1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar 4 * Copyright (C) 2005-2006 Thomas Gleixner 5 * 6 * This file contains driver APIs to the irq subsystem. 7 */ 8 9 #define pr_fmt(fmt) "genirq: " fmt 10 11 #include <linux/irq.h> 12 #include <linux/kthread.h> 13 #include <linux/module.h> 14 #include <linux/random.h> 15 #include <linux/interrupt.h> 16 #include <linux/irqdomain.h> 17 #include <linux/slab.h> 18 #include <linux/sched.h> 19 #include <linux/sched/rt.h> 20 #include <linux/sched/task.h> 21 #include <linux/sched/isolation.h> 22 #include <uapi/linux/sched/types.h> 23 #include <linux/task_work.h> 24 25 #include "internals.h" 26 27 #if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT) 28 __read_mostly bool force_irqthreads; 29 EXPORT_SYMBOL_GPL(force_irqthreads); 30 31 static int __init setup_forced_irqthreads(char *arg) 32 { 33 force_irqthreads = true; 34 return 0; 35 } 36 early_param("threadirqs", setup_forced_irqthreads); 37 #endif 38 39 static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip) 40 { 41 struct irq_data *irqd = irq_desc_get_irq_data(desc); 42 bool inprogress; 43 44 do { 45 unsigned long flags; 46 47 /* 48 * Wait until we're out of the critical section. This might 49 * give the wrong answer due to the lack of memory barriers. 50 */ 51 while (irqd_irq_inprogress(&desc->irq_data)) 52 cpu_relax(); 53 54 /* Ok, that indicated we're done: double-check carefully. */ 55 raw_spin_lock_irqsave(&desc->lock, flags); 56 inprogress = irqd_irq_inprogress(&desc->irq_data); 57 58 /* 59 * If requested and supported, check at the chip whether it 60 * is in flight at the hardware level, i.e. already pending 61 * in a CPU and waiting for service and acknowledge. 62 */ 63 if (!inprogress && sync_chip) { 64 /* 65 * Ignore the return code. inprogress is only updated 66 * when the chip supports it. 67 */ 68 __irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE, 69 &inprogress); 70 } 71 raw_spin_unlock_irqrestore(&desc->lock, flags); 72 73 /* Oops, that failed? */ 74 } while (inprogress); 75 } 76 77 /** 78 * synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs) 79 * @irq: interrupt number to wait for 80 * 81 * This function waits for any pending hard IRQ handlers for this 82 * interrupt to complete before returning. If you use this 83 * function while holding a resource the IRQ handler may need you 84 * will deadlock. It does not take associated threaded handlers 85 * into account. 86 * 87 * Do not use this for shutdown scenarios where you must be sure 88 * that all parts (hardirq and threaded handler) have completed. 89 * 90 * Returns: false if a threaded handler is active. 91 * 92 * This function may be called - with care - from IRQ context. 93 * 94 * It does not check whether there is an interrupt in flight at the 95 * hardware level, but not serviced yet, as this might deadlock when 96 * called with interrupts disabled and the target CPU of the interrupt 97 * is the current CPU. 98 */ 99 bool synchronize_hardirq(unsigned int irq) 100 { 101 struct irq_desc *desc = irq_to_desc(irq); 102 103 if (desc) { 104 __synchronize_hardirq(desc, false); 105 return !atomic_read(&desc->threads_active); 106 } 107 108 return true; 109 } 110 EXPORT_SYMBOL(synchronize_hardirq); 111 112 /** 113 * synchronize_irq - wait for pending IRQ handlers (on other CPUs) 114 * @irq: interrupt number to wait for 115 * 116 * This function waits for any pending IRQ handlers for this interrupt 117 * to complete before returning. If you use this function while 118 * holding a resource the IRQ handler may need you will deadlock. 119 * 120 * Can only be called from preemptible code as it might sleep when 121 * an interrupt thread is associated to @irq. 122 * 123 * It optionally makes sure (when the irq chip supports that method) 124 * that the interrupt is not pending in any CPU and waiting for 125 * service. 126 */ 127 void synchronize_irq(unsigned int irq) 128 { 129 struct irq_desc *desc = irq_to_desc(irq); 130 131 if (desc) { 132 __synchronize_hardirq(desc, true); 133 /* 134 * We made sure that no hardirq handler is 135 * running. Now verify that no threaded handlers are 136 * active. 137 */ 138 wait_event(desc->wait_for_threads, 139 !atomic_read(&desc->threads_active)); 140 } 141 } 142 EXPORT_SYMBOL(synchronize_irq); 143 144 #ifdef CONFIG_SMP 145 cpumask_var_t irq_default_affinity; 146 147 static bool __irq_can_set_affinity(struct irq_desc *desc) 148 { 149 if (!desc || !irqd_can_balance(&desc->irq_data) || 150 !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity) 151 return false; 152 return true; 153 } 154 155 /** 156 * irq_can_set_affinity - Check if the affinity of a given irq can be set 157 * @irq: Interrupt to check 158 * 159 */ 160 int irq_can_set_affinity(unsigned int irq) 161 { 162 return __irq_can_set_affinity(irq_to_desc(irq)); 163 } 164 165 /** 166 * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space 167 * @irq: Interrupt to check 168 * 169 * Like irq_can_set_affinity() above, but additionally checks for the 170 * AFFINITY_MANAGED flag. 171 */ 172 bool irq_can_set_affinity_usr(unsigned int irq) 173 { 174 struct irq_desc *desc = irq_to_desc(irq); 175 176 return __irq_can_set_affinity(desc) && 177 !irqd_affinity_is_managed(&desc->irq_data); 178 } 179 180 /** 181 * irq_set_thread_affinity - Notify irq threads to adjust affinity 182 * @desc: irq descriptor which has affitnity changed 183 * 184 * We just set IRQTF_AFFINITY and delegate the affinity setting 185 * to the interrupt thread itself. We can not call 186 * set_cpus_allowed_ptr() here as we hold desc->lock and this 187 * code can be called from hard interrupt context. 188 */ 189 void irq_set_thread_affinity(struct irq_desc *desc) 190 { 191 struct irqaction *action; 192 193 for_each_action_of_desc(desc, action) 194 if (action->thread) 195 set_bit(IRQTF_AFFINITY, &action->thread_flags); 196 } 197 198 static void irq_validate_effective_affinity(struct irq_data *data) 199 { 200 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK 201 const struct cpumask *m = irq_data_get_effective_affinity_mask(data); 202 struct irq_chip *chip = irq_data_get_irq_chip(data); 203 204 if (!cpumask_empty(m)) 205 return; 206 pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n", 207 chip->name, data->irq); 208 #endif 209 } 210 211 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask, 212 bool force) 213 { 214 struct irq_desc *desc = irq_data_to_desc(data); 215 struct irq_chip *chip = irq_data_get_irq_chip(data); 216 int ret; 217 218 if (!chip || !chip->irq_set_affinity) 219 return -EINVAL; 220 221 /* 222 * If this is a managed interrupt and housekeeping is enabled on 223 * it check whether the requested affinity mask intersects with 224 * a housekeeping CPU. If so, then remove the isolated CPUs from 225 * the mask and just keep the housekeeping CPU(s). This prevents 226 * the affinity setter from routing the interrupt to an isolated 227 * CPU to avoid that I/O submitted from a housekeeping CPU causes 228 * interrupts on an isolated one. 229 * 230 * If the masks do not intersect or include online CPU(s) then 231 * keep the requested mask. The isolated target CPUs are only 232 * receiving interrupts when the I/O operation was submitted 233 * directly from them. 234 * 235 * If all housekeeping CPUs in the affinity mask are offline, the 236 * interrupt will be migrated by the CPU hotplug code once a 237 * housekeeping CPU which belongs to the affinity mask comes 238 * online. 239 */ 240 if (irqd_affinity_is_managed(data) && 241 housekeeping_enabled(HK_FLAG_MANAGED_IRQ)) { 242 const struct cpumask *hk_mask, *prog_mask; 243 244 static DEFINE_RAW_SPINLOCK(tmp_mask_lock); 245 static struct cpumask tmp_mask; 246 247 hk_mask = housekeeping_cpumask(HK_FLAG_MANAGED_IRQ); 248 249 raw_spin_lock(&tmp_mask_lock); 250 cpumask_and(&tmp_mask, mask, hk_mask); 251 if (!cpumask_intersects(&tmp_mask, cpu_online_mask)) 252 prog_mask = mask; 253 else 254 prog_mask = &tmp_mask; 255 ret = chip->irq_set_affinity(data, prog_mask, force); 256 raw_spin_unlock(&tmp_mask_lock); 257 } else { 258 ret = chip->irq_set_affinity(data, mask, force); 259 } 260 switch (ret) { 261 case IRQ_SET_MASK_OK: 262 case IRQ_SET_MASK_OK_DONE: 263 cpumask_copy(desc->irq_common_data.affinity, mask); 264 /* fall through */ 265 case IRQ_SET_MASK_OK_NOCOPY: 266 irq_validate_effective_affinity(data); 267 irq_set_thread_affinity(desc); 268 ret = 0; 269 } 270 271 return ret; 272 } 273 274 #ifdef CONFIG_GENERIC_PENDING_IRQ 275 static inline int irq_set_affinity_pending(struct irq_data *data, 276 const struct cpumask *dest) 277 { 278 struct irq_desc *desc = irq_data_to_desc(data); 279 280 irqd_set_move_pending(data); 281 irq_copy_pending(desc, dest); 282 return 0; 283 } 284 #else 285 static inline int irq_set_affinity_pending(struct irq_data *data, 286 const struct cpumask *dest) 287 { 288 return -EBUSY; 289 } 290 #endif 291 292 static int irq_try_set_affinity(struct irq_data *data, 293 const struct cpumask *dest, bool force) 294 { 295 int ret = irq_do_set_affinity(data, dest, force); 296 297 /* 298 * In case that the underlying vector management is busy and the 299 * architecture supports the generic pending mechanism then utilize 300 * this to avoid returning an error to user space. 