIs cannot be shared and IRQ handling
2259  *	cannot be threaded.
2260  *
2261  *	Interrupt lines requested for NMI delivering must produce per cpu
2262  *	interrupts and have auto enabling setting disabled.
2263  *
2264  *	Dev_id must be globally unique. Normally the address of the
2265  *	device data structure is used as the cookie. Since the handler
2266  *	receives this value it makes sense to use it.
2267  *
2268  *	If the interrupt line cannot be used to deliver NMIs, function
2269  *	will fail and return a negative value.
2270  */
2271 int request_nmi(unsigned int irq, irq_handler_t handler,
2272 		unsigned long irqflags, const char *name, void *dev_id)
2273 {
2274 	struct irqaction *action;
2275 	struct irq_desc *desc;
2276 	unsigned long flags;
2277 	int retval;
2278 
2279 	if (irq == IRQ_NOTCONNECTED)
2280 		return -ENOTCONN;
2281 
2282 	/* NMI cannot be shared, used for Polling */
2283 	if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL))
2284 		return -EINVAL;
2285 
2286 	if (!(irqflags & IRQF_PERCPU))
2287 		return -EINVAL;
2288 
2289 	if (!handler)
2290 		return -EINVAL;
2291 
2292 	desc = irq_to_desc(irq);
2293 
2294 	if (!desc || (irq_settings_can_autoenable(desc) &&
2295 	    !(irqflags & IRQF_NO_AUTOEN)) ||
2296 	    !irq_settings_can_request(desc) ||
2297 	    WARN_ON(irq_settings_is_per_cpu_devid(desc)) ||
2298 	    !irq_supports_nmi(desc))
2299 		return -EINVAL;
2300 
2301 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2302 	if (!action)
2303 		return -ENOMEM;
2304 
2305 	action->handler = handler;
2306 	action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING;
2307 	action->name = name;
2308 	action->dev_id = dev_id;
2309 
2310 	retval = irq_chip_pm_get(&desc->irq_data);
2311 	if (retval < 0)
2312 		goto err_out;
2313 
2314 	retval = __setup_irq(irq, desc, action);
2315 	if (retval)
2316 		goto err_irq_setup;
2317 
2318 	raw_spin_lock_irqsave(&desc->lock, flags);
2319 
2320 	/* Setup NMI state */
2321 	desc->istate |= IRQS_NMI;
2322 	retval = irq_nmi_setup(desc);
2323 	if (retval) {
2324 		__cleanup_nmi(irq, desc);
2325 		raw_spin_unlock_irqrestore(&desc->lock, flags);
2326 		return -EINVAL;
2327 	}
2328 
2329 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2330 
2331 	return 0;
2332 
2333 err_irq_setup:
2334 	irq_chip_pm_put(&desc->irq_data);
2335 err_out:
2336 	kfree(action);
2337 
2338 	return retval;
2339 }
2340 
2341 void enable_percpu_irq(unsigned int irq, unsigned int type)
2342 {
2343 	unsigned int cpu = smp_processor_id();
2344 	unsigned long flags;
2345 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2346 
2347 	if (!desc)
2348 		return;
2349 
2350 	/*
2351 	 * If the trigger type is not specified by the caller, then
2352 	 * use the default for this interrupt.
2353 	 */
2354 	type &= IRQ_TYPE_SENSE_MASK;
2355 	if (type == IRQ_TYPE_NONE)
2356 		type = irqd_get_trigger_type(&desc->irq_data);
2357 
2358 	if (type != IRQ_TYPE_NONE) {
2359 		int ret;
2360 
2361 		ret = __irq_set_trigger(desc, type);
2362 
2363 		if (ret) {
2364 			WARN(1, "failed to set type for IRQ%d\n", irq);
2365 			goto out;
2366 		}
2367 	}
2368 
2369 	irq_percpu_enable(desc, cpu);
2370 out:
2371 	irq_put_desc_unlock(desc, flags);
2372 }
2373 EXPORT_SYMBOL_GPL(enable_percpu_irq);
2374 
2375 void enable_percpu_nmi(unsigned int irq, unsigned int type)
2376 {
2377 	enable_percpu_irq(irq, type);
2378 }
2379 
2380 /**
2381  * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
2382  * @irq:	Linux irq number to check for
2383  *
2384  * Must be called from a non migratable context. Returns the enable
2385  * state of a per cpu interrupt on the current cpu.
