xref: /openbmc/linux/kernel/irq/manage.c (revision a01822e94ee53e8ebc9632fe2764048b81921254)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
4  * Copyright (C) 2005-2006 Thomas Gleixner
5  *
6  * This file contains driver APIs to the irq subsystem.
7  */
8 
9 #define pr_fmt(fmt) "genirq: " fmt
10 
11 #include <linux/irq.h>
12 #include <linux/kthread.h>
13 #include <linux/module.h>
14 #include <linux/random.h>
15 #include <linux/interrupt.h>
16 #include <linux/irqdomain.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/sched/rt.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/isolation.h>
22 #include <uapi/linux/sched/types.h>
23 #include <linux/task_work.h>
24 
25 #include "internals.h"
26 
27 #if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT)
28 __read_mostly bool force_irqthreads;
29 EXPORT_SYMBOL_GPL(force_irqthreads);
30 
31 static int __init setup_forced_irqthreads(char *arg)
32 {
33 	force_irqthreads = true;
34 	return 0;
35 }
36 early_param("threadirqs", setup_forced_irqthreads);
37 #endif
38 
39 static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip)
40 {
41 	struct irq_data *irqd = irq_desc_get_irq_data(desc);
42 	bool inprogress;
43 
44 	do {
45 		unsigned long flags;
46 
47 		/*
48 		 * Wait until we're out of the critical section.  This might
49 		 * give the wrong answer due to the lack of memory barriers.
50 		 */
51 		while (irqd_irq_inprogress(&desc->irq_data))
52 			cpu_relax();
53 
54 		/* Ok, that indicated we're done: double-check carefully. */
55 		raw_spin_lock_irqsave(&desc->lock, flags);
56 		inprogress = irqd_irq_inprogress(&desc->irq_data);
57 
58 		/*
59 		 * If requested and supported, check at the chip whether it
60 		 * is in flight at the hardware level, i.e. already pending
61 		 * in a CPU and waiting for service and acknowledge.
62 		 */
63 		if (!inprogress && sync_chip) {
64 			/*
65 			 * Ignore the return code. inprogress is only updated
66 			 * when the chip supports it.
67 			 */
68 			__irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE,
69 						&inprogress);
70 		}
71 		raw_spin_unlock_irqrestore(&desc->lock, flags);
72 
73 		/* Oops, that failed? */
74 	} while (inprogress);
75 }
76 
77 /**
78  *	synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
79  *	@irq: interrupt number to wait for
80  *
81  *	This function waits for any pending hard IRQ handlers for this
82  *	interrupt to complete before returning. If you use this
83  *	function while holding a resource the IRQ handler may need you
84  *	will deadlock. It does not take associated threaded handlers
85  *	into account.
86  *
87  *	Do not use this for shutdown scenarios where you must be sure
88  *	that all parts (hardirq and threaded handler) have completed.
89  *
90  *	Returns: false if a threaded handler is active.
91  *
92  *	This function may be called - with care - from IRQ context.
93  *
94  *	It does not check whether there is an interrupt in flight at the
95  *	hardware level, but not serviced yet, as this might deadlock when
96  *	called with interrupts disabled and the target CPU of the interrupt
97  *	is the current CPU.
98  */
99 bool synchronize_hardirq(unsigned int irq)
100 {
101 	struct irq_desc *desc = irq_to_desc(irq);
102 
103 	if (desc) {
104 		__synchronize_hardirq(desc, false);
105 		return !atomic_read(&desc->threads_active);
106 	}
107 
108 	return true;
109 }
110 EXPORT_SYMBOL(synchronize_hardirq);
111 
112 /**
113  *	synchronize_irq - wait for pending IRQ handlers (on other CPUs)
114  *	@irq: interrupt number to wait for
115  *
116  *	This function waits for any pending IRQ handlers for this interrupt
117  *	to complete before returning. If you use this function while
118  *	holding a resource the IRQ handler may need you will deadlock.
119  *
120  *	Can only be called from preemptible code as it might sleep when
121  *	an interrupt thread is associated to @irq.
122  *
123  *	It optionally makes sure (when the irq chip supports that method)
124  *	that the interrupt is not pending in any CPU and waiting for
125  *	service.
126  */
127 void synchronize_irq(unsigned int irq)
128 {
129 	struct irq_desc *desc = irq_to_desc(irq);
130 
131 	if (desc) {
132 		__synchronize_hardirq(desc, true);
133 		/*
134 		 * We made sure that no hardirq handler is
135 		 * running. Now verify that no threaded handlers are
136 		 * active.
137 		 */
138 		wait_event(desc->wait_for_threads,
139 			   !atomic_read(&desc->threads_active));
140 	}
141 }
142 EXPORT_SYMBOL(synchronize_irq);
143 
144 #ifdef CONFIG_SMP
145 cpumask_var_t irq_default_affinity;
146 
147 static bool __irq_can_set_affinity(struct irq_desc *desc)
148 {
149 	if (!desc || !irqd_can_balance(&desc->irq_data) ||
150 	    !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
151 		return false;
152 	return true;
153 }
154 
155 /**
156  *	irq_can_set_affinity - Check if the affinity of a given irq can be set
157  *	@irq:		Interrupt to check
158  *
159  */
160 int irq_can_set_affinity(unsigned int irq)
161 {
162 	return __irq_can_set_affinity(irq_to_desc(irq));
163 }
164 
165 /**
166  * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
167  * @irq:	Interrupt to check
168  *
169  * Like irq_can_set_affinity() above, but additionally checks for the
170  * AFFINITY_MANAGED flag.
171  */
172 bool irq_can_set_affinity_usr(unsigned int irq)
173 {
174 	struct irq_desc *desc = irq_to_desc(irq);
175 
176 	return __irq_can_set_affinity(desc) &&
177 		!irqd_affinity_is_managed(&desc->irq_data);
178 }
179 
180 /**
181  *	irq_set_thread_affinity - Notify irq threads to adjust affinity
182  *	@desc:		irq descriptor which has affitnity changed
183  *
184  *	We just set IRQTF_AFFINITY and delegate the affinity setting
185  *	to the interrupt thread itself. We can not call
186  *	set_cpus_allowed_ptr() here as we hold desc->lock and this
187  *	code can be called from hard interrupt context.
188  */
189 void irq_set_thread_affinity(struct irq_desc *desc)
190 {
191 	struct irqaction *action;
192 
193 	for_each_action_of_desc(desc, action)
194 		if (action->thread)
195 			set_bit(IRQTF_AFFINITY, &action->thread_flags);
196 }
197 
198 static void irq_validate_effective_affinity(struct irq_data *data)
199 {
200 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
201 	const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
202 	struct irq_chip *chip = irq_data_get_irq_chip(data);
203 
204 	if (!cpumask_empty(m))
205 		return;
206 	pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
207 		     chip->name, data->irq);
208 #endif
209 }
210 
211 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
212 			bool force)
213 {
214 	struct irq_desc *desc = irq_data_to_desc(data);
215 	struct irq_chip *chip = irq_data_get_irq_chip(data);
216 	int ret;
217 
218 	if (!chip || !chip->irq_set_affinity)
219 		return -EINVAL;
220 
221 	/*
222 	 * If this is a managed interrupt and housekeeping is enabled on
223 	 * it check whether the requested affinity mask intersects with
224 	 * a housekeeping CPU. If so, then remove the isolated CPUs from
225 	 * the mask and just keep the housekeeping CPU(s). This prevents
226 	 * the affinity setter from routing the interrupt to an isolated
227 	 * CPU to avoid that I/O submitted from a housekeeping CPU causes
228 	 * interrupts on an isolated one.
229 	 *
230 	 * If the masks do not intersect or include online CPU(s) then
231 	 * keep the requested mask. The isolated target CPUs are only
232 	 * receiving interrupts when the I/O operation was submitted
233 	 * directly from them.
234 	 *
235 	 * If all housekeeping CPUs in the affinity mask are offline, the
236 	 * interrupt will be migrated by the CPU hotplug code once a
237 	 * housekeeping CPU which belongs to the affinity mask comes
238 	 * online.
239 	 */
240 	if (irqd_affinity_is_managed(data) &&
241 	    housekeeping_enabled(HK_FLAG_MANAGED_IRQ)) {
242 		const struct cpumask *hk_mask, *prog_mask;
243 
244 		static DEFINE_RAW_SPINLOCK(tmp_mask_lock);
245 		static struct cpumask tmp_mask;
246 
247 		hk_mask = housekeeping_cpumask(HK_FLAG_MANAGED_IRQ);
248 
249 		raw_spin_lock(&tmp_mask_lock);
250 		cpumask_and(&tmp_mask, mask, hk_mask);
251 		if (!cpumask_intersects(&tmp_mask, cpu_online_mask))
252 			prog_mask = mask;
253 		else
254 			prog_mask = &tmp_mask;
255 		ret = chip->irq_set_affinity(data, prog_mask, force);
256 		raw_spin_unlock(&tmp_mask_lock);
257 	} else {
258 		ret = chip->irq_set_affinity(data, mask, force);
259 	}
260 	switch (ret) {
261 	case IRQ_SET_MASK_OK:
262 	case IRQ_SET_MASK_OK_DONE:
263 		cpumask_copy(desc->irq_common_data.affinity, mask);
264 		/* fall through */
265 	case IRQ_SET_MASK_OK_NOCOPY:
266 		irq_validate_effective_affinity(data);
267 		irq_set_thread_affinity(desc);
268 		ret = 0;
269 	}
270 
271 	return ret;
272 }
273 
274 #ifdef CONFIG_GENERIC_PENDING_IRQ
275 static inline int irq_set_affinity_pending(struct irq_data *data,
276 					   const struct cpumask *dest)
277 {
278 	struct irq_desc *desc = irq_data_to_desc(data);
279 
280 	irqd_set_move_pending(data);
281 	irq_copy_pending(desc, dest);
282 	return 0;
283 }
284 #else
285 static inline int irq_set_affinity_pending(struct irq_data *data,
286 					   const struct cpumask *dest)
287 {
288 	return -EBUSY;
289 }
290 #endif
291 
292 static int irq_try_set_affinity(struct irq_data *data,
293 				const struct cpumask *dest, bool force)
294 {
295 	int ret = irq_do_set_affinity(data, dest, force);
296 
297 	/*
298 	 * In case that the underlying vector management is busy and the
299 	 * architecture supports the generic pending mechanism then utilize
300 	 * this to avoid returning an error to user space.