301 */ 302 if (ret == -EBUSY && !force) 303 ret = irq_set_affinity_pending(data, dest); 304 return ret; 305 } 306 307 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask, 308 bool force) 309 { 310 struct irq_chip *chip = irq_data_get_irq_chip(data); 311 struct irq_desc *desc = irq_data_to_desc(data); 312 int ret = 0; 313 314 if (!chip || !chip->irq_set_affinity) 315 return -EINVAL; 316 317 if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) { 318 ret = irq_try_set_affinity(data, mask, force); 319 } else { 320 irqd_set_move_pending(data); 321 irq_copy_pending(desc, mask); 322 } 323 324 if (desc->affinity_notify) { 325 kref_get(&desc->affinity_notify->kref); 326 if (!schedule_work(&desc->affinity_notify->work)) { 327 /* Work was already scheduled, drop our extra ref */ 328 kref_put(&desc->affinity_notify->kref, 329 desc->affinity_notify->release); 330 } 331 } 332 irqd_set(data, IRQD_AFFINITY_SET); 333 334 return ret; 335 } 336 337 int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force) 338 { 339 struct irq_desc *desc = irq_to_desc(irq); 340 unsigned long flags; 341 int ret; 342 343 if (!desc) 344 return -EINVAL; 345 346 raw_spin_lock_irqsave(&desc->lock, flags); 347 ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force); 348 raw_spin_unlock_irqrestore(&desc->lock, flags); 349 return ret; 350 } 351 352 int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m) 353 { 354 unsigned long flags; 355 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 356 357 if (!desc) 358 return -EINVAL; 359 desc->affinity_hint = m; 360 irq_put_desc_unlock(desc, flags); 361 /* set the initial affinity to prevent every interrupt being on CPU0 */ 362 if (m) 363 __irq_set_affinity(irq, m, false); 364 return 0; 365 } 366 EXPORT_SYMBOL_GPL(irq_set_affinity_hint); 367 368 static void irq_affinity_notify(struct work_struct *work) 369 { 370 struct irq_affinity_notify *notify = 371 container_of(work, struct irq_affinity_notify, work); 372 struct irq_desc *desc = irq_to_desc(notify->irq); 373 cpumask_var_t cpumask; 374 unsigned long flags; 375 376 if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL)) 377 goto out; 378 379 raw_spin_lock_irqsave(&desc->lock, flags); 380 if (irq_move_pending(&desc->irq_data)) 381 irq_get_pending(cpumask, desc); 382 else 383 cpumask_copy(cpumask, desc->irq_common_data.affinity); 384 raw_spin_unlock_irqrestore(&desc->lock, flags); 385 386 notify->notify(notify, cpumask); 387 388 free_cpumask_var(cpumask); 389 out: 390 kref_put(¬ify->kref, notify->release); 391 } 392 393 /** 394 * irq_set_affinity_notifier - control notification of IRQ affinity changes 395 * @irq: Interrupt for which to enable/disable notification 396 * @notify: Context for notification, or %NULL to disable 397 * notification. Function pointers must be initialised; 398 * the other fields will be initialised by this function. 399 * 400 * Must be called in process context. Notification may only be enabled 401 * after the IRQ is allocated and must be disabled before the IRQ is 402 * freed using free_irq(). 403 */ 404 int 405 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify) 406 { 407 struct irq_desc *desc = irq_to_desc(irq); 408 struct irq_affinity_notify *old_notify; 409 unsigned long flags; 410 411 /* The release function is promised process context */ 412 might_sleep(); 413 414 if (!desc || desc->istate & IRQS_NMI) 415 return -EINVAL; 416 417 /* Complete initialisation of *notify */ 418 if (notify) { 419 notify->irq = irq; 420 kref_init(¬ify->kref); 421 INIT_WORK(¬ify->work, irq_affinity_notify); 422 } 423 424 raw_spin_lock_irqsave(&desc->lock, flags); 425 old_notify = desc->affinity_notify; 426 desc->affinity_notify = notify; 427 raw_spin_unlock_irqrestore(&desc->lock, flags); 428 429 if (old_notify) { 430 if (cancel_work_sync(&old_notify->work)) { 431 /* Pending work had a ref, put that one too */ 432 kref_put(&old_notify->kref, old_notify->release); 433 } 434 kref_put(&old_notify->kref, old_notify->release); 435 } 436 437 return 0; 438 } 439 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier); 440 441 #ifndef CONFIG_AUTO_IRQ_AFFINITY 442 /* 443 * Generic version of the affinity autoselector. 444 */ 445 int irq_setup_affinity(struct irq_desc *desc) 446 { 447 struct cpumask *set = irq_default_affinity; 448 int ret, node = irq_desc_get_node(desc); 449 static DEFINE_RAW_SPINLOCK(mask_lock); 450 static struct cpumask mask; 451 452 /* Excludes PER_CPU and NO_BALANCE interrupts */ 453 if (!__irq_can_set_affinity(desc)) 454 return 0; 455 456 raw_spin_lock(&mask_lock); 457 /* 458 * Preserve the managed affinity setting and a userspace affinity 459 * setup, but make sure that one of the targets is online. 460 */ 461 if (irqd_affinity_is_managed(&desc->irq_data) || 462 irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) { 463 if (cpumask_intersects(desc->irq_common_data.affinity, 464 cpu_online_mask)) 465 set = desc->irq_common_data.affinity; 466 else 467 irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET); 468 } 469 470 cpumask_and(&mask, cpu_online_mask, set); 471 if (cpumask_empty(&mask)) 472 cpumask_copy(&mask, cpu_online_mask); 473 474 if (node != NUMA_NO_NODE) { 475 const struct cpumask *nodemask = cpumask_of_node(node); 476 477 /* make sure at least one of the cpus in nodemask is online */ 478 if (cpumask_intersects(&mask, nodemask)) 479 cpumask_and(&mask, &mask, nodemask); 480 } 481 ret = irq_do_set_affinity(&desc->irq_data, &mask, false); 482 raw_spin_unlock(&mask_lock); 483 return ret; 484 } 485 #else 486 /* Wrapper for ALPHA specific affinity selector magic */ 487 int irq_setup_affinity(struct irq_desc *desc) 488 { 489 return irq_select_affinity(irq_desc_get_irq(desc)); 490 } 491 #endif /* CONFIG_AUTO_IRQ_AFFINITY */ 492 #endif /* CONFIG_SMP */ 493 494 495 /** 496 * irq_set_vcpu_affinity - Set vcpu affinity for the interrupt 497 * @irq: interrupt number to set affinity 498 * @vcpu_info: vCPU specific data or pointer to a percpu array of vCPU 499 * specific data for percpu_devid interrupts 500 * 501 * This function uses the vCPU specific data to set the vCPU 502 * affinity for an irq. The vCPU specific data is passed from 503 * outside, such as KVM. One example code path is as below: 504 * KVM -> IOMMU -> irq_set_vcpu_affinity(). 505 */ 506 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info) 507 { 508 unsigned long flags; 509 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 510 struct irq_data *data; 511 struct irq_chip *chip; 512 int ret = -ENOSYS; 513 514 if (!desc) 515 return -EINVAL; 516 517 data = irq_desc_get_irq_data(desc); 518 do { 519 chip = irq_data_get_irq_chip(data); 520 if (chip && chip->irq_set_vcpu_affinity) 521 break; 522 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 523 data = data->parent_data; 524 #else 525 data = NULL; 526 #endif 527 } while (data); 528 529 if (data) 530 ret = chip->irq_set_vcpu_affinity(data, vcpu_info); 531 irq_put_desc_unlock(desc, flags); 532 533 return ret; 534 } 535 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity); 536 537 void __disable_irq(struct irq_desc *desc) 538 { 539 if (!desc->depth++) 540 irq_disable(desc); 541 } 542 543 static int __disable_irq_nosync(unsigned int irq) 544 { 545 unsigned long flags; 546 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 547 548 if (!desc) 549 return -EINVAL; 550 __disable_irq(desc); 551 irq_put_desc_busunlock(desc, flags); 552 return 0; 553 } 554 555 /** 556 * disable_irq_nosync - disable an irq without waiting 557 * @irq: Interrupt to disable 558 * 559 * Disable the selected interrupt line. Disables and Enables are 560 * nested. 561 * Unlike disable_irq(), this function does not ensure existing 562 * instances of the IRQ handler have completed before returning. 563 * 564 * This function may be called from IRQ context. 565 */ 566 void disable_irq_nosync(unsigned int irq) 567 { 568 __disable_irq_nosync(irq); 569 } 570 EXPORT_SYMBOL(disable_irq_nosync); 571 572 /** 573 * disable_irq - disable an irq and wait for completion 574 * @irq: Interrupt to disable 575 * 576 * Disable the selected interrupt line. Enables and Disables are 577 * nested. 578 * This function waits for any pending IRQ handlers for this interrupt 579 * to complete before returning. If you use this function while 580 * holding a resource the IRQ handler may need you will deadlock. 581 * 582 * This function may be called - with care - from IRQ context. 583 */ 584 void disable_irq(unsigned int irq) 585 { 586 if (!__disable_irq_nosync(irq)) 587 synchronize_irq(irq); 588 } 589 EXPORT_SYMBOL(disable_irq); 590 591 /** 592 * disable_hardirq - disables an irq and waits for hardirq completion 593 * @irq: Interrupt to disable 594 * 595 * Disable the selected interrupt line. Enables and Disables are 596 * nested. 597 * This function waits for any pending hard IRQ handlers for this 598 * interrupt to complete before returning. If you use this function while 599 * holding a resource the hard IRQ handler may need you will deadlock. 600 * 601 * When used to optimistically disable an interrupt from atomic context 602 * the return value must be checked. 603 * 604 * Returns: false if a threaded handler is active. 605 * 606 * This function may be called - with care - from IRQ context. 607 */ 608 bool disable_hardirq(unsigned int irq) 609 { 610 if (!__disable_irq_nosync(irq)) 611 return synchronize_hardirq(irq); 612 613 return false; 614 } 615 EXPORT_SYMBOL_GPL(disable_hardirq); 616 617 /** 618 * disable_nmi_nosync - disable an nmi without waiting 619 * @irq: Interrupt to disable 620 * 621 * Disable the selected interrupt line. Disables and enables are 622 * nested. 623 * The interrupt to disable must have been requested through request_nmi. 624 * Unlike disable_nmi(), this function does not ensure existing 625 * instances of the IRQ handler have completed before returning. 626 */ 627 void disable_nmi_nosync(unsigned int irq) 628 { 629 disable_irq_nosync(irq); 630 } 631 632 void __enable_irq(struct irq_desc *desc) 633 { 634 switch (desc->depth) { 635 case 0: 636 err_out: 637 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n", 638 irq_desc_get_irq(desc)); 639 break; 640 case 1: { 641 if (desc->istate & IRQS_SUSPENDED) 642 goto err_out; 643 /* Prevent probing on this irq: */ 644 irq_settings_set_noprobe(desc); 645 /* 646 * Call irq_startup() not irq_enable() here because the 647 * interrupt might be marked NOAUTOEN. So irq_startup() 648 * needs to be invoked when it gets enabled the first 649 * time. If it was already started up, then irq_startup() 650 * will invoke irq_enable() under the hood. 651 */ 652 irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE); 653 break; 654 } 655 default: 656 desc->depth--; 657 } 658 } 659 660 /** 661 * enable_irq - enable handling of an irq 662 * @irq: Interrupt to enable 663 * 664 * Undoes the effect of one call to disable_irq(). If this 665 * matches the last disable, processing of interrupts on this 666 * IRQ line is re-enabled. 667 * 668 * This function may be called from IRQ context only when 669 * desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL ! 