2386  */
2387 bool irq_percpu_is_enabled(unsigned int irq)
2388 {
2389 	unsigned int cpu = smp_processor_id();
2390 	struct irq_desc *desc;
2391 	unsigned long flags;
2392 	bool is_enabled;
2393 
2394 	desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2395 	if (!desc)
2396 		return false;
2397 
2398 	is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
2399 	irq_put_desc_unlock(desc, flags);
2400 
2401 	return is_enabled;
2402 }
2403 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
2404 
2405 void disable_percpu_irq(unsigned int irq)
2406 {
2407 	unsigned int cpu = smp_processor_id();
2408 	unsigned long flags;
2409 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2410 
2411 	if (!desc)
2412 		return;
2413 
2414 	irq_percpu_disable(desc, cpu);
2415 	irq_put_desc_unlock(desc, flags);
2416 }
2417 EXPORT_SYMBOL_GPL(disable_percpu_irq);
2418 
2419 void disable_percpu_nmi(unsigned int irq)
2420 {
2421 	disable_percpu_irq(irq);
2422 }
2423 
2424 /*
2425  * Internal function to unregister a percpu irqaction.
2426  */
2427 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2428 {
2429 	struct irq_desc *desc = irq_to_desc(irq);
2430 	struct irqaction *action;
2431 	unsigned long flags;
2432 
2433 	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
2434 
2435 	if (!desc)
2436 		return NULL;
2437 
2438 	raw_spin_lock_irqsave(&desc->lock, flags);
2439 
2440 	action = desc->action;
2441 	if (!action || action->percpu_dev_id != dev_id) {
2442 		WARN(1, "Trying to free already-free IRQ %d\n", irq);
2443 		goto bad;
2444 	}
2445 
2446 	if (!cpumask_empty(desc->percpu_enabled)) {
2447 		WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
2448 		     irq, cpumask_first(desc->percpu_enabled));
2449 		goto bad;
2450 	}
2451 
2452 	/* Found it - now remove it from the list of entries: */
2453 	desc->action = NULL;
2454 
2455 	desc->istate &= ~IRQS_NMI;
2456 
2457 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2458 
2459 	unregister_handler_proc(irq, action);
2460 
2461 	irq_chip_pm_put(&desc->irq_data);
2462 	module_put(desc->owner);
2463 	return action;
2464 
2465 bad:
2466 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2467 	return NULL;
2468 }
2469 
2470 /**
2471  *	remove_percpu_irq - free a per-cpu interrupt
2472  *	@irq: Interrupt line to free
2473  *	@act: irqaction for the interrupt
2474  *
2475  * Used to remove interrupts statically setup by the early boot process.
2476  */
2477 void remove_percpu_irq(unsigned int irq, struct irqaction *act)
2478 {
2479 	struct irq_desc *desc = irq_to_desc(irq);
2480 
2481 	if (desc && irq_settings_is_per_cpu_devid(desc))
2482 	    __free_percpu_irq(irq, act->percpu_dev_id);
2483 }
2484 
2485 /**
2486  *	free_percpu_irq - free an interrupt allocated with request_percpu_irq
2487  *	@irq: Interrupt line to free
2488  *	@dev_id: Device identity to free
2489  *
2490  *	Remove a percpu interrupt handler. The handler is removed, but
2491  *	the interrupt line is not disabled. This must be done on each
2492  *	CPU before calling this function. The function does not return
2493  *	until any executing interrupts for this IRQ have completed.
2494  *
2495  *	This function must not be called from interrupt context.
2496  */
2497 void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2498 {
2499 	struct irq_desc *desc = irq_to_desc(irq);
2500 
2501 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2502 		return;
2503 
2504 	chip_bus_lock(desc);
2505 	kfree(__free_percpu_irq(irq, dev_id));
2506 	chip_bus_sync_unlock(desc);
2507 }
2508 EXPORT_SYMBOL_GPL(free_percpu_irq);
2509 
2510 void free_percpu_nmi(unsigned int irq, void __percpu *dev_id)
2511 {
2512 	struct irq_desc *desc = irq_to_desc(irq);
2513 
2514 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2515 		return;
2516 
2517 	if (WARN_ON(!(desc->istate & IRQS_NMI)))
2518 		return;
2519 
2520 	kfree(__free_percpu_irq(irq, dev_id));
2521 }
2522 
2523 /**
2524  *	setup_percpu_irq - setup a per-cpu interrupt
2525  *	@irq: Interrupt line to setup
2526  *	@act: irqaction for the interrupt
2527  *
2528  * Used to statically setup per-cpu interrupts in the early boot process.
