1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar 4 * Copyright (C) 2005-2006 Thomas Gleixner 5 * 6 * This file contains driver APIs to the irq subsystem. 7 */ 8 9 #define pr_fmt(fmt) "genirq: " fmt 10 11 #include <linux/irq.h> 12 #include <linux/kthread.h> 13 #include <linux/module.h> 14 #include <linux/random.h> 15 #include <linux/interrupt.h> 16 #include <linux/slab.h> 17 #include <linux/sched.h> 18 #include <linux/sched/rt.h> 19 #include <linux/sched/task.h> 20 #include <uapi/linux/sched/types.h> 21 #include <linux/task_work.h> 22 23 #include "internals.h" 24 25 #ifdef CONFIG_IRQ_FORCED_THREADING 26 __read_mostly bool force_irqthreads; 27 EXPORT_SYMBOL_GPL(force_irqthreads); 28 29 static int __init setup_forced_irqthreads(char *arg) 30 { 31 force_irqthreads = true; 32 return 0; 33 } 34 early_param("threadirqs", setup_forced_irqthreads); 35 #endif 36 37 static void __synchronize_hardirq(struct irq_desc *desc) 38 { 39 bool inprogress; 40 41 do { 42 unsigned long flags; 43 44 /* 45 * Wait until we're out of the critical section. This might 46 * give the wrong answer due to the lack of memory barriers. 47 */ 48 while (irqd_irq_inprogress(&desc->irq_data)) 49 cpu_relax(); 50 51 /* Ok, that indicated we're done: double-check carefully. */ 52 raw_spin_lock_irqsave(&desc->lock, flags); 53 inprogress = irqd_irq_inprogress(&desc->irq_data); 54 raw_spin_unlock_irqrestore(&desc->lock, flags); 55 56 /* Oops, that failed? */ 57 } while (inprogress); 58 } 59 60 /** 61 * synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs) 62 * @irq: interrupt number to wait for 63 * 64 * This function waits for any pending hard IRQ handlers for this 65 * interrupt to complete before returning. If you use this 66 * function while holding a resource the IRQ handler may need you 67 * will deadlock. It does not take associated threaded handlers 68 * into account. 69 * 70 * Do not use this for shutdown scenarios where you must be sure 71 * that all parts (hardirq and threaded handler) have completed. 72 * 73 * Returns: false if a threaded handler is active. 74 * 75 * This function may be called - with care - from IRQ context. 76 */ 77 bool synchronize_hardirq(unsigned int irq) 78 { 79 struct irq_desc *desc = irq_to_desc(irq); 80 81 if (desc) { 82 __synchronize_hardirq(desc); 83 return !atomic_read(&desc->threads_active); 84 } 85 86 return true; 87 } 88 EXPORT_SYMBOL(synchronize_hardirq); 89 90 /** 91 * synchronize_irq - wait for pending IRQ handlers (on other CPUs) 92 * @irq: interrupt number to wait for 93 * 94 * This function waits for any pending IRQ handlers for this interrupt 95 * to complete before returning. If you use this function while 96 * holding a resource the IRQ handler may need you will deadlock. 97 * 98 * This function may be called - with care - from IRQ context. 99 */ 100 void synchronize_irq(unsigned int irq) 101 { 102 struct irq_desc *desc = irq_to_desc(irq); 103 104 if (desc) { 105 __synchronize_hardirq(desc); 106 /* 107 * We made sure that no hardirq handler is 108 * running. Now verify that no threaded handlers are 109 * active. 110 */ 111 wait_event(desc->wait_for_threads, 112 !atomic_read(&desc->threads_active)); 113 } 114 } 115 EXPORT_SYMBOL(synchronize_irq); 116 117 #ifdef CONFIG_SMP 118 cpumask_var_t irq_default_affinity; 119 120 static bool __irq_can_set_affinity(struct irq_desc *desc) 121 { 122 if (!desc || !irqd_can_balance(&desc->irq_data) || 123 !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity) 124 return false; 125 return true; 126 } 127 128 /** 129 * irq_can_set_affinity - Check if the affinity of a given irq can be set 130 * @irq: Interrupt to check 131 * 132 */ 133 int irq_can_set_affinity(unsigned int irq) 134 { 135 return __irq_can_set_affinity(irq_to_desc(irq)); 136 } 137 138 /** 139 * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space 140 * @irq: Interrupt to check 141 * 142 * Like irq_can_set_affinity() above, but additionally checks for the 143 * AFFINITY_MANAGED flag. 144 */ 145 bool irq_can_set_affinity_usr(unsigned int irq) 146 { 147 struct irq_desc *desc = irq_to_desc(irq); 148 149 return __irq_can_set_affinity(desc) && 150 !irqd_affinity_is_managed(&desc->irq_data); 151 } 152 153 /** 154 * irq_set_thread_affinity - Notify irq threads to adjust affinity 155 * @desc: irq descriptor which has affitnity changed 156 * 157 * We just set IRQTF_AFFINITY and delegate the affinity setting 158 * to the interrupt thread itself. We can not call 159 * set_cpus_allowed_ptr() here as we hold desc->lock and this 160 * code can be called from hard interrupt context. 161 */ 162 void irq_set_thread_affinity(struct irq_desc *desc) 163 { 164 struct irqaction *action; 165 166 for_each_action_of_desc(desc, action) 167 if (action->thread) 168 set_bit(IRQTF_AFFINITY, &action->thread_flags); 169 } 170 171 static void irq_validate_effective_affinity(struct irq_data *data) 172 { 173 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK 174 const struct cpumask *m = irq_data_get_effective_affinity_mask(data); 175 struct irq_chip *chip = irq_data_get_irq_chip(data); 176 177 if (!cpumask_empty(m)) 178 return; 179 pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n", 180 chip->name, data->irq); 181 #endif 182 } 183 184 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask, 185 bool force) 186 { 187 struct irq_desc *desc = irq_data_to_desc(data); 188 struct irq_chip *chip = irq_data_get_irq_chip(data); 189 int ret; 190 191 if (!chip || !chip->irq_set_affinity) 192 return -EINVAL; 193 194 ret = chip->irq_set_affinity(data, mask, force); 195 switch (ret) { 196 case IRQ_SET_MASK_OK: 197 case IRQ_SET_MASK_OK_DONE: 198 cpumask_copy(desc->irq_common_data.affinity, mask); 199 /* fall through */ 200 case IRQ_SET_MASK_OK_NOCOPY: 201 irq_validate_effective_affinity(data); 202 irq_set_thread_affinity(desc); 203 ret = 0; 204 } 205 206 return ret; 207 } 208 209 #ifdef CONFIG_GENERIC_PENDING_IRQ 210 static inline int irq_set_affinity_pending(struct irq_data *data, 211 const struct cpumask *dest) 212 { 213 struct irq_desc *desc = irq_data_to_desc(data); 214 215 irqd_set_move_pending(data); 216 irq_copy_pending(desc, dest); 217 return 0; 218 } 219 #else 220 static inline int irq_set_affinity_pending(struct irq_data *data, 221 const struct cpumask *dest) 222 { 223 return -EBUSY; 224 } 225 #endif 226 227 static int irq_try_set_affinity(struct irq_data *data, 228 const struct cpumask *dest, bool force) 229 { 230 int ret = irq_do_set_affinity(data, dest, force); 231 232 /* 233 * In case that the underlying vector management is busy and the 234 * architecture supports the generic pending mechanism then utilize 235 * this to avoid returning an error to user space. 236 */ 237 if (ret == -EBUSY && !force) 238 ret = irq_set_affinity_pending(data, dest); 239 return ret; 240 } 241 242 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask, 243 bool force) 244 { 245 struct irq_chip *chip = irq_data_get_irq_chip(data); 246 struct irq_desc *desc = irq_data_to_desc(data); 247 int ret = 0; 248 249 if (!chip || !chip->irq_set_affinity) 250 return -EINVAL; 251 252 if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) { 253 ret = irq_try_set_affinity(data, mask, force); 254 } else { 255 irqd_set_move_pending(data); 256 irq_copy_pending(desc, mask); 257 } 258 259 if (desc->affinity_notify) { 260 kref_get(&desc->affinity_notify->kref); 261 schedule_work(&desc->affinity_notify->work); 262 } 263 irqd_set(data, IRQD_AFFINITY_SET); 264 265 return ret; 266 } 267 268 int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force) 269 { 270 struct irq_desc *desc = irq_to_desc(irq); 271 unsigned long flags; 272 int ret; 273 274 if (!desc) 275 return -EINVAL; 276 277 raw_spin_lock_irqsave(&desc->lock, flags); 278 ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force); 279 raw_spin_unlock_irqrestore(&desc->lock, flags); 280 return ret; 281 } 282 283 int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m) 284 { 285 unsigned long flags; 286 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 287 288 if (!desc) 289 return -EINVAL; 290 desc->affinity_hint = m; 291 irq_put_desc_unlock(desc, flags); 292 /* set the initial affinity to prevent every interrupt being on CPU0 */ 293 if (m) 294 __irq_set_affinity(irq, m, false); 295 return 0; 296 } 297 EXPORT_SYMBOL_GPL(irq_set_affinity_hint); 298 299 static void irq_affinity_notify(struct work_struct *work) 300 { 301 struct irq_affinity_notify *notify = 302 container_of(work, struct irq_affinity_notify, work); 303 struct irq_desc *desc = irq_to_desc(notify->irq); 304 cpumask_var_t cpumask; 305 unsigned long flags; 306 307 if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL)) 308 goto out; 309 310 raw_spin_lock_irqsave(&desc->lock, flags); 311 if (irq_move_pending(&desc->irq_data)) 312 irq_get_pending(cpumask, desc); 313 else 314 cpumask_copy(cpumask, desc->irq_common_data.affinity); 315 raw_spin_unlock_irqrestore(&desc->lock, flags); 316 317 notify->notify(notify, cpumask); 318 319 free_cpumask_var(cpumask); 320 out: 321 kref_put(¬ify->kref, notify->release); 322 } 323 324 /** 325 * irq_set_affinity_notifier - control notification of IRQ affinity changes 326 * @irq: Interrupt for which to enable/disable notification 327 * @notify: Context for notification, or %NULL to disable 328 * notification. Function pointers must be initialised; 329 * the other fields will be initialised by this function. 330 * 331 * Must be called in process context. Notification may only be enabled 332 * after the IRQ is allocated and must be disabled before the IRQ is 333 * freed using free_irq(). 