670 */ 671 void enable_irq(unsigned int irq) 672 { 673 unsigned long flags; 674 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 675 676 if (!desc) 677 return; 678 if (WARN(!desc->irq_data.chip, 679 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq)) 680 goto out; 681 682 __enable_irq(desc); 683 out: 684 irq_put_desc_busunlock(desc, flags); 685 } 686 EXPORT_SYMBOL(enable_irq); 687 688 /** 689 * enable_nmi - enable handling of an nmi 690 * @irq: Interrupt to enable 691 * 692 * The interrupt to enable must have been requested through request_nmi. 693 * Undoes the effect of one call to disable_nmi(). If this 694 * matches the last disable, processing of interrupts on this 695 * IRQ line is re-enabled. 696 */ 697 void enable_nmi(unsigned int irq) 698 { 699 enable_irq(irq); 700 } 701 702 static int set_irq_wake_real(unsigned int irq, unsigned int on) 703 { 704 struct irq_desc *desc = irq_to_desc(irq); 705 int ret = -ENXIO; 706 707 if (irq_desc_get_chip(desc)->flags & IRQCHIP_SKIP_SET_WAKE) 708 return 0; 709 710 if (desc->irq_data.chip->irq_set_wake) 711 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on); 712 713 return ret; 714 } 715 716 /** 717 * irq_set_irq_wake - control irq power management wakeup 718 * @irq: interrupt to control 719 * @on: enable/disable power management wakeup 720 * 721 * Enable/disable power management wakeup mode, which is 722 * disabled by default. Enables and disables must match, 723 * just as they match for non-wakeup mode support. 724 * 725 * Wakeup mode lets this IRQ wake the system from sleep 726 * states like "suspend to RAM". 727 * 728 * Note: irq enable/disable state is completely orthogonal 729 * to the enable/disable state of irq wake. An irq can be 730 * disabled with disable_irq() and still wake the system as 731 * long as the irq has wake enabled. If this does not hold, 732 * then the underlying irq chip and the related driver need 733 * to be investigated. 734 */ 735 int irq_set_irq_wake(unsigned int irq, unsigned int on) 736 { 737 unsigned long flags; 738 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 739 int ret = 0; 740 741 if (!desc) 742 return -EINVAL; 743 744 /* Don't use NMIs as wake up interrupts please */ 745 if (desc->istate & IRQS_NMI) { 746 ret = -EINVAL; 747 goto out_unlock; 748 } 749 750 /* wakeup-capable irqs can be shared between drivers that 751 * don't need to have the same sleep mode behaviors. 752 */ 753 if (on) { 754 if (desc->wake_depth++ == 0) { 755 ret = set_irq_wake_real(irq, on); 756 if (ret) 757 desc->wake_depth = 0; 758 else 759 irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE); 760 } 761 } else { 762 if (desc->wake_depth == 0) { 763 WARN(1, "Unbalanced IRQ %d wake disable\n", irq); 764 } else if (--desc->wake_depth == 0) { 765 ret = set_irq_wake_real(irq, on); 766 if (ret) 767 desc->wake_depth = 1; 768 else 769 irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE); 770 } 771 } 772 773 out_unlock: 774 irq_put_desc_busunlock(desc, flags); 775 return ret; 776 } 777 EXPORT_SYMBOL(irq_set_irq_wake); 778 779 /* 780 * Internal function that tells the architecture code whether a 781 * particular irq has been exclusively allocated or is available 782 * for driver use. 783 */ 784 int can_request_irq(unsigned int irq, unsigned long irqflags) 785 { 786 unsigned long flags; 787 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 788 int canrequest = 0; 789 790 if (!desc) 791 return 0; 792 793 if (irq_settings_can_request(desc)) { 794 if (!desc->action || 795 irqflags & desc->action->flags & IRQF_SHARED) 796 canrequest = 1; 797 } 798 irq_put_desc_unlock(desc, flags); 799 return canrequest; 800 } 801 802 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags) 803 { 804 struct irq_chip *chip = desc->irq_data.chip; 805 int ret, unmask = 0; 806 807 if (!chip || !chip->irq_set_type) { 808 /* 809 * IRQF_TRIGGER_* but the PIC does not support multiple 810 * flow-types? 811 */ 812 pr_debug("No set_type function for IRQ %d (%s)\n", 813 irq_desc_get_irq(desc), 814 chip ? (chip->name ? : "unknown") : "unknown"); 815 return 0; 816 } 817 818 if (chip->flags & IRQCHIP_SET_TYPE_MASKED) { 819 if (!irqd_irq_masked(&desc->irq_data)) 820 mask_irq(desc); 821 if (!irqd_irq_disabled(&desc->irq_data)) 822 unmask = 1; 823 } 824 825 /* Mask all flags except trigger mode */ 826 flags &= IRQ_TYPE_SENSE_MASK; 827 ret = chip->irq_set_type(&desc->irq_data, flags); 828 829 switch (ret) { 830 case IRQ_SET_MASK_OK: 831 case IRQ_SET_MASK_OK_DONE: 832 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK); 833 irqd_set(&desc->irq_data, flags); 834 /* fall through */ 835 836 case IRQ_SET_MASK_OK_NOCOPY: 837 flags = irqd_get_trigger_type(&desc->irq_data); 838 irq_settings_set_trigger_mask(desc, flags); 839 irqd_clear(&desc->irq_data, IRQD_LEVEL); 840 irq_settings_clr_level(desc); 841 if (flags & IRQ_TYPE_LEVEL_MASK) { 842 irq_settings_set_level(desc); 843 irqd_set(&desc->irq_data, IRQD_LEVEL); 844 } 845 846 ret = 0; 847 break; 848 default: 849 pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n", 850 flags, irq_desc_get_irq(desc), chip->irq_set_type); 851 } 852 if (unmask) 853 unmask_irq(desc); 854 return ret; 855 } 856 857 #ifdef CONFIG_HARDIRQS_SW_RESEND 858 int irq_set_parent(int irq, int parent_irq) 859 { 860 unsigned long flags; 861 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 862 863 if (!desc) 864 return -EINVAL; 865 866 desc->parent_irq = parent_irq; 867 868 irq_put_desc_unlock(desc, flags); 869 return 0; 870 } 871 EXPORT_SYMBOL_GPL(irq_set_parent); 872 #endif 873 874 /* 875 * Default primary interrupt handler for threaded interrupts. Is 876 * assigned as primary handler when request_threaded_irq is called 877 * with handler == NULL. Useful for oneshot interrupts. 878 */ 879 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id) 880 { 881 return IRQ_WAKE_THREAD; 882 } 883 884 /* 885 * Primary handler for nested threaded interrupts. Should never be 886 * called. 887 */ 888 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id) 889 { 890 WARN(1, "Primary handler called for nested irq %d\n", irq); 891 return IRQ_NONE; 892 } 893 894 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id) 895 { 896 WARN(1, "Secondary action handler called for irq %d\n", irq); 897 return IRQ_NONE; 898 } 899 900 static int irq_wait_for_interrupt(struct irqaction *action) 901 { 902 for (;;) { 903 set_current_state(TASK_INTERRUPTIBLE); 904 905 if (kthread_should_stop()) { 906 /* may need to run one last time */ 907 if (test_and_clear_bit(IRQTF_RUNTHREAD, 908 &action->thread_flags)) { 909 __set_current_state(TASK_RUNNING); 910 return 0; 911 } 912 __set_current_state(TASK_RUNNING); 913 return -1; 914 } 915 916 if (test_and_clear_bit(IRQTF_RUNTHREAD, 917 &action->thread_flags)) { 918 __set_current_state(TASK_RUNNING); 919 return 0; 920 } 921 schedule(); 922 } 923 } 924 925 /* 926 * Oneshot interrupts keep the irq line masked until the threaded 927 * handler finished. unmask if the interrupt has not been disabled and 928 * is marked MASKED. 929 */ 930 static void irq_finalize_oneshot(struct irq_desc *desc, 931 struct irqaction *action) 932 { 933 if (!(desc->istate & IRQS_ONESHOT) || 934 action->handler == irq_forced_secondary_handler) 935 return; 936 again: 937 chip_bus_lock(desc); 938 raw_spin_lock_irq(&desc->lock); 939 940 /* 941 * Implausible though it may be we need to protect us against 942 * the following scenario: 943 * 944 * The thread is faster done than the hard interrupt handler 945 * on the other CPU. If we unmask the irq line then the 946 * interrupt can come in again and masks the line, leaves due 947 * to IRQS_INPROGRESS and the irq line is masked forever. 948 * 949 * This also serializes the state of shared oneshot handlers 950 * versus "desc->threads_onehsot |= action->thread_mask;" in 951 * irq_wake_thread(). See the comment there which explains the 952 * serialization. 953 */ 954 if (unlikely(irqd_irq_inprogress(&desc->irq_data))) { 955 raw_spin_unlock_irq(&desc->lock); 956 chip_bus_sync_unlock(desc); 957 cpu_relax(); 958 goto again; 959 } 960 961 /* 962 * Now check again, whether the thread should run. Otherwise 963 * we would clear the threads_oneshot bit of this thread which 964 * was just set. 965 */ 966 if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags)) 967 goto out_unlock; 968 969 desc->threads_oneshot &= ~action->thread_mask; 970 971 if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) && 972 irqd_irq_masked(&desc->irq_data)) 973 unmask_threaded_irq(desc); 974 975 out_unlock: 976 raw_spin_unlock_irq(&desc->lock); 977 chip_bus_sync_unlock(desc); 978 } 979 980 #ifdef CONFIG_SMP 981 /* 982 * Check whether we need to change the affinity of the interrupt thread. 983 */ 984 static void 985 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) 986 { 987 cpumask_var_t mask; 988 bool valid = true; 989 990 if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags)) 991 return; 992 993 /* 994 * In case we are out of memory we set IRQTF_AFFINITY again and 995 * try again next time 996 */ 997 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) { 998 set_bit(IRQTF_AFFINITY, &action->thread_flags); 999 return; 1000 } 1001 1002 raw_spin_lock_irq(&desc->lock); 1003 /* 1004 * This code is triggered unconditionally. Check the affinity 1005 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out. 1006 */ 1007 if (cpumask_available(desc->irq_common_data.affinity)) { 1008 const struct cpumask *m; 1009 1010 m = irq_data_get_effective_affinity_mask(&desc->irq_data); 1011 cpumask_copy(mask, m); 1012 } else { 1013 valid = false; 1014 } 1015 raw_spin_unlock_irq(&desc->lock); 1016 1017 if (valid) 1018 set_cpus_allowed_ptr(current, mask); 1019 free_cpumask_var(mask); 1020 } 1021 #else 1022 static inline void 1023 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { } 1024 #endif 1025 1026 /* 1027 * Interrupts which are not explicitly requested as threaded 1028 * interrupts rely on the implicit bh/preempt disable of the hard irq 1029 * context. So we need to disable bh here to avoid deadlocks and other 1030 * side effects. 