2529  */
2530 int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2531 {
2532 	struct irq_desc *desc = irq_to_desc(irq);
2533 	int retval;
2534 
2535 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2536 		return -EINVAL;
2537 
2538 	retval = irq_chip_pm_get(&desc->irq_data);
2539 	if (retval < 0)
2540 		return retval;
2541 
2542 	retval = __setup_irq(irq, desc, act);
2543 
2544 	if (retval)
2545 		irq_chip_pm_put(&desc->irq_data);
2546 
2547 	return retval;
2548 }
2549 
2550 /**
2551  *	__request_percpu_irq - allocate a percpu interrupt line
2552  *	@irq: Interrupt line to allocate
2553  *	@handler: Function to be called when the IRQ occurs.
2554  *	@flags: Interrupt type flags (IRQF_TIMER only)
2555  *	@devname: An ascii name for the claiming device
2556  *	@dev_id: A percpu cookie passed back to the handler function
2557  *
2558  *	This call allocates interrupt resources and enables the
2559  *	interrupt on the local CPU. If the interrupt is supposed to be
2560  *	enabled on other CPUs, it has to be done on each CPU using
2561  *	enable_percpu_irq().
2562  *
2563  *	Dev_id must be globally unique. It is a per-cpu variable, and
2564  *	the handler gets called with the interrupted CPU's instance of
2565  *	that variable.
2566  */
2567 int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2568 			 unsigned long flags, const char *devname,
2569 			 void __percpu *dev_id)
2570 {
2571 	struct irqaction *action;
2572 	struct irq_desc *desc;
2573 	int retval;
2574 
2575 	if (!dev_id)
2576 		return -EINVAL;
2577 
2578 	desc = irq_to_desc(irq);
2579 	if (!desc || !irq_settings_can_request(desc) ||
2580 	    !irq_settings_is_per_cpu_devid(desc))
2581 		return -EINVAL;
2582 
2583 	if (flags && flags != IRQF_TIMER)
2584 		return -EINVAL;
2585 
2586 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2587 	if (!action)
2588 		return -ENOMEM;
2589 
2590 	action->handler = handler;
2591 	action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2592 	action->name = devname;
2593 	action->percpu_dev_id = dev_id;
2594 
2595 	retval = irq_chip_pm_get(&desc->irq_data);
2596 	if (retval < 0) {
2597 		kfree(action);
2598 		return retval;
2599 	}
2600 
2601 	retval = __setup_irq(irq, desc, action);
2602 
2603 	if (retval) {
2604 		irq_chip_pm_put(&desc->irq_data);
2605 		kfree(action);
2606 	}
2607 
2608 	return retval;
2609 }
2610 EXPORT_SYMBOL_GPL(__request_percpu_irq);
2611 
2612 /**
2613  *	request_percpu_nmi - allocate a percpu interrupt line for NMI delivery
2614  *	@irq: Interrupt line to allocate
2615  *	@handler: Function to be called when the IRQ occurs.
2616  *	@name: An ascii name for the claiming device
2617  *	@dev_id: A percpu cookie passed back to the handler function
2618  *
2619  *	This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs
2620  *	have to be setup on each CPU by calling prepare_percpu_nmi() before
2621  *	being enabled on the same CPU by using enable_percpu_nmi().
2622  *
2623  *	Dev_id must be globally unique. It is a per-cpu variable, and
2624  *	the handler gets called with the interrupted CPU's instance of
2625  *	that variable.
2626  *
2627  *	Interrupt lines requested for NMI delivering should have auto enabling
2628  *	setting disabled.
2629  *
2630  *	If the interrupt line cannot be used to deliver NMIs, function
2631  *	will fail returning a negative value.