334 */ 335 int 336 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify) 337 { 338 struct irq_desc *desc = irq_to_desc(irq); 339 struct irq_affinity_notify *old_notify; 340 unsigned long flags; 341 342 /* The release function is promised process context */ 343 might_sleep(); 344 345 if (!desc || desc->istate & IRQS_NMI) 346 return -EINVAL; 347 348 /* Complete initialisation of *notify */ 349 if (notify) { 350 notify->irq = irq; 351 kref_init(¬ify->kref); 352 INIT_WORK(¬ify->work, irq_affinity_notify); 353 } 354 355 raw_spin_lock_irqsave(&desc->lock, flags); 356 old_notify = desc->affinity_notify; 357 desc->affinity_notify = notify; 358 raw_spin_unlock_irqrestore(&desc->lock, flags); 359 360 if (old_notify) { 361 cancel_work_sync(&old_notify->work); 362 kref_put(&old_notify->kref, old_notify->release); 363 } 364 365 return 0; 366 } 367 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier); 368 369 #ifndef CONFIG_AUTO_IRQ_AFFINITY 370 /* 371 * Generic version of the affinity autoselector. 372 */ 373 int irq_setup_affinity(struct irq_desc *desc) 374 { 375 struct cpumask *set = irq_default_affinity; 376 int ret, node = irq_desc_get_node(desc); 377 static DEFINE_RAW_SPINLOCK(mask_lock); 378 static struct cpumask mask; 379 380 /* Excludes PER_CPU and NO_BALANCE interrupts */ 381 if (!__irq_can_set_affinity(desc)) 382 return 0; 383 384 raw_spin_lock(&mask_lock); 385 /* 386 * Preserve the managed affinity setting and a userspace affinity 387 * setup, but make sure that one of the targets is online. 388 */ 389 if (irqd_affinity_is_managed(&desc->irq_data) || 390 irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) { 391 if (cpumask_intersects(desc->irq_common_data.affinity, 392 cpu_online_mask)) 393 set = desc->irq_common_data.affinity; 394 else 395 irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET); 396 } 397 398 cpumask_and(&mask, cpu_online_mask, set); 399 if (cpumask_empty(&mask)) 400 cpumask_copy(&mask, cpu_online_mask); 401 402 if (node != NUMA_NO_NODE) { 403 const struct cpumask *nodemask = cpumask_of_node(node); 404 405 /* make sure at least one of the cpus in nodemask is online */ 406 if (cpumask_intersects(&mask, nodemask)) 407 cpumask_and(&mask, &mask, nodemask); 408 } 409 ret = irq_do_set_affinity(&desc->irq_data, &mask, false); 410 raw_spin_unlock(&mask_lock); 411 return ret; 412 } 413 #else 414 /* Wrapper for ALPHA specific affinity selector magic */ 415 int irq_setup_affinity(struct irq_desc *desc) 416 { 417 return irq_select_affinity(irq_desc_get_irq(desc)); 418 } 419 #endif 420 421 /* 422 * Called when a bogus affinity is set via /proc/irq 423 */ 424 int irq_select_affinity_usr(unsigned int irq) 425 { 426 struct irq_desc *desc = irq_to_desc(irq); 427 unsigned long flags; 428 int ret; 429 430 raw_spin_lock_irqsave(&desc->lock, flags); 431 ret = irq_setup_affinity(desc); 432 raw_spin_unlock_irqrestore(&desc->lock, flags); 433 return ret; 434 } 435 #endif 436 437 /** 438 * irq_set_vcpu_affinity - Set vcpu affinity for the interrupt 439 * @irq: interrupt number to set affinity 440 * @vcpu_info: vCPU specific data or pointer to a percpu array of vCPU 441 * specific data for percpu_devid interrupts 442 * 443 * This function uses the vCPU specific data to set the vCPU 444 * affinity for an irq. The vCPU specific data is passed from 445 * outside, such as KVM. One example code path is as below: 446 * KVM -> IOMMU -> irq_set_vcpu_affinity(). 447 */ 448 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info) 449 { 450 unsigned long flags; 451 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 452 struct irq_data *data; 453 struct irq_chip *chip; 454 int ret = -ENOSYS; 455 456 if (!desc) 457 return -EINVAL; 458 459 data = irq_desc_get_irq_data(desc); 460 do { 461 chip = irq_data_get_irq_chip(data); 462 if (chip && chip->irq_set_vcpu_affinity) 463 break; 464 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 465 data = data->parent_data; 466 #else 467 data = NULL; 468 #endif 469 } while (data); 470 471 if (data) 472 ret = chip->irq_set_vcpu_affinity(data, vcpu_info); 473 irq_put_desc_unlock(desc, flags); 474 475 return ret; 476 } 477 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity); 478 479 void __disable_irq(struct irq_desc *desc) 480 { 481 if (!desc->depth++) 482 irq_disable(desc); 483 } 484 485 static int __disable_irq_nosync(unsigned int irq) 486 { 487 unsigned long flags; 488 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 489 490 if (!desc) 491 return -EINVAL; 492 __disable_irq(desc); 493 irq_put_desc_busunlock(desc, flags); 494 return 0; 495 } 496 497 /** 498 * disable_irq_nosync - disable an irq without waiting 499 * @irq: Interrupt to disable 500 * 501 * Disable the selected interrupt line. Disables and Enables are 502 * nested. 503 * Unlike disable_irq(), this function does not ensure existing 504 * instances of the IRQ handler have completed before returning. 505 * 506 * This function may be called from IRQ context. 507 */ 508 void disable_irq_nosync(unsigned int irq) 509 { 510 __disable_irq_nosync(irq); 511 } 512 EXPORT_SYMBOL(disable_irq_nosync); 513 514 /** 515 * disable_irq - disable an irq and wait for completion 516 * @irq: Interrupt to disable 517 * 518 * Disable the selected interrupt line. Enables and Disables are 519 * nested. 520 * This function waits for any pending IRQ handlers for this interrupt 521 * to complete before returning. If you use this function while 522 * holding a resource the IRQ handler may need you will deadlock. 523 * 524 * This function may be called - with care - from IRQ context. 525 */ 526 void disable_irq(unsigned int irq) 527 { 528 if (!__disable_irq_nosync(irq)) 529 synchronize_irq(irq); 530 } 531 EXPORT_SYMBOL(disable_irq); 532 533 /** 534 * disable_hardirq - disables an irq and waits for hardirq completion 535 * @irq: Interrupt to disable 536 * 537 * Disable the selected interrupt line. Enables and Disables are 538 * nested. 539 * This function waits for any pending hard IRQ handlers for this 540 * interrupt to complete before returning. If you use this function while 541 * holding a resource the hard IRQ handler may need you will deadlock. 542 * 543 * When used to optimistically disable an interrupt from atomic context 544 * the return value must be checked. 545 * 546 * Returns: false if a threaded handler is active. 547 * 548 * This function may be called - with care - from IRQ context. 549 */ 550 bool disable_hardirq(unsigned int irq) 551 { 552 if (!__disable_irq_nosync(irq)) 553 return synchronize_hardirq(irq); 554 555 return false; 556 } 557 EXPORT_SYMBOL_GPL(disable_hardirq); 558 559 /** 560 * disable_nmi_nosync - disable an nmi without waiting 561 * @irq: Interrupt to disable 562 * 563 * Disable the selected interrupt line. Disables and enables are 564 * nested. 565 * The interrupt to disable must have been requested through request_nmi. 566 * Unlike disable_nmi(), this function does not ensure existing 567 * instances of the IRQ handler have completed before returning. 568 */ 569 void disable_nmi_nosync(unsigned int irq) 570 { 571 disable_irq_nosync(irq); 572 } 573 574 void __enable_irq(struct irq_desc *desc) 575 { 576 switch (desc->depth) { 577 case 0: 578 err_out: 579 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n", 580 irq_desc_get_irq(desc)); 581 break; 582 case 1: { 583 if (desc->istate & IRQS_SUSPENDED) 584 goto err_out; 585 /* Prevent probing on this irq: */ 586 irq_settings_set_noprobe(desc); 587 /* 588 * Call irq_startup() not irq_enable() here because the 589 * interrupt might be marked NOAUTOEN. So irq_startup() 590 * needs to be invoked when it gets enabled the first 591 * time. If it was already started up, then irq_startup() 592 * will invoke irq_enable() under the hood. 593 */ 594 irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE); 595 break; 596 } 597 default: 598 desc->depth--; 599 } 600 } 601 602 /** 603 * enable_irq - enable handling of an irq 604 * @irq: Interrupt to enable 605 * 606 * Undoes the effect of one call to disable_irq(). If this 607 * matches the last disable, processing of interrupts on this 608 * IRQ line is re-enabled. 609 * 610 * This function may be called from IRQ context only when 611 * desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL ! 612 */ 613 void enable_irq(unsigned int irq) 614 { 615 unsigned long flags; 616 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 617 618 if (!desc) 619 return; 620 if (WARN(!desc->irq_data.chip, 621 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq)) 622 goto out; 623 624 __enable_irq(desc); 625 out: 626 irq_put_desc_busunlock(desc, flags); 627 } 628 EXPORT_SYMBOL(enable_irq); 629 630 /** 631 * enable_nmi - enable handling of an nmi 632 * @irq: Interrupt to enable 633 * 634 * The interrupt to enable must have been requested through request_nmi. 635 * Undoes the effect of one call to disable_nmi(). If this 636 * matches the last disable, processing of interrupts on this 637 * IRQ line is re-enabled. 638 */ 639 void enable_nmi(unsigned int irq) 640 { 641 enable_irq(irq); 642 } 643 644 static int set_irq_wake_real(unsigned int irq, unsigned int on) 645 { 646 struct irq_desc *desc = irq_to_desc(irq); 647 int ret = -ENXIO; 648 649 if (irq_desc_get_chip(desc)->flags & IRQCHIP_SKIP_SET_WAKE) 650 return 0; 651 652 if (desc->irq_data.chip->irq_set_wake) 653 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on); 654 655 return ret; 656 } 657 658 /** 659 * irq_set_irq_wake - control irq power management wakeup 660 * @irq: interrupt to control 661 * @on: enable/disable power management wakeup 662 * 663 * Enable/disable power management wakeup mode, which is 664 * disabled by default. Enables and disables must match, 665 * just as they match for non-wakeup mode support. 666 * 667 * Wakeup mode lets this IRQ wake the system from sleep 668 * states like "suspend to RAM". 669 */ 670 int irq_set_irq_wake(unsigned int irq, unsigned int on) 671 { 672 unsigned long flags; 673 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 674 int ret = 0; 675 676 if (!desc) 677 return -EINVAL; 678 679 /* Don't use NMIs as wake up interrupts please */ 680 if (desc->istate & IRQS_NMI) { 681 ret = -EINVAL; 682 goto out_unlock; 683 } 684 685 /* wakeup-capable irqs can be shared between drivers that 686 * don't need to have the same sleep mode behaviors. 