1031 */ 1032 static irqreturn_t 1033 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action) 1034 { 1035 irqreturn_t ret; 1036 1037 local_bh_disable(); 1038 ret = action->thread_fn(action->irq, action->dev_id); 1039 if (ret == IRQ_HANDLED) 1040 atomic_inc(&desc->threads_handled); 1041 1042 irq_finalize_oneshot(desc, action); 1043 local_bh_enable(); 1044 return ret; 1045 } 1046 1047 /* 1048 * Interrupts explicitly requested as threaded interrupts want to be 1049 * preemtible - many of them need to sleep and wait for slow busses to 1050 * complete. 1051 */ 1052 static irqreturn_t irq_thread_fn(struct irq_desc *desc, 1053 struct irqaction *action) 1054 { 1055 irqreturn_t ret; 1056 1057 ret = action->thread_fn(action->irq, action->dev_id); 1058 if (ret == IRQ_HANDLED) 1059 atomic_inc(&desc->threads_handled); 1060 1061 irq_finalize_oneshot(desc, action); 1062 return ret; 1063 } 1064 1065 static void wake_threads_waitq(struct irq_desc *desc) 1066 { 1067 if (atomic_dec_and_test(&desc->threads_active)) 1068 wake_up(&desc->wait_for_threads); 1069 } 1070 1071 static void irq_thread_dtor(struct callback_head *unused) 1072 { 1073 struct task_struct *tsk = current; 1074 struct irq_desc *desc; 1075 struct irqaction *action; 1076 1077 if (WARN_ON_ONCE(!(current->flags & PF_EXITING))) 1078 return; 1079 1080 action = kthread_data(tsk); 1081 1082 pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n", 1083 tsk->comm, tsk->pid, action->irq); 1084 1085 1086 desc = irq_to_desc(action->irq); 1087 /* 1088 * If IRQTF_RUNTHREAD is set, we need to decrement 1089 * desc->threads_active and wake possible waiters. 1090 */ 1091 if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags)) 1092 wake_threads_waitq(desc); 1093 1094 /* Prevent a stale desc->threads_oneshot */ 1095 irq_finalize_oneshot(desc, action); 1096 } 1097 1098 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action) 1099 { 1100 struct irqaction *secondary = action->secondary; 1101 1102 if (WARN_ON_ONCE(!secondary)) 1103 return; 1104 1105 raw_spin_lock_irq(&desc->lock); 1106 __irq_wake_thread(desc, secondary); 1107 raw_spin_unlock_irq(&desc->lock); 1108 } 1109 1110 /* 1111 * Interrupt handler thread 1112 */ 1113 static int irq_thread(void *data) 1114 { 1115 struct callback_head on_exit_work; 1116 struct irqaction *action = data; 1117 struct irq_desc *desc = irq_to_desc(action->irq); 1118 irqreturn_t (*handler_fn)(struct irq_desc *desc, 1119 struct irqaction *action); 1120 1121 if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD, 1122 &action->thread_flags)) 1123 handler_fn = irq_forced_thread_fn; 1124 else 1125 handler_fn = irq_thread_fn; 1126 1127 init_task_work(&on_exit_work, irq_thread_dtor); 1128 task_work_add(current, &on_exit_work, false); 1129 1130 irq_thread_check_affinity(desc, action); 1131 1132 while (!irq_wait_for_interrupt(action)) { 1133 irqreturn_t action_ret; 1134 1135 irq_thread_check_affinity(desc, action); 1136 1137 action_ret = handler_fn(desc, action); 1138 if (action_ret == IRQ_WAKE_THREAD) 1139 irq_wake_secondary(desc, action); 1140 1141 wake_threads_waitq(desc); 1142 } 1143 1144 /* 1145 * This is the regular exit path. __free_irq() is stopping the 1146 * thread via kthread_stop() after calling 1147 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the 1148 * oneshot mask bit can be set. 1149 */ 1150 task_work_cancel(current, irq_thread_dtor); 1151 return 0; 1152 } 1153 1154 /** 1155 * irq_wake_thread - wake the irq thread for the action identified by dev_id 1156 * @irq: Interrupt line 1157 * @dev_id: Device identity for which the thread should be woken 1158 * 1159 */ 1160 void irq_wake_thread(unsigned int irq, void *dev_id) 1161 { 1162 struct irq_desc *desc = irq_to_desc(irq); 1163 struct irqaction *action; 1164 unsigned long flags; 1165 1166 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1167 return; 1168 1169 raw_spin_lock_irqsave(&desc->lock, flags); 1170 for_each_action_of_desc(desc, action) { 1171 if (action->dev_id == dev_id) { 1172 if (action->thread) 1173 __irq_wake_thread(desc, action); 1174 break; 1175 } 1176 } 1177 raw_spin_unlock_irqrestore(&desc->lock, flags); 1178 } 1179 EXPORT_SYMBOL_GPL(irq_wake_thread); 1180 1181 static int irq_setup_forced_threading(struct irqaction *new) 1182 { 1183 if (!force_irqthreads) 1184 return 0; 1185 if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT)) 1186 return 0; 1187 1188 /* 1189 * No further action required for interrupts which are requested as 1190 * threaded interrupts already 1191 */ 1192 if (new->handler == irq_default_primary_handler) 1193 return 0; 1194 1195 new->flags |= IRQF_ONESHOT; 1196 1197 /* 1198 * Handle the case where we have a real primary handler and a 1199 * thread handler. We force thread them as well by creating a 1200 * secondary action. 1201 */ 1202 if (new->handler && new->thread_fn) { 1203 /* Allocate the secondary action */ 1204 new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 1205 if (!new->secondary) 1206 return -ENOMEM; 1207 new->secondary->handler = irq_forced_secondary_handler; 1208 new->secondary->thread_fn = new->thread_fn; 1209 new->secondary->dev_id = new->dev_id; 1210 new->secondary->irq = new->irq; 1211 new->secondary->name = new->name; 1212 } 1213 /* Deal with the primary handler */ 1214 set_bit(IRQTF_FORCED_THREAD, &new->thread_flags); 1215 new->thread_fn = new->handler; 1216 new->handler = irq_default_primary_handler; 1217 return 0; 1218 } 1219 1220 static int irq_request_resources(struct irq_desc *desc) 1221 { 1222 struct irq_data *d = &desc->irq_data; 1223 struct irq_chip *c = d->chip; 1224 1225 return c->irq_request_resources ? c->irq_request_resources(d) : 0; 1226 } 1227 1228 static void irq_release_resources(struct irq_desc *desc) 1229 { 1230 struct irq_data *d = &desc->irq_data; 1231 struct irq_chip *c = d->chip; 1232 1233 if (c->irq_release_resources) 1234 c->irq_release_resources(d); 1235 } 1236 1237 static bool irq_supports_nmi(struct irq_desc *desc) 1238 { 1239 struct irq_data *d = irq_desc_get_irq_data(desc); 1240 1241 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 1242 /* Only IRQs directly managed by the root irqchip can be set as NMI */ 1243 if (d->parent_data) 1244 return false; 1245 #endif 1246 /* Don't support NMIs for chips behind a slow bus */ 1247 if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock) 1248 return false; 1249 1250 return d->chip->flags & IRQCHIP_SUPPORTS_NMI; 1251 } 1252 1253 static int irq_nmi_setup(struct irq_desc *desc) 1254 { 1255 struct irq_data *d = irq_desc_get_irq_data(desc); 1256 struct irq_chip *c = d->chip; 1257 1258 return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL; 1259 } 1260 1261 static void irq_nmi_teardown(struct irq_desc *desc) 1262 { 1263 struct irq_data *d = irq_desc_get_irq_data(desc); 1264 struct irq_chip *c = d->chip; 1265 1266 if (c->irq_nmi_teardown) 1267 c->irq_nmi_teardown(d); 1268 } 1269 1270 static int 1271 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary) 1272 { 1273 struct task_struct *t; 1274 struct sched_param param = { 1275 .sched_priority = MAX_USER_RT_PRIO/2, 1276 }; 1277 1278 if (!secondary) { 1279 t = kthread_create(irq_thread, new, "irq/%d-%s", irq, 1280 new->name); 1281 } else { 1282 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq, 1283 new->name); 1284 param.sched_priority -= 1; 1285 } 1286 1287 if (IS_ERR(t)) 1288 return PTR_ERR(t); 1289 1290 sched_setscheduler_nocheck(t, SCHED_FIFO, ¶m); 1291 1292 /* 1293 * We keep the reference to the task struct even if 1294 * the thread dies to avoid that the interrupt code 1295 * references an already freed task_struct. 1296 */ 1297 new->thread = get_task_struct(t); 1298 /* 1299 * Tell the thread to set its affinity. This is 1300 * important for shared interrupt handlers as we do 1301 * not invoke setup_affinity() for the secondary 1302 * handlers as everything is already set up. Even for 1303 * interrupts marked with IRQF_NO_BALANCE this is 1304 * correct as we want the thread to move to the cpu(s) 1305 * on which the requesting code placed the interrupt. 1306 */ 1307 set_bit(IRQTF_AFFINITY, &new->thread_flags); 1308 return 0; 1309 } 1310 1311 /* 1312 * Internal function to register an irqaction - typically used to 1313 * allocate special interrupts that are part of the architecture. 1314 * 1315 * Locking rules: 1316 * 1317 * desc->request_mutex Provides serialization against a concurrent free_irq() 1318 * chip_bus_lock Provides serialization for slow bus operations 1319 * desc->lock Provides serialization against hard interrupts 1320 * 1321 * chip_bus_lock and desc->lock are sufficient for all other management and 1322 * interrupt related functions. desc->request_mutex solely serializes 1323 * request/free_irq(). 1324 */ 1325 static int 1326 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new) 1327 { 1328 struct irqaction *old, **old_ptr; 1329 unsigned long flags, thread_mask = 0; 1330 int ret, nested, shared = 0; 1331 1332 if (!desc) 1333 return -EINVAL; 1334 1335 if (desc->irq_data.chip == &no_irq_chip) 1336 return -ENOSYS; 1337 if (!try_module_get(desc->owner)) 1338 return -ENODEV; 1339 1340 new->irq = irq; 1341 1342 /* 1343 * If the trigger type is not specified by the caller, 1344 * then use the default for this interrupt. 1345 */ 1346 if (!(new->flags & IRQF_TRIGGER_MASK)) 1347 new->flags |= irqd_get_trigger_type(&desc->irq_data); 1348 1349 /* 1350 * Check whether the interrupt nests into another interrupt 1351 * thread. 1352 */ 1353 nested = irq_settings_is_nested_thread(desc); 1354 if (nested) { 1355 if (!new->thread_fn) { 1356 ret = -EINVAL; 1357 goto out_mput; 1358 } 1359 /* 1360 * Replace the primary handler which was provided from 1361 * the driver for non nested interrupt handling by the 1362 * dummy function which warns when called. 1363 */ 1364 new->handler = irq_nested_primary_handler; 1365 } else { 1366 if (irq_settings_can_thread(desc)) { 1367 ret = irq_setup_forced_threading(new); 1368 if (ret) 1369 goto out_mput; 1370 } 1371 } 1372 1373 /* 1374 * Create a handler thread when a thread function is supplied 1375 * and the interrupt does not nest into another interrupt 1376 * thread. 