xref: /openbmc/linux/kernel/irq/manage.c (revision 99b75a4e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
4  * Copyright (C) 2005-2006 Thomas Gleixner
5  *
6  * This file contains driver APIs to the irq subsystem.
7  */
8 
9 #define pr_fmt(fmt) "genirq: " fmt
10 
11 #include <linux/irq.h>
12 #include <linux/kthread.h>
13 #include <linux/module.h>
14 #include <linux/random.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/sched.h>
18 #include <linux/sched/rt.h>
19 #include <linux/sched/task.h>
20 #include <uapi/linux/sched/types.h>
21 #include <linux/task_work.h>
22 
23 #include "internals.h"
24 
25 #ifdef CONFIG_IRQ_FORCED_THREADING
26 __read_mostly bool force_irqthreads;
27 EXPORT_SYMBOL_GPL(force_irqthreads);
28 
29 static int __init setup_forced_irqthreads(char *arg)
30 {
31 	force_irqthreads = true;
32 	return 0;
33 }
34 early_param("threadirqs", setup_forced_irqthreads);
35 #endif
36 
37 static void __synchronize_hardirq(struct irq_desc *desc)
38 {
39 	bool inprogress;
40 
41 	do {
42 		unsigned long flags;
43 
44 		/*
45 		 * Wait until we're out of the critical section.  This might
46 		 * give the wrong answer due to the lack of memory barriers.
47 		 */
48 		while (irqd_irq_inprogress(&desc->irq_data))
49 			cpu_relax();
50 
51 		/* Ok, that indicated we're done: double-check carefully. */
52 		raw_spin_lock_irqsave(&desc->lock, flags);
53 		inprogress = irqd_irq_inprogress(&desc->irq_data);
54 		raw_spin_unlock_irqrestore(&desc->lock, flags);
55 
56 		/* Oops, that failed? */
57 	} while (inprogress);
58 }
59 
60 /**
61  *	synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
62  *	@irq: interrupt number to wait for
63  *
64  *	This function waits for any pending hard IRQ handlers for this
65  *	interrupt to complete before returning. If you use this
66  *	function while holding a resource the IRQ handler may need you
67  *	will deadlock. It does not take associated threaded handlers
68  *	into account.
69  *
70  *	Do not use this for shutdown scenarios where you must be sure
71  *	that all parts (hardirq and threaded handler) have completed.
72  *
73  *	Returns: false if a threaded handler is active.
74  *
75  *	This function may be called - with care - from IRQ context.
76  */
77 bool synchronize_hardirq(unsigned int irq)
78 {
79 	struct irq_desc *desc = irq_to_desc(irq);
80 
81 	if (desc) {
82 		__synchronize_hardirq(desc);
83 		return !atomic_read(&desc->threads_active);
84 	}
85 
86 	return true;
87 }
88 EXPORT_SYMBOL(synchronize_hardirq);
89 
90 /**
91  *	synchronize_irq - wait for pending IRQ handlers (on other CPUs)
92  *	@irq: interrupt number to wait for
93  *
94  *	This function waits for any pending IRQ handlers for this interrupt
95  *	to complete before returning. If you use this function while
96  *	holding a resource the IRQ handler may need you will deadlock.
97  *
98  *	This function may be called - with care - from IRQ context.
99  */
100 void synchronize_irq(unsigned int irq)
101 {
102 	struct irq_desc *desc = irq_to_desc(irq);
103 
104 	if (desc) {
105 		__synchronize_hardirq(desc);
106 		/*
107 		 * We made sure that no hardirq handler is
108 		 * running. Now verify that no threaded handlers are
109 		 * active.
110 		 */
111 		wait_event(desc->wait_for_threads,
112 			   !atomic_read(&desc->threads_active));
113 	}
114 }
115 EXPORT_SYMBOL(synchronize_irq);
116 
117 #ifdef CONFIG_SMP
118 cpumask_var_t irq_default_affinity;
119 
120 static bool __irq_can_set_affinity(struct irq_desc *desc)
121 {
122 	if (!desc || !irqd_can_balance(&desc->irq_data) ||
123 	    !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
124 		return false;
125 	return true;
126 }
127 
128 /**
129  *	irq_can_set_affinity - Check if the affinity of a given irq can be set
130  *	@irq:		Interrupt to check
131  *
132  */
133 int irq_can_set_affinity(unsigned int irq)
134 {
135 	return __irq_can_set_affinity(irq_to_desc(irq));
136 }
137 
138 /**
139  * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
140  * @irq:	Interrupt to check
141  *
142  * Like irq_can_set_affinity() above, but additionally checks for the
143  * AFFINITY_MANAGED flag.
144  */
145 bool irq_can_set_affinity_usr(unsigned int irq)
146 {
147 	struct irq_desc *desc = irq_to_desc(irq);
148 
149 	return __irq_can_set_affinity(desc) &&
150 		!irqd_affinity_is_managed(&desc->irq_data);
151 }
152 
153 /**
154  *	irq_set_thread_affinity - Notify irq threads to adjust affinity
155  *	@desc:		irq descriptor which has affitnity changed
156  *
157  *	We just set IRQTF_AFFINITY and delegate the affinity setting
158  *	to the interrupt thread itself. We can not call
159  *	set_cpus_allowed_ptr() here as we hold desc->lock and this
160  *	code can be called from hard interrupt context.
161  */
162 void irq_set_thread_affinity(struct irq_desc *desc)
163 {
164 	struct irqaction *action;
165 
166 	for_each_action_of_desc(desc, action)
167 		if (action->thread)
168 			set_bit(IRQTF_AFFINITY, &action->thread_flags);
169 }
170 
171 static void irq_validate_effective_affinity(struct irq_data *data)
172 {
173 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
174 	const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
175 	struct irq_chip *chip = irq_data_get_irq_chip(data);
176 
177 	if (!cpumask_empty(m))
178 		return;
179 	pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
180 		     chip->name, data->irq);
181 #endif
182 }
183 
184 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
185 			bool force)
186 {
187 	struct irq_desc *desc = irq_data_to_desc(data);
188 	struct irq_chip *chip = irq_data_get_irq_chip(data);
189 	int ret;
190 
191 	if (!chip || !chip->irq_set_affinity)
192 		return -EINVAL;
193 
194 	ret = chip->irq_set_affinity(data, mask, force);
195 	switch (ret) {
196 	case IRQ_SET_MASK_OK:
197 	case IRQ_SET_MASK_OK_DONE:
198 		cpumask_copy(desc->irq_common_data.affinity, mask);
199 		/* fall through */
200 	case IRQ_SET_MASK_OK_NOCOPY:
201 		irq_validate_effective_affinity(data);
202 		irq_set_thread_affinity(desc);
203 		ret = 0;
204 	}
205 
206 	return ret;
207 }
208 
209 #ifdef CONFIG_GENERIC_PENDING_IRQ
210 static inline int irq_set_affinity_pending(struct irq_data *data,
211 					   const struct cpumask *dest)
212 {
213 	struct irq_desc *desc = irq_data_to_desc(data);
214 
215 	irqd_set_move_pending(data);
216 	irq_copy_pending(desc, dest);
217 	return 0;
218 }
219 #else
220 static inline int irq_set_affinity_pending(struct irq_data *data,
221 					   const struct cpumask *dest)
222 {
223 	return -EBUSY;
224 }
225 #endif
226 
227 static int irq_try_set_affinity(struct irq_data *data,
228 				const struct cpumask *dest, bool force)
229 {
230 	int ret = irq_do_set_affinity(data, dest, force);
231 
232 	/*
233 	 * In case that the underlying vector management is busy and the
234 	 * architecture supports the generic pending mechanism then utilize
235 	 * this to avoid returning an error to user space.
236 	 */
237 	if (ret == -EBUSY && !force)
238 		ret = irq_set_affinity_pending(data, dest);
239 	return ret;
240 }
241 
242 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
243 			    bool force)
244 {
245 	struct irq_chip *chip = irq_data_get_irq_chip(data);
246 	struct irq_desc *desc = irq_data_to_desc(data);
247 	int ret = 0;
248 
249 	if (!chip || !chip->irq_set_affinity)
250 		return -EINVAL;
251 
252 	if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) {
253 		ret = irq_try_set_affinity(data, mask, force);
254 	} else {
255 		irqd_set_move_pending(data);
256 		irq_copy_pending(desc, mask);
257 	}
258 
259 	if (desc->affinity_notify) {
260 		kref_get(&desc->affinity_notify->kref);
261 		schedule_work(&desc->affinity_notify->work);
262 	}
263 	irqd_set(data, IRQD_AFFINITY_SET);
264 
265 	return ret;
266 }
267 
268 int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force)
269 {
270 	struct irq_desc *desc = irq_to_desc(irq);
271 	unsigned long flags;
272 	int ret;
273 
274 	if (!desc)
275 		return -EINVAL;
276 
277 	raw_spin_lock_irqsave(&desc->lock, flags);
278 	ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
279 	raw_spin_unlock_irqrestore(&desc->lock, flags);
280 	return ret;
281 }
282 
283 int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m)
284 {
285 	unsigned long flags;
286 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
287 
288 	if (!desc)
289 		return -EINVAL;
290 	desc->affinity_hint = m;
291 	irq_put_desc_unlock(desc, flags);
292 	/* set the initial affinity to prevent every interrupt being on CPU0 */
293 	if (m)
294 		__irq_set_affinity(irq, m, false);
295 	return 0;
296 }
297 EXPORT_SYMBOL_GPL(irq_set_affinity_hint);
298 
299 static void irq_affinity_notify(struct work_struct *work)
300 {
301 	struct irq_affinity_notify *notify =
302 		container_of(work, struct irq_affinity_notify, work);
303 	struct irq_desc *desc = irq_to_desc(notify->irq);
304 	cpumask_var_t cpumask;
305 	unsigned long flags;
306 
307 	if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
308 		goto out;
309 
310 	raw_spin_lock_irqsave(&desc->lock, flags);
311 	if (irq_move_pending(&desc->irq_data))
312 		irq_get_pending(cpumask, desc);
313 	else
314 		cpumask_copy(cpumask, desc->irq_common_data.affinity);
315 	raw_spin_unlock_irqrestore(&desc->lock, flags);
316 
317 	notify->notify(notify, cpumask);
318 
319 	free_cpumask_var(cpumask);
320 out:
321 	kref_put(&notify->kref, notify->release);
322 }
323 
324 /**
325  *	irq_set_affinity_notifier - control notification of IRQ affinity changes
326  *	@irq:		Interrupt for which to enable/disable notification
327  *	@notify:	Context for notification, or %NULL to disable
328  *			notification.  Function pointers must be initialised;
329  *			the other fields will be initialised by this function.
330  *
331  *	Must be called in process context.  Notification may only be enabled
332  *	after the IRQ is allocated and must be disabled before the IRQ is
333  *	freed using free_irq().