687 */ 688 if (on) { 689 if (desc->wake_depth++ == 0) { 690 ret = set_irq_wake_real(irq, on); 691 if (ret) 692 desc->wake_depth = 0; 693 else 694 irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE); 695 } 696 } else { 697 if (desc->wake_depth == 0) { 698 WARN(1, "Unbalanced IRQ %d wake disable\n", irq); 699 } else if (--desc->wake_depth == 0) { 700 ret = set_irq_wake_real(irq, on); 701 if (ret) 702 desc->wake_depth = 1; 703 else 704 irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE); 705 } 706 } 707 708 out_unlock: 709 irq_put_desc_busunlock(desc, flags); 710 return ret; 711 } 712 EXPORT_SYMBOL(irq_set_irq_wake); 713 714 /* 715 * Internal function that tells the architecture code whether a 716 * particular irq has been exclusively allocated or is available 717 * for driver use. 718 */ 719 int can_request_irq(unsigned int irq, unsigned long irqflags) 720 { 721 unsigned long flags; 722 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 723 int canrequest = 0; 724 725 if (!desc) 726 return 0; 727 728 if (irq_settings_can_request(desc)) { 729 if (!desc->action || 730 irqflags & desc->action->flags & IRQF_SHARED) 731 canrequest = 1; 732 } 733 irq_put_desc_unlock(desc, flags); 734 return canrequest; 735 } 736 737 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags) 738 { 739 struct irq_chip *chip = desc->irq_data.chip; 740 int ret, unmask = 0; 741 742 if (!chip || !chip->irq_set_type) { 743 /* 744 * IRQF_TRIGGER_* but the PIC does not support multiple 745 * flow-types? 746 */ 747 pr_debug("No set_type function for IRQ %d (%s)\n", 748 irq_desc_get_irq(desc), 749 chip ? (chip->name ? : "unknown") : "unknown"); 750 return 0; 751 } 752 753 if (chip->flags & IRQCHIP_SET_TYPE_MASKED) { 754 if (!irqd_irq_masked(&desc->irq_data)) 755 mask_irq(desc); 756 if (!irqd_irq_disabled(&desc->irq_data)) 757 unmask = 1; 758 } 759 760 /* Mask all flags except trigger mode */ 761 flags &= IRQ_TYPE_SENSE_MASK; 762 ret = chip->irq_set_type(&desc->irq_data, flags); 763 764 switch (ret) { 765 case IRQ_SET_MASK_OK: 766 case IRQ_SET_MASK_OK_DONE: 767 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK); 768 irqd_set(&desc->irq_data, flags); 769 /* fall through */ 770 771 case IRQ_SET_MASK_OK_NOCOPY: 772 flags = irqd_get_trigger_type(&desc->irq_data); 773 irq_settings_set_trigger_mask(desc, flags); 774 irqd_clear(&desc->irq_data, IRQD_LEVEL); 775 irq_settings_clr_level(desc); 776 if (flags & IRQ_TYPE_LEVEL_MASK) { 777 irq_settings_set_level(desc); 778 irqd_set(&desc->irq_data, IRQD_LEVEL); 779 } 780 781 ret = 0; 782 break; 783 default: 784 pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n", 785 flags, irq_desc_get_irq(desc), chip->irq_set_type); 786 } 787 if (unmask) 788 unmask_irq(desc); 789 return ret; 790 } 791 792 #ifdef CONFIG_HARDIRQS_SW_RESEND 793 int irq_set_parent(int irq, int parent_irq) 794 { 795 unsigned long flags; 796 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 797 798 if (!desc) 799 return -EINVAL; 800 801 desc->parent_irq = parent_irq; 802 803 irq_put_desc_unlock(desc, flags); 804 return 0; 805 } 806 EXPORT_SYMBOL_GPL(irq_set_parent); 807 #endif 808 809 /* 810 * Default primary interrupt handler for threaded interrupts. Is 811 * assigned as primary handler when request_threaded_irq is called 812 * with handler == NULL. Useful for oneshot interrupts. 813 */ 814 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id) 815 { 816 return IRQ_WAKE_THREAD; 817 } 818 819 /* 820 * Primary handler for nested threaded interrupts. Should never be 821 * called. 822 */ 823 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id) 824 { 825 WARN(1, "Primary handler called for nested irq %d\n", irq); 826 return IRQ_NONE; 827 } 828 829 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id) 830 { 831 WARN(1, "Secondary action handler called for irq %d\n", irq); 832 return IRQ_NONE; 833 } 834 835 static int irq_wait_for_interrupt(struct irqaction *action) 836 { 837 for (;;) { 838 set_current_state(TASK_INTERRUPTIBLE); 839 840 if (kthread_should_stop()) { 841 /* may need to run one last time */ 842 if (test_and_clear_bit(IRQTF_RUNTHREAD, 843 &action->thread_flags)) { 844 __set_current_state(TASK_RUNNING); 845 return 0; 846 } 847 __set_current_state(TASK_RUNNING); 848 return -1; 849 } 850 851 if (test_and_clear_bit(IRQTF_RUNTHREAD, 852 &action->thread_flags)) { 853 __set_current_state(TASK_RUNNING); 854 return 0; 855 } 856 schedule(); 857 } 858 } 859 860 /* 861 * Oneshot interrupts keep the irq line masked until the threaded 862 * handler finished. unmask if the interrupt has not been disabled and 863 * is marked MASKED. 864 */ 865 static void irq_finalize_oneshot(struct irq_desc *desc, 866 struct irqaction *action) 867 { 868 if (!(desc->istate & IRQS_ONESHOT) || 869 action->handler == irq_forced_secondary_handler) 870 return; 871 again: 872 chip_bus_lock(desc); 873 raw_spin_lock_irq(&desc->lock); 874 875 /* 876 * Implausible though it may be we need to protect us against 877 * the following scenario: 878 * 879 * The thread is faster done than the hard interrupt handler 880 * on the other CPU. If we unmask the irq line then the 881 * interrupt can come in again and masks the line, leaves due 882 * to IRQS_INPROGRESS and the irq line is masked forever. 883 * 884 * This also serializes the state of shared oneshot handlers 885 * versus "desc->threads_onehsot |= action->thread_mask;" in 886 * irq_wake_thread(). See the comment there which explains the 887 * serialization. 888 */ 889 if (unlikely(irqd_irq_inprogress(&desc->irq_data))) { 890 raw_spin_unlock_irq(&desc->lock); 891 chip_bus_sync_unlock(desc); 892 cpu_relax(); 893 goto again; 894 } 895 896 /* 897 * Now check again, whether the thread should run. Otherwise 898 * we would clear the threads_oneshot bit of this thread which 899 * was just set. 900 */ 901 if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags)) 902 goto out_unlock; 903 904 desc->threads_oneshot &= ~action->thread_mask; 905 906 if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) && 907 irqd_irq_masked(&desc->irq_data)) 908 unmask_threaded_irq(desc); 909 910 out_unlock: 911 raw_spin_unlock_irq(&desc->lock); 912 chip_bus_sync_unlock(desc); 913 } 914 915 #ifdef CONFIG_SMP 916 /* 917 * Check whether we need to change the affinity of the interrupt thread. 918 */ 919 static void 920 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) 921 { 922 cpumask_var_t mask; 923 bool valid = true; 924 925 if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags)) 926 return; 927 928 /* 929 * In case we are out of memory we set IRQTF_AFFINITY again and 930 * try again next time 931 */ 932 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) { 933 set_bit(IRQTF_AFFINITY, &action->thread_flags); 934 return; 935 } 936 937 raw_spin_lock_irq(&desc->lock); 938 /* 939 * This code is triggered unconditionally. Check the affinity 940 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out. 941 */ 942 if (cpumask_available(desc->irq_common_data.affinity)) { 943 const struct cpumask *m; 944 945 m = irq_data_get_effective_affinity_mask(&desc->irq_data); 946 cpumask_copy(mask, m); 947 } else { 948 valid = false; 949 } 950 raw_spin_unlock_irq(&desc->lock); 951 952 if (valid) 953 set_cpus_allowed_ptr(current, mask); 954 free_cpumask_var(mask); 955 } 956 #else 957 static inline void 958 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { } 959 #endif 960 961 /* 962 * Interrupts which are not explicitly requested as threaded 963 * interrupts rely on the implicit bh/preempt disable of the hard irq 964 * context. So we need to disable bh here to avoid deadlocks and other 965 * side effects. 966 */ 967 static irqreturn_t 968 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action) 969 { 970 irqreturn_t ret; 971 972 local_bh_disable(); 973 ret = action->thread_fn(action->irq, action->dev_id); 974 if (ret == IRQ_HANDLED) 975 atomic_inc(&desc->threads_handled); 976 977 irq_finalize_oneshot(desc, action); 978 local_bh_enable(); 979 return ret; 980 } 981 982 /* 983 * Interrupts explicitly requested as threaded interrupts want to be 984 * preemtible - many of them need to sleep and wait for slow busses to 985 * complete. 986 */ 987 static irqreturn_t irq_thread_fn(struct irq_desc *desc, 988 struct irqaction *action) 989 { 990 irqreturn_t ret; 991 992 ret = action->thread_fn(action->irq, action->dev_id); 993 if (ret == IRQ_HANDLED) 994 atomic_inc(&desc->threads_handled); 995 996 irq_finalize_oneshot(desc, action); 997 return ret; 998 } 999 1000 static void wake_threads_waitq(struct irq_desc *desc) 1001 { 1002 if (atomic_dec_and_test(&desc->threads_active)) 1003 wake_up(&desc->wait_for_threads); 1004 } 1005 1006 static void irq_thread_dtor(struct callback_head *unused) 1007 { 1008 struct task_struct *tsk = current; 1009 struct irq_desc *desc; 1010 struct irqaction *action; 1011 1012 if (WARN_ON_ONCE(!(current->flags & PF_EXITING))) 1013 return; 1014 1015 action = kthread_data(tsk); 1016 1017 pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n", 1018 tsk->comm, tsk->pid, action->irq); 1019 1020 1021 desc = irq_to_desc(action->irq); 1022 /* 1023 * If IRQTF_RUNTHREAD is set, we need to decrement 1024 * desc->threads_active and wake possible waiters. 