1377 */ 1378 if (new->thread_fn && !nested) { 1379 ret = setup_irq_thread(new, irq, false); 1380 if (ret) 1381 goto out_mput; 1382 if (new->secondary) { 1383 ret = setup_irq_thread(new->secondary, irq, true); 1384 if (ret) 1385 goto out_thread; 1386 } 1387 } 1388 1389 /* 1390 * Drivers are often written to work w/o knowledge about the 1391 * underlying irq chip implementation, so a request for a 1392 * threaded irq without a primary hard irq context handler 1393 * requires the ONESHOT flag to be set. Some irq chips like 1394 * MSI based interrupts are per se one shot safe. Check the 1395 * chip flags, so we can avoid the unmask dance at the end of 1396 * the threaded handler for those. 1397 */ 1398 if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE) 1399 new->flags &= ~IRQF_ONESHOT; 1400 1401 /* 1402 * Protects against a concurrent __free_irq() call which might wait 1403 * for synchronize_hardirq() to complete without holding the optional 1404 * chip bus lock and desc->lock. Also protects against handing out 1405 * a recycled oneshot thread_mask bit while it's still in use by 1406 * its previous owner. 1407 */ 1408 mutex_lock(&desc->request_mutex); 1409 1410 /* 1411 * Acquire bus lock as the irq_request_resources() callback below 1412 * might rely on the serialization or the magic power management 1413 * functions which are abusing the irq_bus_lock() callback, 1414 */ 1415 chip_bus_lock(desc); 1416 1417 /* First installed action requests resources. */ 1418 if (!desc->action) { 1419 ret = irq_request_resources(desc); 1420 if (ret) { 1421 pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n", 1422 new->name, irq, desc->irq_data.chip->name); 1423 goto out_bus_unlock; 1424 } 1425 } 1426 1427 /* 1428 * The following block of code has to be executed atomically 1429 * protected against a concurrent interrupt and any of the other 1430 * management calls which are not serialized via 1431 * desc->request_mutex or the optional bus lock. 1432 */ 1433 raw_spin_lock_irqsave(&desc->lock, flags); 1434 old_ptr = &desc->action; 1435 old = *old_ptr; 1436 if (old) { 1437 /* 1438 * Can't share interrupts unless both agree to and are 1439 * the same type (level, edge, polarity). So both flag 1440 * fields must have IRQF_SHARED set and the bits which 1441 * set the trigger type must match. Also all must 1442 * agree on ONESHOT. 1443 * Interrupt lines used for NMIs cannot be shared. 1444 */ 1445 unsigned int oldtype; 1446 1447 if (desc->istate & IRQS_NMI) { 1448 pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n", 1449 new->name, irq, desc->irq_data.chip->name); 1450 ret = -EINVAL; 1451 goto out_unlock; 1452 } 1453 1454 /* 1455 * If nobody did set the configuration before, inherit 1456 * the one provided by the requester. 1457 */ 1458 if (irqd_trigger_type_was_set(&desc->irq_data)) { 1459 oldtype = irqd_get_trigger_type(&desc->irq_data); 1460 } else { 1461 oldtype = new->flags & IRQF_TRIGGER_MASK; 1462 irqd_set_trigger_type(&desc->irq_data, oldtype); 1463 } 1464 1465 if (!((old->flags & new->flags) & IRQF_SHARED) || 1466 (oldtype != (new->flags & IRQF_TRIGGER_MASK)) || 1467 ((old->flags ^ new->flags) & IRQF_ONESHOT)) 1468 goto mismatch; 1469 1470 /* All handlers must agree on per-cpuness */ 1471 if ((old->flags & IRQF_PERCPU) != 1472 (new->flags & IRQF_PERCPU)) 1473 goto mismatch; 1474 1475 /* add new interrupt at end of irq queue */ 1476 do { 1477 /* 1478 * Or all existing action->thread_mask bits, 1479 * so we can find the next zero bit for this 1480 * new action. 1481 */ 1482 thread_mask |= old->thread_mask; 1483 old_ptr = &old->next; 1484 old = *old_ptr; 1485 } while (old); 1486 shared = 1; 1487 } 1488 1489 /* 1490 * Setup the thread mask for this irqaction for ONESHOT. For 1491 * !ONESHOT irqs the thread mask is 0 so we can avoid a 1492 * conditional in irq_wake_thread(). 1493 */ 1494 if (new->flags & IRQF_ONESHOT) { 1495 /* 1496 * Unlikely to have 32 resp 64 irqs sharing one line, 1497 * but who knows. 1498 */ 1499 if (thread_mask == ~0UL) { 1500 ret = -EBUSY; 1501 goto out_unlock; 1502 } 1503 /* 1504 * The thread_mask for the action is or'ed to 1505 * desc->thread_active to indicate that the 1506 * IRQF_ONESHOT thread handler has been woken, but not 1507 * yet finished. The bit is cleared when a thread 1508 * completes. When all threads of a shared interrupt 1509 * line have completed desc->threads_active becomes 1510 * zero and the interrupt line is unmasked. See 1511 * handle.c:irq_wake_thread() for further information. 1512 * 1513 * If no thread is woken by primary (hard irq context) 1514 * interrupt handlers, then desc->threads_active is 1515 * also checked for zero to unmask the irq line in the 1516 * affected hard irq flow handlers 1517 * (handle_[fasteoi|level]_irq). 1518 * 1519 * The new action gets the first zero bit of 1520 * thread_mask assigned. See the loop above which or's 1521 * all existing action->thread_mask bits. 1522 */ 1523 new->thread_mask = 1UL << ffz(thread_mask); 1524 1525 } else if (new->handler == irq_default_primary_handler && 1526 !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) { 1527 /* 1528 * The interrupt was requested with handler = NULL, so 1529 * we use the default primary handler for it. But it 1530 * does not have the oneshot flag set. In combination 1531 * with level interrupts this is deadly, because the 1532 * default primary handler just wakes the thread, then 1533 * the irq lines is reenabled, but the device still 1534 * has the level irq asserted. Rinse and repeat.... 1535 * 1536 * While this works for edge type interrupts, we play 1537 * it safe and reject unconditionally because we can't 1538 * say for sure which type this interrupt really 1539 * has. The type flags are unreliable as the 1540 * underlying chip implementation can override them. 1541 */ 1542 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for %s (irq %d)\n", 1543 new->name, irq); 1544 ret = -EINVAL; 1545 goto out_unlock; 1546 } 1547 1548 if (!shared) { 1549 init_waitqueue_head(&desc->wait_for_threads); 1550 1551 /* Setup the type (level, edge polarity) if configured: */ 1552 if (new->flags & IRQF_TRIGGER_MASK) { 1553 ret = __irq_set_trigger(desc, 1554 new->flags & IRQF_TRIGGER_MASK); 1555 1556 if (ret) 1557 goto out_unlock; 1558 } 1559 1560 /* 1561 * Activate the interrupt. That activation must happen 1562 * independently of IRQ_NOAUTOEN. request_irq() can fail 1563 * and the callers are supposed to handle 1564 * that. enable_irq() of an interrupt requested with 1565 * IRQ_NOAUTOEN is not supposed to fail. The activation 1566 * keeps it in shutdown mode, it merily associates 1567 * resources if necessary and if that's not possible it 1568 * fails. Interrupts which are in managed shutdown mode 1569 * will simply ignore that activation request. 1570 */ 1571 ret = irq_activate(desc); 1572 if (ret) 1573 goto out_unlock; 1574 1575 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \ 1576 IRQS_ONESHOT | IRQS_WAITING); 1577 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS); 1578 1579 if (new->flags & IRQF_PERCPU) { 1580 irqd_set(&desc->irq_data, IRQD_PER_CPU); 1581 irq_settings_set_per_cpu(desc); 1582 } 1583 1584 if (new->flags & IRQF_ONESHOT) 1585 desc->istate |= IRQS_ONESHOT; 1586 1587 /* Exclude IRQ from balancing if requested */ 1588 if (new->flags & IRQF_NOBALANCING) { 1589 irq_settings_set_no_balancing(desc); 1590 irqd_set(&desc->irq_data, IRQD_NO_BALANCING); 1591 } 1592 1593 if (irq_settings_can_autoenable(desc)) { 1594 irq_startup(desc, IRQ_RESEND, IRQ_START_COND); 1595 } else { 1596 /* 1597 * Shared interrupts do not go well with disabling 1598 * auto enable. The sharing interrupt might request 1599 * it while it's still disabled and then wait for 1600 * interrupts forever. 1601 */ 1602 WARN_ON_ONCE(new->flags & IRQF_SHARED); 1603 /* Undo nested disables: */ 1604 desc->depth = 1; 1605 } 1606 1607 } else if (new->flags & IRQF_TRIGGER_MASK) { 1608 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK; 1609 unsigned int omsk = irqd_get_trigger_type(&desc->irq_data); 1610 1611 if (nmsk != omsk) 1612 /* hope the handler works with current trigger mode */ 1613 pr_warn("irq %d uses trigger mode %u; requested %u\n", 1614 irq, omsk, nmsk); 1615 } 1616 1617 *old_ptr = new; 1618 1619 irq_pm_install_action(desc, new); 1620 1621 /* Reset broken irq detection when installing new handler */ 1622 desc->irq_count = 0; 1623 desc->irqs_unhandled = 0; 1624 1625 /* 1626 * Check whether we disabled the irq via the spurious handler 1627 * before. Reenable it and give it another chance. 1628 */ 1629 if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) { 1630 desc->istate &= ~IRQS_SPURIOUS_DISABLED; 1631 __enable_irq(desc); 1632 } 1633 1634 raw_spin_unlock_irqrestore(&desc->lock, flags); 1635 chip_bus_sync_unlock(desc); 1636 mutex_unlock(&desc->request_mutex); 1637 1638 irq_setup_timings(desc, new); 1639 1640 /* 1641 * Strictly no need to wake it up, but hung_task complains 1642 * when no hard interrupt wakes the thread up. 1643 */ 1644 if (new->thread) 1645 wake_up_process(new->thread); 1646 if (new->secondary) 1647 wake_up_process(new->secondary->thread); 1648 1649 register_irq_proc(irq, desc); 1650 new->dir = NULL; 1651 register_handler_proc(irq, new); 1652 return 0; 1653 1654 mismatch: 1655 if (!(new->flags & IRQF_PROBE_SHARED)) { 1656 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n", 1657 irq, new->flags, new->name, old->flags, old->name); 1658 #ifdef CONFIG_DEBUG_SHIRQ 1659 dump_stack(); 1660 #endif 1661 } 1662 ret = -EBUSY; 1663 1664 out_unlock: 1665 raw_spin_unlock_irqrestore(&desc->lock, flags); 1666 1667 if (!desc->action) 1668 irq_release_resources(desc); 1669 out_bus_unlock: 1670 chip_bus_sync_unlock(desc); 1671 mutex_unlock(&desc->request_mutex); 1672 1673 out_thread: 1674 if (new->thread) { 1675 struct task_struct *t = new->thread; 1676 1677 new->thread = NULL; 1678 kthread_stop(t); 1679 put_task_struct(t); 1680 } 1681 if (new->secondary && new->secondary->thread) { 1682 struct task_struct *t = new->secondary->thread; 1683 1684 new->secondary->thread = NULL; 1685 kthread_stop(t); 1686 put_task_struct(t); 1687 } 1688 out_mput: 1689 module_put(desc->owner); 1690 return ret; 1691 } 1692 1693 /* 1694 * Internal function to unregister an irqaction - used to free 1695 * regular and special interrupts that are part of the architecture. 