301 	 */
302 	if (ret == -EBUSY && !force)
303 		ret = irq_set_affinity_pending(data, dest);
304 	return ret;
305 }
306 
307 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
308 			    bool force)
309 {
310 	struct irq_chip *chip = irq_data_get_irq_chip(data);
311 	struct irq_desc *desc = irq_data_to_desc(data);
312 	int ret = 0;
313 
314 	if (!chip || !chip->irq_set_affinity)
315 		return -EINVAL;
316 
317 	if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) {
318 		ret = irq_try_set_affinity(data, mask, force);
319 	} else {
320 		irqd_set_move_pending(data);
321 		irq_copy_pending(desc, mask);
322 	}
323 
324 	if (desc->affinity_notify) {
325 		kref_get(&desc->affinity_notify->kref);
326 		if (!schedule_work(&desc->affinity_notify->work)) {
327 			/* Work was already scheduled, drop our extra ref */
328 			kref_put(&desc->affinity_notify->kref,
329 				 desc->affinity_notify->release);
330 		}
331 	}
332 	irqd_set(data, IRQD_AFFINITY_SET);
333 
334 	return ret;
335 }
336 
337 int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force)
338 {
339 	struct irq_desc *desc = irq_to_desc(irq);
340 	unsigned long flags;
341 	int ret;
342 
343 	if (!desc)
344 		return -EINVAL;
345 
346 	raw_spin_lock_irqsave(&desc->lock, flags);
347 	ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
348 	raw_spin_unlock_irqrestore(&desc->lock, flags);
349 	return ret;
350 }
351 
352 int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m)
353 {
354 	unsigned long flags;
355 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
356 
357 	if (!desc)
358 		return -EINVAL;
359 	desc->affinity_hint = m;
360 	irq_put_desc_unlock(desc, flags);
361 	/* set the initial affinity to prevent every interrupt being on CPU0 */
362 	if (m)
363 		__irq_set_affinity(irq, m, false);
364 	return 0;
365 }
366 EXPORT_SYMBOL_GPL(irq_set_affinity_hint);
367 
368 static void irq_affinity_notify(struct work_struct *work)
369 {
370 	struct irq_affinity_notify *notify =
371 		container_of(work, struct irq_affinity_notify, work);
372 	struct irq_desc *desc = irq_to_desc(notify->irq);
373 	cpumask_var_t cpumask;
374 	unsigned long flags;
375 
376 	if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
377 		goto out;
378 
379 	raw_spin_lock_irqsave(&desc->lock, flags);
380 	if (irq_move_pending(&desc->irq_data))
381 		irq_get_pending(cpumask, desc);
382 	else
383 		cpumask_copy(cpumask, desc->irq_common_data.affinity);
384 	raw_spin_unlock_irqrestore(&desc->lock, flags);
385 
386 	notify->notify(notify, cpumask);
387 
388 	free_cpumask_var(cpumask);
389 out:
390 	kref_put(&notify->kref, notify->release);
391 }
392 
393 /**
394  *	irq_set_affinity_notifier - control notification of IRQ affinity changes
395  *	@irq:		Interrupt for which to enable/disable notification
396  *	@notify:	Context for notification, or %NULL to disable
397  *			notification.  Function pointers must be initialised;
398  *			the other fields will be initialised by this function.
399  *
400  *	Must be called in process context.  Notification may only be enabled
401  *	after the IRQ is allocated and must be disabled before the IRQ is
402  *	freed using free_irq().
403  */
404 int
405 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
406 {
407 	struct irq_desc *desc = irq_to_desc(irq);
408 	struct irq_affinity_notify *old_notify;
409 	unsigned long flags;
410 
411 	/* The release function is promised process context */
412 	might_sleep();
413 
414 	if (!desc || desc->istate & IRQS_NMI)
415 		return -EINVAL;
416 
417 	/* Complete initialisation of *notify */
418 	if (notify) {
419 		notify->irq = irq;
420 		kref_init(&notify->kref);
421 		INIT_WORK(&notify->work, irq_affinity_notify);
422 	}
423 
424 	raw_spin_lock_irqsave(&desc->lock, flags);
425 	old_notify = desc->affinity_notify;
426 	desc->affinity_notify = notify;
427 	raw_spin_unlock_irqrestore(&desc->lock, flags);
428 
429 	if (old_notify) {
430 		if (cancel_work_sync(&old_notify->work)) {
431 			/* Pending work had a ref, put that one too */
432 			kref_put(&old_notify->kref, old_notify->release);
433 		}
434 		kref_put(&old_notify->kref, old_notify->release);
435 	}
436 
437 	return 0;
438 }
439 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
440 
441 #ifndef CONFIG_AUTO_IRQ_AFFINITY
442 /*
443  * Generic version of the affinity autoselector.
444  */
445 int irq_setup_affinity(struct irq_desc *desc)
446 {
447 	struct cpumask *set = irq_default_affinity;
448 	int ret, node = irq_desc_get_node(desc);
449 	static DEFINE_RAW_SPINLOCK(mask_lock);
450 	static struct cpumask mask;
451 
452 	/* Excludes PER_CPU and NO_BALANCE interrupts */
453 	if (!__irq_can_set_affinity(desc))
454 		return 0;
455 
456 	raw_spin_lock(&mask_lock);
457 	/*
458 	 * Preserve the managed affinity setting and a userspace affinity
459 	 * setup, but make sure that one of the targets is online.
460 	 */
461 	if (irqd_affinity_is_managed(&desc->irq_data) ||
462 	    irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
463 		if (cpumask_intersects(desc->irq_common_data.affinity,
464 				       cpu_online_mask))
465 			set = desc->irq_common_data.affinity;
466 		else
467 			irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
468 	}
469 
470 	cpumask_and(&mask, cpu_online_mask, set);
471 	if (cpumask_empty(&mask))
472 		cpumask_copy(&mask, cpu_online_mask);
473 
474 	if (node != NUMA_NO_NODE) {
475 		const struct cpumask *nodemask = cpumask_of_node(node);
476 
477 		/* make sure at least one of the cpus in nodemask is online */
478 		if (cpumask_intersects(&mask, nodemask))
479 			cpumask_and(&mask, &mask, nodemask);
480 	}
481 	ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
482 	raw_spin_unlock(&mask_lock);
483 	return ret;
484 }
485 #else
486 /* Wrapper for ALPHA specific affinity selector magic */
487 int irq_setup_affinity(struct irq_desc *desc)
488 {
489 	return irq_select_affinity(irq_desc_get_irq(desc));
490 }
491 #endif /* CONFIG_AUTO_IRQ_AFFINITY */
492 #endif /* CONFIG_SMP */
493 
494 
495 /**
496  *	irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
497  *	@irq: interrupt number to set affinity
498  *	@vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
499  *	            specific data for percpu_devid interrupts
500  *
501  *	This function uses the vCPU specific data to set the vCPU
502  *	affinity for an irq. The vCPU specific data is passed from
503  *	outside, such as KVM. One example code path is as below:
504  *	KVM -> IOMMU -> irq_set_vcpu_affinity().
505  */
506 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
507 {
508 	unsigned long flags;
509 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
510 	struct irq_data *data;
511 	struct irq_chip *chip;
512 	int ret = -ENOSYS;
513 
514 	if (!desc)
515 		return -EINVAL;
516 
517 	data = irq_desc_get_irq_data(desc);
518 	do {
519 		chip = irq_data_get_irq_chip(data);
520 		if (chip && chip->irq_set_vcpu_affinity)
521 			break;
522 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
523 		data = data->parent_data;
524 #else
525 		data = NULL;
526 #endif
527 	} while (data);
528 
529 	if (data)
530 		ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
531 	irq_put_desc_unlock(desc, flags);
532 
533 	return ret;
534 }
535 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
536 
537 void __disable_irq(struct irq_desc *desc)
538 {
539 	if (!desc->depth++)
540 		irq_disable(desc);
541 }
542 
543 static int __disable_irq_nosync(unsigned int irq)
544 {
545 	unsigned long flags;
546 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
547 
548 	if (!desc)
549 		return -EINVAL;
550 	__disable_irq(desc);
551 	irq_put_desc_busunlock(desc, flags);
552 	return 0;
553 }
554 
555 /**
556  *	disable_irq_nosync - disable an irq without waiting
557  *	@irq: Interrupt to disable
558  *
559  *	Disable the selected interrupt line.  Disables and Enables are
560  *	nested.
561  *	Unlike disable_irq(), this function does not ensure existing
562  *	instances of the IRQ handler have completed before returning.
563  *
564  *	This function may be called from IRQ context.
565  */
566 void disable_irq_nosync(unsigned int irq)
567 {
568 	__disable_irq_nosync(irq);
569 }
570 EXPORT_SYMBOL(disable_irq_nosync);
571 
572 /**
573  *	disable_irq - disable an irq and wait for completion
574  *	@irq: Interrupt to disable
575  *
576  *	Disable the selected interrupt line.  Enables and Disables are
577  *	nested.
578  *	This function waits for any pending IRQ handlers for this interrupt
579  *	to complete before returning. If you use this function while
580  *	holding a resource the IRQ handler may need you will deadlock.
581  *
582  *	This function may be called - with care - from IRQ context.
583  */
584 void disable_irq(unsigned int irq)
585 {
586 	if (!__disable_irq_nosync(irq))
587 		synchronize_irq(irq);
588 }
589 EXPORT_SYMBOL(disable_irq);
590 
591 /**
592  *	disable_hardirq - disables an irq and waits for hardirq completion
593  *	@irq: Interrupt to disable
594  *
595  *	Disable the selected interrupt line.  Enables and Disables are
596  *	nested.
597  *	This function waits for any pending hard IRQ handlers for this
598  *	interrupt to complete before returning. If you use this function while
599  *	holding a resource the hard IRQ handler may need you will deadlock.
600  *
601  *	When used to optimistically disable an interrupt from atomic context
602  *	the return value must be checked.
603  *
604  *	Returns: false if a threaded handler is active.
605  *
606  *	This function may be called - with care - from IRQ context.
607  */
608 bool disable_hardirq(unsigned int irq)
609 {
610 	if (!__disable_irq_nosync(irq))
611 		return synchronize_hardirq(irq);
612 
613 	return false;
614 }
615 EXPORT_SYMBOL_GPL(disable_hardirq);
616 
617 /**
618  *	disable_nmi_nosync - disable an nmi without waiting
619  *	@irq: Interrupt to disable
620  *
621  *	Disable the selected interrupt line. Disables and enables are
622  *	nested.
623  *	The interrupt to disable must have been requested through request_nmi.
624  *	Unlike disable_nmi(), this function does not ensure existing
625  *	instances of the IRQ handler have completed before returning.
626  */
627 void disable_nmi_nosync(unsigned int irq)
628 {
629 	disable_irq_nosync(irq);
630 }
631 
632 void __enable_irq(struct irq_desc *desc)
633 {
634 	switch (desc->depth) {
635 	case 0:
636  err_out:
637 		WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
638 		     irq_desc_get_irq(desc));
639 		break;
640 	case 1: {
641 		if (desc->istate & IRQS_SUSPENDED)
642 			goto err_out;
643 		/* Prevent probing on this irq: */
644 		irq_settings_set_noprobe(desc);
645 		/*
646 		 * Call irq_startup() not irq_enable() here because the
647 		 * interrupt might be marked NOAUTOEN. So irq_startup()
648 		 * needs to be invoked when it gets enabled the first
649 		 * time. If it was already started up, then irq_startup()
650 		 * will invoke irq_enable() under the hood.
651 		 */
652 		irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
653 		break;
654 	}
655 	default:
656 		desc->depth--;
657 	}
658 }
659 
660 /**
661  *	enable_irq - enable handling of an irq
662  *	@irq: Interrupt to enable
663  *
664  *	Undoes the effect of one call to disable_irq().  If this
665  *	matches the last disable, processing of interrupts on this
666  *	IRQ line is re-enabled.
667  *
668  *	This function may be called from IRQ context only when
669  *	desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
670  */
671 void enable_irq(unsigned int irq)
672 {
673 	unsigned long flags;
674 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
675 
676 	if (!desc)
677 		return;
678 	if (WARN(!desc->irq_data.chip,
679 		 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
680 		goto out;
681 
682 	__enable_irq(desc);
683 out:
684 	irq_put_desc_busunlock(desc, flags);
685 }
686 EXPORT_SYMBOL(enable_irq);
687 
688 /**
689  *	enable_nmi - enable handling of an nmi
690  *	@irq: Interrupt to enable
691  *
692  *	The interrupt to enable must have been requested through request_nmi.
693  *	Undoes the effect of one call to disable_nmi(). If this
694  *	matches the last disable, processing of interrupts on this
695  *	IRQ line is re-enabled.
