xref: /openbmc/linux/kernel/irq/manage.c (revision 8ee90c5c)
1 /*
2  * linux/kernel/irq/manage.c
3  *
4  * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
5  * Copyright (C) 2005-2006 Thomas Gleixner
6  *
7  * This file contains driver APIs to the irq subsystem.
8  */
9 
10 #define pr_fmt(fmt) "genirq: " fmt
11 
12 #include <linux/irq.h>
13 #include <linux/kthread.h>
14 #include <linux/module.h>
15 #include <linux/random.h>
16 #include <linux/interrupt.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/sched/rt.h>
20 #include <linux/sched/task.h>
21 #include <uapi/linux/sched/types.h>
22 #include <linux/task_work.h>
23 
24 #include "internals.h"
25 
26 #ifdef CONFIG_IRQ_FORCED_THREADING
27 __read_mostly bool force_irqthreads;
28 
29 static int __init setup_forced_irqthreads(char *arg)
30 {
31 	force_irqthreads = true;
32 	return 0;
33 }
34 early_param("threadirqs", setup_forced_irqthreads);
35 #endif
36 
37 static void __synchronize_hardirq(struct irq_desc *desc)
38 {
39 	bool inprogress;
40 
41 	do {
42 		unsigned long flags;
43 
44 		/*
45 		 * Wait until we're out of the critical section.  This might
46 		 * give the wrong answer due to the lack of memory barriers.
47 		 */
48 		while (irqd_irq_inprogress(&desc->irq_data))
49 			cpu_relax();
50 
51 		/* Ok, that indicated we're done: double-check carefully. */
52 		raw_spin_lock_irqsave(&desc->lock, flags);
53 		inprogress = irqd_irq_inprogress(&desc->irq_data);
54 		raw_spin_unlock_irqrestore(&desc->lock, flags);
55 
56 		/* Oops, that failed? */
57 	} while (inprogress);
58 }
59 
60 /**
61  *	synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
62  *	@irq: interrupt number to wait for
63  *
64  *	This function waits for any pending hard IRQ handlers for this
65  *	interrupt to complete before returning. If you use this
66  *	function while holding a resource the IRQ handler may need you
67  *	will deadlock. It does not take associated threaded handlers
68  *	into account.
69  *
70  *	Do not use this for shutdown scenarios where you must be sure
71  *	that all parts (hardirq and threaded handler) have completed.
72  *
73  *	Returns: false if a threaded handler is active.
74  *
75  *	This function may be called - with care - from IRQ context.
76  */
77 bool synchronize_hardirq(unsigned int irq)
78 {
79 	struct irq_desc *desc = irq_to_desc(irq);
80 
81 	if (desc) {
82 		__synchronize_hardirq(desc);
83 		return !atomic_read(&desc->threads_active);
84 	}
85 
86 	return true;
87 }
88 EXPORT_SYMBOL(synchronize_hardirq);
89 
90 /**
91  *	synchronize_irq - wait for pending IRQ handlers (on other CPUs)
92  *	@irq: interrupt number to wait for
93  *
94  *	This function waits for any pending IRQ handlers for this interrupt
95  *	to complete before returning. If you use this function while
96  *	holding a resource the IRQ handler may need you will deadlock.
97  *
98  *	This function may be called - with care - from IRQ context.
99  */
100 void synchronize_irq(unsigned int irq)
101 {
102 	struct irq_desc *desc = irq_to_desc(irq);
103 
104 	if (desc) {
105 		__synchronize_hardirq(desc);
106 		/*
107 		 * We made sure that no hardirq handler is
108 		 * running. Now verify that no threaded handlers are
109 		 * active.
110 		 */
111 		wait_event(desc->wait_for_threads,
112 			   !atomic_read(&desc->threads_active));
113 	}
114 }
115 EXPORT_SYMBOL(synchronize_irq);
116 
117 #ifdef CONFIG_SMP
118 cpumask_var_t irq_default_affinity;
119 
120 static bool __irq_can_set_affinity(struct irq_desc *desc)
121 {
122 	if (!desc || !irqd_can_balance(&desc->irq_data) ||
123 	    !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
124 		return false;
125 	return true;
126 }
127 
128 /**
129  *	irq_can_set_affinity - Check if the affinity of a given irq can be set
130  *	@irq:		Interrupt to check
131  *
132  */
133 int irq_can_set_affinity(unsigned int irq)
134 {
135 	return __irq_can_set_affinity(irq_to_desc(irq));
136 }
137 
138 /**
139  * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
140  * @irq:	Interrupt to check
141  *
142  * Like irq_can_set_affinity() above, but additionally checks for the
143  * AFFINITY_MANAGED flag.
144  */
145 bool irq_can_set_affinity_usr(unsigned int irq)
146 {
147 	struct irq_desc *desc = irq_to_desc(irq);
148 
149 	return __irq_can_set_affinity(desc) &&
150 		!irqd_affinity_is_managed(&desc->irq_data);
151 }
152 
153 /**
154  *	irq_set_thread_affinity - Notify irq threads to adjust affinity
155  *	@desc:		irq descriptor which has affitnity changed
156  *
157  *	We just set IRQTF_AFFINITY and delegate the affinity setting
158  *	to the interrupt thread itself. We can not call
159  *	set_cpus_allowed_ptr() here as we hold desc->lock and this
160  *	code can be called from hard interrupt context.