1696 */ 1697 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id) 1698 { 1699 unsigned irq = desc->irq_data.irq; 1700 struct irqaction *action, **action_ptr; 1701 unsigned long flags; 1702 1703 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq); 1704 1705 mutex_lock(&desc->request_mutex); 1706 chip_bus_lock(desc); 1707 raw_spin_lock_irqsave(&desc->lock, flags); 1708 1709 /* 1710 * There can be multiple actions per IRQ descriptor, find the right 1711 * one based on the dev_id: 1712 */ 1713 action_ptr = &desc->action; 1714 for (;;) { 1715 action = *action_ptr; 1716 1717 if (!action) { 1718 WARN(1, "Trying to free already-free IRQ %d\n", irq); 1719 raw_spin_unlock_irqrestore(&desc->lock, flags); 1720 chip_bus_sync_unlock(desc); 1721 mutex_unlock(&desc->request_mutex); 1722 return NULL; 1723 } 1724 1725 if (action->dev_id == dev_id) 1726 break; 1727 action_ptr = &action->next; 1728 } 1729 1730 /* Found it - now remove it from the list of entries: */ 1731 *action_ptr = action->next; 1732 1733 irq_pm_remove_action(desc, action); 1734 1735 /* If this was the last handler, shut down the IRQ line: */ 1736 if (!desc->action) { 1737 irq_settings_clr_disable_unlazy(desc); 1738 /* Only shutdown. Deactivate after synchronize_hardirq() */ 1739 irq_shutdown(desc); 1740 } 1741 1742 #ifdef CONFIG_SMP 1743 /* make sure affinity_hint is cleaned up */ 1744 if (WARN_ON_ONCE(desc->affinity_hint)) 1745 desc->affinity_hint = NULL; 1746 #endif 1747 1748 raw_spin_unlock_irqrestore(&desc->lock, flags); 1749 /* 1750 * Drop bus_lock here so the changes which were done in the chip 1751 * callbacks above are synced out to the irq chips which hang 1752 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq(). 1753 * 1754 * Aside of that the bus_lock can also be taken from the threaded 1755 * handler in irq_finalize_oneshot() which results in a deadlock 1756 * because kthread_stop() would wait forever for the thread to 1757 * complete, which is blocked on the bus lock. 1758 * 1759 * The still held desc->request_mutex() protects against a 1760 * concurrent request_irq() of this irq so the release of resources 1761 * and timing data is properly serialized. 1762 */ 1763 chip_bus_sync_unlock(desc); 1764 1765 unregister_handler_proc(irq, action); 1766 1767 /* 1768 * Make sure it's not being used on another CPU and if the chip 1769 * supports it also make sure that there is no (not yet serviced) 1770 * interrupt in flight at the hardware level. 1771 */ 1772 __synchronize_hardirq(desc, true); 1773 1774 #ifdef CONFIG_DEBUG_SHIRQ 1775 /* 1776 * It's a shared IRQ -- the driver ought to be prepared for an IRQ 1777 * event to happen even now it's being freed, so let's make sure that 1778 * is so by doing an extra call to the handler .... 1779 * 1780 * ( We do this after actually deregistering it, to make sure that a 1781 * 'real' IRQ doesn't run in parallel with our fake. ) 1782 */ 1783 if (action->flags & IRQF_SHARED) { 1784 local_irq_save(flags); 1785 action->handler(irq, dev_id); 1786 local_irq_restore(flags); 1787 } 1788 #endif 1789 1790 /* 1791 * The action has already been removed above, but the thread writes 1792 * its oneshot mask bit when it completes. Though request_mutex is 1793 * held across this which prevents __setup_irq() from handing out 1794 * the same bit to a newly requested action. 1795 */ 1796 if (action->thread) { 1797 kthread_stop(action->thread); 1798 put_task_struct(action->thread); 1799 if (action->secondary && action->secondary->thread) { 1800 kthread_stop(action->secondary->thread); 1801 put_task_struct(action->secondary->thread); 1802 } 1803 } 1804 1805 /* Last action releases resources */ 1806 if (!desc->action) { 1807 /* 1808 * Reaquire bus lock as irq_release_resources() might 1809 * require it to deallocate resources over the slow bus. 1810 */ 1811 chip_bus_lock(desc); 1812 /* 1813 * There is no interrupt on the fly anymore. Deactivate it 1814 * completely. 1815 */ 1816 raw_spin_lock_irqsave(&desc->lock, flags); 1817 irq_domain_deactivate_irq(&desc->irq_data); 1818 raw_spin_unlock_irqrestore(&desc->lock, flags); 1819 1820 irq_release_resources(desc); 1821 chip_bus_sync_unlock(desc); 1822 irq_remove_timings(desc); 1823 } 1824 1825 mutex_unlock(&desc->request_mutex); 1826 1827 irq_chip_pm_put(&desc->irq_data); 1828 module_put(desc->owner); 1829 kfree(action->secondary); 1830 return action; 1831 } 1832 1833 /** 1834 * free_irq - free an interrupt allocated with request_irq 1835 * @irq: Interrupt line to free 1836 * @dev_id: Device identity to free 1837 * 1838 * Remove an interrupt handler. The handler is removed and if the 1839 * interrupt line is no longer in use by any driver it is disabled. 1840 * On a shared IRQ the caller must ensure the interrupt is disabled 1841 * on the card it drives before calling this function. The function 1842 * does not return until any executing interrupts for this IRQ 1843 * have completed. 1844 * 1845 * This function must not be called from interrupt context. 1846 * 1847 * Returns the devname argument passed to request_irq. 1848 */ 1849 const void *free_irq(unsigned int irq, void *dev_id) 1850 { 1851 struct irq_desc *desc = irq_to_desc(irq); 1852 struct irqaction *action; 1853 const char *devname; 1854 1855 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1856 return NULL; 1857 1858 #ifdef CONFIG_SMP 1859 if (WARN_ON(desc->affinity_notify)) 1860 desc->affinity_notify = NULL; 1861 #endif 1862 1863 action = __free_irq(desc, dev_id); 1864 1865 if (!action) 1866 return NULL; 1867 1868 devname = action->name; 1869 kfree(action); 1870 return devname; 1871 } 1872 EXPORT_SYMBOL(free_irq); 1873 1874 /* This function must be called with desc->lock held */ 1875 static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc) 1876 { 1877 const char *devname = NULL; 1878 1879 desc->istate &= ~IRQS_NMI; 1880 1881 if (!WARN_ON(desc->action == NULL)) { 1882 irq_pm_remove_action(desc, desc->action); 1883 devname = desc->action->name; 1884 unregister_handler_proc(irq, desc->action); 1885 1886 kfree(desc->action); 1887 desc->action = NULL; 1888 } 1889 1890 irq_settings_clr_disable_unlazy(desc); 1891 irq_shutdown_and_deactivate(desc); 1892 1893 irq_release_resources(desc); 1894 1895 irq_chip_pm_put(&desc->irq_data); 1896 module_put(desc->owner); 1897 1898 return devname; 1899 } 1900 1901 const void *free_nmi(unsigned int irq, void *dev_id) 1902 { 1903 struct irq_desc *desc = irq_to_desc(irq); 1904 unsigned long flags; 1905 const void *devname; 1906 1907 if (!desc || WARN_ON(!(desc->istate & IRQS_NMI))) 1908 return NULL; 1909 1910 if (WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1911 return NULL; 1912 1913 /* NMI still enabled */ 1914 if (WARN_ON(desc->depth == 0)) 1915 disable_nmi_nosync(irq); 1916 1917 raw_spin_lock_irqsave(&desc->lock, flags); 1918 1919 irq_nmi_teardown(desc); 1920 devname = __cleanup_nmi(irq, desc); 1921 1922 raw_spin_unlock_irqrestore(&desc->lock, flags); 1923 1924 return devname; 1925 } 1926 1927 /** 1928 * request_threaded_irq - allocate an interrupt line 1929 * @irq: Interrupt line to allocate 1930 * @handler: Function to be called when the IRQ occurs. 1931 * Primary handler for threaded interrupts 1932 * If NULL and thread_fn != NULL the default 1933 * primary handler is installed 1934 * @thread_fn: Function called from the irq handler thread 1935 * If NULL, no irq thread is created 1936 * @irqflags: Interrupt type flags 1937 * @devname: An ascii name for the claiming device 1938 * @dev_id: A cookie passed back to the handler function 1939 * 1940 * This call allocates interrupt resources and enables the 1941 * interrupt line and IRQ handling. From the point this 1942 * call is made your handler function may be invoked. Since 1943 * your handler function must clear any interrupt the board 1944 * raises, you must take care both to initialise your hardware 1945 * and to set up the interrupt handler in the right order. 1946 * 1947 * If you want to set up a threaded irq handler for your device 1948 * then you need to supply @handler and @thread_fn. @handler is 1949 * still called in hard interrupt context and has to check 1950 * whether the interrupt originates from the device. If yes it 1951 * needs to disable the interrupt on the device and return 1952 * IRQ_WAKE_THREAD which will wake up the handler thread and run 1953 * @thread_fn. This split handler design is necessary to support 1954 * shared interrupts. 1955 * 1956 * Dev_id must be globally unique. Normally the address of the 1957 * device data structure is used as the cookie. Since the handler 1958 * receives this value it makes sense to use it. 1959 * 1960 * If your interrupt is shared you must pass a non NULL dev_id 1961 * as this is required when freeing the interrupt. 1962 * 1963 * Flags: 1964 * 1965 * IRQF_SHARED Interrupt is shared 1966 * IRQF_TRIGGER_* Specify active edge(s) or level 1967 * 1968 */ 1969 int request_threaded_irq(unsigned int irq, irq_handler_t handler, 1970 irq_handler_t thread_fn, unsigned long irqflags, 1971 const char *devname, void *dev_id) 1972 { 1973 struct irqaction *action; 1974 struct irq_desc *desc; 1975 int retval; 1976 1977 if (irq == IRQ_NOTCONNECTED) 1978 return -ENOTCONN; 1979 1980 /* 1981 * Sanity-check: shared interrupts must pass in a real dev-ID, 1982 * otherwise we'll have trouble later trying to figure out 1983 * which interrupt is which (messes up the interrupt freeing 1984 * logic etc). 1985 * 1986 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and 1987 * it cannot be set along with IRQF_NO_SUSPEND. 