334  */
335 int
336 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
337 {
338 	struct irq_desc *desc = irq_to_desc(irq);
339 	struct irq_affinity_notify *old_notify;
340 	unsigned long flags;
341 
342 	/* The release function is promised process context */
343 	might_sleep();
344 
345 	if (!desc || desc->istate & IRQS_NMI)
346 		return -EINVAL;
347 
348 	/* Complete initialisation of *notify */
349 	if (notify) {
350 		notify->irq = irq;
351 		kref_init(&notify->kref);
352 		INIT_WORK(&notify->work, irq_affinity_notify);
353 	}
354 
355 	raw_spin_lock_irqsave(&desc->lock, flags);
356 	old_notify = desc->affinity_notify;
357 	desc->affinity_notify = notify;
358 	raw_spin_unlock_irqrestore(&desc->lock, flags);
359 
360 	if (old_notify)
361 		kref_put(&old_notify->kref, old_notify->release);
362 
363 	return 0;
364 }
365 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
366 
367 #ifndef CONFIG_AUTO_IRQ_AFFINITY
368 /*
369  * Generic version of the affinity autoselector.
370  */
371 int irq_setup_affinity(struct irq_desc *desc)
372 {
373 	struct cpumask *set = irq_default_affinity;
374 	int ret, node = irq_desc_get_node(desc);
375 	static DEFINE_RAW_SPINLOCK(mask_lock);
376 	static struct cpumask mask;
377 
378 	/* Excludes PER_CPU and NO_BALANCE interrupts */
379 	if (!__irq_can_set_affinity(desc))
380 		return 0;
381 
382 	raw_spin_lock(&mask_lock);
383 	/*
384 	 * Preserve the managed affinity setting and a userspace affinity
385 	 * setup, but make sure that one of the targets is online.
386 	 */
387 	if (irqd_affinity_is_managed(&desc->irq_data) ||
388 	    irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
389 		if (cpumask_intersects(desc->irq_common_data.affinity,
390 				       cpu_online_mask))
391 			set = desc->irq_common_data.affinity;
392 		else
393 			irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
394 	}
395 
396 	cpumask_and(&mask, cpu_online_mask, set);
397 	if (cpumask_empty(&mask))
398 		cpumask_copy(&mask, cpu_online_mask);
399 
400 	if (node != NUMA_NO_NODE) {
401 		const struct cpumask *nodemask = cpumask_of_node(node);
402 
403 		/* make sure at least one of the cpus in nodemask is online */
404 		if (cpumask_intersects(&mask, nodemask))
405 			cpumask_and(&mask, &mask, nodemask);
406 	}
407 	ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
408 	raw_spin_unlock(&mask_lock);
409 	return ret;
410 }
411 #else
412 /* Wrapper for ALPHA specific affinity selector magic */
413 int irq_setup_affinity(struct irq_desc *desc)
414 {
415 	return irq_select_affinity(irq_desc_get_irq(desc));
416 }
417 #endif
418 
419 /*
420  * Called when a bogus affinity is set via /proc/irq
421  */
422 int irq_select_affinity_usr(unsigned int irq)
423 {
424 	struct irq_desc *desc = irq_to_desc(irq);
425 	unsigned long flags;
426 	int ret;
427 
428 	raw_spin_lock_irqsave(&desc->lock, flags);
429 	ret = irq_setup_affinity(desc);
430 	raw_spin_unlock_irqrestore(&desc->lock, flags);
431 	return ret;
432 }
433 #endif
434 
435 /**
436  *	irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
437  *	@irq: interrupt number to set affinity
438  *	@vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
439  *	            specific data for percpu_devid interrupts
440  *
441  *	This function uses the vCPU specific data to set the vCPU
442  *	affinity for an irq. The vCPU specific data is passed from
443  *	outside, such as KVM. One example code path is as below:
444  *	KVM -> IOMMU -> irq_set_vcpu_affinity().
445  */
446 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
447 {
448 	unsigned long flags;
449 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
450 	struct irq_data *data;
451 	struct irq_chip *chip;
452 	int ret = -ENOSYS;
453 
454 	if (!desc)
455 		return -EINVAL;
456 
457 	data = irq_desc_get_irq_data(desc);
458 	do {
459 		chip = irq_data_get_irq_chip(data);
460 		if (chip && chip->irq_set_vcpu_affinity)
461 			break;
462 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
463 		data = data->parent_data;
464 #else
465 		data = NULL;
466 #endif
467 	} while (data);
468 
469 	if (data)
470 		ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
471 	irq_put_desc_unlock(desc, flags);
472 
473 	return ret;
474 }
475 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
476 
477 void __disable_irq(struct irq_desc *desc)
478 {
479 	if (!desc->depth++)
480 		irq_disable(desc);
481 }
482 
483 static int __disable_irq_nosync(unsigned int irq)
484 {
485 	unsigned long flags;
486 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
487 
488 	if (!desc)
489 		return -EINVAL;
490 	__disable_irq(desc);
491 	irq_put_desc_busunlock(desc, flags);
492 	return 0;
493 }
494 
495 /**
496  *	disable_irq_nosync - disable an irq without waiting
497  *	@irq: Interrupt to disable
498  *
499  *	Disable the selected interrupt line.  Disables and Enables are
500  *	nested.
501  *	Unlike disable_irq(), this function does not ensure existing
502  *	instances of the IRQ handler have completed before returning.
503  *
504  *	This function may be called from IRQ context.
505  */
506 void disable_irq_nosync(unsigned int irq)
507 {
508 	__disable_irq_nosync(irq);
509 }
510 EXPORT_SYMBOL(disable_irq_nosync);
511 
512 /**
513  *	disable_irq - disable an irq and wait for completion
514  *	@irq: Interrupt to disable
515  *
516  *	Disable the selected interrupt line.  Enables and Disables are
517  *	nested.
518  *	This function waits for any pending IRQ handlers for this interrupt
519  *	to complete before returning. If you use this function while
520  *	holding a resource the IRQ handler may need you will deadlock.
521  *
522  *	This function may be called - with care - from IRQ context.
523  */
524 void disable_irq(unsigned int irq)
525 {
526 	if (!__disable_irq_nosync(irq))
527 		synchronize_irq(irq);
528 }
529 EXPORT_SYMBOL(disable_irq);
530 
531 /**
532  *	disable_hardirq - disables an irq and waits for hardirq completion
533  *	@irq: Interrupt to disable
534  *
535  *	Disable the selected interrupt line.  Enables and Disables are
536  *	nested.
537  *	This function waits for any pending hard IRQ handlers for this
538  *	interrupt to complete before returning. If you use this function while
539  *	holding a resource the hard IRQ handler may need you will deadlock.
540  *
541  *	When used to optimistically disable an interrupt from atomic context
542  *	the return value must be checked.
543  *
544  *	Returns: false if a threaded handler is active.
545  *
546  *	This function may be called - with care - from IRQ context.
547  */
548 bool disable_hardirq(unsigned int irq)
549 {
550 	if (!__disable_irq_nosync(irq))
551 		return synchronize_hardirq(irq);
552 
553 	return false;
554 }
555 EXPORT_SYMBOL_GPL(disable_hardirq);
556 
557 /**
558  *	disable_nmi_nosync - disable an nmi without waiting
559  *	@irq: Interrupt to disable
560  *
561  *	Disable the selected interrupt line. Disables and enables are
562  *	nested.
563  *	The interrupt to disable must have been requested through request_nmi.
564  *	Unlike disable_nmi(), this function does not ensure existing
565  *	instances of the IRQ handler have completed before returning.
566  */
567 void disable_nmi_nosync(unsigned int irq)
568 {
569 	disable_irq_nosync(irq);
570 }
571 
572 void __enable_irq(struct irq_desc *desc)
573 {
574 	switch (desc->depth) {
575 	case 0:
576  err_out:
577 		WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
578 		     irq_desc_get_irq(desc));
579 		break;
580 	case 1: {
581 		if (desc->istate & IRQS_SUSPENDED)
582 			goto err_out;
583 		/* Prevent probing on this irq: */
584 		irq_settings_set_noprobe(desc);
585 		/*
586 		 * Call irq_startup() not irq_enable() here because the
587 		 * interrupt might be marked NOAUTOEN. So irq_startup()
588 		 * needs to be invoked when it gets enabled the first
589 		 * time. If it was already started up, then irq_startup()
590 		 * will invoke irq_enable() under the hood.
591 		 */
592 		irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
593 		break;
594 	}
595 	default:
596 		desc->depth--;
597 	}
598 }
599 
600 /**
601  *	enable_irq - enable handling of an irq
602  *	@irq: Interrupt to enable
603  *
604  *	Undoes the effect of one call to disable_irq().  If this
605  *	matches the last disable, processing of interrupts on this
606  *	IRQ line is re-enabled.
607  *
608  *	This function may be called from IRQ context only when
609  *	desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
610  */
611 void enable_irq(unsigned int irq)
612 {
613 	unsigned long flags;
614 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
615 
616 	if (!desc)
617 		return;
618 	if (WARN(!desc->irq_data.chip,
619 		 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
620 		goto out;
621 
622 	__enable_irq(desc);
623 out:
624 	irq_put_desc_busunlock(desc, flags);
625 }
626 EXPORT_SYMBOL(enable_irq);
627 
628 /**
629  *	enable_nmi - enable handling of an nmi
630  *	@irq: Interrupt to enable
631  *
632  *	The interrupt to enable must have been requested through request_nmi.
633  *	Undoes the effect of one call to disable_nmi(). If this
634  *	matches the last disable, processing of interrupts on this
635  *	IRQ line is re-enabled.
636  */
637 void enable_nmi(unsigned int irq)
638 {
639 	enable_irq(irq);
640 }
641 
642 static int set_irq_wake_real(unsigned int irq, unsigned int on)
643 {
644 	struct irq_desc *desc = irq_to_desc(irq);
645 	int ret = -ENXIO;
646 
647 	if (irq_desc_get_chip(desc)->flags &  IRQCHIP_SKIP_SET_WAKE)
648 		return 0;
649 
650 	if (desc->irq_data.chip->irq_set_wake)
651 		ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
652 
653 	return ret;
654 }
655 
656 /**
657  *	irq_set_irq_wake - control irq power management wakeup
658  *	@irq:	interrupt to control
659  *	@on:	enable/disable power management wakeup
660  *
661  *	Enable/disable power management wakeup mode, which is
662  *	disabled by default.  Enables and disables must match,
663  *	just as they match for non-wakeup mode support.
664  *
665  *	Wakeup mode lets this IRQ wake the system from sleep
666  *	states like "suspend to RAM".
667  */
668 int irq_set_irq_wake(unsigned int irq, unsigned int on)
669 {
670 	unsigned long flags;
671 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
672 	int ret = 0;
673 
674 	if (!desc)
675 		return -EINVAL;
676 
677 	/* Don't use NMIs as wake up interrupts please */
678 	if (desc->istate & IRQS_NMI) {
679 		ret = -EINVAL;
680 		goto out_unlock;
681 	}
682 
683 	/* wakeup-capable irqs can be shared between drivers that
684 	 * don't need to have the same sleep mode behaviors.
685 	 */
686 	if (on) {
687 		if (desc->wake_depth++ == 0) {
688 			ret = set_irq_wake_real(irq, on);
689 			if (ret)
690 				desc->wake_depth = 0;
691 			else
692 				irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
693 		}
694 	} else {
695 		if (desc->wake_depth == 0) {
696 			WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
697 		} else if (--desc->wake_depth == 0) {
698 			ret = set_irq_wake_real(irq, on);
699 			if (ret)
700 				desc->wake_depth = 1;
701 			else
702 				irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
703 		}
704 	}
705 
706 out_unlock:
707 	irq_put_desc_busunlock(desc, flags);
708 	return ret;
709 }
710 EXPORT_SYMBOL(irq_set_irq_wake);
711 
712 /*
713  * Internal function that tells the architecture code whether a
714  * particular irq has been exclusively allocated or is available
715  * for driver use.