696  */
697 void enable_nmi(unsigned int irq)
698 {
699 	enable_irq(irq);
700 }
701 
702 static int set_irq_wake_real(unsigned int irq, unsigned int on)
703 {
704 	struct irq_desc *desc = irq_to_desc(irq);
705 	int ret = -ENXIO;
706 
707 	if (irq_desc_get_chip(desc)->flags &  IRQCHIP_SKIP_SET_WAKE)
708 		return 0;
709 
710 	if (desc->irq_data.chip->irq_set_wake)
711 		ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
712 
713 	return ret;
714 }
715 
716 /**
717  *	irq_set_irq_wake - control irq power management wakeup
718  *	@irq:	interrupt to control
719  *	@on:	enable/disable power management wakeup
720  *
721  *	Enable/disable power management wakeup mode, which is
722  *	disabled by default.  Enables and disables must match,
723  *	just as they match for non-wakeup mode support.
724  *
725  *	Wakeup mode lets this IRQ wake the system from sleep
726  *	states like "suspend to RAM".
727  *
728  *	Note: irq enable/disable state is completely orthogonal
729  *	to the enable/disable state of irq wake. An irq can be
730  *	disabled with disable_irq() and still wake the system as
731  *	long as the irq has wake enabled. If this does not hold,
732  *	then the underlying irq chip and the related driver need
733  *	to be investigated.
734  */
735 int irq_set_irq_wake(unsigned int irq, unsigned int on)
736 {
737 	unsigned long flags;
738 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
739 	int ret = 0;
740 
741 	if (!desc)
742 		return -EINVAL;
743 
744 	/* Don't use NMIs as wake up interrupts please */
745 	if (desc->istate & IRQS_NMI) {
746 		ret = -EINVAL;
747 		goto out_unlock;
748 	}
749 
750 	/* wakeup-capable irqs can be shared between drivers that
751 	 * don't need to have the same sleep mode behaviors.
752 	 */
753 	if (on) {
754 		if (desc->wake_depth++ == 0) {
755 			ret = set_irq_wake_real(irq, on);
756 			if (ret)
757 				desc->wake_depth = 0;
758 			else
759 				irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
760 		}
761 	} else {
762 		if (desc->wake_depth == 0) {
763 			WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
764 		} else if (--desc->wake_depth == 0) {
765 			ret = set_irq_wake_real(irq, on);
766 			if (ret)
767 				desc->wake_depth = 1;
768 			else
769 				irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
770 		}
771 	}
772 
773 out_unlock:
774 	irq_put_desc_busunlock(desc, flags);
775 	return ret;
776 }
777 EXPORT_SYMBOL(irq_set_irq_wake);
778 
779 /*
780  * Internal function that tells the architecture code whether a
781  * particular irq has been exclusively allocated or is available
782  * for driver use.
783  */
784 int can_request_irq(unsigned int irq, unsigned long irqflags)
785 {
786 	unsigned long flags;
787 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
788 	int canrequest = 0;
789 
790 	if (!desc)
791 		return 0;
792 
793 	if (irq_settings_can_request(desc)) {
794 		if (!desc->action ||
795 		    irqflags & desc->action->flags & IRQF_SHARED)
796 			canrequest = 1;
797 	}
798 	irq_put_desc_unlock(desc, flags);
799 	return canrequest;
800 }
801 
802 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
803 {
804 	struct irq_chip *chip = desc->irq_data.chip;
805 	int ret, unmask = 0;
806 
807 	if (!chip || !chip->irq_set_type) {
808 		/*
809 		 * IRQF_TRIGGER_* but the PIC does not support multiple
810 		 * flow-types?
811 		 */
812 		pr_debug("No set_type function for IRQ %d (%s)\n",
813 			 irq_desc_get_irq(desc),
814 			 chip ? (chip->name ? : "unknown") : "unknown");
815 		return 0;
816 	}
817 
818 	if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
819 		if (!irqd_irq_masked(&desc->irq_data))
820 			mask_irq(desc);
821 		if (!irqd_irq_disabled(&desc->irq_data))
822 			unmask = 1;
823 	}
824 
825 	/* Mask all flags except trigger mode */
826 	flags &= IRQ_TYPE_SENSE_MASK;
827 	ret = chip->irq_set_type(&desc->irq_data, flags);
828 
829 	switch (ret) {
830 	case IRQ_SET_MASK_OK:
831 	case IRQ_SET_MASK_OK_DONE:
832 		irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
833 		irqd_set(&desc->irq_data, flags);
834 		/* fall through */
835 
836 	case IRQ_SET_MASK_OK_NOCOPY:
837 		flags = irqd_get_trigger_type(&desc->irq_data);
838 		irq_settings_set_trigger_mask(desc, flags);
839 		irqd_clear(&desc->irq_data, IRQD_LEVEL);
840 		irq_settings_clr_level(desc);
841 		if (flags & IRQ_TYPE_LEVEL_MASK) {
842 			irq_settings_set_level(desc);
843 			irqd_set(&desc->irq_data, IRQD_LEVEL);
844 		}
845 
846 		ret = 0;
847 		break;
848 	default:
849 		pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n",
850 		       flags, irq_desc_get_irq(desc), chip->irq_set_type);
851 	}
852 	if (unmask)
853 		unmask_irq(desc);
854 	return ret;
855 }
856 
857 #ifdef CONFIG_HARDIRQS_SW_RESEND
858 int irq_set_parent(int irq, int parent_irq)
859 {
860 	unsigned long flags;
861 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
862 
863 	if (!desc)
864 		return -EINVAL;
865 
866 	desc->parent_irq = parent_irq;
867 
868 	irq_put_desc_unlock(desc, flags);
869 	return 0;
870 }
871 EXPORT_SYMBOL_GPL(irq_set_parent);
872 #endif
873 
874 /*
875  * Default primary interrupt handler for threaded interrupts. Is
876  * assigned as primary handler when request_threaded_irq is called
877  * with handler == NULL. Useful for oneshot interrupts.
878  */
879 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
880 {
881 	return IRQ_WAKE_THREAD;
882 }
883 
884 /*
885  * Primary handler for nested threaded interrupts. Should never be
886  * called.
887  */
888 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
889 {
890 	WARN(1, "Primary handler called for nested irq %d\n", irq);
891 	return IRQ_NONE;
892 }
893 
894 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
895 {
896 	WARN(1, "Secondary action handler called for irq %d\n", irq);
897 	return IRQ_NONE;
898 }
899 
900 static int irq_wait_for_interrupt(struct irqaction *action)
901 {
902 	for (;;) {
903 		set_current_state(TASK_INTERRUPTIBLE);
904 
905 		if (kthread_should_stop()) {
906 			/* may need to run one last time */
907 			if (test_and_clear_bit(IRQTF_RUNTHREAD,
908 					       &action->thread_flags)) {
909 				__set_current_state(TASK_RUNNING);
910 				return 0;
911 			}
912 			__set_current_state(TASK_RUNNING);
913 			return -1;
914 		}
915 
916 		if (test_and_clear_bit(IRQTF_RUNTHREAD,
917 				       &action->thread_flags)) {
918 			__set_current_state(TASK_RUNNING);
919 			return 0;
920 		}
921 		schedule();
922 	}
923 }
924 
925 /*
926  * Oneshot interrupts keep the irq line masked until the threaded
927  * handler finished. unmask if the interrupt has not been disabled and
928  * is marked MASKED.
929  */
930 static void irq_finalize_oneshot(struct irq_desc *desc,
931 				 struct irqaction *action)
932 {
933 	if (!(desc->istate & IRQS_ONESHOT) ||
934 	    action->handler == irq_forced_secondary_handler)
935 		return;
936 again:
937 	chip_bus_lock(desc);
938 	raw_spin_lock_irq(&desc->lock);
939 
940 	/*
941 	 * Implausible though it may be we need to protect us against
942 	 * the following scenario:
943 	 *
944 	 * The thread is faster done than the hard interrupt handler
945 	 * on the other CPU. If we unmask the irq line then the
946 	 * interrupt can come in again and masks the line, leaves due
947 	 * to IRQS_INPROGRESS and the irq line is masked forever.
948 	 *
949 	 * This also serializes the state of shared oneshot handlers
950 	 * versus "desc->threads_onehsot |= action->thread_mask;" in
951 	 * irq_wake_thread(). See the comment there which explains the
952 	 * serialization.
953 	 */
954 	if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
955 		raw_spin_unlock_irq(&desc->lock);
956 		chip_bus_sync_unlock(desc);
957 		cpu_relax();
958 		goto again;
959 	}
960 
961 	/*
962 	 * Now check again, whether the thread should run. Otherwise
963 	 * we would clear the threads_oneshot bit of this thread which
964 	 * was just set.
965 	 */
966 	if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
967 		goto out_unlock;
968 
969 	desc->threads_oneshot &= ~action->thread_mask;
970 
971 	if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
972 	    irqd_irq_masked(&desc->irq_data))
973 		unmask_threaded_irq(desc);
974 
975 out_unlock:
976 	raw_spin_unlock_irq(&desc->lock);
977 	chip_bus_sync_unlock(desc);
978 }
979 
980 #ifdef CONFIG_SMP
981 /*
982  * Check whether we need to change the affinity of the interrupt thread.
983  */
984 static void
985 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
986 {
987 	cpumask_var_t mask;
988 	bool valid = true;
989 
990 	if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
991 		return;
992 
993 	/*
994 	 * In case we are out of memory we set IRQTF_AFFINITY again and
995 	 * try again next time
996 	 */
997 	if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
998 		set_bit(IRQTF_AFFINITY, &action->thread_flags);
999 		return;
1000 	}
1001 
1002 	raw_spin_lock_irq(&desc->lock);
1003 	/*
1004 	 * This code is triggered unconditionally. Check the affinity
1005 	 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
1006 	 */
1007 	if (cpumask_available(desc->irq_common_data.affinity)) {
1008 		const struct cpumask *m;
1009 
1010 		m = irq_data_get_effective_affinity_mask(&desc->irq_data);
1011 		cpumask_copy(mask, m);
1012 	} else {
1013 		valid = false;
1014 	}
1015 	raw_spin_unlock_irq(&desc->lock);
1016 
1017 	if (valid)
1018 		set_cpus_allowed_ptr(current, mask);
1019 	free_cpumask_var(mask);
1020 }
1021 #else
1022 static inline void
1023 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
1024 #endif
1025 
1026 /*
1027  * Interrupts which are not explicitly requested as threaded
1028  * interrupts rely on the implicit bh/preempt disable of the hard irq
1029  * context. So we need to disable bh here to avoid deadlocks and other
1030  * side effects.
1031  */
1032 static irqreturn_t
1033 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
1034 {
1035 	irqreturn_t ret;
1036 
1037 	local_bh_disable();
1038 	ret = action->thread_fn(action->irq, action->dev_id);
1039 	if (ret == IRQ_HANDLED)
1040 		atomic_inc(&desc->threads_handled);
1041 
1042 	irq_finalize_oneshot(desc, action);
1043 	local_bh_enable();
1044 	return ret;
1045 }
1046 
1047 /*
1048  * Interrupts explicitly requested as threaded interrupts want to be
1049  * preemtible - many of them need to sleep and wait for slow busses to
1050  * complete.