1988 */ 1989 if (((irqflags & IRQF_SHARED) && !dev_id) || 1990 (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) || 1991 ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND))) 1992 return -EINVAL; 1993 1994 desc = irq_to_desc(irq); 1995 if (!desc) 1996 return -EINVAL; 1997 1998 if (!irq_settings_can_request(desc) || 1999 WARN_ON(irq_settings_is_per_cpu_devid(desc))) 2000 return -EINVAL; 2001 2002 if (!handler) { 2003 if (!thread_fn) 2004 return -EINVAL; 2005 handler = irq_default_primary_handler; 2006 } 2007 2008 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2009 if (!action) 2010 return -ENOMEM; 2011 2012 action->handler = handler; 2013 action->thread_fn = thread_fn; 2014 action->flags = irqflags; 2015 action->name = devname; 2016 action->dev_id = dev_id; 2017 2018 retval = irq_chip_pm_get(&desc->irq_data); 2019 if (retval < 0) { 2020 kfree(action); 2021 return retval; 2022 } 2023 2024 retval = __setup_irq(irq, desc, action); 2025 2026 if (retval) { 2027 irq_chip_pm_put(&desc->irq_data); 2028 kfree(action->secondary); 2029 kfree(action); 2030 } 2031 2032 #ifdef CONFIG_DEBUG_SHIRQ_FIXME 2033 if (!retval && (irqflags & IRQF_SHARED)) { 2034 /* 2035 * It's a shared IRQ -- the driver ought to be prepared for it 2036 * to happen immediately, so let's make sure.... 2037 * We disable the irq to make sure that a 'real' IRQ doesn't 2038 * run in parallel with our fake. 2039 */ 2040 unsigned long flags; 2041 2042 disable_irq(irq); 2043 local_irq_save(flags); 2044 2045 handler(irq, dev_id); 2046 2047 local_irq_restore(flags); 2048 enable_irq(irq); 2049 } 2050 #endif 2051 return retval; 2052 } 2053 EXPORT_SYMBOL(request_threaded_irq); 2054 2055 /** 2056 * request_any_context_irq - allocate an interrupt line 2057 * @irq: Interrupt line to allocate 2058 * @handler: Function to be called when the IRQ occurs. 2059 * Threaded handler for threaded interrupts. 2060 * @flags: Interrupt type flags 2061 * @name: An ascii name for the claiming device 2062 * @dev_id: A cookie passed back to the handler function 2063 * 2064 * This call allocates interrupt resources and enables the 2065 * interrupt line and IRQ handling. It selects either a 2066 * hardirq or threaded handling method depending on the 2067 * context. 2068 * 2069 * On failure, it returns a negative value. On success, 2070 * it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED. 2071 */ 2072 int request_any_context_irq(unsigned int irq, irq_handler_t handler, 2073 unsigned long flags, const char *name, void *dev_id) 2074 { 2075 struct irq_desc *desc; 2076 int ret; 2077 2078 if (irq == IRQ_NOTCONNECTED) 2079 return -ENOTCONN; 2080 2081 desc = irq_to_desc(irq); 2082 if (!desc) 2083 return -EINVAL; 2084 2085 if (irq_settings_is_nested_thread(desc)) { 2086 ret = request_threaded_irq(irq, NULL, handler, 2087 flags, name, dev_id); 2088 return !ret ? IRQC_IS_NESTED : ret; 2089 } 2090 2091 ret = request_irq(irq, handler, flags, name, dev_id); 2092 return !ret ? IRQC_IS_HARDIRQ : ret; 2093 } 2094 EXPORT_SYMBOL_GPL(request_any_context_irq); 2095 2096 /** 2097 * request_nmi - allocate an interrupt line for NMI delivery 2098 * @irq: Interrupt line to allocate 2099 * @handler: Function to be called when the IRQ occurs. 2100 * Threaded handler for threaded interrupts. 2101 * @irqflags: Interrupt type flags 2102 * @name: An ascii name for the claiming device 2103 * @dev_id: A cookie passed back to the handler function 2104 * 2105 * This call allocates interrupt resources and enables the 2106 * interrupt line and IRQ handling. It sets up the IRQ line 2107 * to be handled as an NMI. 2108 * 2109 * An interrupt line delivering NMIs cannot be shared and IRQ handling 2110 * cannot be threaded. 2111 * 2112 * Interrupt lines requested for NMI delivering must produce per cpu 2113 * interrupts and have auto enabling setting disabled. 2114 * 2115 * Dev_id must be globally unique. Normally the address of the 2116 * device data structure is used as the cookie. Since the handler 2117 * receives this value it makes sense to use it. 2118 * 2119 * If the interrupt line cannot be used to deliver NMIs, function 2120 * will fail and return a negative value. 2121 */ 2122 int request_nmi(unsigned int irq, irq_handler_t handler, 2123 unsigned long irqflags, const char *name, void *dev_id) 2124 { 2125 struct irqaction *action; 2126 struct irq_desc *desc; 2127 unsigned long flags; 2128 int retval; 2129 2130 if (irq == IRQ_NOTCONNECTED) 2131 return -ENOTCONN; 2132 2133 /* NMI cannot be shared, used for Polling */ 2134 if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL)) 2135 return -EINVAL; 2136 2137 if (!(irqflags & IRQF_PERCPU)) 2138 return -EINVAL; 2139 2140 if (!handler) 2141 return -EINVAL; 2142 2143 desc = irq_to_desc(irq); 2144 2145 if (!desc || irq_settings_can_autoenable(desc) || 2146 !irq_settings_can_request(desc) || 2147 WARN_ON(irq_settings_is_per_cpu_devid(desc)) || 2148 !irq_supports_nmi(desc)) 2149 return -EINVAL; 2150 2151 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2152 if (!action) 2153 return -ENOMEM; 2154 2155 action->handler = handler; 2156 action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING; 2157 action->name = name; 2158 action->dev_id = dev_id; 2159 2160 retval = irq_chip_pm_get(&desc->irq_data); 2161 if (retval < 0) 2162 goto err_out; 2163 2164 retval = __setup_irq(irq, desc, action); 2165 if (retval) 2166 goto err_irq_setup; 2167 2168 raw_spin_lock_irqsave(&desc->lock, flags); 2169 2170 /* Setup NMI state */ 2171 desc->istate |= IRQS_NMI; 2172 retval = irq_nmi_setup(desc); 2173 if (retval) { 2174 __cleanup_nmi(irq, desc); 2175 raw_spin_unlock_irqrestore(&desc->lock, flags); 2176 return -EINVAL; 2177 } 2178 2179 raw_spin_unlock_irqrestore(&desc->lock, flags); 2180 2181 return 0; 2182 2183 err_irq_setup: 2184 irq_chip_pm_put(&desc->irq_data); 2185 err_out: 2186 kfree(action); 2187 2188 return retval; 2189 } 2190 2191 void enable_percpu_irq(unsigned int irq, unsigned int type) 2192 { 2193 unsigned int cpu = smp_processor_id(); 2194 unsigned long flags; 2195 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 2196 2197 if (!desc) 2198 return; 2199 2200 /* 2201 * If the trigger type is not specified by the caller, then 2202 * use the default for this interrupt. 2203 */ 2204 type &= IRQ_TYPE_SENSE_MASK; 2205 if (type == IRQ_TYPE_NONE) 2206 type = irqd_get_trigger_type(&desc->irq_data); 2207 2208 if (type != IRQ_TYPE_NONE) { 2209 int ret; 2210 2211 ret = __irq_set_trigger(desc, type); 2212 2213 if (ret) { 2214 WARN(1, "failed to set type for IRQ%d\n", irq); 2215 goto out; 2216 } 2217 } 2218 2219 irq_percpu_enable(desc, cpu); 2220 out: 2221 irq_put_desc_unlock(desc, flags); 2222 } 2223 EXPORT_SYMBOL_GPL(enable_percpu_irq); 2224 2225 void enable_percpu_nmi(unsigned int irq, unsigned int type) 2226 { 2227 enable_percpu_irq(irq, type); 2228 } 2229 2230 /** 2231 * irq_percpu_is_enabled - Check whether the per cpu irq is enabled 2232 * @irq: Linux irq number to check for 2233 * 2234 * Must be called from a non migratable context. Returns the enable 2235 * state of a per cpu interrupt on the current cpu. 2236 */ 2237 bool irq_percpu_is_enabled(unsigned int irq) 2238 { 2239 unsigned int cpu = smp_processor_id(); 2240 struct irq_desc *desc; 2241 unsigned long flags; 2242 bool is_enabled; 2243 2244 desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 2245 if (!desc) 2246 return false; 2247 2248 is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled); 2249 irq_put_desc_unlock(desc, flags); 2250 2251 return is_enabled; 2252 } 2253 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled); 2254 2255 void disable_percpu_irq(unsigned int irq) 2256 { 2257 unsigned int cpu = smp_processor_id(); 2258 unsigned long flags; 2259 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 2260 2261 if (!desc) 2262 return; 2263 2264 irq_percpu_disable(desc, cpu); 2265 irq_put_desc_unlock(desc, flags); 2266 } 2267 EXPORT_SYMBOL_GPL(disable_percpu_irq); 2268 2269 void disable_percpu_nmi(unsigned int irq) 2270 { 2271 disable_percpu_irq(irq); 2272 } 2273 2274 /* 2275 * Internal function to unregister a percpu irqaction. 2276 */ 2277 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id) 2278 { 2279 struct irq_desc *desc = irq_to_desc(irq); 2280 struct irqaction *action; 2281 unsigned long flags; 2282 2283 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq); 2284 2285 if (!desc) 2286 return NULL; 2287 2288 raw_spin_lock_irqsave(&desc->lock, flags); 2289 2290 action = desc->action; 2291 if (!action || action->percpu_dev_id != dev_id) { 2292 WARN(1, "Trying to free already-free IRQ %d\n", irq); 2293 goto bad; 2294 } 2295 2296 if (!cpumask_empty(desc->percpu_enabled)) { 2297 WARN(1, "percpu IRQ %d still enabled on CPU%d!\n", 2298 irq, cpumask_first(desc->percpu_enabled)); 2299 goto bad; 2300 } 2301 2302 /* Found it - now remove it from the list of entries: */ 2303 desc->action = NULL; 2304 2305 desc->istate &= ~IRQS_NMI; 2306 2307 raw_spin_unlock_irqrestore(&desc->lock, flags); 2308 2309 unregister_handler_proc(irq, action); 2310 2311 irq_chip_pm_put(&desc->irq_data); 2312 module_put(desc->owner); 2313 return action; 2314 2315 bad: 2316 raw_spin_unlock_irqrestore(&desc->lock, flags); 2317 return NULL; 2318 } 2319 2320 /** 2321 * remove_percpu_irq - free a per-cpu interrupt 2322 * @irq: Interrupt line to free 2323 * @act: irqaction for the interrupt 2324 * 2325 * Used to remove interrupts statically setup by the early boot process. 2326 */ 2327 void remove_percpu_irq(unsigned int irq, struct irqaction *act) 2328 { 2329 struct irq_desc *desc = irq_to_desc(irq); 2330 2331 if (desc && irq_settings_is_per_cpu_devid(desc)) 2332 __free_percpu_irq(irq, act->percpu_dev_id); 2333 } 2334 2335 /** 2336 * free_percpu_irq - free an interrupt allocated with request_percpu_irq 2337 * @irq: Interrupt line to free 2338 * @dev_id: Device identity to free 2339 * 2340 * Remove a percpu interrupt handler. The handler is removed, but 2341 * the interrupt line is not disabled. This must be done on each 2342 * CPU before calling this function. The function does not return 2343 * until any executing interrupts for this IRQ have completed. 2344 * 2345 * This function must not be called from interrupt context. 2346 */ 2347 void free_percpu_irq(unsigned int irq, void __percpu *dev_id) 2348 { 2349 struct irq_desc *desc = irq_to_desc(irq); 2350 2351 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2352 return; 2353 2354 chip_bus_lock(desc); 2355 kfree(__free_percpu_irq(irq, dev_id)); 2356 chip_bus_sync_unlock(desc); 2357 } 2358 EXPORT_SYMBOL_GPL(free_percpu_irq); 2359 2360 void free_percpu_nmi(unsigned int irq, void __percpu *dev_id) 2361 { 2362 struct irq_desc *desc = irq_to_desc(irq); 2363 2364 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2365 return; 2366 2367 if (WARN_ON(!