716  */
717 int can_request_irq(unsigned int irq, unsigned long irqflags)
718 {
719 	unsigned long flags;
720 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
721 	int canrequest = 0;
722 
723 	if (!desc)
724 		return 0;
725 
726 	if (irq_settings_can_request(desc)) {
727 		if (!desc->action ||
728 		    irqflags & desc->action->flags & IRQF_SHARED)
729 			canrequest = 1;
730 	}
731 	irq_put_desc_unlock(desc, flags);
732 	return canrequest;
733 }
734 
735 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
736 {
737 	struct irq_chip *chip = desc->irq_data.chip;
738 	int ret, unmask = 0;
739 
740 	if (!chip || !chip->irq_set_type) {
741 		/*
742 		 * IRQF_TRIGGER_* but the PIC does not support multiple
743 		 * flow-types?
744 		 */
745 		pr_debug("No set_type function for IRQ %d (%s)\n",
746 			 irq_desc_get_irq(desc),
747 			 chip ? (chip->name ? : "unknown") : "unknown");
748 		return 0;
749 	}
750 
751 	if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
752 		if (!irqd_irq_masked(&desc->irq_data))
753 			mask_irq(desc);
754 		if (!irqd_irq_disabled(&desc->irq_data))
755 			unmask = 1;
756 	}
757 
758 	/* Mask all flags except trigger mode */
759 	flags &= IRQ_TYPE_SENSE_MASK;
760 	ret = chip->irq_set_type(&desc->irq_data, flags);
761 
762 	switch (ret) {
763 	case IRQ_SET_MASK_OK:
764 	case IRQ_SET_MASK_OK_DONE:
765 		irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
766 		irqd_set(&desc->irq_data, flags);
767 		/* fall through */
768 
769 	case IRQ_SET_MASK_OK_NOCOPY:
770 		flags = irqd_get_trigger_type(&desc->irq_data);
771 		irq_settings_set_trigger_mask(desc, flags);
772 		irqd_clear(&desc->irq_data, IRQD_LEVEL);
773 		irq_settings_clr_level(desc);
774 		if (flags & IRQ_TYPE_LEVEL_MASK) {
775 			irq_settings_set_level(desc);
776 			irqd_set(&desc->irq_data, IRQD_LEVEL);
777 		}
778 
779 		ret = 0;
780 		break;
781 	default:
782 		pr_err("Setting trigger mode %lu for irq %u failed (%pF)\n",
783 		       flags, irq_desc_get_irq(desc), chip->irq_set_type);
784 	}
785 	if (unmask)
786 		unmask_irq(desc);
787 	return ret;
788 }
789 
790 #ifdef CONFIG_HARDIRQS_SW_RESEND
791 int irq_set_parent(int irq, int parent_irq)
792 {
793 	unsigned long flags;
794 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
795 
796 	if (!desc)
797 		return -EINVAL;
798 
799 	desc->parent_irq = parent_irq;
800 
801 	irq_put_desc_unlock(desc, flags);
802 	return 0;
803 }
804 EXPORT_SYMBOL_GPL(irq_set_parent);
805 #endif
806 
807 /*
808  * Default primary interrupt handler for threaded interrupts. Is
809  * assigned as primary handler when request_threaded_irq is called
810  * with handler == NULL. Useful for oneshot interrupts.
811  */
812 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
813 {
814 	return IRQ_WAKE_THREAD;
815 }
816 
817 /*
818  * Primary handler for nested threaded interrupts. Should never be
819  * called.
820  */
821 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
822 {
823 	WARN(1, "Primary handler called for nested irq %d\n", irq);
824 	return IRQ_NONE;
825 }
826 
827 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
828 {
829 	WARN(1, "Secondary action handler called for irq %d\n", irq);
830 	return IRQ_NONE;
831 }
832 
833 static int irq_wait_for_interrupt(struct irqaction *action)
834 {
835 	for (;;) {
836 		set_current_state(TASK_INTERRUPTIBLE);
837 
838 		if (kthread_should_stop()) {
839 			/* may need to run one last time */
840 			if (test_and_clear_bit(IRQTF_RUNTHREAD,
841 					       &action->thread_flags)) {
842 				__set_current_state(TASK_RUNNING);
843 				return 0;
844 			}
845 			__set_current_state(TASK_RUNNING);
846 			return -1;
847 		}
848 
849 		if (test_and_clear_bit(IRQTF_RUNTHREAD,
850 				       &action->thread_flags)) {
851 			__set_current_state(TASK_RUNNING);
852 			return 0;
853 		}
854 		schedule();
855 	}
856 }
857 
858 /*
859  * Oneshot interrupts keep the irq line masked until the threaded
860  * handler finished. unmask if the interrupt has not been disabled and
861  * is marked MASKED.
862  */
863 static void irq_finalize_oneshot(struct irq_desc *desc,
864 				 struct irqaction *action)
865 {
866 	if (!(desc->istate & IRQS_ONESHOT) ||
867 	    action->handler == irq_forced_secondary_handler)
868 		return;
869 again:
870 	chip_bus_lock(desc);
871 	raw_spin_lock_irq(&desc->lock);
872 
873 	/*
874 	 * Implausible though it may be we need to protect us against
875 	 * the following scenario:
876 	 *
877 	 * The thread is faster done than the hard interrupt handler
878 	 * on the other CPU. If we unmask the irq line then the
879 	 * interrupt can come in again and masks the line, leaves due
880 	 * to IRQS_INPROGRESS and the irq line is masked forever.
881 	 *
882 	 * This also serializes the state of shared oneshot handlers
883 	 * versus "desc->threads_onehsot |= action->thread_mask;" in
884 	 * irq_wake_thread(). See the comment there which explains the
885 	 * serialization.
886 	 */
887 	if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
888 		raw_spin_unlock_irq(&desc->lock);
889 		chip_bus_sync_unlock(desc);
890 		cpu_relax();
891 		goto again;
892 	}
893 
894 	/*
895 	 * Now check again, whether the thread should run. Otherwise
896 	 * we would clear the threads_oneshot bit of this thread which
897 	 * was just set.
898 	 */
899 	if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
900 		goto out_unlock;
901 
902 	desc->threads_oneshot &= ~action->thread_mask;
903 
904 	if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
905 	    irqd_irq_masked(&desc->irq_data))
906 		unmask_threaded_irq(desc);
907 
908 out_unlock:
909 	raw_spin_unlock_irq(&desc->lock);
910 	chip_bus_sync_unlock(desc);
911 }
912 
913 #ifdef CONFIG_SMP
914 /*
915  * Check whether we need to change the affinity of the interrupt thread.
916  */
917 static void
918 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
919 {
920 	cpumask_var_t mask;
921 	bool valid = true;
922 
923 	if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
924 		return;
925 
926 	/*
927 	 * In case we are out of memory we set IRQTF_AFFINITY again and
928 	 * try again next time
929 	 */
930 	if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
931 		set_bit(IRQTF_AFFINITY, &action->thread_flags);
932 		return;
933 	}
934 
935 	raw_spin_lock_irq(&desc->lock);
936 	/*
937 	 * This code is triggered unconditionally. Check the affinity
938 	 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
939 	 */
940 	if (cpumask_available(desc->irq_common_data.affinity)) {
941 		const struct cpumask *m;
942 
943 		m = irq_data_get_effective_affinity_mask(&desc->irq_data);
944 		cpumask_copy(mask, m);
945 	} else {
946 		valid = false;
947 	}
948 	raw_spin_unlock_irq(&desc->lock);
949 
950 	if (valid)
951 		set_cpus_allowed_ptr(current, mask);
952 	free_cpumask_var(mask);
953 }
954 #else
955 static inline void
956 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
957 #endif
958 
959 /*
960  * Interrupts which are not explicitly requested as threaded
961  * interrupts rely on the implicit bh/preempt disable of the hard irq
962  * context. So we need to disable bh here to avoid deadlocks and other
963  * side effects.
964  */
965 static irqreturn_t
966 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
967 {
968 	irqreturn_t ret;
969 
970 	local_bh_disable();
971 	ret = action->thread_fn(action->irq, action->dev_id);
972 	if (ret == IRQ_HANDLED)
973 		atomic_inc(&desc->threads_handled);
974 
975 	irq_finalize_oneshot(desc, action);
976 	local_bh_enable();
977 	return ret;
978 }
979 
980 /*
981  * Interrupts explicitly requested as threaded interrupts want to be
982  * preemtible - many of them need to sleep and wait for slow busses to
983  * complete.
984  */
985 static irqreturn_t irq_thread_fn(struct irq_desc *desc,
986 		struct irqaction *action)
987 {
988 	irqreturn_t ret;
989 
990 	ret = action->thread_fn(action->irq, action->dev_id);
991 	if (ret == IRQ_HANDLED)
992 		atomic_inc(&desc->threads_handled);
993 
994 	irq_finalize_oneshot(desc, action);
995 	return ret;
996 }
997 
998 static void wake_threads_waitq(struct irq_desc *desc)
999 {
1000 	if (atomic_dec_and_test(&desc->threads_active))
1001 		wake_up(&desc->wait_for_threads);
1002 }
1003 
1004 static void irq_thread_dtor(struct callback_head *unused)
1005 {
1006 	struct task_struct *tsk = current;
1007 	struct irq_desc *desc;
1008 	struct irqaction *action;
1009 
1010 	if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
1011 		return;
1012 
1013 	action = kthread_data(tsk);
1014 
1015 	pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
1016 	       tsk->comm, tsk->pid, action->irq);
1017 
1018 
1019 	desc = irq_to_desc(action->irq);
1020 	/*
1021 	 * If IRQTF_RUNTHREAD is set, we need to decrement
1022 	 * desc->threads_active and wake possible waiters.
1023 	 */
1024 	if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1025 		wake_threads_waitq(desc);
1026 
1027 	/* Prevent a stale desc->threads_oneshot */
1028 	irq_finalize_oneshot(desc, action);
1029 }
1030 
1031 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
1032 {
1033 	struct irqaction *secondary = action->secondary;
1034 
1035 	if (WARN_ON_ONCE(!secondary))
1036 		return;
1037 
1038 	raw_spin_lock_irq(&desc->lock);
1039 	__irq_wake_thread(desc, secondary);
1040 	raw_spin_unlock_irq(&desc->lock);
1041 }
1042 
1043 /*
1044  * Interrupt handler thread
1045  */
1046 static int irq_thread(void *data)
1047 {
1048 	struct callback_head on_exit_work;
1049 	struct irqaction *action = data;
1050 	struct irq_desc *desc = irq_to_desc(action->irq);
1051 	irqreturn_t (*handler_fn)(struct irq_desc *desc,
1052 			struct irqaction *action);
1053 
1054 	if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD,
1055 					&action->thread_flags))
1056 		handler_fn = irq_forced_thread_fn;
1057 	else
1058 		handler_fn = irq_thread_fn;
1059 
1060 	init_task_work(&on_exit_work, irq_thread_dtor);
1061 	task_work_add(current, &on_exit_work, false);
1062 
1063 	irq_thread_check_affinity(desc, action);
1064 
1065 	while (!irq_wait_for_interrupt(action)) {
1066 		irqreturn_t action_ret;
1067 
1068 		irq_thread_check_affinity(desc, action);
1069 
1070 		action_ret = handler_fn(desc, action);
1071 		if (action_ret == IRQ_WAKE_THREAD)
1072 			irq_wake_secondary(desc, action);
1073 
1074 		wake_threads_waitq(desc);
1075 	}
1076 
1077 	/*
1078 	 * This is the regular exit path. __free_irq() is stopping the
1079 	 * thread via kthread_stop() after calling
1080 	 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the
1081 	 * oneshot mask bit can be set.