1025 */ 1026 if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags)) 1027 wake_threads_waitq(desc); 1028 1029 /* Prevent a stale desc->threads_oneshot */ 1030 irq_finalize_oneshot(desc, action); 1031 } 1032 1033 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action) 1034 { 1035 struct irqaction *secondary = action->secondary; 1036 1037 if (WARN_ON_ONCE(!secondary)) 1038 return; 1039 1040 raw_spin_lock_irq(&desc->lock); 1041 __irq_wake_thread(desc, secondary); 1042 raw_spin_unlock_irq(&desc->lock); 1043 } 1044 1045 /* 1046 * Interrupt handler thread 1047 */ 1048 static int irq_thread(void *data) 1049 { 1050 struct callback_head on_exit_work; 1051 struct irqaction *action = data; 1052 struct irq_desc *desc = irq_to_desc(action->irq); 1053 irqreturn_t (*handler_fn)(struct irq_desc *desc, 1054 struct irqaction *action); 1055 1056 if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD, 1057 &action->thread_flags)) 1058 handler_fn = irq_forced_thread_fn; 1059 else 1060 handler_fn = irq_thread_fn; 1061 1062 init_task_work(&on_exit_work, irq_thread_dtor); 1063 task_work_add(current, &on_exit_work, false); 1064 1065 irq_thread_check_affinity(desc, action); 1066 1067 while (!irq_wait_for_interrupt(action)) { 1068 irqreturn_t action_ret; 1069 1070 irq_thread_check_affinity(desc, action); 1071 1072 action_ret = handler_fn(desc, action); 1073 if (action_ret == IRQ_WAKE_THREAD) 1074 irq_wake_secondary(desc, action); 1075 1076 wake_threads_waitq(desc); 1077 } 1078 1079 /* 1080 * This is the regular exit path. __free_irq() is stopping the 1081 * thread via kthread_stop() after calling 1082 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the 1083 * oneshot mask bit can be set. 1084 */ 1085 task_work_cancel(current, irq_thread_dtor); 1086 return 0; 1087 } 1088 1089 /** 1090 * irq_wake_thread - wake the irq thread for the action identified by dev_id 1091 * @irq: Interrupt line 1092 * @dev_id: Device identity for which the thread should be woken 1093 * 1094 */ 1095 void irq_wake_thread(unsigned int irq, void *dev_id) 1096 { 1097 struct irq_desc *desc = irq_to_desc(irq); 1098 struct irqaction *action; 1099 unsigned long flags; 1100 1101 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1102 return; 1103 1104 raw_spin_lock_irqsave(&desc->lock, flags); 1105 for_each_action_of_desc(desc, action) { 1106 if (action->dev_id == dev_id) { 1107 if (action->thread) 1108 __irq_wake_thread(desc, action); 1109 break; 1110 } 1111 } 1112 raw_spin_unlock_irqrestore(&desc->lock, flags); 1113 } 1114 EXPORT_SYMBOL_GPL(irq_wake_thread); 1115 1116 static int irq_setup_forced_threading(struct irqaction *new) 1117 { 1118 if (!force_irqthreads) 1119 return 0; 1120 if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT)) 1121 return 0; 1122 1123 /* 1124 * No further action required for interrupts which are requested as 1125 * threaded interrupts already 1126 */ 1127 if (new->handler == irq_default_primary_handler) 1128 return 0; 1129 1130 new->flags |= IRQF_ONESHOT; 1131 1132 /* 1133 * Handle the case where we have a real primary handler and a 1134 * thread handler. We force thread them as well by creating a 1135 * secondary action. 1136 */ 1137 if (new->handler && new->thread_fn) { 1138 /* Allocate the secondary action */ 1139 new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 1140 if (!new->secondary) 1141 return -ENOMEM; 1142 new->secondary->handler = irq_forced_secondary_handler; 1143 new->secondary->thread_fn = new->thread_fn; 1144 new->secondary->dev_id = new->dev_id; 1145 new->secondary->irq = new->irq; 1146 new->secondary->name = new->name; 1147 } 1148 /* Deal with the primary handler */ 1149 set_bit(IRQTF_FORCED_THREAD, &new->thread_flags); 1150 new->thread_fn = new->handler; 1151 new->handler = irq_default_primary_handler; 1152 return 0; 1153 } 1154 1155 static int irq_request_resources(struct irq_desc *desc) 1156 { 1157 struct irq_data *d = &desc->irq_data; 1158 struct irq_chip *c = d->chip; 1159 1160 return c->irq_request_resources ? c->irq_request_resources(d) : 0; 1161 } 1162 1163 static void irq_release_resources(struct irq_desc *desc) 1164 { 1165 struct irq_data *d = &desc->irq_data; 1166 struct irq_chip *c = d->chip; 1167 1168 if (c->irq_release_resources) 1169 c->irq_release_resources(d); 1170 } 1171 1172 static bool irq_supports_nmi(struct irq_desc *desc) 1173 { 1174 struct irq_data *d = irq_desc_get_irq_data(desc); 1175 1176 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 1177 /* Only IRQs directly managed by the root irqchip can be set as NMI */ 1178 if (d->parent_data) 1179 return false; 1180 #endif 1181 /* Don't support NMIs for chips behind a slow bus */ 1182 if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock) 1183 return false; 1184 1185 return d->chip->flags & IRQCHIP_SUPPORTS_NMI; 1186 } 1187 1188 static int irq_nmi_setup(struct irq_desc *desc) 1189 { 1190 struct irq_data *d = irq_desc_get_irq_data(desc); 1191 struct irq_chip *c = d->chip; 1192 1193 return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL; 1194 } 1195 1196 static void irq_nmi_teardown(struct irq_desc *desc) 1197 { 1198 struct irq_data *d = irq_desc_get_irq_data(desc); 1199 struct irq_chip *c = d->chip; 1200 1201 if (c->irq_nmi_teardown) 1202 c->irq_nmi_teardown(d); 1203 } 1204 1205 static int 1206 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary) 1207 { 1208 struct task_struct *t; 1209 struct sched_param param = { 1210 .sched_priority = MAX_USER_RT_PRIO/2, 1211 }; 1212 1213 if (!secondary) { 1214 t = kthread_create(irq_thread, new, "irq/%d-%s", irq, 1215 new->name); 1216 } else { 1217 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq, 1218 new->name); 1219 param.sched_priority -= 1; 1220 } 1221 1222 if (IS_ERR(t)) 1223 return PTR_ERR(t); 1224 1225 sched_setscheduler_nocheck(t, SCHED_FIFO, ¶m); 1226 1227 /* 1228 * We keep the reference to the task struct even if 1229 * the thread dies to avoid that the interrupt code 1230 * references an already freed task_struct. 1231 */ 1232 get_task_struct(t); 1233 new->thread = t; 1234 /* 1235 * Tell the thread to set its affinity. This is 1236 * important for shared interrupt handlers as we do 1237 * not invoke setup_affinity() for the secondary 1238 * handlers as everything is already set up. Even for 1239 * interrupts marked with IRQF_NO_BALANCE this is 1240 * correct as we want the thread to move to the cpu(s) 1241 * on which the requesting code placed the interrupt. 1242 */ 1243 set_bit(IRQTF_AFFINITY, &new->thread_flags); 1244 return 0; 1245 } 1246 1247 /* 1248 * Internal function to register an irqaction - typically used to 1249 * allocate special interrupts that are part of the architecture. 1250 * 1251 * Locking rules: 1252 * 1253 * desc->request_mutex Provides serialization against a concurrent free_irq() 1254 * chip_bus_lock Provides serialization for slow bus operations 1255 * desc->lock Provides serialization against hard interrupts 1256 * 1257 * chip_bus_lock and desc->lock are sufficient for all other management and 1258 * interrupt related functions. desc->request_mutex solely serializes 1259 * request/free_irq(). 1260 */ 1261 static int 1262 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new) 1263 { 1264 struct irqaction *old, **old_ptr; 1265 unsigned long flags, thread_mask = 0; 1266 int ret, nested, shared = 0; 1267 1268 if (!desc) 1269 return -EINVAL; 1270 1271 if (desc->irq_data.chip == &no_irq_chip) 1272 return -ENOSYS; 1273 if (!try_module_get(desc->owner)) 1274 return -ENODEV; 1275 1276 new->irq = irq; 1277 1278 /* 1279 * If the trigger type is not specified by the caller, 1280 * then use the default for this interrupt. 1281 */ 1282 if (!(new->flags & IRQF_TRIGGER_MASK)) 1283 new->flags |= irqd_get_trigger_type(&desc->irq_data); 1284 1285 /* 1286 * Check whether the interrupt nests into another interrupt 1287 * thread. 1288 */ 1289 nested = irq_settings_is_nested_thread(desc); 1290 if (nested) { 1291 if (!new->thread_fn) { 1292 ret = -EINVAL; 1293 goto out_mput; 1294 } 1295 /* 1296 * Replace the primary handler which was provided from 1297 * the driver for non nested interrupt handling by the 1298 * dummy function which warns when called. 1299 */ 1300 new->handler = irq_nested_primary_handler; 1301 } else { 1302 if (irq_settings_can_thread(desc)) { 1303 ret = irq_setup_forced_threading(new); 1304 if (ret) 1305 goto out_mput; 1306 } 1307 } 1308 1309 /* 1310 * Create a handler thread when a thread function is supplied 1311 * and the interrupt does not nest into another interrupt 1312 * thread. 1313 */ 1314 if (new->thread_fn && !nested) { 1315 ret = setup_irq_thread(new, irq, false); 1316 if (ret) 1317 goto out_mput; 1318 if (new->secondary) { 1319 ret = setup_irq_thread(new->secondary, irq, true); 1320 if (ret) 1321 goto out_thread; 1322 } 1323 } 1324 1325 /* 1326 * Drivers are often written to work w/o knowledge about the 1327 * underlying irq chip implementation, so a request for a 1328 * threaded irq without a primary hard irq context handler 1329 * requires the ONESHOT flag to be set. Some irq chips like 1330 * MSI based interrupts are per se one shot safe. Check the 1331 * chip flags, so we can avoid the unmask dance at the end of 1332 * the threaded handler for those. 1333 */ 1334 if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE) 1335 new->flags &= ~IRQF_ONESHOT; 1336 1337 /* 1338 * Protects against a concurrent __free_irq() call which might wait 1339 * for synchronize_hardirq() to complete without holding the optional 1340 * chip bus lock and desc->lock. Also protects against handing out 1341 * a recycled oneshot thread_mask bit while it's still in use by 1342 * its previous owner. 