1051  */
1052 static irqreturn_t irq_thread_fn(struct irq_desc *desc,
1053 		struct irqaction *action)
1054 {
1055 	irqreturn_t ret;
1056 
1057 	ret = action->thread_fn(action->irq, action->dev_id);
1058 	if (ret == IRQ_HANDLED)
1059 		atomic_inc(&desc->threads_handled);
1060 
1061 	irq_finalize_oneshot(desc, action);
1062 	return ret;
1063 }
1064 
1065 static void wake_threads_waitq(struct irq_desc *desc)
1066 {
1067 	if (atomic_dec_and_test(&desc->threads_active))
1068 		wake_up(&desc->wait_for_threads);
1069 }
1070 
1071 static void irq_thread_dtor(struct callback_head *unused)
1072 {
1073 	struct task_struct *tsk = current;
1074 	struct irq_desc *desc;
1075 	struct irqaction *action;
1076 
1077 	if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
1078 		return;
1079 
1080 	action = kthread_data(tsk);
1081 
1082 	pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
1083 	       tsk->comm, tsk->pid, action->irq);
1084 
1085 
1086 	desc = irq_to_desc(action->irq);
1087 	/*
1088 	 * If IRQTF_RUNTHREAD is set, we need to decrement
1089 	 * desc->threads_active and wake possible waiters.
1090 	 */
1091 	if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1092 		wake_threads_waitq(desc);
1093 
1094 	/* Prevent a stale desc->threads_oneshot */
1095 	irq_finalize_oneshot(desc, action);
1096 }
1097 
1098 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
1099 {
1100 	struct irqaction *secondary = action->secondary;
1101 
1102 	if (WARN_ON_ONCE(!secondary))
1103 		return;
1104 
1105 	raw_spin_lock_irq(&desc->lock);
1106 	__irq_wake_thread(desc, secondary);
1107 	raw_spin_unlock_irq(&desc->lock);
1108 }
1109 
1110 /*
1111  * Interrupt handler thread
1112  */
1113 static int irq_thread(void *data)
1114 {
1115 	struct callback_head on_exit_work;
1116 	struct irqaction *action = data;
1117 	struct irq_desc *desc = irq_to_desc(action->irq);
1118 	irqreturn_t (*handler_fn)(struct irq_desc *desc,
1119 			struct irqaction *action);
1120 
1121 	if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD,
1122 					&action->thread_flags))
1123 		handler_fn = irq_forced_thread_fn;
1124 	else
1125 		handler_fn = irq_thread_fn;
1126 
1127 	init_task_work(&on_exit_work, irq_thread_dtor);
1128 	task_work_add(current, &on_exit_work, false);
1129 
1130 	irq_thread_check_affinity(desc, action);
1131 
1132 	while (!irq_wait_for_interrupt(action)) {
1133 		irqreturn_t action_ret;
1134 
1135 		irq_thread_check_affinity(desc, action);
1136 
1137 		action_ret = handler_fn(desc, action);
1138 		if (action_ret == IRQ_WAKE_THREAD)
1139 			irq_wake_secondary(desc, action);
1140 
1141 		wake_threads_waitq(desc);
1142 	}
1143 
1144 	/*
1145 	 * This is the regular exit path. __free_irq() is stopping the
1146 	 * thread via kthread_stop() after calling
1147 	 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the
1148 	 * oneshot mask bit can be set.
1149 	 */
1150 	task_work_cancel(current, irq_thread_dtor);
1151 	return 0;
1152 }
1153 
1154 /**
1155  *	irq_wake_thread - wake the irq thread for the action identified by dev_id
1156  *	@irq:		Interrupt line
1157  *	@dev_id:	Device identity for which the thread should be woken
1158  *
1159  */
1160 void irq_wake_thread(unsigned int irq, void *dev_id)
1161 {
1162 	struct irq_desc *desc = irq_to_desc(irq);
1163 	struct irqaction *action;
1164 	unsigned long flags;
1165 
1166 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1167 		return;
1168 
1169 	raw_spin_lock_irqsave(&desc->lock, flags);
1170 	for_each_action_of_desc(desc, action) {
1171 		if (action->dev_id == dev_id) {
1172 			if (action->thread)
1173 				__irq_wake_thread(desc, action);
1174 			break;
1175 		}
1176 	}
1177 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1178 }
1179 EXPORT_SYMBOL_GPL(irq_wake_thread);
1180 
1181 static int irq_setup_forced_threading(struct irqaction *new)
1182 {
1183 	if (!force_irqthreads)
1184 		return 0;
1185 	if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1186 		return 0;
1187 
1188 	/*
1189 	 * No further action required for interrupts which are requested as
1190 	 * threaded interrupts already
1191 	 */
1192 	if (new->handler == irq_default_primary_handler)
1193 		return 0;
1194 
1195 	new->flags |= IRQF_ONESHOT;
1196 
1197 	/*
1198 	 * Handle the case where we have a real primary handler and a
1199 	 * thread handler. We force thread them as well by creating a
1200 	 * secondary action.
1201 	 */
1202 	if (new->handler && new->thread_fn) {
1203 		/* Allocate the secondary action */
1204 		new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1205 		if (!new->secondary)
1206 			return -ENOMEM;
1207 		new->secondary->handler = irq_forced_secondary_handler;
1208 		new->secondary->thread_fn = new->thread_fn;
1209 		new->secondary->dev_id = new->dev_id;
1210 		new->secondary->irq = new->irq;
1211 		new->secondary->name = new->name;
1212 	}
1213 	/* Deal with the primary handler */
1214 	set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1215 	new->thread_fn = new->handler;
1216 	new->handler = irq_default_primary_handler;
1217 	return 0;
1218 }
1219 
1220 static int irq_request_resources(struct irq_desc *desc)
1221 {
1222 	struct irq_data *d = &desc->irq_data;
1223 	struct irq_chip *c = d->chip;
1224 
1225 	return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1226 }
1227 
1228 static void irq_release_resources(struct irq_desc *desc)
1229 {
1230 	struct irq_data *d = &desc->irq_data;
1231 	struct irq_chip *c = d->chip;
1232 
1233 	if (c->irq_release_resources)
1234 		c->irq_release_resources(d);
1235 }
1236 
1237 static bool irq_supports_nmi(struct irq_desc *desc)
1238 {
1239 	struct irq_data *d = irq_desc_get_irq_data(desc);
1240 
1241 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
1242 	/* Only IRQs directly managed by the root irqchip can be set as NMI */
1243 	if (d->parent_data)
1244 		return false;
1245 #endif
1246 	/* Don't support NMIs for chips behind a slow bus */
1247 	if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock)
1248 		return false;
1249 
1250 	return d->chip->flags & IRQCHIP_SUPPORTS_NMI;
1251 }
1252 
1253 static int irq_nmi_setup(struct irq_desc *desc)
1254 {
1255 	struct irq_data *d = irq_desc_get_irq_data(desc);
1256 	struct irq_chip *c = d->chip;
1257 
1258 	return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL;
1259 }
1260 
1261 static void irq_nmi_teardown(struct irq_desc *desc)
1262 {
1263 	struct irq_data *d = irq_desc_get_irq_data(desc);
1264 	struct irq_chip *c = d->chip;
1265 
1266 	if (c->irq_nmi_teardown)
1267 		c->irq_nmi_teardown(d);
1268 }
1269 
1270 static int
1271 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1272 {
1273 	struct task_struct *t;
1274 	struct sched_param param = {
1275 		.sched_priority = MAX_USER_RT_PRIO/2,
1276 	};
1277 
1278 	if (!secondary) {
1279 		t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1280 				   new->name);
1281 	} else {
1282 		t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1283 				   new->name);
1284 		param.sched_priority -= 1;
1285 	}
1286 
1287 	if (IS_ERR(t))
1288 		return PTR_ERR(t);
1289 
1290 	sched_setscheduler_nocheck(t, SCHED_FIFO, &param);
1291 
1292 	/*
1293 	 * We keep the reference to the task struct even if
1294 	 * the thread dies to avoid that the interrupt code
1295 	 * references an already freed task_struct.
1296 	 */
1297 	new->thread = get_task_struct(t);
1298 	/*
1299 	 * Tell the thread to set its affinity. This is
1300 	 * important for shared interrupt handlers as we do
1301 	 * not invoke setup_affinity() for the secondary
1302 	 * handlers as everything is already set up. Even for
1303 	 * interrupts marked with IRQF_NO_BALANCE this is
1304 	 * correct as we want the thread to move to the cpu(s)
1305 	 * on which the requesting code placed the interrupt.
1306 	 */
1307 	set_bit(IRQTF_AFFINITY, &new->thread_flags);
1308 	return 0;
1309 }
1310 
1311 /*
1312  * Internal function to register an irqaction - typically used to
1313  * allocate special interrupts that are part of the architecture.
1314  *
1315  * Locking rules:
1316  *
1317  * desc->request_mutex	Provides serialization against a concurrent free_irq()
1318  *   chip_bus_lock	Provides serialization for slow bus operations
1319  *     desc->lock	Provides serialization against hard interrupts
1320  *
1321  * chip_bus_lock and desc->lock are sufficient for all other management and
1322  * interrupt related functions. desc->request_mutex solely serializes
1323  * request/free_irq().
1324  */
1325 static int
1326 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1327 {
1328 	struct irqaction *old, **old_ptr;
1329 	unsigned long flags, thread_mask = 0;
1330 	int ret, nested, shared = 0;
1331 
1332 	if (!desc)
1333 		return -EINVAL;
1334 
1335 	if (desc->irq_data.chip == &no_irq_chip)
1336 		return -ENOSYS;
1337 	if (!try_module_get(desc->owner))
1338 		return -ENODEV;
1339 
1340 	new->irq = irq;
1341 
1342 	/*
1343 	 * If the trigger type is not specified by the caller,
1344 	 * then use the default for this interrupt.
1345 	 */
1346 	if (!(new->flags & IRQF_TRIGGER_MASK))
1347 		new->flags |= irqd_get_trigger_type(&desc->irq_data);
1348 
1349 	/*
1350 	 * Check whether the interrupt nests into another interrupt
1351 	 * thread.
1352 	 */
1353 	nested = irq_settings_is_nested_thread(desc);
1354 	if (nested) {
1355 		if (!new->thread_fn) {
1356 			ret = -EINVAL;
1357 			goto out_mput;
1358 		}
1359 		/*
1360 		 * Replace the primary handler which was provided from
1361 		 * the driver for non nested interrupt handling by the
1362 		 * dummy function which warns when called.
1363 		 */
1364 		new->handler = irq_nested_primary_handler;
1365 	} else {
1366 		if (irq_settings_can_thread(desc)) {
1367 			ret = irq_setup_forced_threading(new);
1368 			if (ret)
1369 				goto out_mput;
1370 		}
1371 	}
1372 
1373 	/*
1374 	 * Create a handler thread when a thread function is supplied
1375 	 * and the interrupt does not nest into another interrupt
1376 	 * thread.
1377 	 */
1378 	if (new->thread_fn && !nested) {
1379 		ret = setup_irq_thread(new, irq, false);
1380 		if (ret)
1381 			goto out_mput;
1382 		if (new->secondary) {
1383 			ret = setup_irq_thread(new->secondary, irq, true);
1384 			if (ret)
1385 				goto out_thread;
1386 		}
1387 	}
1388 
1389 	/*
1390 	 * Drivers are often written to work w/o knowledge about the
1391 	 * underlying irq chip implementation, so a request for a
1392 	 * threaded irq without a primary hard irq context handler
1393 	 * requires the ONESHOT flag to be set. Some irq chips like
1394 	 * MSI based interrupts are per se one shot safe. Check the
1395 	 * chip flags, so we can avoid the unmask dance at the end of
1396 	 * the threaded handler for those.