1082 	 */
1083 	task_work_cancel(current, irq_thread_dtor);
1084 	return 0;
1085 }
1086 
1087 /**
1088  *	irq_wake_thread - wake the irq thread for the action identified by dev_id
1089  *	@irq:		Interrupt line
1090  *	@dev_id:	Device identity for which the thread should be woken
1091  *
1092  */
1093 void irq_wake_thread(unsigned int irq, void *dev_id)
1094 {
1095 	struct irq_desc *desc = irq_to_desc(irq);
1096 	struct irqaction *action;
1097 	unsigned long flags;
1098 
1099 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1100 		return;
1101 
1102 	raw_spin_lock_irqsave(&desc->lock, flags);
1103 	for_each_action_of_desc(desc, action) {
1104 		if (action->dev_id == dev_id) {
1105 			if (action->thread)
1106 				__irq_wake_thread(desc, action);
1107 			break;
1108 		}
1109 	}
1110 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1111 }
1112 EXPORT_SYMBOL_GPL(irq_wake_thread);
1113 
1114 static int irq_setup_forced_threading(struct irqaction *new)
1115 {
1116 	if (!force_irqthreads)
1117 		return 0;
1118 	if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1119 		return 0;
1120 
1121 	/*
1122 	 * No further action required for interrupts which are requested as
1123 	 * threaded interrupts already
1124 	 */
1125 	if (new->handler == irq_default_primary_handler)
1126 		return 0;
1127 
1128 	new->flags |= IRQF_ONESHOT;
1129 
1130 	/*
1131 	 * Handle the case where we have a real primary handler and a
1132 	 * thread handler. We force thread them as well by creating a
1133 	 * secondary action.
1134 	 */
1135 	if (new->handler && new->thread_fn) {
1136 		/* Allocate the secondary action */
1137 		new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1138 		if (!new->secondary)
1139 			return -ENOMEM;
1140 		new->secondary->handler = irq_forced_secondary_handler;
1141 		new->secondary->thread_fn = new->thread_fn;
1142 		new->secondary->dev_id = new->dev_id;
1143 		new->secondary->irq = new->irq;
1144 		new->secondary->name = new->name;
1145 	}
1146 	/* Deal with the primary handler */
1147 	set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1148 	new->thread_fn = new->handler;
1149 	new->handler = irq_default_primary_handler;
1150 	return 0;
1151 }
1152 
1153 static int irq_request_resources(struct irq_desc *desc)
1154 {
1155 	struct irq_data *d = &desc->irq_data;
1156 	struct irq_chip *c = d->chip;
1157 
1158 	return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1159 }
1160 
1161 static void irq_release_resources(struct irq_desc *desc)
1162 {
1163 	struct irq_data *d = &desc->irq_data;
1164 	struct irq_chip *c = d->chip;
1165 
1166 	if (c->irq_release_resources)
1167 		c->irq_release_resources(d);
1168 }
1169 
1170 static bool irq_supports_nmi(struct irq_desc *desc)
1171 {
1172 	struct irq_data *d = irq_desc_get_irq_data(desc);
1173 
1174 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
1175 	/* Only IRQs directly managed by the root irqchip can be set as NMI */
1176 	if (d->parent_data)
1177 		return false;
1178 #endif
1179 	/* Don't support NMIs for chips behind a slow bus */
1180 	if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock)
1181 		return false;
1182 
1183 	return d->chip->flags & IRQCHIP_SUPPORTS_NMI;
1184 }
1185 
1186 static int irq_nmi_setup(struct irq_desc *desc)
1187 {
1188 	struct irq_data *d = irq_desc_get_irq_data(desc);
1189 	struct irq_chip *c = d->chip;
1190 
1191 	return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL;
1192 }
1193 
1194 static void irq_nmi_teardown(struct irq_desc *desc)
1195 {
1196 	struct irq_data *d = irq_desc_get_irq_data(desc);
1197 	struct irq_chip *c = d->chip;
1198 
1199 	if (c->irq_nmi_teardown)
1200 		c->irq_nmi_teardown(d);
1201 }
1202 
1203 static int
1204 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1205 {
1206 	struct task_struct *t;
1207 	struct sched_param param = {
1208 		.sched_priority = MAX_USER_RT_PRIO/2,
1209 	};
1210 
1211 	if (!secondary) {
1212 		t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1213 				   new->name);
1214 	} else {
1215 		t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1216 				   new->name);
1217 		param.sched_priority -= 1;
1218 	}
1219 
1220 	if (IS_ERR(t))
1221 		return PTR_ERR(t);
1222 
1223 	sched_setscheduler_nocheck(t, SCHED_FIFO, &param);
1224 
1225 	/*
1226 	 * We keep the reference to the task struct even if
1227 	 * the thread dies to avoid that the interrupt code
1228 	 * references an already freed task_struct.
1229 	 */
1230 	get_task_struct(t);
1231 	new->thread = t;
1232 	/*
1233 	 * Tell the thread to set its affinity. This is
1234 	 * important for shared interrupt handlers as we do
1235 	 * not invoke setup_affinity() for the secondary
1236 	 * handlers as everything is already set up. Even for
1237 	 * interrupts marked with IRQF_NO_BALANCE this is
1238 	 * correct as we want the thread to move to the cpu(s)
1239 	 * on which the requesting code placed the interrupt.
1240 	 */
1241 	set_bit(IRQTF_AFFINITY, &new->thread_flags);
1242 	return 0;
1243 }
1244 
1245 /*
1246  * Internal function to register an irqaction - typically used to
1247  * allocate special interrupts that are part of the architecture.
1248  *
1249  * Locking rules:
1250  *
1251  * desc->request_mutex	Provides serialization against a concurrent free_irq()
1252  *   chip_bus_lock	Provides serialization for slow bus operations
1253  *     desc->lock	Provides serialization against hard interrupts
1254  *
1255  * chip_bus_lock and desc->lock are sufficient for all other management and
1256  * interrupt related functions. desc->request_mutex solely serializes
1257  * request/free_irq().
1258  */
1259 static int
1260 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1261 {
1262 	struct irqaction *old, **old_ptr;
1263 	unsigned long flags, thread_mask = 0;
1264 	int ret, nested, shared = 0;
1265 
1266 	if (!desc)
1267 		return -EINVAL;
1268 
1269 	if (desc->irq_data.chip == &no_irq_chip)
1270 		return -ENOSYS;
1271 	if (!try_module_get(desc->owner))
1272 		return -ENODEV;
1273 
1274 	new->irq = irq;
1275 
1276 	/*
1277 	 * If the trigger type is not specified by the caller,
1278 	 * then use the default for this interrupt.
1279 	 */
1280 	if (!(new->flags & IRQF_TRIGGER_MASK))
1281 		new->flags |= irqd_get_trigger_type(&desc->irq_data);
1282 
1283 	/*
1284 	 * Check whether the interrupt nests into another interrupt
1285 	 * thread.
1286 	 */
1287 	nested = irq_settings_is_nested_thread(desc);
1288 	if (nested) {
1289 		if (!new->thread_fn) {
1290 			ret = -EINVAL;
1291 			goto out_mput;
1292 		}
1293 		/*
1294 		 * Replace the primary handler which was provided from
1295 		 * the driver for non nested interrupt handling by the
1296 		 * dummy function which warns when called.
1297 		 */
1298 		new->handler = irq_nested_primary_handler;
1299 	} else {
1300 		if (irq_settings_can_thread(desc)) {
1301 			ret = irq_setup_forced_threading(new);
1302 			if (ret)
1303 				goto out_mput;
1304 		}
1305 	}
1306 
1307 	/*
1308 	 * Create a handler thread when a thread function is supplied
1309 	 * and the interrupt does not nest into another interrupt
1310 	 * thread.
1311 	 */
1312 	if (new->thread_fn && !nested) {
1313 		ret = setup_irq_thread(new, irq, false);
1314 		if (ret)
1315 			goto out_mput;
1316 		if (new->secondary) {
1317 			ret = setup_irq_thread(new->secondary, irq, true);
1318 			if (ret)
1319 				goto out_thread;
1320 		}
1321 	}
1322 
1323 	/*
1324 	 * Drivers are often written to work w/o knowledge about the
1325 	 * underlying irq chip implementation, so a request for a
1326 	 * threaded irq without a primary hard irq context handler
1327 	 * requires the ONESHOT flag to be set. Some irq chips like
1328 	 * MSI based interrupts are per se one shot safe. Check the
1329 	 * chip flags, so we can avoid the unmask dance at the end of
1330 	 * the threaded handler for those.
1331 	 */
1332 	if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1333 		new->flags &= ~IRQF_ONESHOT;
1334 
1335 	/*
1336 	 * Protects against a concurrent __free_irq() call which might wait
1337 	 * for synchronize_hardirq() to complete without holding the optional
1338 	 * chip bus lock and desc->lock. Also protects against handing out
1339 	 * a recycled oneshot thread_mask bit while it's still in use by
1340 	 * its previous owner.
1341 	 */
1342 	mutex_lock(&desc->request_mutex);
1343 
1344 	/*
1345 	 * Acquire bus lock as the irq_request_resources() callback below
1346 	 * might rely on the serialization or the magic power management
1347 	 * functions which are abusing the irq_bus_lock() callback,
1348 	 */
1349 	chip_bus_lock(desc);
1350 
1351 	/* First installed action requests resources. */
1352 	if (!desc->action) {
1353 		ret = irq_request_resources(desc);
1354 		if (ret) {
1355 			pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1356 			       new->name, irq, desc->irq_data.chip->name);
1357 			goto out_bus_unlock;
1358 		}
1359 	}
1360 
1361 	/*
1362 	 * The following block of code has to be executed atomically
1363 	 * protected against a concurrent interrupt and any of the other
1364 	 * management calls which are not serialized via
1365 	 * desc->request_mutex or the optional bus lock.
1366 	 */
1367 	raw_spin_lock_irqsave(&desc->lock, flags);
1368 	old_ptr = &desc->action;
1369 	old = *old_ptr;
1370 	if (old) {
1371 		/*
1372 		 * Can't share interrupts unless both agree to and are
1373 		 * the same type (level, edge, polarity). So both flag
1374 		 * fields must have IRQF_SHARED set and the bits which
1375 		 * set the trigger type must match. Also all must
1376 		 * agree on ONESHOT.
1377 		 * Interrupt lines used for NMIs cannot be shared.