1343 */ 1344 mutex_lock(&desc->request_mutex); 1345 1346 /* 1347 * Acquire bus lock as the irq_request_resources() callback below 1348 * might rely on the serialization or the magic power management 1349 * functions which are abusing the irq_bus_lock() callback, 1350 */ 1351 chip_bus_lock(desc); 1352 1353 /* First installed action requests resources. */ 1354 if (!desc->action) { 1355 ret = irq_request_resources(desc); 1356 if (ret) { 1357 pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n", 1358 new->name, irq, desc->irq_data.chip->name); 1359 goto out_bus_unlock; 1360 } 1361 } 1362 1363 /* 1364 * The following block of code has to be executed atomically 1365 * protected against a concurrent interrupt and any of the other 1366 * management calls which are not serialized via 1367 * desc->request_mutex or the optional bus lock. 1368 */ 1369 raw_spin_lock_irqsave(&desc->lock, flags); 1370 old_ptr = &desc->action; 1371 old = *old_ptr; 1372 if (old) { 1373 /* 1374 * Can't share interrupts unless both agree to and are 1375 * the same type (level, edge, polarity). So both flag 1376 * fields must have IRQF_SHARED set and the bits which 1377 * set the trigger type must match. Also all must 1378 * agree on ONESHOT. 1379 * Interrupt lines used for NMIs cannot be shared. 1380 */ 1381 unsigned int oldtype; 1382 1383 if (desc->istate & IRQS_NMI) { 1384 pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n", 1385 new->name, irq, desc->irq_data.chip->name); 1386 ret = -EINVAL; 1387 goto out_unlock; 1388 } 1389 1390 /* 1391 * If nobody did set the configuration before, inherit 1392 * the one provided by the requester. 1393 */ 1394 if (irqd_trigger_type_was_set(&desc->irq_data)) { 1395 oldtype = irqd_get_trigger_type(&desc->irq_data); 1396 } else { 1397 oldtype = new->flags & IRQF_TRIGGER_MASK; 1398 irqd_set_trigger_type(&desc->irq_data, oldtype); 1399 } 1400 1401 if (!((old->flags & new->flags) & IRQF_SHARED) || 1402 (oldtype != (new->flags & IRQF_TRIGGER_MASK)) || 1403 ((old->flags ^ new->flags) & IRQF_ONESHOT)) 1404 goto mismatch; 1405 1406 /* All handlers must agree on per-cpuness */ 1407 if ((old->flags & IRQF_PERCPU) != 1408 (new->flags & IRQF_PERCPU)) 1409 goto mismatch; 1410 1411 /* add new interrupt at end of irq queue */ 1412 do { 1413 /* 1414 * Or all existing action->thread_mask bits, 1415 * so we can find the next zero bit for this 1416 * new action. 1417 */ 1418 thread_mask |= old->thread_mask; 1419 old_ptr = &old->next; 1420 old = *old_ptr; 1421 } while (old); 1422 shared = 1; 1423 } 1424 1425 /* 1426 * Setup the thread mask for this irqaction for ONESHOT. For 1427 * !ONESHOT irqs the thread mask is 0 so we can avoid a 1428 * conditional in irq_wake_thread(). 1429 */ 1430 if (new->flags & IRQF_ONESHOT) { 1431 /* 1432 * Unlikely to have 32 resp 64 irqs sharing one line, 1433 * but who knows. 1434 */ 1435 if (thread_mask == ~0UL) { 1436 ret = -EBUSY; 1437 goto out_unlock; 1438 } 1439 /* 1440 * The thread_mask for the action is or'ed to 1441 * desc->thread_active to indicate that the 1442 * IRQF_ONESHOT thread handler has been woken, but not 1443 * yet finished. The bit is cleared when a thread 1444 * completes. When all threads of a shared interrupt 1445 * line have completed desc->threads_active becomes 1446 * zero and the interrupt line is unmasked. See 1447 * handle.c:irq_wake_thread() for further information. 1448 * 1449 * If no thread is woken by primary (hard irq context) 1450 * interrupt handlers, then desc->threads_active is 1451 * also checked for zero to unmask the irq line in the 1452 * affected hard irq flow handlers 1453 * (handle_[fasteoi|level]_irq). 1454 * 1455 * The new action gets the first zero bit of 1456 * thread_mask assigned. See the loop above which or's 1457 * all existing action->thread_mask bits. 1458 */ 1459 new->thread_mask = 1UL << ffz(thread_mask); 1460 1461 } else if (new->handler == irq_default_primary_handler && 1462 !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) { 1463 /* 1464 * The interrupt was requested with handler = NULL, so 1465 * we use the default primary handler for it. But it 1466 * does not have the oneshot flag set. In combination 1467 * with level interrupts this is deadly, because the 1468 * default primary handler just wakes the thread, then 1469 * the irq lines is reenabled, but the device still 1470 * has the level irq asserted. Rinse and repeat.... 1471 * 1472 * While this works for edge type interrupts, we play 1473 * it safe and reject unconditionally because we can't 1474 * say for sure which type this interrupt really 1475 * has. The type flags are unreliable as the 1476 * underlying chip implementation can override them. 1477 */ 1478 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for irq %d\n", 1479 irq); 1480 ret = -EINVAL; 1481 goto out_unlock; 1482 } 1483 1484 if (!shared) { 1485 init_waitqueue_head(&desc->wait_for_threads); 1486 1487 /* Setup the type (level, edge polarity) if configured: */ 1488 if (new->flags & IRQF_TRIGGER_MASK) { 1489 ret = __irq_set_trigger(desc, 1490 new->flags & IRQF_TRIGGER_MASK); 1491 1492 if (ret) 1493 goto out_unlock; 1494 } 1495 1496 /* 1497 * Activate the interrupt. That activation must happen 1498 * independently of IRQ_NOAUTOEN. request_irq() can fail 1499 * and the callers are supposed to handle 1500 * that. enable_irq() of an interrupt requested with 1501 * IRQ_NOAUTOEN is not supposed to fail. The activation 1502 * keeps it in shutdown mode, it merily associates 1503 * resources if necessary and if that's not possible it 1504 * fails. Interrupts which are in managed shutdown mode 1505 * will simply ignore that activation request. 1506 */ 1507 ret = irq_activate(desc); 1508 if (ret) 1509 goto out_unlock; 1510 1511 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \ 1512 IRQS_ONESHOT | IRQS_WAITING); 1513 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS); 1514 1515 if (new->flags & IRQF_PERCPU) { 1516 irqd_set(&desc->irq_data, IRQD_PER_CPU); 1517 irq_settings_set_per_cpu(desc); 1518 } 1519 1520 if (new->flags & IRQF_ONESHOT) 1521 desc->istate |= IRQS_ONESHOT; 1522 1523 /* Exclude IRQ from balancing if requested */ 1524 if (new->flags & IRQF_NOBALANCING) { 1525 irq_settings_set_no_balancing(desc); 1526 irqd_set(&desc->irq_data, IRQD_NO_BALANCING); 1527 } 1528 1529 if (irq_settings_can_autoenable(desc)) { 1530 irq_startup(desc, IRQ_RESEND, IRQ_START_COND); 1531 } else { 1532 /* 1533 * Shared interrupts do not go well with disabling 1534 * auto enable. The sharing interrupt might request 1535 * it while it's still disabled and then wait for 1536 * interrupts forever. 1537 */ 1538 WARN_ON_ONCE(new->flags & IRQF_SHARED); 1539 /* Undo nested disables: */ 1540 desc->depth = 1; 1541 } 1542 1543 } else if (new->flags & IRQF_TRIGGER_MASK) { 1544 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK; 1545 unsigned int omsk = irqd_get_trigger_type(&desc->irq_data); 1546 1547 if (nmsk != omsk) 1548 /* hope the handler works with current trigger mode */ 1549 pr_warn("irq %d uses trigger mode %u; requested %u\n", 1550 irq, omsk, nmsk); 1551 } 1552 1553 *old_ptr = new; 1554 1555 irq_pm_install_action(desc, new); 1556 1557 /* Reset broken irq detection when installing new handler */ 1558 desc->irq_count = 0; 1559 desc->irqs_unhandled = 0; 1560 1561 /* 1562 * Check whether we disabled the irq via the spurious handler 1563 * before. Reenable it and give it another chance. 1564 */ 1565 if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) { 1566 desc->istate &= ~IRQS_SPURIOUS_DISABLED; 1567 __enable_irq(desc); 1568 } 1569 1570 raw_spin_unlock_irqrestore(&desc->lock, flags); 1571 chip_bus_sync_unlock(desc); 1572 mutex_unlock(&desc->request_mutex); 1573 1574 irq_setup_timings(desc, new); 1575 1576 /* 1577 * Strictly no need to wake it up, but hung_task complains 1578 * when no hard interrupt wakes the thread up. 1579 */ 1580 if (new->thread) 1581 wake_up_process(new->thread); 1582 if (new->secondary) 1583 wake_up_process(new->secondary->thread); 1584 1585 register_irq_proc(irq, desc); 1586 new->dir = NULL; 1587 register_handler_proc(irq, new); 1588 return 0; 1589 1590 mismatch: 1591 if (!(new->flags & IRQF_PROBE_SHARED)) { 1592 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n", 1593 irq, new->flags, new->name, old->flags, old->name); 1594 #ifdef CONFIG_DEBUG_SHIRQ 1595 dump_stack(); 1596 #endif 1597 } 1598 ret = -EBUSY; 1599 1600 out_unlock: 1601 raw_spin_unlock_irqrestore(&desc->lock, flags); 1602 1603 if (!desc->action) 1604 irq_release_resources(desc); 1605 out_bus_unlock: 1606 chip_bus_sync_unlock(desc); 1607 mutex_unlock(&desc->request_mutex); 1608 1609 out_thread: 1610 if (new->thread) { 1611 struct task_struct *t = new->thread; 1612 1613 new->thread = NULL; 1614 kthread_stop(t); 1615 put_task_struct(t); 1616 } 1617 if (new->secondary && new->secondary->thread) { 1618 struct task_struct *t = new->secondary->thread; 1619 1620 new->secondary->thread = NULL; 1621 kthread_stop(t); 1622 put_task_struct(t); 1623 } 1624 out_mput: 1625 module_put(desc->owner); 1626 return ret; 1627 } 1628 1629 /** 1630 * setup_irq - setup an interrupt 1631 * @irq: Interrupt line to setup 1632 * @act: irqaction for the interrupt 1633 * 1634 * Used to statically setup interrupts in the early boot process. 1635 */ 1636 int setup_irq(unsigned int irq, struct irqaction *act) 1637 { 1638 int retval; 1639 struct irq_desc *desc = irq_to_desc(irq); 1640 1641 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1642 return -EINVAL; 1643 1644 retval = irq_chip_pm_get(&desc->irq_data); 1645 if (retval < 0) 1646 return retval; 1647 1648 retval = __setup_irq(irq, desc, act); 1649 1650 if (retval) 1651 irq_chip_pm_put(&desc->irq_data); 1652 1653 return retval; 1654 } 1655 EXPORT_SYMBOL_GPL(setup_irq); 1656 1657 /* 1658 * Internal function to unregister an irqaction - used to free 1659 * regular and special interrupts that are part of the architecture. 