2632  */
2633 int request_percpu_nmi(unsigned int irq, irq_handler_t handler,
2634 		       const char *name, void __percpu *dev_id)
2635 {
2636 	struct irqaction *action;
2637 	struct irq_desc *desc;
2638 	unsigned long flags;
2639 	int retval;
2640 
2641 	if (!handler)
2642 		return -EINVAL;
2643 
2644 	desc = irq_to_desc(irq);
2645 
2646 	if (!desc || !irq_settings_can_request(desc) ||
2647 	    !irq_settings_is_per_cpu_devid(desc) ||
2648 	    irq_settings_can_autoenable(desc) ||
2649 	    !irq_supports_nmi(desc))
2650 		return -EINVAL;
2651 
2652 	/* The line cannot already be NMI */
2653 	if (desc->istate & IRQS_NMI)
2654 		return -EINVAL;
2655 
2656 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2657 	if (!action)
2658 		return -ENOMEM;
2659 
2660 	action->handler = handler;
2661 	action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD
2662 		| IRQF_NOBALANCING;
2663 	action->name = name;
2664 	action->percpu_dev_id = dev_id;
2665 
2666 	retval = irq_chip_pm_get(&desc->irq_data);
2667 	if (retval < 0)
2668 		goto err_out;
2669 
2670 	retval = __setup_irq(irq, desc, action);
2671 	if (retval)
2672 		goto err_irq_setup;
2673 
2674 	raw_spin_lock_irqsave(&desc->lock, flags);
2675 	desc->istate |= IRQS_NMI;
2676 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2677 
2678 	return 0;
2679 
2680 err_irq_setup:
2681 	irq_chip_pm_put(&desc->irq_data);
2682 err_out:
2683 	kfree(action);
2684 
2685 	return retval;
2686 }
2687 
2688 /**
2689  *	prepare_percpu_nmi - performs CPU local setup for NMI delivery
2690  *	@irq: Interrupt line to prepare for NMI delivery
2691  *
2692  *	This call prepares an interrupt line to deliver NMI on the current CPU,
2693  *	before that interrupt line gets enabled with enable_percpu_nmi().
2694  *
2695  *	As a CPU local operation, this should be called from non-preemptible
2696  *	context.
2697  *
2698  *	If the interrupt line cannot be used to deliver NMIs, function
2699  *	will fail returning a negative value.
2700  */
2701 int prepare_percpu_nmi(unsigned int irq)
2702 {
2703 	unsigned long flags;
2704 	struct irq_desc *desc;
2705 	int ret = 0;
2706 
2707 	WARN_ON(preemptible());
2708 
2709 	desc = irq_get_desc_lock(irq, &flags,
2710 				 IRQ_GET_DESC_CHECK_PERCPU);
2711 	if (!desc)
2712 		return -EINVAL;
2713 
2714 	if (WARN(!(desc->istate & IRQS_NMI),
2715 		 KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n",
2716 		 irq)) {
2717 		ret = -EINVAL;
2718 		goto out;
2719 	}
2720 
2721 	ret = irq_nmi_setup(desc);
2722 	if (ret) {
2723 		pr_err("Failed to setup NMI delivery: irq %u\n", irq);
2724 		goto out;
2725 	}
2726 
2727 out:
2728 	irq_put_desc_unlock(desc, flags);
2729 	return ret;
2730 }
2731 
2732 /**
2733  *	teardown_percpu_nmi - undoes NMI setup of IRQ line
2734  *	@irq: Interrupt line from which CPU local NMI configuration should be
2735  *	      removed
2736  *
2737  *	This call undoes the setup done by prepare_percpu_nmi().
2738  *
2739  *	IRQ line should not be enabled for the current CPU.
2740  *
2741  *	As a CPU local operation, this should be called from non-preemptible
2742  *	context.
2743  */
2744 void teardown_percpu_nmi(unsigned int irq)
2745 {
2746 	unsigned long flags;
2747 	struct irq_desc *desc;
2748 
2749 	WARN_ON(preemptible());
2750 
2751 	desc = irq_get_desc_lock(irq, &flags,
2752 				 IRQ_GET_DESC_CHECK_PERCPU);
2753 	if (!desc)
2754 		return;
2755 
2756 	if (WARN_ON(!(desc->istate & IRQS_NMI)))
2757 		goto out;
2758 
2759 	irq_nmi_teardown(desc);
2760 out:
2761 	irq_put_desc_unlock(desc, flags);
2762 }
2763 
2764 int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which,
2765 			    bool *state)
2766 {
2767 	struct irq_chip *chip;
2768 	int err = -EINVAL;
2769 
2770 	do {
2771 		chip = irq_data_get_irq_chip(data);
2772 		if (WARN_ON_ONCE(!chip))
2773 			return -ENODEV;
2774 		if (chip->irq_get_irqchip_state)
2775 			break;
2776 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2777 		data = data->parent_data;
2778 #else
2779 		data = NULL;
2780 #endif
2781 	} while (data);
2782 
2783 	if (data)
2784 		err = chip->irq_get_irqchip_state(data, which, state);
2785 	return err;
2786 }
2787 
2788 /**
2789  *	irq_get_irqchip_state - returns the irqchip state of a interrupt.