1378 		 */
1379 		unsigned int oldtype;
1380 
1381 		if (desc->istate & IRQS_NMI) {
1382 			pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n",
1383 				new->name, irq, desc->irq_data.chip->name);
1384 			ret = -EINVAL;
1385 			goto out_unlock;
1386 		}
1387 
1388 		/*
1389 		 * If nobody did set the configuration before, inherit
1390 		 * the one provided by the requester.
1391 		 */
1392 		if (irqd_trigger_type_was_set(&desc->irq_data)) {
1393 			oldtype = irqd_get_trigger_type(&desc->irq_data);
1394 		} else {
1395 			oldtype = new->flags & IRQF_TRIGGER_MASK;
1396 			irqd_set_trigger_type(&desc->irq_data, oldtype);
1397 		}
1398 
1399 		if (!((old->flags & new->flags) & IRQF_SHARED) ||
1400 		    (oldtype != (new->flags & IRQF_TRIGGER_MASK)) ||
1401 		    ((old->flags ^ new->flags) & IRQF_ONESHOT))
1402 			goto mismatch;
1403 
1404 		/* All handlers must agree on per-cpuness */
1405 		if ((old->flags & IRQF_PERCPU) !=
1406 		    (new->flags & IRQF_PERCPU))
1407 			goto mismatch;
1408 
1409 		/* add new interrupt at end of irq queue */
1410 		do {
1411 			/*
1412 			 * Or all existing action->thread_mask bits,
1413 			 * so we can find the next zero bit for this
1414 			 * new action.
1415 			 */
1416 			thread_mask |= old->thread_mask;
1417 			old_ptr = &old->next;
1418 			old = *old_ptr;
1419 		} while (old);
1420 		shared = 1;
1421 	}
1422 
1423 	/*
1424 	 * Setup the thread mask for this irqaction for ONESHOT. For
1425 	 * !ONESHOT irqs the thread mask is 0 so we can avoid a
1426 	 * conditional in irq_wake_thread().
1427 	 */
1428 	if (new->flags & IRQF_ONESHOT) {
1429 		/*
1430 		 * Unlikely to have 32 resp 64 irqs sharing one line,
1431 		 * but who knows.
1432 		 */
1433 		if (thread_mask == ~0UL) {
1434 			ret = -EBUSY;
1435 			goto out_unlock;
1436 		}
1437 		/*
1438 		 * The thread_mask for the action is or'ed to
1439 		 * desc->thread_active to indicate that the
1440 		 * IRQF_ONESHOT thread handler has been woken, but not
1441 		 * yet finished. The bit is cleared when a thread
1442 		 * completes. When all threads of a shared interrupt
1443 		 * line have completed desc->threads_active becomes
1444 		 * zero and the interrupt line is unmasked. See
1445 		 * handle.c:irq_wake_thread() for further information.
1446 		 *
1447 		 * If no thread is woken by primary (hard irq context)
1448 		 * interrupt handlers, then desc->threads_active is
1449 		 * also checked for zero to unmask the irq line in the
1450 		 * affected hard irq flow handlers
1451 		 * (handle_[fasteoi|level]_irq).
1452 		 *
1453 		 * The new action gets the first zero bit of
1454 		 * thread_mask assigned. See the loop above which or's
1455 		 * all existing action->thread_mask bits.
1456 		 */
1457 		new->thread_mask = 1UL << ffz(thread_mask);
1458 
1459 	} else if (new->handler == irq_default_primary_handler &&
1460 		   !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1461 		/*
1462 		 * The interrupt was requested with handler = NULL, so
1463 		 * we use the default primary handler for it. But it
1464 		 * does not have the oneshot flag set. In combination
1465 		 * with level interrupts this is deadly, because the
1466 		 * default primary handler just wakes the thread, then
1467 		 * the irq lines is reenabled, but the device still
1468 		 * has the level irq asserted. Rinse and repeat....
1469 		 *
1470 		 * While this works for edge type interrupts, we play
1471 		 * it safe and reject unconditionally because we can't
1472 		 * say for sure which type this interrupt really
1473 		 * has. The type flags are unreliable as the
1474 		 * underlying chip implementation can override them.
1475 		 */
1476 		pr_err("Threaded irq requested with handler=NULL and !ONESHOT for irq %d\n",
1477 		       irq);
1478 		ret = -EINVAL;
1479 		goto out_unlock;
1480 	}
1481 
1482 	if (!shared) {
1483 		init_waitqueue_head(&desc->wait_for_threads);
1484 
1485 		/* Setup the type (level, edge polarity) if configured: */
1486 		if (new->flags & IRQF_TRIGGER_MASK) {
1487 			ret = __irq_set_trigger(desc,
1488 						new->flags & IRQF_TRIGGER_MASK);
1489 
1490 			if (ret)
1491 				goto out_unlock;
1492 		}
1493 
1494 		/*
1495 		 * Activate the interrupt. That activation must happen
1496 		 * independently of IRQ_NOAUTOEN. request_irq() can fail
1497 		 * and the callers are supposed to handle
1498 		 * that. enable_irq() of an interrupt requested with
1499 		 * IRQ_NOAUTOEN is not supposed to fail. The activation
1500 		 * keeps it in shutdown mode, it merily associates
1501 		 * resources if necessary and if that's not possible it
1502 		 * fails. Interrupts which are in managed shutdown mode
1503 		 * will simply ignore that activation request.
1504 		 */
1505 		ret = irq_activate(desc);
1506 		if (ret)
1507 			goto out_unlock;
1508 
1509 		desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1510 				  IRQS_ONESHOT | IRQS_WAITING);
1511 		irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1512 
1513 		if (new->flags & IRQF_PERCPU) {
1514 			irqd_set(&desc->irq_data, IRQD_PER_CPU);
1515 			irq_settings_set_per_cpu(desc);
1516 		}
1517 
1518 		if (new->flags & IRQF_ONESHOT)
1519 			desc->istate |= IRQS_ONESHOT;
1520 
1521 		/* Exclude IRQ from balancing if requested */
1522 		if (new->flags & IRQF_NOBALANCING) {
1523 			irq_settings_set_no_balancing(desc);
1524 			irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1525 		}
1526 
1527 		if (irq_settings_can_autoenable(desc)) {
1528 			irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1529 		} else {
1530 			/*
1531 			 * Shared interrupts do not go well with disabling
1532 			 * auto enable. The sharing interrupt might request
1533 			 * it while it's still disabled and then wait for
1534 			 * interrupts forever.
1535 			 */
1536 			WARN_ON_ONCE(new->flags & IRQF_SHARED);
1537 			/* Undo nested disables: */
1538 			desc->depth = 1;
1539 		}
1540 
1541 	} else if (new->flags & IRQF_TRIGGER_MASK) {
1542 		unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1543 		unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1544 
1545 		if (nmsk != omsk)
1546 			/* hope the handler works with current  trigger mode */
1547 			pr_warn("irq %d uses trigger mode %u; requested %u\n",
1548 				irq, omsk, nmsk);
1549 	}
1550 
1551 	*old_ptr = new;
1552 
1553 	irq_pm_install_action(desc, new);
1554 
1555 	/* Reset broken irq detection when installing new handler */
1556 	desc->irq_count = 0;
1557 	desc->irqs_unhandled = 0;
1558 
1559 	/*
1560 	 * Check whether we disabled the irq via the spurious handler
1561 	 * before. Reenable it and give it another chance.
1562 	 */
1563 	if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1564 		desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1565 		__enable_irq(desc);
1566 	}
1567 
1568 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1569 	chip_bus_sync_unlock(desc);
1570 	mutex_unlock(&desc->request_mutex);
1571 
1572 	irq_setup_timings(desc, new);
1573 
1574 	/*
1575 	 * Strictly no need to wake it up, but hung_task complains
1576 	 * when no hard interrupt wakes the thread up.
1577 	 */
1578 	if (new->thread)
1579 		wake_up_process(new->thread);
1580 	if (new->secondary)
1581 		wake_up_process(new->secondary->thread);
1582 
1583 	register_irq_proc(irq, desc);
1584 	new->dir = NULL;
1585 	register_handler_proc(irq, new);
1586 	return 0;
1587 
1588 mismatch:
1589 	if (!(new->flags & IRQF_PROBE_SHARED)) {
1590 		pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1591 		       irq, new->flags, new->name, old->flags, old->name);
1592 #ifdef CONFIG_DEBUG_SHIRQ
1593 		dump_stack();
1594 #endif
1595 	}
1596 	ret = -EBUSY;
1597 
1598 out_unlock:
1599 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1600 
1601 	if (!desc->action)
1602 		irq_release_resources(desc);
1603 out_bus_unlock:
1604 	chip_bus_sync_unlock(desc);
1605 	mutex_unlock(&desc->request_mutex);
1606 
1607 out_thread:
1608 	if (new->thread) {
1609 		struct task_struct *t = new->thread;
1610 
1611 		new->thread = NULL;
1612 		kthread_stop(t);
1613 		put_task_struct(t);
1614 	}
1615 	if (new->secondary && new->secondary->thread) {
1616 		struct task_struct *t = new->secondary->thread;
1617 
1618 		new->secondary->thread = NULL;
1619 		kthread_stop(t);
1620 		put_task_struct(t);
1621 	}
1622 out_mput:
1623 	module_put(desc->owner);
1624 	return ret;
1625 }
1626 
1627 /**
1628  *	setup_irq - setup an interrupt
1629  *	@irq: Interrupt line to setup
1630  *	@act: irqaction for the interrupt
1631  *
1632  * Used to statically setup interrupts in the early boot process.
1633  */
1634 int setup_irq(unsigned int irq, struct irqaction *act)
1635 {
1636 	int retval;
1637 	struct irq_desc *desc = irq_to_desc(irq);
1638 
1639 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1640 		return -EINVAL;
1641 
1642 	retval = irq_chip_pm_get(&desc->irq_data);
1643 	if (retval < 0)
1644 		return retval;
1645 
1646 	retval = __setup_irq(irq, desc, act);
1647 
1648 	if (retval)
1649 		irq_chip_pm_put(&desc->irq_data);
1650 
1651 	return retval;
1652 }
1653 EXPORT_SYMBOL_GPL(setup_irq);
1654 
1655 /*
1656  * Internal function to unregister an irqaction - used to free
1657  * regular and special interrupts that are part of the architecture.
1658  */
1659 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1660 {
1661 	unsigned irq = desc->irq_data.irq;
1662 	struct irqaction *action, **action_ptr;
1663 	unsigned long flags;
1664 
1665 	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1666 
1667 	mutex_lock(&desc->request_mutex);
1668 	chip_bus_lock(desc);
1669 	raw_spin_lock_irqsave(&desc->lock, flags);
1670 
1671 	/*
1672 	 * There can be multiple actions per IRQ descriptor, find the right
1673 	 * one based on the dev_id:
1674 	 */
1675 	action_ptr = &desc->action;
1676 	for (;;) {
1677 		action = *action_ptr;
1678 
1679 		if (!action) {
1680 			WARN(1, "Trying to free already-free IRQ %d\n", irq);
1681 			raw_spin_unlock_irqrestore(&desc->lock, flags);
1682 			chip_bus_sync_unlock(desc);
1683 			mutex_unlock(&desc->request_mutex);
1684 			return NULL;
1685 		}
1686 
1687 		if (action->dev_id == dev_id)
1688 			break;
1689 		action_ptr = &action->next;
1690 	}
1691 
1692 	/* Found it - now remove it from the list of entries: */
1693 	*action_ptr = action->next;
1694 
1695 	irq_pm_remove_action(desc, action);
1696 
1697 	/* If this was the last handler, shut down the IRQ line: */
1698 	if (!desc->action) {
1699 		irq_settings_clr_disable_unlazy(desc);
1700 		irq_shutdown(desc);
1701 	}
1702 
1703 #ifdef CONFIG_SMP
1704 	/* make sure affinity_hint is cleaned up */
1705 	if (WARN_ON_ONCE(desc->affinity_hint))
1706 		desc->affinity_hint = NULL;
1707 #endif
1708 
1709 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1710 	/*
1711 	 * Drop bus_lock here so the changes which were done in the chip
1712 	 * callbacks above are synced out to the irq chips which hang
1713 	 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq().