1397 	 */
1398 	if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1399 		new->flags &= ~IRQF_ONESHOT;
1400 
1401 	/*
1402 	 * Protects against a concurrent __free_irq() call which might wait
1403 	 * for synchronize_hardirq() to complete without holding the optional
1404 	 * chip bus lock and desc->lock. Also protects against handing out
1405 	 * a recycled oneshot thread_mask bit while it's still in use by
1406 	 * its previous owner.
1407 	 */
1408 	mutex_lock(&desc->request_mutex);
1409 
1410 	/*
1411 	 * Acquire bus lock as the irq_request_resources() callback below
1412 	 * might rely on the serialization or the magic power management
1413 	 * functions which are abusing the irq_bus_lock() callback,
1414 	 */
1415 	chip_bus_lock(desc);
1416 
1417 	/* First installed action requests resources. */
1418 	if (!desc->action) {
1419 		ret = irq_request_resources(desc);
1420 		if (ret) {
1421 			pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1422 			       new->name, irq, desc->irq_data.chip->name);
1423 			goto out_bus_unlock;
1424 		}
1425 	}
1426 
1427 	/*
1428 	 * The following block of code has to be executed atomically
1429 	 * protected against a concurrent interrupt and any of the other
1430 	 * management calls which are not serialized via
1431 	 * desc->request_mutex or the optional bus lock.
1432 	 */
1433 	raw_spin_lock_irqsave(&desc->lock, flags);
1434 	old_ptr = &desc->action;
1435 	old = *old_ptr;
1436 	if (old) {
1437 		/*
1438 		 * Can't share interrupts unless both agree to and are
1439 		 * the same type (level, edge, polarity). So both flag
1440 		 * fields must have IRQF_SHARED set and the bits which
1441 		 * set the trigger type must match. Also all must
1442 		 * agree on ONESHOT.
1443 		 * Interrupt lines used for NMIs cannot be shared.
1444 		 */
1445 		unsigned int oldtype;
1446 
1447 		if (desc->istate & IRQS_NMI) {
1448 			pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n",
1449 				new->name, irq, desc->irq_data.chip->name);
1450 			ret = -EINVAL;
1451 			goto out_unlock;
1452 		}
1453 
1454 		/*
1455 		 * If nobody did set the configuration before, inherit
1456 		 * the one provided by the requester.
1457 		 */
1458 		if (irqd_trigger_type_was_set(&desc->irq_data)) {
1459 			oldtype = irqd_get_trigger_type(&desc->irq_data);
1460 		} else {
1461 			oldtype = new->flags & IRQF_TRIGGER_MASK;
1462 			irqd_set_trigger_type(&desc->irq_data, oldtype);
1463 		}
1464 
1465 		if (!((old->flags & new->flags) & IRQF_SHARED) ||
1466 		    (oldtype != (new->flags & IRQF_TRIGGER_MASK)) ||
1467 		    ((old->flags ^ new->flags) & IRQF_ONESHOT))
1468 			goto mismatch;
1469 
1470 		/* All handlers must agree on per-cpuness */
1471 		if ((old->flags & IRQF_PERCPU) !=
1472 		    (new->flags & IRQF_PERCPU))
1473 			goto mismatch;
1474 
1475 		/* add new interrupt at end of irq queue */
1476 		do {
1477 			/*
1478 			 * Or all existing action->thread_mask bits,
1479 			 * so we can find the next zero bit for this
1480 			 * new action.
1481 			 */
1482 			thread_mask |= old->thread_mask;
1483 			old_ptr = &old->next;
1484 			old = *old_ptr;
1485 		} while (old);
1486 		shared = 1;
1487 	}
1488 
1489 	/*
1490 	 * Setup the thread mask for this irqaction for ONESHOT. For
1491 	 * !ONESHOT irqs the thread mask is 0 so we can avoid a
1492 	 * conditional in irq_wake_thread().
1493 	 */
1494 	if (new->flags & IRQF_ONESHOT) {
1495 		/*
1496 		 * Unlikely to have 32 resp 64 irqs sharing one line,
1497 		 * but who knows.
1498 		 */
1499 		if (thread_mask == ~0UL) {
1500 			ret = -EBUSY;
1501 			goto out_unlock;
1502 		}
1503 		/*
1504 		 * The thread_mask for the action is or'ed to
1505 		 * desc->thread_active to indicate that the
1506 		 * IRQF_ONESHOT thread handler has been woken, but not
1507 		 * yet finished. The bit is cleared when a thread
1508 		 * completes. When all threads of a shared interrupt
1509 		 * line have completed desc->threads_active becomes
1510 		 * zero and the interrupt line is unmasked. See
1511 		 * handle.c:irq_wake_thread() for further information.
1512 		 *
1513 		 * If no thread is woken by primary (hard irq context)
1514 		 * interrupt handlers, then desc->threads_active is
1515 		 * also checked for zero to unmask the irq line in the
1516 		 * affected hard irq flow handlers
1517 		 * (handle_[fasteoi|level]_irq).
1518 		 *
1519 		 * The new action gets the first zero bit of
1520 		 * thread_mask assigned. See the loop above which or's
1521 		 * all existing action->thread_mask bits.
1522 		 */
1523 		new->thread_mask = 1UL << ffz(thread_mask);
1524 
1525 	} else if (new->handler == irq_default_primary_handler &&
1526 		   !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1527 		/*
1528 		 * The interrupt was requested with handler = NULL, so
1529 		 * we use the default primary handler for it. But it
1530 		 * does not have the oneshot flag set. In combination
1531 		 * with level interrupts this is deadly, because the
1532 		 * default primary handler just wakes the thread, then
1533 		 * the irq lines is reenabled, but the device still
1534 		 * has the level irq asserted. Rinse and repeat....
1535 		 *
1536 		 * While this works for edge type interrupts, we play
1537 		 * it safe and reject unconditionally because we can't
1538 		 * say for sure which type this interrupt really
1539 		 * has. The type flags are unreliable as the
1540 		 * underlying chip implementation can override them.
1541 		 */
1542 		pr_err("Threaded irq requested with handler=NULL and !ONESHOT for %s (irq %d)\n",
1543 		       new->name, irq);
1544 		ret = -EINVAL;
1545 		goto out_unlock;
1546 	}
1547 
1548 	if (!shared) {
1549 		init_waitqueue_head(&desc->wait_for_threads);
1550 
1551 		/* Setup the type (level, edge polarity) if configured: */
1552 		if (new->flags & IRQF_TRIGGER_MASK) {
1553 			ret = __irq_set_trigger(desc,
1554 						new->flags & IRQF_TRIGGER_MASK);
1555 
1556 			if (ret)
1557 				goto out_unlock;
1558 		}
1559 
1560 		/*
1561 		 * Activate the interrupt. That activation must happen
1562 		 * independently of IRQ_NOAUTOEN. request_irq() can fail
1563 		 * and the callers are supposed to handle
1564 		 * that. enable_irq() of an interrupt requested with
1565 		 * IRQ_NOAUTOEN is not supposed to fail. The activation
1566 		 * keeps it in shutdown mode, it merily associates
1567 		 * resources if necessary and if that's not possible it
1568 		 * fails. Interrupts which are in managed shutdown mode
1569 		 * will simply ignore that activation request.
1570 		 */
1571 		ret = irq_activate(desc);
1572 		if (ret)
1573 			goto out_unlock;
1574 
1575 		desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1576 				  IRQS_ONESHOT | IRQS_WAITING);
1577 		irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1578 
1579 		if (new->flags & IRQF_PERCPU) {
1580 			irqd_set(&desc->irq_data, IRQD_PER_CPU);
1581 			irq_settings_set_per_cpu(desc);
1582 		}
1583 
1584 		if (new->flags & IRQF_ONESHOT)
1585 			desc->istate |= IRQS_ONESHOT;
1586 
1587 		/* Exclude IRQ from balancing if requested */
1588 		if (new->flags & IRQF_NOBALANCING) {
1589 			irq_settings_set_no_balancing(desc);
1590 			irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1591 		}
1592 
1593 		if (irq_settings_can_autoenable(desc)) {
1594 			irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1595 		} else {
1596 			/*
1597 			 * Shared interrupts do not go well with disabling
1598 			 * auto enable. The sharing interrupt might request
1599 			 * it while it's still disabled and then wait for
1600 			 * interrupts forever.
1601 			 */
1602 			WARN_ON_ONCE(new->flags & IRQF_SHARED);
1603 			/* Undo nested disables: */
1604 			desc->depth = 1;
1605 		}
1606 
1607 	} else if (new->flags & IRQF_TRIGGER_MASK) {
1608 		unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1609 		unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1610 
1611 		if (nmsk != omsk)
1612 			/* hope the handler works with current  trigger mode */
1613 			pr_warn("irq %d uses trigger mode %u; requested %u\n",
1614 				irq, omsk, nmsk);
1615 	}
1616 
1617 	*old_ptr = new;
1618 
1619 	irq_pm_install_action(desc, new);
1620 
1621 	/* Reset broken irq detection when installing new handler */
1622 	desc->irq_count = 0;
1623 	desc->irqs_unhandled = 0;
1624 
1625 	/*
1626 	 * Check whether we disabled the irq via the spurious handler
1627 	 * before. Reenable it and give it another chance.
1628 	 */
1629 	if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1630 		desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1631 		__enable_irq(desc);
1632 	}
1633 
1634 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1635 	chip_bus_sync_unlock(desc);
1636 	mutex_unlock(&desc->request_mutex);
1637 
1638 	irq_setup_timings(desc, new);
1639 
1640 	/*
1641 	 * Strictly no need to wake it up, but hung_task complains
1642 	 * when no hard interrupt wakes the thread up.
1643 	 */
1644 	if (new->thread)
1645 		wake_up_process(new->thread);
1646 	if (new->secondary)
1647 		wake_up_process(new->secondary->thread);
1648 
1649 	register_irq_proc(irq, desc);
1650 	new->dir = NULL;
1651 	register_handler_proc(irq, new);
1652 	return 0;
1653 
1654 mismatch:
1655 	if (!(new->flags & IRQF_PROBE_SHARED)) {
1656 		pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1657 		       irq, new->flags, new->name, old->flags, old->name);
1658 #ifdef CONFIG_DEBUG_SHIRQ
1659 		dump_stack();
1660 #endif
1661 	}
1662 	ret = -EBUSY;
1663 
1664 out_unlock:
1665 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1666 
1667 	if (!desc->action)
1668 		irq_release_resources(desc);
1669 out_bus_unlock:
1670 	chip_bus_sync_unlock(desc);
1671 	mutex_unlock(&desc->request_mutex);
1672 
1673 out_thread:
1674 	if (new->thread) {
1675 		struct task_struct *t = new->thread;
1676 
1677 		new->thread = NULL;
1678 		kthread_stop(t);
1679 		put_task_struct(t);
1680 	}
1681 	if (new->secondary && new->secondary->thread) {
1682 		struct task_struct *t = new->secondary->thread;
1683 
1684 		new->secondary->thread = NULL;
1685 		kthread_stop(t);
1686 		put_task_struct(t);
1687 	}
1688 out_mput:
1689 	module_put(desc->owner);
1690 	return ret;
1691 }
1692 
1693 /*
1694  * Internal function to unregister an irqaction - used to free
1695  * regular and special interrupts that are part of the architecture.