(desc->istate & IRQS_NMI))) 2368 return; 2369 2370 kfree(__free_percpu_irq(irq, dev_id)); 2371 } 2372 2373 /** 2374 * setup_percpu_irq - setup a per-cpu interrupt 2375 * @irq: Interrupt line to setup 2376 * @act: irqaction for the interrupt 2377 * 2378 * Used to statically setup per-cpu interrupts in the early boot process. 2379 */ 2380 int setup_percpu_irq(unsigned int irq, struct irqaction *act) 2381 { 2382 struct irq_desc *desc = irq_to_desc(irq); 2383 int retval; 2384 2385 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2386 return -EINVAL; 2387 2388 retval = irq_chip_pm_get(&desc->irq_data); 2389 if (retval < 0) 2390 return retval; 2391 2392 retval = __setup_irq(irq, desc, act); 2393 2394 if (retval) 2395 irq_chip_pm_put(&desc->irq_data); 2396 2397 return retval; 2398 } 2399 2400 /** 2401 * __request_percpu_irq - allocate a percpu interrupt line 2402 * @irq: Interrupt line to allocate 2403 * @handler: Function to be called when the IRQ occurs. 2404 * @flags: Interrupt type flags (IRQF_TIMER only) 2405 * @devname: An ascii name for the claiming device 2406 * @dev_id: A percpu cookie passed back to the handler function 2407 * 2408 * This call allocates interrupt resources and enables the 2409 * interrupt on the local CPU. If the interrupt is supposed to be 2410 * enabled on other CPUs, it has to be done on each CPU using 2411 * enable_percpu_irq(). 2412 * 2413 * Dev_id must be globally unique. It is a per-cpu variable, and 2414 * the handler gets called with the interrupted CPU's instance of 2415 * that variable. 2416 */ 2417 int __request_percpu_irq(unsigned int irq, irq_handler_t handler, 2418 unsigned long flags, const char *devname, 2419 void __percpu *dev_id) 2420 { 2421 struct irqaction *action; 2422 struct irq_desc *desc; 2423 int retval; 2424 2425 if (!dev_id) 2426 return -EINVAL; 2427 2428 desc = irq_to_desc(irq); 2429 if (!desc || !irq_settings_can_request(desc) || 2430 !irq_settings_is_per_cpu_devid(desc)) 2431 return -EINVAL; 2432 2433 if (flags && flags != IRQF_TIMER) 2434 return -EINVAL; 2435 2436 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2437 if (!action) 2438 return -ENOMEM; 2439 2440 action->handler = handler; 2441 action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND; 2442 action->name = devname; 2443 action->percpu_dev_id = dev_id; 2444 2445 retval = irq_chip_pm_get(&desc->irq_data); 2446 if (retval < 0) { 2447 kfree(action); 2448 return retval; 2449 } 2450 2451 retval = __setup_irq(irq, desc, action); 2452 2453 if (retval) { 2454 irq_chip_pm_put(&desc->irq_data); 2455 kfree(action); 2456 } 2457 2458 return retval; 2459 } 2460 EXPORT_SYMBOL_GPL(__request_percpu_irq); 2461 2462 /** 2463 * request_percpu_nmi - allocate a percpu interrupt line for NMI delivery 2464 * @irq: Interrupt line to allocate 2465 * @handler: Function to be called when the IRQ occurs. 2466 * @name: An ascii name for the claiming device 2467 * @dev_id: A percpu cookie passed back to the handler function 2468 * 2469 * This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs 2470 * have to be setup on each CPU by calling prepare_percpu_nmi() before 2471 * being enabled on the same CPU by using enable_percpu_nmi(). 2472 * 2473 * Dev_id must be globally unique. It is a per-cpu variable, and 2474 * the handler gets called with the interrupted CPU's instance of 2475 * that variable. 2476 * 2477 * Interrupt lines requested for NMI delivering should have auto enabling 2478 * setting disabled. 2479 * 2480 * If the interrupt line cannot be used to deliver NMIs, function 2481 * will fail returning a negative value. 2482 */ 2483 int request_percpu_nmi(unsigned int irq, irq_handler_t handler, 2484 const char *name, void __percpu *dev_id) 2485 { 2486 struct irqaction *action; 2487 struct irq_desc *desc; 2488 unsigned long flags; 2489 int retval; 2490 2491 if (!handler) 2492 return -EINVAL; 2493 2494 desc = irq_to_desc(irq); 2495 2496 if (!desc || !irq_settings_can_request(desc) || 2497 !irq_settings_is_per_cpu_devid(desc) || 2498 irq_settings_can_autoenable(desc) || 2499 !irq_supports_nmi(desc)) 2500 return -EINVAL; 2501 2502 /* The line cannot already be NMI */ 2503 if (desc->istate & IRQS_NMI) 2504 return -EINVAL; 2505 2506 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2507 if (!action) 2508 return -ENOMEM; 2509 2510 action->handler = handler; 2511 action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD 2512 | IRQF_NOBALANCING; 2513 action->name = name; 2514 action->percpu_dev_id = dev_id; 2515 2516 retval = irq_chip_pm_get(&desc->irq_data); 2517 if (retval < 0) 2518 goto err_out; 2519 2520 retval = __setup_irq(irq, desc, action); 2521 if (retval) 2522 goto err_irq_setup; 2523 2524 raw_spin_lock_irqsave(&desc->lock, flags); 2525 desc->istate |= IRQS_NMI; 2526 raw_spin_unlock_irqrestore(&desc->lock, flags); 2527 2528 return 0; 2529 2530 err_irq_setup: 2531 irq_chip_pm_put(&desc->irq_data); 2532 err_out: 2533 kfree(action); 2534 2535 return retval; 2536 } 2537 2538 /** 2539 * prepare_percpu_nmi - performs CPU local setup for NMI delivery 2540 * @irq: Interrupt line to prepare for NMI delivery 2541 * 2542 * This call prepares an interrupt line to deliver NMI on the current CPU, 2543 * before that interrupt line gets enabled with enable_percpu_nmi(). 2544 * 2545 * As a CPU local operation, this should be called from non-preemptible 2546 * context. 2547 * 2548 * If the interrupt line cannot be used to deliver NMIs, function 2549 * will fail returning a negative value. 2550 */ 2551 int prepare_percpu_nmi(unsigned int irq) 2552 { 2553 unsigned long flags; 2554 struct irq_desc *desc; 2555 int ret = 0; 2556 2557 WARN_ON(preemptible()); 2558 2559 desc = irq_get_desc_lock(irq, &flags, 2560 IRQ_GET_DESC_CHECK_PERCPU); 2561 if (!desc) 2562 return -EINVAL; 2563 2564 if (WARN(!(desc->istate & IRQS_NMI), 2565 KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n", 2566 irq)) { 2567 ret = -EINVAL; 2568 goto out; 2569 } 2570 2571 ret = irq_nmi_setup(desc); 2572 if (ret) { 2573 pr_err("Failed to setup NMI delivery: irq %u\n", irq); 2574 goto out; 2575 } 2576 2577 out: 2578 irq_put_desc_unlock(desc, flags); 2579 return ret; 2580 } 2581 2582 /** 2583 * teardown_percpu_nmi - undoes NMI setup of IRQ line 2584 * @irq: Interrupt line from which CPU local NMI configuration should be 2585 * removed 2586 * 2587 * This call undoes the setup done by prepare_percpu_nmi(). 2588 * 2589 * IRQ line should not be enabled for the current CPU. 2590 * 2591 * As a CPU local operation, this should be called from non-preemptible 2592 * context. 2593 */ 2594 void teardown_percpu_nmi(unsigned int irq) 2595 { 2596 unsigned long flags; 2597 struct irq_desc *desc; 2598 2599 WARN_ON(preemptible()); 2600 2601 desc = irq_get_desc_lock(irq, &flags, 2602 IRQ_GET_DESC_CHECK_PERCPU); 2603 if (!desc) 2604 return; 2605 2606 if (WARN_ON(!(desc->istate & IRQS_NMI))) 2607 goto out; 2608 2609 irq_nmi_teardown(desc); 2610 out: 2611 irq_put_desc_unlock(desc, flags); 2612 } 2613 2614 int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which, 2615 bool *state) 2616 { 2617 struct irq_chip *chip; 2618 int err = -EINVAL; 2619 2620 do { 2621 chip = irq_data_get_irq_chip(data); 2622 if (chip->irq_get_irqchip_state) 2623 break; 2624 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 2625 data = data->parent_data; 2626 #else 2627 data = NULL; 2628 #endif 2629 } while (data); 2630 2631 if (data) 2632 err = chip->irq_get_irqchip_state(data, which, state); 2633 return err; 2634 } 2635 2636 /** 2637 * irq_get_irqchip_state - returns the irqchip state of a interrupt. 2638 * @irq: Interrupt line that is forwarded to a VM 2639 * @which: One of IRQCHIP_STATE_* the caller wants to know about 2640 * @state: a pointer to a boolean where the state is to be storeed 2641 * 2642 * This call snapshots the internal irqchip state of an 2643 * interrupt, returning into @state the bit corresponding to 2644 * stage @which 2645 * 2646 * This function should be called with preemption disabled if the 2647 * interrupt controller has per-cpu registers. 2648 */ 2649 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which, 2650 bool *state) 2651 { 2652 struct irq_desc *desc; 2653 struct irq_data *data; 2654 unsigned long flags; 2655 int err = -EINVAL; 2656 2657 desc = irq_get_desc_buslock(irq, &flags, 0); 2658 if (!desc) 2659 return err; 2660 2661 data = irq_desc_get_irq_data(desc); 2662 2663 err = __irq_get_irqchip_state(data, which, state); 2664 2665 irq_put_desc_busunlock(desc, flags); 2666 return err; 2667 } 2668 EXPORT_SYMBOL_GPL(irq_get_irqchip_state); 2669 2670 /** 2671 * irq_set_irqchip_state - set the state of a forwarded interrupt. 2672 * @irq: Interrupt line that is forwarded to a VM 2673 * @which: State to be restored (one of IRQCHIP_STATE_*) 2674 * @val: Value corresponding to @which 2675 * 2676 * This call sets the internal irqchip state of an interrupt, 2677 * depending on the value of @which. 2678 * 2679 * This function should be called with preemption disabled if the 2680 * interrupt controller has per-cpu registers. 2681 */ 2682 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which, 2683 bool val) 2684 { 2685 struct irq_desc *desc; 2686 struct irq_data *data; 2687 struct irq_chip *chip; 2688 unsigned long flags; 2689 int err = -EINVAL; 2690 2691 desc = irq_get_desc_buslock(irq, &flags, 0); 2692 if (!desc) 2693 return err; 2694 2695 data = irq_desc_get_irq_data(desc); 2696 2697 do { 2698 chip = irq_data_get_irq_chip(data); 2699 if (chip->irq_set_irqchip_state) 2700 break; 2701 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 2702 data = data->parent_data; 2703 #else 2704 data = NULL; 2705 #endif 2706 } while (data); 2707 2708 if (data) 2709 err = chip->irq_set_irqchip_state(data, which, val); 2710 2711 irq_put_desc_busunlock(desc, flags); 2712 return err; 2713 } 2714 EXPORT_SYMBOL_GPL(irq_set_irqchip_state); 2715