1714 	 *
1715 	 * Aside of that the bus_lock can also be taken from the threaded
1716 	 * handler in irq_finalize_oneshot() which results in a deadlock
1717 	 * because kthread_stop() would wait forever for the thread to
1718 	 * complete, which is blocked on the bus lock.
1719 	 *
1720 	 * The still held desc->request_mutex() protects against a
1721 	 * concurrent request_irq() of this irq so the release of resources
1722 	 * and timing data is properly serialized.
1723 	 */
1724 	chip_bus_sync_unlock(desc);
1725 
1726 	unregister_handler_proc(irq, action);
1727 
1728 	/* Make sure it's not being used on another CPU: */
1729 	synchronize_hardirq(irq);
1730 
1731 #ifdef CONFIG_DEBUG_SHIRQ
1732 	/*
1733 	 * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1734 	 * event to happen even now it's being freed, so let's make sure that
1735 	 * is so by doing an extra call to the handler ....
1736 	 *
1737 	 * ( We do this after actually deregistering it, to make sure that a
1738 	 *   'real' IRQ doesn't run in parallel with our fake. )
1739 	 */
1740 	if (action->flags & IRQF_SHARED) {
1741 		local_irq_save(flags);
1742 		action->handler(irq, dev_id);
1743 		local_irq_restore(flags);
1744 	}
1745 #endif
1746 
1747 	/*
1748 	 * The action has already been removed above, but the thread writes
1749 	 * its oneshot mask bit when it completes. Though request_mutex is
1750 	 * held across this which prevents __setup_irq() from handing out
1751 	 * the same bit to a newly requested action.
1752 	 */
1753 	if (action->thread) {
1754 		kthread_stop(action->thread);
1755 		put_task_struct(action->thread);
1756 		if (action->secondary && action->secondary->thread) {
1757 			kthread_stop(action->secondary->thread);
1758 			put_task_struct(action->secondary->thread);
1759 		}
1760 	}
1761 
1762 	/* Last action releases resources */
1763 	if (!desc->action) {
1764 		/*
1765 		 * Reaquire bus lock as irq_release_resources() might
1766 		 * require it to deallocate resources over the slow bus.
1767 		 */
1768 		chip_bus_lock(desc);
1769 		irq_release_resources(desc);
1770 		chip_bus_sync_unlock(desc);
1771 		irq_remove_timings(desc);
1772 	}
1773 
1774 	mutex_unlock(&desc->request_mutex);
1775 
1776 	irq_chip_pm_put(&desc->irq_data);
1777 	module_put(desc->owner);
1778 	kfree(action->secondary);
1779 	return action;
1780 }
1781 
1782 /**
1783  *	remove_irq - free an interrupt
1784  *	@irq: Interrupt line to free
1785  *	@act: irqaction for the interrupt
1786  *
1787  * Used to remove interrupts statically setup by the early boot process.
1788  */
1789 void remove_irq(unsigned int irq, struct irqaction *act)
1790 {
1791 	struct irq_desc *desc = irq_to_desc(irq);
1792 
1793 	if (desc && !WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1794 		__free_irq(desc, act->dev_id);
1795 }
1796 EXPORT_SYMBOL_GPL(remove_irq);
1797 
1798 /**
1799  *	free_irq - free an interrupt allocated with request_irq
1800  *	@irq: Interrupt line to free
1801  *	@dev_id: Device identity to free
1802  *
1803  *	Remove an interrupt handler. The handler is removed and if the
1804  *	interrupt line is no longer in use by any driver it is disabled.
1805  *	On a shared IRQ the caller must ensure the interrupt is disabled
1806  *	on the card it drives before calling this function. The function
1807  *	does not return until any executing interrupts for this IRQ
1808  *	have completed.
1809  *
1810  *	This function must not be called from interrupt context.
1811  *
1812  *	Returns the devname argument passed to request_irq.
1813  */
1814 const void *free_irq(unsigned int irq, void *dev_id)
1815 {
1816 	struct irq_desc *desc = irq_to_desc(irq);
1817 	struct irqaction *action;
1818 	const char *devname;
1819 
1820 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1821 		return NULL;
1822 
1823 #ifdef CONFIG_SMP
1824 	if (WARN_ON(desc->affinity_notify))
1825 		desc->affinity_notify = NULL;
1826 #endif
1827 
1828 	action = __free_irq(desc, dev_id);
1829 
1830 	if (!action)
1831 		return NULL;
1832 
1833 	devname = action->name;
1834 	kfree(action);
1835 	return devname;
1836 }
1837 EXPORT_SYMBOL(free_irq);
1838 
1839 /* This function must be called with desc->lock held */
1840 static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc)
1841 {
1842 	const char *devname = NULL;
1843 
1844 	desc->istate &= ~IRQS_NMI;
1845 
1846 	if (!WARN_ON(desc->action == NULL)) {
1847 		irq_pm_remove_action(desc, desc->action);
1848 		devname = desc->action->name;
1849 		unregister_handler_proc(irq, desc->action);
1850 
1851 		kfree(desc->action);
1852 		desc->action = NULL;
1853 	}
1854 
1855 	irq_settings_clr_disable_unlazy(desc);
1856 	irq_shutdown(desc);
1857 
1858 	irq_release_resources(desc);
1859 
1860 	irq_chip_pm_put(&desc->irq_data);
1861 	module_put(desc->owner);
1862 
1863 	return devname;
1864 }
1865 
1866 const void *free_nmi(unsigned int irq, void *dev_id)
1867 {
1868 	struct irq_desc *desc = irq_to_desc(irq);
1869 	unsigned long flags;
1870 	const void *devname;
1871 
1872 	if (!desc || WARN_ON(!(desc->istate & IRQS_NMI)))
1873 		return NULL;
1874 
1875 	if (WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1876 		return NULL;
1877 
1878 	/* NMI still enabled */
1879 	if (WARN_ON(desc->depth == 0))
1880 		disable_nmi_nosync(irq);
1881 
1882 	raw_spin_lock_irqsave(&desc->lock, flags);
1883 
1884 	irq_nmi_teardown(desc);
1885 	devname = __cleanup_nmi(irq, desc);
1886 
1887 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1888 
1889 	return devname;
1890 }
1891 
1892 /**
1893  *	request_threaded_irq - allocate an interrupt line
1894  *	@irq: Interrupt line to allocate
1895  *	@handler: Function to be called when the IRQ occurs.
1896  *		  Primary handler for threaded interrupts
1897  *		  If NULL and thread_fn != NULL the default
1898  *		  primary handler is installed
1899  *	@thread_fn: Function called from the irq handler thread
1900  *		    If NULL, no irq thread is created
1901  *	@irqflags: Interrupt type flags
1902  *	@devname: An ascii name for the claiming device
1903  *	@dev_id: A cookie passed back to the handler function
1904  *
1905  *	This call allocates interrupt resources and enables the
1906  *	interrupt line and IRQ handling. From the point this
1907  *	call is made your handler function may be invoked. Since
1908  *	your handler function must clear any interrupt the board
1909  *	raises, you must take care both to initialise your hardware
1910  *	and to set up the interrupt handler in the right order.
1911  *
1912  *	If you want to set up a threaded irq handler for your device
1913  *	then you need to supply @handler and @thread_fn. @handler is
1914  *	still called in hard interrupt context and has to check
1915  *	whether the interrupt originates from the device. If yes it
1916  *	needs to disable the interrupt on the device and return
1917  *	IRQ_WAKE_THREAD which will wake up the handler thread and run
1918  *	@thread_fn. This split handler design is necessary to support
1919  *	shared interrupts.
1920  *
1921  *	Dev_id must be globally unique. Normally the address of the
1922  *	device data structure is used as the cookie. Since the handler
1923  *	receives this value it makes sense to use it.
1924  *
1925  *	If your interrupt is shared you must pass a non NULL dev_id
1926  *	as this is required when freeing the interrupt.
1927  *
1928  *	Flags:
1929  *
1930  *	IRQF_SHARED		Interrupt is shared
1931  *	IRQF_TRIGGER_*		Specify active edge(s) or level
1932  *
1933  */
1934 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
1935 			 irq_handler_t thread_fn, unsigned long irqflags,
1936 			 const char *devname, void *dev_id)
1937 {
1938 	struct irqaction *action;
1939 	struct irq_desc *desc;
1940 	int retval;
1941 
1942 	if (irq == IRQ_NOTCONNECTED)
1943 		return -ENOTCONN;
1944 
1945 	/*
1946 	 * Sanity-check: shared interrupts must pass in a real dev-ID,
1947 	 * otherwise we'll have trouble later trying to figure out
1948 	 * which interrupt is which (messes up the interrupt freeing
1949 	 * logic etc).
1950 	 *
1951 	 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
1952 	 * it cannot be set along with IRQF_NO_SUSPEND.
1953 	 */
1954 	if (((irqflags & IRQF_SHARED) && !dev_id) ||
1955 	    (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
1956 	    ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
1957 		return -EINVAL;
1958 
1959 	desc = irq_to_desc(irq);
1960 	if (!desc)
1961 		return -EINVAL;
1962 
1963 	if (!irq_settings_can_request(desc) ||
1964 	    WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1965 		return -EINVAL;
1966 
1967 	if (!handler) {
1968 		if (!thread_fn)
1969 			return -EINVAL;
1970 		handler = irq_default_primary_handler;
1971 	}
1972 
1973 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1974 	if (!action)
1975 		return -ENOMEM;
1976 
1977 	action->handler = handler;
1978 	action->thread_fn = thread_fn;
1979 	action->flags = irqflags;
1980 	action->name = devname;
1981 	action->dev_id = dev_id;
1982 
1983 	retval = irq_chip_pm_get(&desc->irq_data);
1984 	if (retval < 0) {
1985 		kfree(action);
1986 		return retval;
1987 	}
1988 
1989 	retval = __setup_irq(irq, desc, action);
1990 
1991 	if (retval) {
1992 		irq_chip_pm_put(&desc->irq_data);
1993 		kfree(action->secondary);
1994 		kfree(action);
1995 	}
1996 
1997 #ifdef CONFIG_DEBUG_SHIRQ_FIXME
1998 	if (!retval && (irqflags & IRQF_SHARED)) {
1999 		/*
2000 		 * It's a shared IRQ -- the driver ought to be prepared for it
2001 		 * to happen immediately, so let's make sure....