1696  */
1697 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1698 {
1699 	unsigned irq = desc->irq_data.irq;
1700 	struct irqaction *action, **action_ptr;
1701 	unsigned long flags;
1702 
1703 	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1704 
1705 	mutex_lock(&desc->request_mutex);
1706 	chip_bus_lock(desc);
1707 	raw_spin_lock_irqsave(&desc->lock, flags);
1708 
1709 	/*
1710 	 * There can be multiple actions per IRQ descriptor, find the right
1711 	 * one based on the dev_id:
1712 	 */
1713 	action_ptr = &desc->action;
1714 	for (;;) {
1715 		action = *action_ptr;
1716 
1717 		if (!action) {
1718 			WARN(1, "Trying to free already-free IRQ %d\n", irq);
1719 			raw_spin_unlock_irqrestore(&desc->lock, flags);
1720 			chip_bus_sync_unlock(desc);
1721 			mutex_unlock(&desc->request_mutex);
1722 			return NULL;
1723 		}
1724 
1725 		if (action->dev_id == dev_id)
1726 			break;
1727 		action_ptr = &action->next;
1728 	}
1729 
1730 	/* Found it - now remove it from the list of entries: */
1731 	*action_ptr = action->next;
1732 
1733 	irq_pm_remove_action(desc, action);
1734 
1735 	/* If this was the last handler, shut down the IRQ line: */
1736 	if (!desc->action) {
1737 		irq_settings_clr_disable_unlazy(desc);
1738 		/* Only shutdown. Deactivate after synchronize_hardirq() */
1739 		irq_shutdown(desc);
1740 	}
1741 
1742 #ifdef CONFIG_SMP
1743 	/* make sure affinity_hint is cleaned up */
1744 	if (WARN_ON_ONCE(desc->affinity_hint))
1745 		desc->affinity_hint = NULL;
1746 #endif
1747 
1748 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1749 	/*
1750 	 * Drop bus_lock here so the changes which were done in the chip
1751 	 * callbacks above are synced out to the irq chips which hang
1752 	 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq().
1753 	 *
1754 	 * Aside of that the bus_lock can also be taken from the threaded
1755 	 * handler in irq_finalize_oneshot() which results in a deadlock
1756 	 * because kthread_stop() would wait forever for the thread to
1757 	 * complete, which is blocked on the bus lock.
1758 	 *
1759 	 * The still held desc->request_mutex() protects against a
1760 	 * concurrent request_irq() of this irq so the release of resources
1761 	 * and timing data is properly serialized.
1762 	 */
1763 	chip_bus_sync_unlock(desc);
1764 
1765 	unregister_handler_proc(irq, action);
1766 
1767 	/*
1768 	 * Make sure it's not being used on another CPU and if the chip
1769 	 * supports it also make sure that there is no (not yet serviced)
1770 	 * interrupt in flight at the hardware level.
1771 	 */
1772 	__synchronize_hardirq(desc, true);
1773 
1774 #ifdef CONFIG_DEBUG_SHIRQ
1775 	/*
1776 	 * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1777 	 * event to happen even now it's being freed, so let's make sure that
1778 	 * is so by doing an extra call to the handler ....
1779 	 *
1780 	 * ( We do this after actually deregistering it, to make sure that a
1781 	 *   'real' IRQ doesn't run in parallel with our fake. )
1782 	 */
1783 	if (action->flags & IRQF_SHARED) {
1784 		local_irq_save(flags);
1785 		action->handler(irq, dev_id);
1786 		local_irq_restore(flags);
1787 	}
1788 #endif
1789 
1790 	/*
1791 	 * The action has already been removed above, but the thread writes
1792 	 * its oneshot mask bit when it completes. Though request_mutex is
1793 	 * held across this which prevents __setup_irq() from handing out
1794 	 * the same bit to a newly requested action.
1795 	 */
1796 	if (action->thread) {
1797 		kthread_stop(action->thread);
1798 		put_task_struct(action->thread);
1799 		if (action->secondary && action->secondary->thread) {
1800 			kthread_stop(action->secondary->thread);
1801 			put_task_struct(action->secondary->thread);
1802 		}
1803 	}
1804 
1805 	/* Last action releases resources */
1806 	if (!desc->action) {
1807 		/*
1808 		 * Reaquire bus lock as irq_release_resources() might
1809 		 * require it to deallocate resources over the slow bus.
1810 		 */
1811 		chip_bus_lock(desc);
1812 		/*
1813 		 * There is no interrupt on the fly anymore. Deactivate it
1814 		 * completely.
1815 		 */
1816 		raw_spin_lock_irqsave(&desc->lock, flags);
1817 		irq_domain_deactivate_irq(&desc->irq_data);
1818 		raw_spin_unlock_irqrestore(&desc->lock, flags);
1819 
1820 		irq_release_resources(desc);
1821 		chip_bus_sync_unlock(desc);
1822 		irq_remove_timings(desc);
1823 	}
1824 
1825 	mutex_unlock(&desc->request_mutex);
1826 
1827 	irq_chip_pm_put(&desc->irq_data);
1828 	module_put(desc->owner);
1829 	kfree(action->secondary);
1830 	return action;
1831 }
1832 
1833 /**
1834  *	free_irq - free an interrupt allocated with request_irq
1835  *	@irq: Interrupt line to free
1836  *	@dev_id: Device identity to free
1837  *
1838  *	Remove an interrupt handler. The handler is removed and if the
1839  *	interrupt line is no longer in use by any driver it is disabled.
1840  *	On a shared IRQ the caller must ensure the interrupt is disabled
1841  *	on the card it drives before calling this function. The function
1842  *	does not return until any executing interrupts for this IRQ
1843  *	have completed.
1844  *
1845  *	This function must not be called from interrupt context.
1846  *
1847  *	Returns the devname argument passed to request_irq.
1848  */
1849 const void *free_irq(unsigned int irq, void *dev_id)
1850 {
1851 	struct irq_desc *desc = irq_to_desc(irq);
1852 	struct irqaction *action;
1853 	const char *devname;
1854 
1855 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1856 		return NULL;
1857 
1858 #ifdef CONFIG_SMP
1859 	if (WARN_ON(desc->affinity_notify))
1860 		desc->affinity_notify = NULL;
1861 #endif
1862 
1863 	action = __free_irq(desc, dev_id);
1864 
1865 	if (!action)
1866 		return NULL;
1867 
1868 	devname = action->name;
1869 	kfree(action);
1870 	return devname;
1871 }
1872 EXPORT_SYMBOL(free_irq);
1873 
1874 /* This function must be called with desc->lock held */
1875 static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc)
1876 {
1877 	const char *devname = NULL;
1878 
1879 	desc->istate &= ~IRQS_NMI;
1880 
1881 	if (!WARN_ON(desc->action == NULL)) {
1882 		irq_pm_remove_action(desc, desc->action);
1883 		devname = desc->action->name;
1884 		unregister_handler_proc(irq, desc->action);
1885 
1886 		kfree(desc->action);
1887 		desc->action = NULL;
1888 	}
1889 
1890 	irq_settings_clr_disable_unlazy(desc);
1891 	irq_shutdown_and_deactivate(desc);
1892 
1893 	irq_release_resources(desc);
1894 
1895 	irq_chip_pm_put(&desc->irq_data);
1896 	module_put(desc->owner);
1897 
1898 	return devname;
1899 }
1900 
1901 const void *free_nmi(unsigned int irq, void *dev_id)
1902 {
1903 	struct irq_desc *desc = irq_to_desc(irq);
1904 	unsigned long flags;
1905 	const void *devname;
1906 
1907 	if (!desc || WARN_ON(!(desc->istate & IRQS_NMI)))
1908 		return NULL;
1909 
1910 	if (WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1911 		return NULL;
1912 
1913 	/* NMI still enabled */
1914 	if (WARN_ON(desc->depth == 0))
1915 		disable_nmi_nosync(irq);
1916 
1917 	raw_spin_lock_irqsave(&desc->lock, flags);
1918 
1919 	irq_nmi_teardown(desc);
1920 	devname = __cleanup_nmi(irq, desc);
1921 
1922 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1923 
1924 	return devname;
1925 }
1926 
1927 /**
1928  *	request_threaded_irq - allocate an interrupt line
1929  *	@irq: Interrupt line to allocate
1930  *	@handler: Function to be called when the IRQ occurs.
1931  *		  Primary handler for threaded interrupts
1932  *		  If NULL and thread_fn != NULL the default
1933  *		  primary handler is installed
1934  *	@thread_fn: Function called from the irq handler thread
1935  *		    If NULL, no irq thread is created
1936  *	@irqflags: Interrupt type flags
1937  *	@devname: An ascii name for the claiming device
1938  *	@dev_id: A cookie passed back to the handler function
1939  *
1940  *	This call allocates interrupt resources and enables the
1941  *	interrupt line and IRQ handling. From the point this
1942  *	call is made your handler function may be invoked. Since
1943  *	your handler function must clear any interrupt the board
1944  *	raises, you must take care both to initialise your hardware
1945  *	and to set up the interrupt handler in the right order.
1946  *
1947  *	If you want to set up a threaded irq handler for your device
1948  *	then you need to supply @handler and @thread_fn. @handler is
1949  *	still called in hard interrupt context and has to check
1950  *	whether the interrupt originates from the device. If yes it
1951  *	needs to disable the interrupt on the device and return
1952  *	IRQ_WAKE_THREAD which will wake up the handler thread and run
1953  *	@thread_fn. This split handler design is necessary to support
1954  *	shared interrupts.
1955  *
1956  *	Dev_id must be globally unique. Normally the address of the
1957  *	device data structure is used as the cookie. Since the handler
1958  *	receives this value it makes sense to use it.
1959  *
1960  *	If your interrupt is shared you must pass a non NULL dev_id
1961  *	as this is required when freeing the interrupt.
1962  *
1963  *	Flags:
1964  *
1965  *	IRQF_SHARED		Interrupt is shared
1966  *	IRQF_TRIGGER_*		Specify active edge(s) or level
1967  *
1968  */
1969 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
1970 			 irq_handler_t thread_fn, unsigned long irqflags,
1971 			 const char *devname, void *dev_id)
1972 {
1973 	struct irqaction *action;
1974 	struct irq_desc *desc;
1975 	int retval;
1976 
1977 	if (irq == IRQ_NOTCONNECTED)
1978 		return -ENOTCONN;
1979 
1980 	/*
1981 	 * Sanity-check: shared interrupts must pass in a real dev-ID,
1982 	 * otherwise we'll have trouble later trying to figure out
1983 	 * which interrupt is which (messes up the interrupt freeing
1984 	 * logic etc).
1985 	 *
1986 	 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
1987 	 * it cannot be set along with IRQF_NO_SUSPEND.
1988 	 */
1989 	if (((irqflags & IRQF_SHARED) && !dev_id) ||
1990 	    (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
1991 	    ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
1992 		return -EINVAL;
1993 
1994 	desc = irq_to_desc(irq);
1995 	if (!desc)
1996 		return -EINVAL;
1997 
1998 	if (!irq_settings_can_request(desc) ||
1999 	    WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2000 		return -EINVAL;
2001 
2002 	if (!handler) {
2003 		if (!thread_fn)
2004 			return -EINVAL;
2005 		handler = irq_default_primary_handler;
2006 	}
2007 
2008 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2009 	if (!action)
2010 		return -ENOMEM;
2011 
2012 	action->handler = handler;
2013 	action->thread_fn = thread_fn;
2014 	action->flags = irqflags;
2015 	action->name = devname;
2016 	action->dev_id = dev_id;
2017 
2018 	retval = irq_chip_pm_get(&desc->irq_data);
2019 	if (retval < 0) {
2020 		kfree(action);
2021 		return retval;
2022 	}
2023 
2024 	retval = __setup_irq(irq, desc, action);
2025 
2026 	if (retval) {
2027 		irq_chip_pm_put(&desc->irq_data);
2028 		kfree(action->secondary);
2029 		kfree(action);
2030 	}
2031 
2032 #ifdef CONFIG_DEBUG_SHIRQ_FIXME
2033 	if (!retval && (irqflags & IRQF_SHARED)) {
2034 		/*
2035 		 * It's a shared IRQ -- the driver ought to be prepared for it
2036 		 * to happen immediately, so let's make sure....