1660 */ 1661 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id) 1662 { 1663 unsigned irq = desc->irq_data.irq; 1664 struct irqaction *action, **action_ptr; 1665 unsigned long flags; 1666 1667 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq); 1668 1669 mutex_lock(&desc->request_mutex); 1670 chip_bus_lock(desc); 1671 raw_spin_lock_irqsave(&desc->lock, flags); 1672 1673 /* 1674 * There can be multiple actions per IRQ descriptor, find the right 1675 * one based on the dev_id: 1676 */ 1677 action_ptr = &desc->action; 1678 for (;;) { 1679 action = *action_ptr; 1680 1681 if (!action) { 1682 WARN(1, "Trying to free already-free IRQ %d\n", irq); 1683 raw_spin_unlock_irqrestore(&desc->lock, flags); 1684 chip_bus_sync_unlock(desc); 1685 mutex_unlock(&desc->request_mutex); 1686 return NULL; 1687 } 1688 1689 if (action->dev_id == dev_id) 1690 break; 1691 action_ptr = &action->next; 1692 } 1693 1694 /* Found it - now remove it from the list of entries: */ 1695 *action_ptr = action->next; 1696 1697 irq_pm_remove_action(desc, action); 1698 1699 /* If this was the last handler, shut down the IRQ line: */ 1700 if (!desc->action) { 1701 irq_settings_clr_disable_unlazy(desc); 1702 irq_shutdown(desc); 1703 } 1704 1705 #ifdef CONFIG_SMP 1706 /* make sure affinity_hint is cleaned up */ 1707 if (WARN_ON_ONCE(desc->affinity_hint)) 1708 desc->affinity_hint = NULL; 1709 #endif 1710 1711 raw_spin_unlock_irqrestore(&desc->lock, flags); 1712 /* 1713 * Drop bus_lock here so the changes which were done in the chip 1714 * callbacks above are synced out to the irq chips which hang 1715 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq(). 1716 * 1717 * Aside of that the bus_lock can also be taken from the threaded 1718 * handler in irq_finalize_oneshot() which results in a deadlock 1719 * because kthread_stop() would wait forever for the thread to 1720 * complete, which is blocked on the bus lock. 1721 * 1722 * The still held desc->request_mutex() protects against a 1723 * concurrent request_irq() of this irq so the release of resources 1724 * and timing data is properly serialized. 1725 */ 1726 chip_bus_sync_unlock(desc); 1727 1728 unregister_handler_proc(irq, action); 1729 1730 /* Make sure it's not being used on another CPU: */ 1731 synchronize_hardirq(irq); 1732 1733 #ifdef CONFIG_DEBUG_SHIRQ 1734 /* 1735 * It's a shared IRQ -- the driver ought to be prepared for an IRQ 1736 * event to happen even now it's being freed, so let's make sure that 1737 * is so by doing an extra call to the handler .... 1738 * 1739 * ( We do this after actually deregistering it, to make sure that a 1740 * 'real' IRQ doesn't run in parallel with our fake. ) 1741 */ 1742 if (action->flags & IRQF_SHARED) { 1743 local_irq_save(flags); 1744 action->handler(irq, dev_id); 1745 local_irq_restore(flags); 1746 } 1747 #endif 1748 1749 /* 1750 * The action has already been removed above, but the thread writes 1751 * its oneshot mask bit when it completes. Though request_mutex is 1752 * held across this which prevents __setup_irq() from handing out 1753 * the same bit to a newly requested action. 1754 */ 1755 if (action->thread) { 1756 kthread_stop(action->thread); 1757 put_task_struct(action->thread); 1758 if (action->secondary && action->secondary->thread) { 1759 kthread_stop(action->secondary->thread); 1760 put_task_struct(action->secondary->thread); 1761 } 1762 } 1763 1764 /* Last action releases resources */ 1765 if (!desc->action) { 1766 /* 1767 * Reaquire bus lock as irq_release_resources() might 1768 * require it to deallocate resources over the slow bus. 1769 */ 1770 chip_bus_lock(desc); 1771 irq_release_resources(desc); 1772 chip_bus_sync_unlock(desc); 1773 irq_remove_timings(desc); 1774 } 1775 1776 mutex_unlock(&desc->request_mutex); 1777 1778 irq_chip_pm_put(&desc->irq_data); 1779 module_put(desc->owner); 1780 kfree(action->secondary); 1781 return action; 1782 } 1783 1784 /** 1785 * remove_irq - free an interrupt 1786 * @irq: Interrupt line to free 1787 * @act: irqaction for the interrupt 1788 * 1789 * Used to remove interrupts statically setup by the early boot process. 1790 */ 1791 void remove_irq(unsigned int irq, struct irqaction *act) 1792 { 1793 struct irq_desc *desc = irq_to_desc(irq); 1794 1795 if (desc && !WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1796 __free_irq(desc, act->dev_id); 1797 } 1798 EXPORT_SYMBOL_GPL(remove_irq); 1799 1800 /** 1801 * free_irq - free an interrupt allocated with request_irq 1802 * @irq: Interrupt line to free 1803 * @dev_id: Device identity to free 1804 * 1805 * Remove an interrupt handler. The handler is removed and if the 1806 * interrupt line is no longer in use by any driver it is disabled. 1807 * On a shared IRQ the caller must ensure the interrupt is disabled 1808 * on the card it drives before calling this function. The function 1809 * does not return until any executing interrupts for this IRQ 1810 * have completed. 1811 * 1812 * This function must not be called from interrupt context. 1813 * 1814 * Returns the devname argument passed to request_irq. 1815 */ 1816 const void *free_irq(unsigned int irq, void *dev_id) 1817 { 1818 struct irq_desc *desc = irq_to_desc(irq); 1819 struct irqaction *action; 1820 const char *devname; 1821 1822 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1823 return NULL; 1824 1825 #ifdef CONFIG_SMP 1826 if (WARN_ON(desc->affinity_notify)) 1827 desc->affinity_notify = NULL; 1828 #endif 1829 1830 action = __free_irq(desc, dev_id); 1831 1832 if (!action) 1833 return NULL; 1834 1835 devname = action->name; 1836 kfree(action); 1837 return devname; 1838 } 1839 EXPORT_SYMBOL(free_irq); 1840 1841 /* This function must be called with desc->lock held */ 1842 static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc) 1843 { 1844 const char *devname = NULL; 1845 1846 desc->istate &= ~IRQS_NMI; 1847 1848 if (!WARN_ON(desc->action == NULL)) { 1849 irq_pm_remove_action(desc, desc->action); 1850 devname = desc->action->name; 1851 unregister_handler_proc(irq, desc->action); 1852 1853 kfree(desc->action); 1854 desc->action = NULL; 1855 } 1856 1857 irq_settings_clr_disable_unlazy(desc); 1858 irq_shutdown(desc); 1859 1860 irq_release_resources(desc); 1861 1862 irq_chip_pm_put(&desc->irq_data); 1863 module_put(desc->owner); 1864 1865 return devname; 1866 } 1867 1868 const void *free_nmi(unsigned int irq, void *dev_id) 1869 { 1870 struct irq_desc *desc = irq_to_desc(irq); 1871 unsigned long flags; 1872 const void *devname; 1873 1874 if (!desc || WARN_ON(!(desc->istate & IRQS_NMI))) 1875 return NULL; 1876 1877 if (WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1878 return NULL; 1879 1880 /* NMI still enabled */ 1881 if (WARN_ON(desc->depth == 0)) 1882 disable_nmi_nosync(irq); 1883 1884 raw_spin_lock_irqsave(&desc->lock, flags); 1885 1886 irq_nmi_teardown(desc); 1887 devname = __cleanup_nmi(irq, desc); 1888 1889 raw_spin_unlock_irqrestore(&desc->lock, flags); 1890 1891 return devname; 1892 } 1893 1894 /** 1895 * request_threaded_irq - allocate an interrupt line 1896 * @irq: Interrupt line to allocate 1897 * @handler: Function to be called when the IRQ occurs. 1898 * Primary handler for threaded interrupts 1899 * If NULL and thread_fn != NULL the default 1900 * primary handler is installed 1901 * @thread_fn: Function called from the irq handler thread 1902 * If NULL, no irq thread is created 1903 * @irqflags: Interrupt type flags 1904 * @devname: An ascii name for the claiming device 1905 * @dev_id: A cookie passed back to the handler function 1906 * 1907 * This call allocates interrupt resources and enables the 1908 * interrupt line and IRQ handling. From the point this 1909 * call is made your handler function may be invoked. Since 1910 * your handler function must clear any interrupt the board 1911 * raises, you must take care both to initialise your hardware 1912 * and to set up the interrupt handler in the right order. 1913 * 1914 * If you want to set up a threaded irq handler for your device 1915 * then you need to supply @handler and @thread_fn. @handler is 1916 * still called in hard interrupt context and has to check 1917 * whether the interrupt originates from the device. If yes it 1918 * needs to disable the interrupt on the device and return 1919 * IRQ_WAKE_THREAD which will wake up the handler thread and run 1920 * @thread_fn. This split handler design is necessary to support 1921 * shared interrupts. 1922 * 1923 * Dev_id must be globally unique. Normally the address of the 1924 * device data structure is used as the cookie. Since the handler 1925 * receives this value it makes sense to use it. 1926 * 1927 * If your interrupt is shared you must pass a non NULL dev_id 1928 * as this is required when freeing the interrupt. 1929 * 1930 * Flags: 1931 * 1932 * IRQF_SHARED Interrupt is shared 1933 * IRQF_TRIGGER_* Specify active edge(s) or level 1934 * 1935 */ 1936 int request_threaded_irq(unsigned int irq, irq_handler_t handler, 1937 irq_handler_t thread_fn, unsigned long irqflags, 1938 const char *devname, void *dev_id) 1939 { 1940 struct irqaction *action; 1941 struct irq_desc *desc; 1942 int retval; 1943 1944 if (irq == IRQ_NOTCONNECTED) 1945 return -ENOTCONN; 1946 1947 /* 1948 * Sanity-check: shared interrupts must pass in a real dev-ID, 1949 * otherwise we'll have trouble later trying to figure out 1950 * which interrupt is which (messes up the interrupt freeing 1951 * logic etc). 1952 * 1953 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and 1954 * it cannot be set along with IRQF_NO_SUSPEND. 