2002 		 * We disable the irq to make sure that a 'real' IRQ doesn't
2003 		 * run in parallel with our fake.
2004 		 */
2005 		unsigned long flags;
2006 
2007 		disable_irq(irq);
2008 		local_irq_save(flags);
2009 
2010 		handler(irq, dev_id);
2011 
2012 		local_irq_restore(flags);
2013 		enable_irq(irq);
2014 	}
2015 #endif
2016 	return retval;
2017 }
2018 EXPORT_SYMBOL(request_threaded_irq);
2019 
2020 /**
2021  *	request_any_context_irq - allocate an interrupt line
2022  *	@irq: Interrupt line to allocate
2023  *	@handler: Function to be called when the IRQ occurs.
2024  *		  Threaded handler for threaded interrupts.
2025  *	@flags: Interrupt type flags
2026  *	@name: An ascii name for the claiming device
2027  *	@dev_id: A cookie passed back to the handler function
2028  *
2029  *	This call allocates interrupt resources and enables the
2030  *	interrupt line and IRQ handling. It selects either a
2031  *	hardirq or threaded handling method depending on the
2032  *	context.
2033  *
2034  *	On failure, it returns a negative value. On success,
2035  *	it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
2036  */
2037 int request_any_context_irq(unsigned int irq, irq_handler_t handler,
2038 			    unsigned long flags, const char *name, void *dev_id)
2039 {
2040 	struct irq_desc *desc;
2041 	int ret;
2042 
2043 	if (irq == IRQ_NOTCONNECTED)
2044 		return -ENOTCONN;
2045 
2046 	desc = irq_to_desc(irq);
2047 	if (!desc)
2048 		return -EINVAL;
2049 
2050 	if (irq_settings_is_nested_thread(desc)) {
2051 		ret = request_threaded_irq(irq, NULL, handler,
2052 					   flags, name, dev_id);
2053 		return !ret ? IRQC_IS_NESTED : ret;
2054 	}
2055 
2056 	ret = request_irq(irq, handler, flags, name, dev_id);
2057 	return !ret ? IRQC_IS_HARDIRQ : ret;
2058 }
2059 EXPORT_SYMBOL_GPL(request_any_context_irq);
2060 
2061 /**
2062  *	request_nmi - allocate an interrupt line for NMI delivery
2063  *	@irq: Interrupt line to allocate
2064  *	@handler: Function to be called when the IRQ occurs.
2065  *		  Threaded handler for threaded interrupts.
2066  *	@irqflags: Interrupt type flags
2067  *	@name: An ascii name for the claiming device
2068  *	@dev_id: A cookie passed back to the handler function
2069  *
2070  *	This call allocates interrupt resources and enables the
2071  *	interrupt line and IRQ handling. It sets up the IRQ line
2072  *	to be handled as an NMI.
2073  *
2074  *	An interrupt line delivering NMIs cannot be shared and IRQ handling
2075  *	cannot be threaded.
2076  *
2077  *	Interrupt lines requested for NMI delivering must produce per cpu
2078  *	interrupts and have auto enabling setting disabled.
2079  *
2080  *	Dev_id must be globally unique. Normally the address of the
2081  *	device data structure is used as the cookie. Since the handler
2082  *	receives this value it makes sense to use it.
2083  *
2084  *	If the interrupt line cannot be used to deliver NMIs, function
2085  *	will fail and return a negative value.
2086  */
2087 int request_nmi(unsigned int irq, irq_handler_t handler,
2088 		unsigned long irqflags, const char *name, void *dev_id)
2089 {
2090 	struct irqaction *action;
2091 	struct irq_desc *desc;
2092 	unsigned long flags;
2093 	int retval;
2094 
2095 	if (irq == IRQ_NOTCONNECTED)
2096 		return -ENOTCONN;
2097 
2098 	/* NMI cannot be shared, used for Polling */
2099 	if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL))
2100 		return -EINVAL;
2101 
2102 	if (!(irqflags & IRQF_PERCPU))
2103 		return -EINVAL;
2104 
2105 	if (!handler)
2106 		return -EINVAL;
2107 
2108 	desc = irq_to_desc(irq);
2109 
2110 	if (!desc || irq_settings_can_autoenable(desc) ||
2111 	    !irq_settings_can_request(desc) ||
2112 	    WARN_ON(irq_settings_is_per_cpu_devid(desc)) ||
2113 	    !irq_supports_nmi(desc))
2114 		return -EINVAL;
2115 
2116 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2117 	if (!action)
2118 		return -ENOMEM;
2119 
2120 	action->handler = handler;
2121 	action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING;
2122 	action->name = name;
2123 	action->dev_id = dev_id;
2124 
2125 	retval = irq_chip_pm_get(&desc->irq_data);
2126 	if (retval < 0)
2127 		goto err_out;
2128 
2129 	retval = __setup_irq(irq, desc, action);
2130 	if (retval)
2131 		goto err_irq_setup;
2132 
2133 	raw_spin_lock_irqsave(&desc->lock, flags);
2134 
2135 	/* Setup NMI state */
2136 	desc->istate |= IRQS_NMI;
2137 	retval = irq_nmi_setup(desc);
2138 	if (retval) {
2139 		__cleanup_nmi(irq, desc);
2140 		raw_spin_unlock_irqrestore(&desc->lock, flags);
2141 		return -EINVAL;
2142 	}
2143 
2144 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2145 
2146 	return 0;
2147 
2148 err_irq_setup:
2149 	irq_chip_pm_put(&desc->irq_data);
2150 err_out:
2151 	kfree(action);
2152 
2153 	return retval;
2154 }
2155 
2156 void enable_percpu_irq(unsigned int irq, unsigned int type)
2157 {
2158 	unsigned int cpu = smp_processor_id();
2159 	unsigned long flags;
2160 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2161 
2162 	if (!desc)
2163 		return;
2164 
2165 	/*
2166 	 * If the trigger type is not specified by the caller, then
2167 	 * use the default for this interrupt.
2168 	 */
2169 	type &= IRQ_TYPE_SENSE_MASK;
2170 	if (type == IRQ_TYPE_NONE)
2171 		type = irqd_get_trigger_type(&desc->irq_data);
2172 
2173 	if (type != IRQ_TYPE_NONE) {
2174 		int ret;
2175 
2176 		ret = __irq_set_trigger(desc, type);
2177 
2178 		if (ret) {
2179 			WARN(1, "failed to set type for IRQ%d\n", irq);
2180 			goto out;
2181 		}
2182 	}
2183 
2184 	irq_percpu_enable(desc, cpu);
2185 out:
2186 	irq_put_desc_unlock(desc, flags);
2187 }
2188 EXPORT_SYMBOL_GPL(enable_percpu_irq);
2189 
2190 void enable_percpu_nmi(unsigned int irq, unsigned int type)
2191 {
2192 	enable_percpu_irq(irq, type);
2193 }
2194 
2195 /**
2196  * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
2197  * @irq:	Linux irq number to check for
2198  *
2199  * Must be called from a non migratable context. Returns the enable
2200  * state of a per cpu interrupt on the current cpu.
2201  */
2202 bool irq_percpu_is_enabled(unsigned int irq)
2203 {
2204 	unsigned int cpu = smp_processor_id();
2205 	struct irq_desc *desc;
2206 	unsigned long flags;
2207 	bool is_enabled;
2208 
2209 	desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2210 	if (!desc)
2211 		return false;
2212 
2213 	is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
2214 	irq_put_desc_unlock(desc, flags);
2215 
2216 	return is_enabled;
2217 }
2218 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
2219 
2220 void disable_percpu_irq(unsigned int irq)
2221 {
2222 	unsigned int cpu = smp_processor_id();
2223 	unsigned long flags;
2224 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2225 
2226 	if (!desc)
2227 		return;
2228 
2229 	irq_percpu_disable(desc, cpu);
2230 	irq_put_desc_unlock(desc, flags);
2231 }
2232 EXPORT_SYMBOL_GPL(disable_percpu_irq);
2233 
2234 void disable_percpu_nmi(unsigned int irq)
2235 {
2236 	disable_percpu_irq(irq);
2237 }
2238 
2239 /*
2240  * Internal function to unregister a percpu irqaction.
2241  */
2242 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2243 {
2244 	struct irq_desc *desc = irq_to_desc(irq);
2245 	struct irqaction *action;
2246 	unsigned long flags;
2247 
2248 	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
2249 
2250 	if (!desc)
2251 		return NULL;
2252 
2253 	raw_spin_lock_irqsave(&desc->lock, flags);
2254 
2255 	action = desc->action;
2256 	if (!action || action->percpu_dev_id != dev_id) {
2257 		WARN(1, "Trying to free already-free IRQ %d\n", irq);
2258 		goto bad;
2259 	}
2260 
2261 	if (!cpumask_empty(desc->percpu_enabled)) {
2262 		WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
2263 		     irq, cpumask_first(desc->percpu_enabled));
2264 		goto bad;
2265 	}
2266 
2267 	/* Found it - now remove it from the list of entries: */
2268 	desc->action = NULL;
2269 
2270 	desc->istate &= ~IRQS_NMI;
2271 
2272 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2273 
2274 	unregister_handler_proc(irq, action);
2275 
2276 	irq_chip_pm_put(&desc->irq_data);
2277 	module_put(desc->owner);
2278 	return action;
2279 
2280 bad:
2281 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2282 	return NULL;
2283 }
2284 
2285 /**
2286  *	remove_percpu_irq - free a per-cpu interrupt
2287  *	@irq: Interrupt line to free
2288  *	@act: irqaction for the interrupt
2289  *
2290  * Used to remove interrupts statically setup by the early boot process.
2291  */
2292 void remove_percpu_irq(unsigned int irq, struct irqaction *act)
2293 {
2294 	struct irq_desc *desc = irq_to_desc(irq);
2295 
2296 	if (desc && irq_settings_is_per_cpu_devid(desc))
2297 	    __free_percpu_irq(irq, act->percpu_dev_id);
2298 }
2299 
2300 /**
2301  *	free_percpu_irq - free an interrupt allocated with request_percpu_irq
2302  *	@irq: Interrupt line to free
2303  *	@dev_id: Device identity to free
2304  *
2305  *	Remove a percpu interrupt handler. The handler is removed, but
2306  *	the interrupt line is not disabled. This must be done on each
2307  *	CPU before calling this function. The function does not return
2308  *	until any executing interrupts for this IRQ have completed.
2309  *
2310  *	This function must not be called from interrupt context.
2311  */
2312 void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2313 {
2314 	struct irq_desc *desc = irq_to_desc(irq);
2315 
2316 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2317 		return;
2318 
2319 	chip_bus_lock(desc);
2320 	kfree(__free_percpu_irq(irq, dev_id));
2321 	chip_bus_sync_unlock(desc);
2322 }
2323 EXPORT_SYMBOL_GPL(free_percpu_irq);
2324 
2325 void free_percpu_nmi(unsigned int irq, void __percpu *dev_id)
2326 {
2327 	struct irq_desc *desc = irq_to_desc(irq);
2328 
2329 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2330 		return;
2331 
2332 	if (WARN_ON(!(desc->istate & IRQS_NMI)))
2333 		return;
2334 
2335 	kfree(__free_percpu_irq(irq, dev_id));
2336 }
2337 
2338 /**
2339  *	setup_percpu_irq - setup a per-cpu interrupt
2340  *	@irq: Interrupt line to setup
2341  *	@act: irqaction for the interrupt
2342  *
2343  * Used to statically setup per-cpu interrupts in the early boot process.