2037 		 * We disable the irq to make sure that a 'real' IRQ doesn't
2038 		 * run in parallel with our fake.
2039 		 */
2040 		unsigned long flags;
2041 
2042 		disable_irq(irq);
2043 		local_irq_save(flags);
2044 
2045 		handler(irq, dev_id);
2046 
2047 		local_irq_restore(flags);
2048 		enable_irq(irq);
2049 	}
2050 #endif
2051 	return retval;
2052 }
2053 EXPORT_SYMBOL(request_threaded_irq);
2054 
2055 /**
2056  *	request_any_context_irq - allocate an interrupt line
2057  *	@irq: Interrupt line to allocate
2058  *	@handler: Function to be called when the IRQ occurs.
2059  *		  Threaded handler for threaded interrupts.
2060  *	@flags: Interrupt type flags
2061  *	@name: An ascii name for the claiming device
2062  *	@dev_id: A cookie passed back to the handler function
2063  *
2064  *	This call allocates interrupt resources and enables the
2065  *	interrupt line and IRQ handling. It selects either a
2066  *	hardirq or threaded handling method depending on the
2067  *	context.
2068  *
2069  *	On failure, it returns a negative value. On success,
2070  *	it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
2071  */
2072 int request_any_context_irq(unsigned int irq, irq_handler_t handler,
2073 			    unsigned long flags, const char *name, void *dev_id)
2074 {
2075 	struct irq_desc *desc;
2076 	int ret;
2077 
2078 	if (irq == IRQ_NOTCONNECTED)
2079 		return -ENOTCONN;
2080 
2081 	desc = irq_to_desc(irq);
2082 	if (!desc)
2083 		return -EINVAL;
2084 
2085 	if (irq_settings_is_nested_thread(desc)) {
2086 		ret = request_threaded_irq(irq, NULL, handler,
2087 					   flags, name, dev_id);
2088 		return !ret ? IRQC_IS_NESTED : ret;
2089 	}
2090 
2091 	ret = request_irq(irq, handler, flags, name, dev_id);
2092 	return !ret ? IRQC_IS_HARDIRQ : ret;
2093 }
2094 EXPORT_SYMBOL_GPL(request_any_context_irq);
2095 
2096 /**
2097  *	request_nmi - allocate an interrupt line for NMI delivery
2098  *	@irq: Interrupt line to allocate
2099  *	@handler: Function to be called when the IRQ occurs.
2100  *		  Threaded handler for threaded interrupts.
2101  *	@irqflags: Interrupt type flags
2102  *	@name: An ascii name for the claiming device
2103  *	@dev_id: A cookie passed back to the handler function
2104  *
2105  *	This call allocates interrupt resources and enables the
2106  *	interrupt line and IRQ handling. It sets up the IRQ line
2107  *	to be handled as an NMI.
2108  *
2109  *	An interrupt line delivering NMIs cannot be shared and IRQ handling
2110  *	cannot be threaded.
2111  *
2112  *	Interrupt lines requested for NMI delivering must produce per cpu
2113  *	interrupts and have auto enabling setting disabled.
2114  *
2115  *	Dev_id must be globally unique. Normally the address of the
2116  *	device data structure is used as the cookie. Since the handler
2117  *	receives this value it makes sense to use it.
2118  *
2119  *	If the interrupt line cannot be used to deliver NMIs, function
2120  *	will fail and return a negative value.
2121  */
2122 int request_nmi(unsigned int irq, irq_handler_t handler,
2123 		unsigned long irqflags, const char *name, void *dev_id)
2124 {
2125 	struct irqaction *action;
2126 	struct irq_desc *desc;
2127 	unsigned long flags;
2128 	int retval;
2129 
2130 	if (irq == IRQ_NOTCONNECTED)
2131 		return -ENOTCONN;
2132 
2133 	/* NMI cannot be shared, used for Polling */
2134 	if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL))
2135 		return -EINVAL;
2136 
2137 	if (!(irqflags & IRQF_PERCPU))
2138 		return -EINVAL;
2139 
2140 	if (!handler)
2141 		return -EINVAL;
2142 
2143 	desc = irq_to_desc(irq);
2144 
2145 	if (!desc || irq_settings_can_autoenable(desc) ||
2146 	    !irq_settings_can_request(desc) ||
2147 	    WARN_ON(irq_settings_is_per_cpu_devid(desc)) ||
2148 	    !irq_supports_nmi(desc))
2149 		return -EINVAL;
2150 
2151 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2152 	if (!action)
2153 		return -ENOMEM;
2154 
2155 	action->handler = handler;
2156 	action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING;
2157 	action->name = name;
2158 	action->dev_id = dev_id;
2159 
2160 	retval = irq_chip_pm_get(&desc->irq_data);
2161 	if (retval < 0)
2162 		goto err_out;
2163 
2164 	retval = __setup_irq(irq, desc, action);
2165 	if (retval)
2166 		goto err_irq_setup;
2167 
2168 	raw_spin_lock_irqsave(&desc->lock, flags);
2169 
2170 	/* Setup NMI state */
2171 	desc->istate |= IRQS_NMI;
2172 	retval = irq_nmi_setup(desc);
2173 	if (retval) {
2174 		__cleanup_nmi(irq, desc);
2175 		raw_spin_unlock_irqrestore(&desc->lock, flags);
2176 		return -EINVAL;
2177 	}
2178 
2179 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2180 
2181 	return 0;
2182 
2183 err_irq_setup:
2184 	irq_chip_pm_put(&desc->irq_data);
2185 err_out:
2186 	kfree(action);
2187 
2188 	return retval;
2189 }
2190 
2191 void enable_percpu_irq(unsigned int irq, unsigned int type)
2192 {
2193 	unsigned int cpu = smp_processor_id();
2194 	unsigned long flags;
2195 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2196 
2197 	if (!desc)
2198 		return;
2199 
2200 	/*
2201 	 * If the trigger type is not specified by the caller, then
2202 	 * use the default for this interrupt.
2203 	 */
2204 	type &= IRQ_TYPE_SENSE_MASK;
2205 	if (type == IRQ_TYPE_NONE)
2206 		type = irqd_get_trigger_type(&desc->irq_data);
2207 
2208 	if (type != IRQ_TYPE_NONE) {
2209 		int ret;
2210 
2211 		ret = __irq_set_trigger(desc, type);
2212 
2213 		if (ret) {
2214 			WARN(1, "failed to set type for IRQ%d\n", irq);
2215 			goto out;
2216 		}
2217 	}
2218 
2219 	irq_percpu_enable(desc, cpu);
2220 out:
2221 	irq_put_desc_unlock(desc, flags);
2222 }
2223 EXPORT_SYMBOL_GPL(enable_percpu_irq);
2224 
2225 void enable_percpu_nmi(unsigned int irq, unsigned int type)
2226 {
2227 	enable_percpu_irq(irq, type);
2228 }
2229 
2230 /**
2231  * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
2232  * @irq:	Linux irq number to check for
2233  *
2234  * Must be called from a non migratable context. Returns the enable
2235  * state of a per cpu interrupt on the current cpu.
2236  */
2237 bool irq_percpu_is_enabled(unsigned int irq)
2238 {
2239 	unsigned int cpu = smp_processor_id();
2240 	struct irq_desc *desc;
2241 	unsigned long flags;
2242 	bool is_enabled;
2243 
2244 	desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2245 	if (!desc)
2246 		return false;
2247 
2248 	is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
2249 	irq_put_desc_unlock(desc, flags);
2250 
2251 	return is_enabled;
2252 }
2253 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
2254 
2255 void disable_percpu_irq(unsigned int irq)
2256 {
2257 	unsigned int cpu = smp_processor_id();
2258 	unsigned long flags;
2259 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2260 
2261 	if (!desc)
2262 		return;
2263 
2264 	irq_percpu_disable(desc, cpu);
2265 	irq_put_desc_unlock(desc, flags);
2266 }
2267 EXPORT_SYMBOL_GPL(disable_percpu_irq);
2268 
2269 void disable_percpu_nmi(unsigned int irq)
2270 {
2271 	disable_percpu_irq(irq);
2272 }
2273 
2274 /*
2275  * Internal function to unregister a percpu irqaction.
2276  */
2277 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2278 {
2279 	struct irq_desc *desc = irq_to_desc(irq);
2280 	struct irqaction *action;
2281 	unsigned long flags;
2282 
2283 	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
2284 
2285 	if (!desc)
2286 		return NULL;
2287 
2288 	raw_spin_lock_irqsave(&desc->lock, flags);
2289 
2290 	action = desc->action;
2291 	if (!action || action->percpu_dev_id != dev_id) {
2292 		WARN(1, "Trying to free already-free IRQ %d\n", irq);
2293 		goto bad;
2294 	}
2295 
2296 	if (!cpumask_empty(desc->percpu_enabled)) {
2297 		WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
2298 		     irq, cpumask_first(desc->percpu_enabled));
2299 		goto bad;
2300 	}
2301 
2302 	/* Found it - now remove it from the list of entries: */
2303 	desc->action = NULL;
2304 
2305 	desc->istate &= ~IRQS_NMI;
2306 
2307 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2308 
2309 	unregister_handler_proc(irq, action);
2310 
2311 	irq_chip_pm_put(&desc->irq_data);
2312 	module_put(desc->owner);
2313 	return action;
2314 
2315 bad:
2316 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2317 	return NULL;
2318 }
2319 
2320 /**
2321  *	remove_percpu_irq - free a per-cpu interrupt
2322  *	@irq: Interrupt line to free
2323  *	@act: irqaction for the interrupt
2324  *
2325  * Used to remove interrupts statically setup by the early boot process.
2326  */
2327 void remove_percpu_irq(unsigned int irq, struct irqaction *act)
2328 {
2329 	struct irq_desc *desc = irq_to_desc(irq);
2330 
2331 	if (desc && irq_settings_is_per_cpu_devid(desc))
2332 	    __free_percpu_irq(irq, act->percpu_dev_id);
2333 }
2334 
2335 /**
2336  *	free_percpu_irq - free an interrupt allocated with request_percpu_irq
2337  *	@irq: Interrupt line to free
2338  *	@dev_id: Device identity to free
2339  *
2340  *	Remove a percpu interrupt handler. The handler is removed, but
2341  *	the interrupt line is not disabled. This must be done on each
2342  *	CPU before calling this function. The function does not return
2343  *	until any executing interrupts for this IRQ have completed.
2344  *
2345  *	This function must not be called from interrupt context.
2346  */
2347 void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2348 {
2349 	struct irq_desc *desc = irq_to_desc(irq);
2350 
2351 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2352 		return;
2353 
2354 	chip_bus_lock(desc);
2355 	kfree(__free_percpu_irq(irq, dev_id));
2356 	chip_bus_sync_unlock(desc);
2357 }
2358 EXPORT_SYMBOL_GPL(free_percpu_irq);
2359 
2360 void free_percpu_nmi(unsigned int irq, void __percpu *dev_id)
2361 {
2362 	struct irq_desc *desc = irq_to_desc(irq);
2363 
2364 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2365 		return;
2366 
2367 	if (WARN_ON(!(desc->istate & IRQS_NMI)))
2368 		return;
2369 
2370 	kfree(__free_percpu_irq(irq, dev_id));
2371 }
2372 
2373 /**
2374  *	setup_percpu_irq - setup a per-cpu interrupt
2375  *	@irq: Interrupt line to setup
2376  *	@act: irqaction for the interrupt
2377  *
2378  * Used to statically setup per-cpu interrupts in the early boot process.