1955 */ 1956 if (((irqflags & IRQF_SHARED) && !dev_id) || 1957 (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) || 1958 ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND))) 1959 return -EINVAL; 1960 1961 desc = irq_to_desc(irq); 1962 if (!desc) 1963 return -EINVAL; 1964 1965 if (!irq_settings_can_request(desc) || 1966 WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1967 return -EINVAL; 1968 1969 if (!handler) { 1970 if (!thread_fn) 1971 return -EINVAL; 1972 handler = irq_default_primary_handler; 1973 } 1974 1975 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 1976 if (!action) 1977 return -ENOMEM; 1978 1979 action->handler = handler; 1980 action->thread_fn = thread_fn; 1981 action->flags = irqflags; 1982 action->name = devname; 1983 action->dev_id = dev_id; 1984 1985 retval = irq_chip_pm_get(&desc->irq_data); 1986 if (retval < 0) { 1987 kfree(action); 1988 return retval; 1989 } 1990 1991 retval = __setup_irq(irq, desc, action); 1992 1993 if (retval) { 1994 irq_chip_pm_put(&desc->irq_data); 1995 kfree(action->secondary); 1996 kfree(action); 1997 } 1998 1999 #ifdef CONFIG_DEBUG_SHIRQ_FIXME 2000 if (!retval && (irqflags & IRQF_SHARED)) { 2001 /* 2002 * It's a shared IRQ -- the driver ought to be prepared for it 2003 * to happen immediately, so let's make sure.... 2004 * We disable the irq to make sure that a 'real' IRQ doesn't 2005 * run in parallel with our fake. 2006 */ 2007 unsigned long flags; 2008 2009 disable_irq(irq); 2010 local_irq_save(flags); 2011 2012 handler(irq, dev_id); 2013 2014 local_irq_restore(flags); 2015 enable_irq(irq); 2016 } 2017 #endif 2018 return retval; 2019 } 2020 EXPORT_SYMBOL(request_threaded_irq); 2021 2022 /** 2023 * request_any_context_irq - allocate an interrupt line 2024 * @irq: Interrupt line to allocate 2025 * @handler: Function to be called when the IRQ occurs. 2026 * Threaded handler for threaded interrupts. 2027 * @flags: Interrupt type flags 2028 * @name: An ascii name for the claiming device 2029 * @dev_id: A cookie passed back to the handler function 2030 * 2031 * This call allocates interrupt resources and enables the 2032 * interrupt line and IRQ handling. It selects either a 2033 * hardirq or threaded handling method depending on the 2034 * context. 2035 * 2036 * On failure, it returns a negative value. On success, 2037 * it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED. 2038 */ 2039 int request_any_context_irq(unsigned int irq, irq_handler_t handler, 2040 unsigned long flags, const char *name, void *dev_id) 2041 { 2042 struct irq_desc *desc; 2043 int ret; 2044 2045 if (irq == IRQ_NOTCONNECTED) 2046 return -ENOTCONN; 2047 2048 desc = irq_to_desc(irq); 2049 if (!desc) 2050 return -EINVAL; 2051 2052 if (irq_settings_is_nested_thread(desc)) { 2053 ret = request_threaded_irq(irq, NULL, handler, 2054 flags, name, dev_id); 2055 return !ret ? IRQC_IS_NESTED : ret; 2056 } 2057 2058 ret = request_irq(irq, handler, flags, name, dev_id); 2059 return !ret ? IRQC_IS_HARDIRQ : ret; 2060 } 2061 EXPORT_SYMBOL_GPL(request_any_context_irq); 2062 2063 /** 2064 * request_nmi - allocate an interrupt line for NMI delivery 2065 * @irq: Interrupt line to allocate 2066 * @handler: Function to be called when the IRQ occurs. 2067 * Threaded handler for threaded interrupts. 2068 * @irqflags: Interrupt type flags 2069 * @name: An ascii name for the claiming device 2070 * @dev_id: A cookie passed back to the handler function 2071 * 2072 * This call allocates interrupt resources and enables the 2073 * interrupt line and IRQ handling. It sets up the IRQ line 2074 * to be handled as an NMI. 2075 * 2076 * An interrupt line delivering NMIs cannot be shared and IRQ handling 2077 * cannot be threaded. 2078 * 2079 * Interrupt lines requested for NMI delivering must produce per cpu 2080 * interrupts and have auto enabling setting disabled. 2081 * 2082 * Dev_id must be globally unique. Normally the address of the 2083 * device data structure is used as the cookie. Since the handler 2084 * receives this value it makes sense to use it. 2085 * 2086 * If the interrupt line cannot be used to deliver NMIs, function 2087 * will fail and return a negative value. 2088 */ 2089 int request_nmi(unsigned int irq, irq_handler_t handler, 2090 unsigned long irqflags, const char *name, void *dev_id) 2091 { 2092 struct irqaction *action; 2093 struct irq_desc *desc; 2094 unsigned long flags; 2095 int retval; 2096 2097 if (irq == IRQ_NOTCONNECTED) 2098 return -ENOTCONN; 2099 2100 /* NMI cannot be shared, used for Polling */ 2101 if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL)) 2102 return -EINVAL; 2103 2104 if (!(irqflags & IRQF_PERCPU)) 2105 return -EINVAL; 2106 2107 if (!handler) 2108 return -EINVAL; 2109 2110 desc = irq_to_desc(irq); 2111 2112 if (!desc || irq_settings_can_autoenable(desc) || 2113 !irq_settings_can_request(desc) || 2114 WARN_ON(irq_settings_is_per_cpu_devid(desc)) || 2115 !irq_supports_nmi(desc)) 2116 return -EINVAL; 2117 2118 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2119 if (!action) 2120 return -ENOMEM; 2121 2122 action->handler = handler; 2123 action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING; 2124 action->name = name; 2125 action->dev_id = dev_id; 2126 2127 retval = irq_chip_pm_get(&desc->irq_data); 2128 if (retval < 0) 2129 goto err_out; 2130 2131 retval = __setup_irq(irq, desc, action); 2132 if (retval) 2133 goto err_irq_setup; 2134 2135 raw_spin_lock_irqsave(&desc->lock, flags); 2136 2137 /* Setup NMI state */ 2138 desc->istate |= IRQS_NMI; 2139 retval = irq_nmi_setup(desc); 2140 if (retval) { 2141 __cleanup_nmi(irq, desc); 2142 raw_spin_unlock_irqrestore(&desc->lock, flags); 2143 return -EINVAL; 2144 } 2145 2146 raw_spin_unlock_irqrestore(&desc->lock, flags); 2147 2148 return 0; 2149 2150 err_irq_setup: 2151 irq_chip_pm_put(&desc->irq_data); 2152 err_out: 2153 kfree(action); 2154 2155 return retval; 2156 } 2157 2158 void enable_percpu_irq(unsigned int irq, unsigned int type) 2159 { 2160 unsigned int cpu = smp_processor_id(); 2161 unsigned long flags; 2162 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 2163 2164 if (!desc) 2165 return; 2166 2167 /* 2168 * If the trigger type is not specified by the caller, then 2169 * use the default for this interrupt. 2170 */ 2171 type &= IRQ_TYPE_SENSE_MASK; 2172 if (type == IRQ_TYPE_NONE) 2173 type = irqd_get_trigger_type(&desc->irq_data); 2174 2175 if (type != IRQ_TYPE_NONE) { 2176 int ret; 2177 2178 ret = __irq_set_trigger(desc, type); 2179 2180 if (ret) { 2181 WARN(1, "failed to set type for IRQ%d\n", irq); 2182 goto out; 2183 } 2184 } 2185 2186 irq_percpu_enable(desc, cpu); 2187 out: 2188 irq_put_desc_unlock(desc, flags); 2189 } 2190 EXPORT_SYMBOL_GPL(enable_percpu_irq); 2191 2192 void enable_percpu_nmi(unsigned int irq, unsigned int type) 2193 { 2194 enable_percpu_irq(irq, type); 2195 } 2196 2197 /** 2198 * irq_percpu_is_enabled - Check whether the per cpu irq is enabled 2199 * @irq: Linux irq number to check for 2200 * 2201 * Must be called from a non migratable context. Returns the enable 2202 * state of a per cpu interrupt on the current cpu. 2203 */ 2204 bool irq_percpu_is_enabled(unsigned int irq) 2205 { 2206 unsigned int cpu = smp_processor_id(); 2207 struct irq_desc *desc; 2208 unsigned long flags; 2209 bool is_enabled; 2210 2211 desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 2212 if (!desc) 2213 return false; 2214 2215 is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled); 2216 irq_put_desc_unlock(desc, flags); 2217 2218 return is_enabled; 2219 } 2220 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled); 2221 2222 void disable_percpu_irq(unsigned int irq) 2223 { 2224 unsigned int cpu = smp_processor_id(); 2225 unsigned long flags; 2226 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 2227 2228 if (!desc) 2229 return; 2230 2231 irq_percpu_disable(desc, cpu); 2232 irq_put_desc_unlock(desc, flags); 2233 } 2234 EXPORT_SYMBOL_GPL(disable_percpu_irq); 2235 2236 void disable_percpu_nmi(unsigned int irq) 2237 { 2238 disable_percpu_irq(irq); 2239 } 2240 2241 /* 2242 * Internal function to unregister a percpu irqaction. 2243 */ 2244 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id) 2245 { 2246 struct irq_desc *desc = irq_to_desc(irq); 2247 struct irqaction *action; 2248 unsigned long flags; 2249 2250 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq); 2251 2252 if (!desc) 2253 return NULL; 2254 2255 raw_spin_lock_irqsave(&desc->lock, flags); 2256 2257 action = desc->action; 2258 if (!action || action->percpu_dev_id != dev_id) { 2259 WARN(1, "Trying to free already-free IRQ %d\n", irq); 2260 goto bad; 2261 } 2262 2263 if (!cpumask_empty(desc->percpu_enabled)) { 2264 WARN(1, "percpu IRQ %d still enabled on CPU%d!\n", 2265 irq, cpumask_first(desc->percpu_enabled)); 2266 goto bad; 2267 } 2268 2269 /* Found it - now remove it from the list of entries: */ 2270 desc->action = NULL; 2271 2272 desc->istate &= ~IRQS_NMI; 2273 2274 raw_spin_unlock_irqrestore(&desc->lock, flags); 2275 2276 unregister_handler_proc(irq, action); 2277 2278 irq_chip_pm_put(&desc->irq_data); 2279 module_put(desc->owner); 2280 return action; 2281 2282 bad: 2283 raw_spin_unlock_irqrestore(&desc->lock, flags); 2284 return NULL; 2285 } 2286 2287 /** 2288 * remove_percpu_irq - free a per-cpu interrupt 2289 * @irq: Interrupt line to free 2290 * @act: irqaction for the interrupt 2291 * 2292 * Used to remove interrupts statically setup by the early boot process. 2293 */ 2294 void remove_percpu_irq(unsigned int irq, struct irqaction *act) 2295 { 2296 struct irq_desc *desc = irq_to_desc(irq); 2297 2298 if (desc && irq_settings_is_per_cpu_devid(desc)) 2299 __free_percpu_irq(irq, act->percpu_dev_id); 2300 } 2301 2302 /** 2303 * free_percpu_irq - free an interrupt allocated with request_percpu_irq 2304 * @irq: Interrupt line to free 2305 * @dev_id: Device identity to free 2306 * 2307 * Remove a percpu interrupt handler. The handler is removed, but 2308 * the interrupt line is not disabled. This must be done on each 2309 * CPU before calling this function. The function does not return 2310 * until any executing interrupts for this IRQ have completed. 2311 * 2312 * This function must not be called from interrupt context. 2313 */ 2314 void free_percpu_irq(unsigned int irq, void __percpu *dev_id) 2315 { 2316 struct irq_desc *desc = irq_to_desc(irq); 2317 2318 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2319 return; 2320 2321 chip_bus_lock(desc); 2322 kfree(__free_percpu_irq(irq, dev_id)); 2323 chip_bus_sync_unlock(desc); 2324 } 2325 EXPORT_SYMBOL_GPL(free_percpu_irq); 2326 2327 void free_percpu_nmi(unsigned int irq, void __percpu *dev_id) 2328 { 2329 struct irq_desc *desc = irq_to_desc(irq); 2330 2331 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2332 return; 2333 2334 if (WARN_ON(!