2790  *	@irq: Interrupt line that is forwarded to a VM
2791  *	@which: One of IRQCHIP_STATE_* the caller wants to know about
2792  *	@state: a pointer to a boolean where the state is to be stored
2793  *
2794  *	This call snapshots the internal irqchip state of an
2795  *	interrupt, returning into @state the bit corresponding to
2796  *	stage @which
2797  *
2798  *	This function should be called with preemption disabled if the
2799  *	interrupt controller has per-cpu registers.
2800  */
2801 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2802 			  bool *state)
2803 {
2804 	struct irq_desc *desc;
2805 	struct irq_data *data;
2806 	unsigned long flags;
2807 	int err = -EINVAL;
2808 
2809 	desc = irq_get_desc_buslock(irq, &flags, 0);
2810 	if (!desc)
2811 		return err;
2812 
2813 	data = irq_desc_get_irq_data(desc);
2814 
2815 	err = __irq_get_irqchip_state(data, which, state);
2816 
2817 	irq_put_desc_busunlock(desc, flags);
2818 	return err;
2819 }
2820 EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2821 
2822 /**
2823  *	irq_set_irqchip_state - set the state of a forwarded interrupt.
2824  *	@irq: Interrupt line that is forwarded to a VM
2825  *	@which: State to be restored (one of IRQCHIP_STATE_*)
2826  *	@val: Value corresponding to @which
2827  *
2828  *	This call sets the internal irqchip state of an interrupt,
2829  *	depending on the value of @which.
2830  *
2831  *	This function should be called with preemption disabled if the
2832  *	interrupt controller has per-cpu registers.
2833  */
2834 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2835 			  bool val)
2836 {
2837 	struct irq_desc *desc;
2838 	struct irq_data *data;
2839 	struct irq_chip *chip;
2840 	unsigned long flags;
2841 	int err = -EINVAL;
2842 
2843 	desc = irq_get_desc_buslock(irq, &flags, 0);
2844 	if (!desc)
2845 		return err;
2846 
2847 	data = irq_desc_get_irq_data(desc);
2848 
2849 	do {
2850 		chip = irq_data_get_irq_chip(data);
2851 		if (WARN_ON_ONCE(!chip)) {
2852 			err = -ENODEV;
2853 			goto out_unlock;
2854 		}
2855 		if (chip->irq_set_irqchip_state)
2856 			break;
2857 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2858 		data = data->parent_data;
2859 #else
2860 		data = NULL;
2861 #endif
2862 	} while (data);
2863 
2864 	if (data)
2865 		err = chip->irq_set_irqchip_state(data, which, val);
2866 
2867 out_unlock:
2868 	irq_put_desc_busunlock(desc, flags);
2869 	return err;
2870 }
2871 EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
2872 
2873 /**
2874  * irq_has_action - Check whether an interrupt is requested
2875  * @irq:	The linux irq number
2876  *
2877  * Returns: A snapshot of the current state
2878  */
2879 bool irq_has_action(unsigned int irq)
2880 {
2881 	bool res;
2882 
2883 	rcu_read_lock();
2884 	res = irq_desc_has_action(irq_to_desc(irq));
2885 	rcu_read_unlock();
2886 	return res;
2887 }
2888 EXPORT_SYMBOL_GPL(irq_has_action);
2889 
2890 /**
2891  * irq_check_status_bit - Check whether bits in the irq descriptor status are set
2892  * @irq:	The linux irq number
2893  * @bitmask:	The bitmask to evaluate
2894  *
2895  * Returns: True if one of the bits in @bitmask is set
2896  */
2897 bool irq_check_status_bit(unsigned int irq, unsigned int bitmask)
2898 {
2899 	struct irq_desc *desc;
2900 	bool res = false;
2901 
2902 	rcu_read_lock();
2903 	desc = irq_to_desc(irq);
2904 	if (desc)
2905 		res = !!(desc->status_use_accessors & bitmask);
2906 	rcu_read_unlock();
2907 	return res;
2908 }
2909 EXPORT_SYMBOL_GPL(irq_check_status_bit);
2910