2379  */
2380 int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2381 {
2382 	struct irq_desc *desc = irq_to_desc(irq);
2383 	int retval;
2384 
2385 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2386 		return -EINVAL;
2387 
2388 	retval = irq_chip_pm_get(&desc->irq_data);
2389 	if (retval < 0)
2390 		return retval;
2391 
2392 	retval = __setup_irq(irq, desc, act);
2393 
2394 	if (retval)
2395 		irq_chip_pm_put(&desc->irq_data);
2396 
2397 	return retval;
2398 }
2399 
2400 /**
2401  *	__request_percpu_irq - allocate a percpu interrupt line
2402  *	@irq: Interrupt line to allocate
2403  *	@handler: Function to be called when the IRQ occurs.
2404  *	@flags: Interrupt type flags (IRQF_TIMER only)
2405  *	@devname: An ascii name for the claiming device
2406  *	@dev_id: A percpu cookie passed back to the handler function
2407  *
2408  *	This call allocates interrupt resources and enables the
2409  *	interrupt on the local CPU. If the interrupt is supposed to be
2410  *	enabled on other CPUs, it has to be done on each CPU using
2411  *	enable_percpu_irq().
2412  *
2413  *	Dev_id must be globally unique. It is a per-cpu variable, and
2414  *	the handler gets called with the interrupted CPU's instance of
2415  *	that variable.
2416  */
2417 int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2418 			 unsigned long flags, const char *devname,
2419 			 void __percpu *dev_id)
2420 {
2421 	struct irqaction *action;
2422 	struct irq_desc *desc;
2423 	int retval;
2424 
2425 	if (!dev_id)
2426 		return -EINVAL;
2427 
2428 	desc = irq_to_desc(irq);
2429 	if (!desc || !irq_settings_can_request(desc) ||
2430 	    !irq_settings_is_per_cpu_devid(desc))
2431 		return -EINVAL;
2432 
2433 	if (flags && flags != IRQF_TIMER)
2434 		return -EINVAL;
2435 
2436 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2437 	if (!action)
2438 		return -ENOMEM;
2439 
2440 	action->handler = handler;
2441 	action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2442 	action->name = devname;
2443 	action->percpu_dev_id = dev_id;
2444 
2445 	retval = irq_chip_pm_get(&desc->irq_data);
2446 	if (retval < 0) {
2447 		kfree(action);
2448 		return retval;
2449 	}
2450 
2451 	retval = __setup_irq(irq, desc, action);
2452 
2453 	if (retval) {
2454 		irq_chip_pm_put(&desc->irq_data);
2455 		kfree(action);
2456 	}
2457 
2458 	return retval;
2459 }
2460 EXPORT_SYMBOL_GPL(__request_percpu_irq);
2461 
2462 /**
2463  *	request_percpu_nmi - allocate a percpu interrupt line for NMI delivery
2464  *	@irq: Interrupt line to allocate
2465  *	@handler: Function to be called when the IRQ occurs.
2466  *	@name: An ascii name for the claiming device
2467  *	@dev_id: A percpu cookie passed back to the handler function
2468  *
2469  *	This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs
2470  *	have to be setup on each CPU by calling prepare_percpu_nmi() before
2471  *	being enabled on the same CPU by using enable_percpu_nmi().
2472  *
2473  *	Dev_id must be globally unique. It is a per-cpu variable, and
2474  *	the handler gets called with the interrupted CPU's instance of
2475  *	that variable.
2476  *
2477  *	Interrupt lines requested for NMI delivering should have auto enabling
2478  *	setting disabled.
2479  *
2480  *	If the interrupt line cannot be used to deliver NMIs, function
2481  *	will fail returning a negative value.
2482  */
2483 int request_percpu_nmi(unsigned int irq, irq_handler_t handler,
2484 		       const char *name, void __percpu *dev_id)
2485 {
2486 	struct irqaction *action;
2487 	struct irq_desc *desc;
2488 	unsigned long flags;
2489 	int retval;
2490 
2491 	if (!handler)
2492 		return -EINVAL;
2493 
2494 	desc = irq_to_desc(irq);
2495 
2496 	if (!desc || !irq_settings_can_request(desc) ||
2497 	    !irq_settings_is_per_cpu_devid(desc) ||
2498 	    irq_settings_can_autoenable(desc) ||
2499 	    !irq_supports_nmi(desc))
2500 		return -EINVAL;
2501 
2502 	/* The line cannot already be NMI */
2503 	if (desc->istate & IRQS_NMI)
2504 		return -EINVAL;
2505 
2506 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2507 	if (!action)
2508 		return -ENOMEM;
2509 
2510 	action->handler = handler;
2511 	action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD
2512 		| IRQF_NOBALANCING;
2513 	action->name = name;
2514 	action->percpu_dev_id = dev_id;
2515 
2516 	retval = irq_chip_pm_get(&desc->irq_data);
2517 	if (retval < 0)
2518 		goto err_out;
2519 
2520 	retval = __setup_irq(irq, desc, action);
2521 	if (retval)
2522 		goto err_irq_setup;
2523 
2524 	raw_spin_lock_irqsave(&desc->lock, flags);
2525 	desc->istate |= IRQS_NMI;
2526 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2527 
2528 	return 0;
2529 
2530 err_irq_setup:
2531 	irq_chip_pm_put(&desc->irq_data);
2532 err_out:
2533 	kfree(action);
2534 
2535 	return retval;
2536 }
2537 
2538 /**
2539  *	prepare_percpu_nmi - performs CPU local setup for NMI delivery
2540  *	@irq: Interrupt line to prepare for NMI delivery
2541  *
2542  *	This call prepares an interrupt line to deliver NMI on the current CPU,
2543  *	before that interrupt line gets enabled with enable_percpu_nmi().
2544  *
2545  *	As a CPU local operation, this should be called from non-preemptible
2546  *	context.
2547  *
2548  *	If the interrupt line cannot be used to deliver NMIs, function
2549  *	will fail returning a negative value.
2550  */
2551 int prepare_percpu_nmi(unsigned int irq)
2552 {
2553 	unsigned long flags;
2554 	struct irq_desc *desc;
2555 	int ret = 0;
2556 
2557 	WARN_ON(preemptible());
2558 
2559 	desc = irq_get_desc_lock(irq, &flags,
2560 				 IRQ_GET_DESC_CHECK_PERCPU);
2561 	if (!desc)
2562 		return -EINVAL;
2563 
2564 	if (WARN(!(desc->istate & IRQS_NMI),
2565 		 KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n",
2566 		 irq)) {
2567 		ret = -EINVAL;
2568 		goto out;
2569 	}
2570 
2571 	ret = irq_nmi_setup(desc);
2572 	if (ret) {
2573 		pr_err("Failed to setup NMI delivery: irq %u\n", irq);
2574 		goto out;
2575 	}
2576 
2577 out:
2578 	irq_put_desc_unlock(desc, flags);
2579 	return ret;
2580 }
2581 
2582 /**
2583  *	teardown_percpu_nmi - undoes NMI setup of IRQ line
2584  *	@irq: Interrupt line from which CPU local NMI configuration should be
2585  *	      removed
2586  *
2587  *	This call undoes the setup done by prepare_percpu_nmi().
2588  *
2589  *	IRQ line should not be enabled for the current CPU.
2590  *
2591  *	As a CPU local operation, this should be called from non-preemptible
2592  *	context.
2593  */
2594 void teardown_percpu_nmi(unsigned int irq)
2595 {
2596 	unsigned long flags;
2597 	struct irq_desc *desc;
2598 
2599 	WARN_ON(preemptible());
2600 
2601 	desc = irq_get_desc_lock(irq, &flags,
2602 				 IRQ_GET_DESC_CHECK_PERCPU);
2603 	if (!desc)
2604 		return;
2605 
2606 	if (WARN_ON(!(desc->istate & IRQS_NMI)))
2607 		goto out;
2608 
2609 	irq_nmi_teardown(desc);
2610 out:
2611 	irq_put_desc_unlock(desc, flags);
2612 }
2613 
2614 int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which,
2615 			    bool *state)
2616 {
2617 	struct irq_chip *chip;
2618 	int err = -EINVAL;
2619 
2620 	do {
2621 		chip = irq_data_get_irq_chip(data);
2622 		if (chip->irq_get_irqchip_state)
2623 			break;
2624 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2625 		data = data->parent_data;
2626 #else
2627 		data = NULL;
2628 #endif
2629 	} while (data);
2630 
2631 	if (data)
2632 		err = chip->irq_get_irqchip_state(data, which, state);
2633 	return err;
2634 }
2635 
2636 /**
2637  *	irq_get_irqchip_state - returns the irqchip state of a interrupt.
2638  *	@irq: Interrupt line that is forwarded to a VM
2639  *	@which: One of IRQCHIP_STATE_* the caller wants to know about
2640  *	@state: a pointer to a boolean where the state is to be storeed
2641  *
2642  *	This call snapshots the internal irqchip state of an
2643  *	interrupt, returning into @state the bit corresponding to
2644  *	stage @which
2645  *
2646  *	This function should be called with preemption disabled if the
2647  *	interrupt controller has per-cpu registers.
2648  */
2649 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2650 			  bool *state)
2651 {
2652 	struct irq_desc *desc;
2653 	struct irq_data *data;
2654 	unsigned long flags;
2655 	int err = -EINVAL;
2656 
2657 	desc = irq_get_desc_buslock(irq, &flags, 0);
2658 	if (!desc)
2659 		return err;
2660 
2661 	data = irq_desc_get_irq_data(desc);
2662 
2663 	err = __irq_get_irqchip_state(data, which, state);
2664 
2665 	irq_put_desc_busunlock(desc, flags);
2666 	return err;
2667 }
2668 EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2669 
2670 /**
2671  *	irq_set_irqchip_state - set the state of a forwarded interrupt.
2672  *	@irq: Interrupt line that is forwarded to a VM
2673  *	@which: State to be restored (one of IRQCHIP_STATE_*)
2674  *	@val: Value corresponding to @which
2675  *
2676  *	This call sets the internal irqchip state of an interrupt,
2677  *	depending on the value of @which.
2678  *
2679  *	This function should be called with preemption disabled if the
2680  *	interrupt controller has per-cpu registers.
2681  */
2682 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2683 			  bool val)
2684 {
2685 	struct irq_desc *desc;
2686 	struct irq_data *data;
2687 	struct irq_chip *chip;
2688 	unsigned long flags;
2689 	int err = -EINVAL;
2690 
2691 	desc = irq_get_desc_buslock(irq, &flags, 0);
2692 	if (!desc)
2693 		return err;
2694 
2695 	data = irq_desc_get_irq_data(desc);
2696 
2697 	do {
2698 		chip = irq_data_get_irq_chip(data);
2699 		if (chip->irq_set_irqchip_state)
2700 			break;
2701 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2702 		data = data->parent_data;
2703 #else
2704 		data = NULL;
2705 #endif
2706 	} while (data);
2707 
2708 	if (data)
2709 		err = chip->irq_set_irqchip_state(data, which, val);
2710 
2711 	irq_put_desc_busunlock(desc, flags);
2712 	return err;
2713 }
2714 EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
2715