(desc->istate & IRQS_NMI))) 2335 return; 2336 2337 kfree(__free_percpu_irq(irq, dev_id)); 2338 } 2339 2340 /** 2341 * setup_percpu_irq - setup a per-cpu interrupt 2342 * @irq: Interrupt line to setup 2343 * @act: irqaction for the interrupt 2344 * 2345 * Used to statically setup per-cpu interrupts in the early boot process. 2346 */ 2347 int setup_percpu_irq(unsigned int irq, struct irqaction *act) 2348 { 2349 struct irq_desc *desc = irq_to_desc(irq); 2350 int retval; 2351 2352 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2353 return -EINVAL; 2354 2355 retval = irq_chip_pm_get(&desc->irq_data); 2356 if (retval < 0) 2357 return retval; 2358 2359 retval = __setup_irq(irq, desc, act); 2360 2361 if (retval) 2362 irq_chip_pm_put(&desc->irq_data); 2363 2364 return retval; 2365 } 2366 2367 /** 2368 * __request_percpu_irq - allocate a percpu interrupt line 2369 * @irq: Interrupt line to allocate 2370 * @handler: Function to be called when the IRQ occurs. 2371 * @flags: Interrupt type flags (IRQF_TIMER only) 2372 * @devname: An ascii name for the claiming device 2373 * @dev_id: A percpu cookie passed back to the handler function 2374 * 2375 * This call allocates interrupt resources and enables the 2376 * interrupt on the local CPU. If the interrupt is supposed to be 2377 * enabled on other CPUs, it has to be done on each CPU using 2378 * enable_percpu_irq(). 2379 * 2380 * Dev_id must be globally unique. It is a per-cpu variable, and 2381 * the handler gets called with the interrupted CPU's instance of 2382 * that variable. 2383 */ 2384 int __request_percpu_irq(unsigned int irq, irq_handler_t handler, 2385 unsigned long flags, const char *devname, 2386 void __percpu *dev_id) 2387 { 2388 struct irqaction *action; 2389 struct irq_desc *desc; 2390 int retval; 2391 2392 if (!dev_id) 2393 return -EINVAL; 2394 2395 desc = irq_to_desc(irq); 2396 if (!desc || !irq_settings_can_request(desc) || 2397 !irq_settings_is_per_cpu_devid(desc)) 2398 return -EINVAL; 2399 2400 if (flags && flags != IRQF_TIMER) 2401 return -EINVAL; 2402 2403 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2404 if (!action) 2405 return -ENOMEM; 2406 2407 action->handler = handler; 2408 action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND; 2409 action->name = devname; 2410 action->percpu_dev_id = dev_id; 2411 2412 retval = irq_chip_pm_get(&desc->irq_data); 2413 if (retval < 0) { 2414 kfree(action); 2415 return retval; 2416 } 2417 2418 retval = __setup_irq(irq, desc, action); 2419 2420 if (retval) { 2421 irq_chip_pm_put(&desc->irq_data); 2422 kfree(action); 2423 } 2424 2425 return retval; 2426 } 2427 EXPORT_SYMBOL_GPL(__request_percpu_irq); 2428 2429 /** 2430 * request_percpu_nmi - allocate a percpu interrupt line for NMI delivery 2431 * @irq: Interrupt line to allocate 2432 * @handler: Function to be called when the IRQ occurs. 2433 * @name: An ascii name for the claiming device 2434 * @dev_id: A percpu cookie passed back to the handler function 2435 * 2436 * This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs 2437 * have to be setup on each CPU by calling prepare_percpu_nmi() before 2438 * being enabled on the same CPU by using enable_percpu_nmi(). 2439 * 2440 * Dev_id must be globally unique. It is a per-cpu variable, and 2441 * the handler gets called with the interrupted CPU's instance of 2442 * that variable. 2443 * 2444 * Interrupt lines requested for NMI delivering should have auto enabling 2445 * setting disabled. 2446 * 2447 * If the interrupt line cannot be used to deliver NMIs, function 2448 * will fail returning a negative value. 2449 */ 2450 int request_percpu_nmi(unsigned int irq, irq_handler_t handler, 2451 const char *name, void __percpu *dev_id) 2452 { 2453 struct irqaction *action; 2454 struct irq_desc *desc; 2455 unsigned long flags; 2456 int retval; 2457 2458 if (!handler) 2459 return -EINVAL; 2460 2461 desc = irq_to_desc(irq); 2462 2463 if (!desc || !irq_settings_can_request(desc) || 2464 !irq_settings_is_per_cpu_devid(desc) || 2465 irq_settings_can_autoenable(desc) || 2466 !irq_supports_nmi(desc)) 2467 return -EINVAL; 2468 2469 /* The line cannot already be NMI */ 2470 if (desc->istate & IRQS_NMI) 2471 return -EINVAL; 2472 2473 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2474 if (!action) 2475 return -ENOMEM; 2476 2477 action->handler = handler; 2478 action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD 2479 | IRQF_NOBALANCING; 2480 action->name = name; 2481 action->percpu_dev_id = dev_id; 2482 2483 retval = irq_chip_pm_get(&desc->irq_data); 2484 if (retval < 0) 2485 goto err_out; 2486 2487 retval = __setup_irq(irq, desc, action); 2488 if (retval) 2489 goto err_irq_setup; 2490 2491 raw_spin_lock_irqsave(&desc->lock, flags); 2492 desc->istate |= IRQS_NMI; 2493 raw_spin_unlock_irqrestore(&desc->lock, flags); 2494 2495 return 0; 2496 2497 err_irq_setup: 2498 irq_chip_pm_put(&desc->irq_data); 2499 err_out: 2500 kfree(action); 2501 2502 return retval; 2503 } 2504 2505 /** 2506 * prepare_percpu_nmi - performs CPU local setup for NMI delivery 2507 * @irq: Interrupt line to prepare for NMI delivery 2508 * 2509 * This call prepares an interrupt line to deliver NMI on the current CPU, 2510 * before that interrupt line gets enabled with enable_percpu_nmi(). 2511 * 2512 * As a CPU local operation, this should be called from non-preemptible 2513 * context. 2514 * 2515 * If the interrupt line cannot be used to deliver NMIs, function 2516 * will fail returning a negative value. 2517 */ 2518 int prepare_percpu_nmi(unsigned int irq) 2519 { 2520 unsigned long flags; 2521 struct irq_desc *desc; 2522 int ret = 0; 2523 2524 WARN_ON(preemptible()); 2525 2526 desc = irq_get_desc_lock(irq, &flags, 2527 IRQ_GET_DESC_CHECK_PERCPU); 2528 if (!desc) 2529 return -EINVAL; 2530 2531 if (WARN(!(desc->istate & IRQS_NMI), 2532 KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n", 2533 irq)) { 2534 ret = -EINVAL; 2535 goto out; 2536 } 2537 2538 ret = irq_nmi_setup(desc); 2539 if (ret) { 2540 pr_err("Failed to setup NMI delivery: irq %u\n", irq); 2541 goto out; 2542 } 2543 2544 out: 2545 irq_put_desc_unlock(desc, flags); 2546 return ret; 2547 } 2548 2549 /** 2550 * teardown_percpu_nmi - undoes NMI setup of IRQ line 2551 * @irq: Interrupt line from which CPU local NMI configuration should be 2552 * removed 2553 * 2554 * This call undoes the setup done by prepare_percpu_nmi(). 2555 * 2556 * IRQ line should not be enabled for the current CPU. 2557 * 2558 * As a CPU local operation, this should be called from non-preemptible 2559 * context. 2560 */ 2561 void teardown_percpu_nmi(unsigned int irq) 2562 { 2563 unsigned long flags; 2564 struct irq_desc *desc; 2565 2566 WARN_ON(preemptible()); 2567 2568 desc = irq_get_desc_lock(irq, &flags, 2569 IRQ_GET_DESC_CHECK_PERCPU); 2570 if (!desc) 2571 return; 2572 2573 if (WARN_ON(!(desc->istate & IRQS_NMI))) 2574 goto out; 2575 2576 irq_nmi_teardown(desc); 2577 out: 2578 irq_put_desc_unlock(desc, flags); 2579 } 2580 2581 /** 2582 * irq_get_irqchip_state - returns the irqchip state of a interrupt. 2583 * @irq: Interrupt line that is forwarded to a VM 2584 * @which: One of IRQCHIP_STATE_* the caller wants to know about 2585 * @state: a pointer to a boolean where the state is to be storeed 2586 * 2587 * This call snapshots the internal irqchip state of an 2588 * interrupt, returning into @state the bit corresponding to 2589 * stage @which 2590 * 2591 * This function should be called with preemption disabled if the 2592 * interrupt controller has per-cpu registers. 2593 */ 2594 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which, 2595 bool *state) 2596 { 2597 struct irq_desc *desc; 2598 struct irq_data *data; 2599 struct irq_chip *chip; 2600 unsigned long flags; 2601 int err = -EINVAL; 2602 2603 desc = irq_get_desc_buslock(irq, &flags, 0); 2604 if (!desc) 2605 return err; 2606 2607 data = irq_desc_get_irq_data(desc); 2608 2609 do { 2610 chip = irq_data_get_irq_chip(data); 2611 if (chip->irq_get_irqchip_state) 2612 break; 2613 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 2614 data = data->parent_data; 2615 #else 2616 data = NULL; 2617 #endif 2618 } while (data); 2619 2620 if (data) 2621 err = chip->irq_get_irqchip_state(data, which, state); 2622 2623 irq_put_desc_busunlock(desc, flags); 2624 return err; 2625 } 2626 EXPORT_SYMBOL_GPL(irq_get_irqchip_state); 2627 2628 /** 2629 * irq_set_irqchip_state - set the state of a forwarded interrupt. 2630 * @irq: Interrupt line that is forwarded to a VM 2631 * @which: State to be restored (one of IRQCHIP_STATE_*) 2632 * @val: Value corresponding to @which 2633 * 2634 * This call sets the internal irqchip state of an interrupt, 2635 * depending on the value of @which. 2636 * 2637 * This function should be called with preemption disabled if the 2638 * interrupt controller has per-cpu registers. 2639 */ 2640 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which, 2641 bool val) 2642 { 2643 struct irq_desc *desc; 2644 struct irq_data *data; 2645 struct irq_chip *chip; 2646 unsigned long flags; 2647 int err = -EINVAL; 2648 2649 desc = irq_get_desc_buslock(irq, &flags, 0); 2650 if (!desc) 2651 return err; 2652 2653 data = irq_desc_get_irq_data(desc); 2654 2655 do { 2656 chip = irq_data_get_irq_chip(data); 2657 if (chip->irq_set_irqchip_state) 2658 break; 2659 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 2660 data = data->parent_data; 2661 #else 2662 data = NULL; 2663 #endif 2664 } while (data); 2665 2666 if (data) 2667 err = chip->irq_set_irqchip_state(data, which, val); 2668 2669 irq_put_desc_busunlock(desc, flags); 2670 return err; 2671 } 2672 EXPORT_SYMBOL_GPL(irq_set_irqchip_state); 2673