2344  */
2345 int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2346 {
2347 	struct irq_desc *desc = irq_to_desc(irq);
2348 	int retval;
2349 
2350 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2351 		return -EINVAL;
2352 
2353 	retval = irq_chip_pm_get(&desc->irq_data);
2354 	if (retval < 0)
2355 		return retval;
2356 
2357 	retval = __setup_irq(irq, desc, act);
2358 
2359 	if (retval)
2360 		irq_chip_pm_put(&desc->irq_data);
2361 
2362 	return retval;
2363 }
2364 
2365 /**
2366  *	__request_percpu_irq - allocate a percpu interrupt line
2367  *	@irq: Interrupt line to allocate
2368  *	@handler: Function to be called when the IRQ occurs.
2369  *	@flags: Interrupt type flags (IRQF_TIMER only)
2370  *	@devname: An ascii name for the claiming device
2371  *	@dev_id: A percpu cookie passed back to the handler function
2372  *
2373  *	This call allocates interrupt resources and enables the
2374  *	interrupt on the local CPU. If the interrupt is supposed to be
2375  *	enabled on other CPUs, it has to be done on each CPU using
2376  *	enable_percpu_irq().
2377  *
2378  *	Dev_id must be globally unique. It is a per-cpu variable, and
2379  *	the handler gets called with the interrupted CPU's instance of
2380  *	that variable.
2381  */
2382 int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2383 			 unsigned long flags, const char *devname,
2384 			 void __percpu *dev_id)
2385 {
2386 	struct irqaction *action;
2387 	struct irq_desc *desc;
2388 	int retval;
2389 
2390 	if (!dev_id)
2391 		return -EINVAL;
2392 
2393 	desc = irq_to_desc(irq);
2394 	if (!desc || !irq_settings_can_request(desc) ||
2395 	    !irq_settings_is_per_cpu_devid(desc))
2396 		return -EINVAL;
2397 
2398 	if (flags && flags != IRQF_TIMER)
2399 		return -EINVAL;
2400 
2401 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2402 	if (!action)
2403 		return -ENOMEM;
2404 
2405 	action->handler = handler;
2406 	action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2407 	action->name = devname;
2408 	action->percpu_dev_id = dev_id;
2409 
2410 	retval = irq_chip_pm_get(&desc->irq_data);
2411 	if (retval < 0) {
2412 		kfree(action);
2413 		return retval;
2414 	}
2415 
2416 	retval = __setup_irq(irq, desc, action);
2417 
2418 	if (retval) {
2419 		irq_chip_pm_put(&desc->irq_data);
2420 		kfree(action);
2421 	}
2422 
2423 	return retval;
2424 }
2425 EXPORT_SYMBOL_GPL(__request_percpu_irq);
2426 
2427 /**
2428  *	request_percpu_nmi - allocate a percpu interrupt line for NMI delivery
2429  *	@irq: Interrupt line to allocate
2430  *	@handler: Function to be called when the IRQ occurs.
2431  *	@name: An ascii name for the claiming device
2432  *	@dev_id: A percpu cookie passed back to the handler function
2433  *
2434  *	This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs
2435  *	have to be setup on each CPU by calling prepare_percpu_nmi() before
2436  *	being enabled on the same CPU by using enable_percpu_nmi().
2437  *
2438  *	Dev_id must be globally unique. It is a per-cpu variable, and
2439  *	the handler gets called with the interrupted CPU's instance of
2440  *	that variable.
2441  *
2442  *	Interrupt lines requested for NMI delivering should have auto enabling
2443  *	setting disabled.
2444  *
2445  *	If the interrupt line cannot be used to deliver NMIs, function
2446  *	will fail returning a negative value.
2447  */
2448 int request_percpu_nmi(unsigned int irq, irq_handler_t handler,
2449 		       const char *name, void __percpu *dev_id)
2450 {
2451 	struct irqaction *action;
2452 	struct irq_desc *desc;
2453 	unsigned long flags;
2454 	int retval;
2455 
2456 	if (!handler)
2457 		return -EINVAL;
2458 
2459 	desc = irq_to_desc(irq);
2460 
2461 	if (!desc || !irq_settings_can_request(desc) ||
2462 	    !irq_settings_is_per_cpu_devid(desc) ||
2463 	    irq_settings_can_autoenable(desc) ||
2464 	    !irq_supports_nmi(desc))
2465 		return -EINVAL;
2466 
2467 	/* The line cannot already be NMI */
2468 	if (desc->istate & IRQS_NMI)
2469 		return -EINVAL;
2470 
2471 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2472 	if (!action)
2473 		return -ENOMEM;
2474 
2475 	action->handler = handler;
2476 	action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD
2477 		| IRQF_NOBALANCING;
2478 	action->name = name;
2479 	action->percpu_dev_id = dev_id;
2480 
2481 	retval = irq_chip_pm_get(&desc->irq_data);
2482 	if (retval < 0)
2483 		goto err_out;
2484 
2485 	retval = __setup_irq(irq, desc, action);
2486 	if (retval)
2487 		goto err_irq_setup;
2488 
2489 	raw_spin_lock_irqsave(&desc->lock, flags);
2490 	desc->istate |= IRQS_NMI;
2491 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2492 
2493 	return 0;
2494 
2495 err_irq_setup:
2496 	irq_chip_pm_put(&desc->irq_data);
2497 err_out:
2498 	kfree(action);
2499 
2500 	return retval;
2501 }
2502 
2503 /**
2504  *	prepare_percpu_nmi - performs CPU local setup for NMI delivery
2505  *	@irq: Interrupt line to prepare for NMI delivery
2506  *
2507  *	This call prepares an interrupt line to deliver NMI on the current CPU,
2508  *	before that interrupt line gets enabled with enable_percpu_nmi().
2509  *
2510  *	As a CPU local operation, this should be called from non-preemptible
2511  *	context.
2512  *
2513  *	If the interrupt line cannot be used to deliver NMIs, function
2514  *	will fail returning a negative value.
2515  */
2516 int prepare_percpu_nmi(unsigned int irq)
2517 {
2518 	unsigned long flags;
2519 	struct irq_desc *desc;
2520 	int ret = 0;
2521 
2522 	WARN_ON(preemptible());
2523 
2524 	desc = irq_get_desc_lock(irq, &flags,
2525 				 IRQ_GET_DESC_CHECK_PERCPU);
2526 	if (!desc)
2527 		return -EINVAL;
2528 
2529 	if (WARN(!(desc->istate & IRQS_NMI),
2530 		 KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n",
2531 		 irq)) {
2532 		ret = -EINVAL;
2533 		goto out;
2534 	}
2535 
2536 	ret = irq_nmi_setup(desc);
2537 	if (ret) {
2538 		pr_err("Failed to setup NMI delivery: irq %u\n", irq);
2539 		goto out;
2540 	}
2541 
2542 out:
2543 	irq_put_desc_unlock(desc, flags);
2544 	return ret;
2545 }
2546 
2547 /**
2548  *	teardown_percpu_nmi - undoes NMI setup of IRQ line
2549  *	@irq: Interrupt line from which CPU local NMI configuration should be
2550  *	      removed
2551  *
2552  *	This call undoes the setup done by prepare_percpu_nmi().
2553  *
2554  *	IRQ line should not be enabled for the current CPU.
2555  *
2556  *	As a CPU local operation, this should be called from non-preemptible
2557  *	context.
2558  */
2559 void teardown_percpu_nmi(unsigned int irq)
2560 {
2561 	unsigned long flags;
2562 	struct irq_desc *desc;
2563 
2564 	WARN_ON(preemptible());
2565 
2566 	desc = irq_get_desc_lock(irq, &flags,
2567 				 IRQ_GET_DESC_CHECK_PERCPU);
2568 	if (!desc)
2569 		return;
2570 
2571 	if (WARN_ON(!(desc->istate & IRQS_NMI)))
2572 		goto out;
2573 
2574 	irq_nmi_teardown(desc);
2575 out:
2576 	irq_put_desc_unlock(desc, flags);
2577 }
2578 
2579 /**
2580  *	irq_get_irqchip_state - returns the irqchip state of a interrupt.
2581  *	@irq: Interrupt line that is forwarded to a VM
2582  *	@which: One of IRQCHIP_STATE_* the caller wants to know about
2583  *	@state: a pointer to a boolean where the state is to be storeed
2584  *
2585  *	This call snapshots the internal irqchip state of an
2586  *	interrupt, returning into @state the bit corresponding to
2587  *	stage @which
2588  *
2589  *	This function should be called with preemption disabled if the
2590  *	interrupt controller has per-cpu registers.
2591  */
2592 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2593 			  bool *state)
2594 {
2595 	struct irq_desc *desc;
2596 	struct irq_data *data;
2597 	struct irq_chip *chip;
2598 	unsigned long flags;
2599 	int err = -EINVAL;
2600 
2601 	desc = irq_get_desc_buslock(irq, &flags, 0);
2602 	if (!desc)
2603 		return err;
2604 
2605 	data = irq_desc_get_irq_data(desc);
2606 
2607 	do {
2608 		chip = irq_data_get_irq_chip(data);
2609 		if (chip->irq_get_irqchip_state)
2610 			break;
2611 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2612 		data = data->parent_data;
2613 #else
2614 		data = NULL;
2615 #endif
2616 	} while (data);
2617 
2618 	if (data)
2619 		err = chip->irq_get_irqchip_state(data, which, state);
2620 
2621 	irq_put_desc_busunlock(desc, flags);
2622 	return err;
2623 }
2624 EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2625 
2626 /**
2627  *	irq_set_irqchip_state - set the state of a forwarded interrupt.
2628  *	@irq: Interrupt line that is forwarded to a VM
2629  *	@which: State to be restored (one of IRQCHIP_STATE_*)
2630  *	@val: Value corresponding to @which
2631  *
2632  *	This call sets the internal irqchip state of an interrupt,
2633  *	depending on the value of @which.
2634  *
2635  *	This function should be called with preemption disabled if the
2636  *	interrupt controller has per-cpu registers.
2637  */
2638 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2639 			  bool val)
2640 {
2641 	struct irq_desc *desc;
2642 	struct irq_data *data;
2643 	struct irq_chip *chip;
2644 	unsigned long flags;
2645 	int err = -EINVAL;
2646 
2647 	desc = irq_get_desc_buslock(irq, &flags, 0);
2648 	if (!desc)
2649 		return err;
2650 
2651 	data = irq_desc_get_irq_data(desc);
2652 
2653 	do {
2654 		chip = irq_data_get_irq_chip(data);
2655 		if (chip->irq_set_irqchip_state)
2656 			break;
2657 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2658 		data = data->parent_data;
2659 #else
2660 		data = NULL;
2661 #endif
2662 	} while (data);
2663 
2664 	if (data)
2665 		err = chip->irq_set_irqchip_state(data, which, val);
2666 
2667 	irq_put_desc_busunlock(desc, flags);
2668 	return err;
2669 }
2670 EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
2671