161  */
162 void irq_set_thread_affinity(struct irq_desc *desc)
163 {
164 	struct irqaction *action;
165 
166 	for_each_action_of_desc(desc, action)
167 		if (action->thread)
168 			set_bit(IRQTF_AFFINITY, &action->thread_flags);
169 }
170 
171 static void irq_validate_effective_affinity(struct irq_data *data)
172 {
173 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
174 	const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
175 	struct irq_chip *chip = irq_data_get_irq_chip(data);
176 
177 	if (!cpumask_empty(m))
178 		return;
179 	pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
180 		     chip->name, data->irq);
181 #endif
182 }
183 
184 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
185 			bool force)
186 {
187 	struct irq_desc *desc = irq_data_to_desc(data);
188 	struct irq_chip *chip = irq_data_get_irq_chip(data);
189 	int ret;
190 
191 	if (!chip || !chip->irq_set_affinity)
192 		return -EINVAL;
193 
194 	ret = chip->irq_set_affinity(data, mask, force);
195 	switch (ret) {
196 	case IRQ_SET_MASK_OK:
197 	case IRQ_SET_MASK_OK_DONE:
198 		cpumask_copy(desc->irq_common_data.affinity, mask);
199 	case IRQ_SET_MASK_OK_NOCOPY:
200 		irq_validate_effective_affinity(data);
201 		irq_set_thread_affinity(desc);
202 		ret = 0;
203 	}
204 
205 	return ret;
206 }
207 
208 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
209 			    bool force)
210 {
211 	struct irq_chip *chip = irq_data_get_irq_chip(data);
212 	struct irq_desc *desc = irq_data_to_desc(data);
213 	int ret = 0;
214 
215 	if (!chip || !chip->irq_set_affinity)
216 		return -EINVAL;
217 
218 	if (irq_can_move_pcntxt(data)) {
219 		ret = irq_do_set_affinity(data, mask, force);
220 	} else {
221 		irqd_set_move_pending(data);
222 		irq_copy_pending(desc, mask);
223 	}
224 
225 	if (desc->affinity_notify) {
226 		kref_get(&desc->affinity_notify->kref);
227 		schedule_work(&desc->affinity_notify->work);
228 	}
229 	irqd_set(data, IRQD_AFFINITY_SET);
230 
231 	return ret;
232 }
233 
234 int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force)
235 {
236 	struct irq_desc *desc = irq_to_desc(irq);
237 	unsigned long flags;
238 	int ret;
239 
240 	if (!desc)
241 		return -EINVAL;
242 
243 	raw_spin_lock_irqsave(&desc->lock, flags);
244 	ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
245 	raw_spin_unlock_irqrestore(&desc->lock, flags);
246 	return ret;
247 }
248 
249 int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m)
250 {
251 	unsigned long flags;
252 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
253 
254 	if (!desc)
255 		return -EINVAL;
256 	desc->affinity_hint = m;
257 	irq_put_desc_unlock(desc, flags);
258 	/* set the initial affinity to prevent every interrupt being on CPU0 */
259 	if (m)
260 		__irq_set_affinity(irq, m, false);
261 	return 0;
262 }
263 EXPORT_SYMBOL_GPL(irq_set_affinity_hint);
264 
265 static void irq_affinity_notify(struct work_struct *work)
266 {
267 	struct irq_affinity_notify *notify =
268 		container_of(work, struct irq_affinity_notify, work);
269 	struct irq_desc *desc = irq_to_desc(notify->irq);
270 	cpumask_var_t cpumask;
271 	unsigned long flags;
272 
273 	if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
274 		goto out;
275 
276 	raw_spin_lock_irqsave(&desc->lock, flags);
277 	if (irq_move_pending(&desc->irq_data))
278 		irq_get_pending(cpumask, desc);
279 	else
280 		cpumask_copy(cpumask, desc->irq_common_data.affinity);
281 	raw_spin_unlock_irqrestore(&desc->lock, flags);
282 
283 	notify->notify(notify, cpumask);
284 
285 	free_cpumask_var(cpumask);
286 out:
287 	kref_put(&notify->kref, notify->release);
288 }
289 
290 /**
291  *	irq_set_affinity_notifier - control notification of IRQ affinity changes
292  *	@irq:		Interrupt for which to enable/disable notification
293  *	@notify:	Context for notification, or %NULL to disable
294  *			notification.  Function pointers must be initialised;
295  *			the other fields will be initialised by this function.
296  *
297  *	Must be called in process context.  Notification may only be enabled
298  *	after the IRQ is allocated and must be disabled before the IRQ is
299  *	freed using free_irq().
300  */
301 int
302 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
303 {
304 	struct irq_desc *desc = irq_to_desc(irq);
305 	struct irq_affinity_notify *old_notify;
306 	unsigned long flags;
307 
308 	/* The release function is promised process context */
309 	might_sleep();
310 
311 	if (!desc)
312 		return -EINVAL;
313 
314 	/* Complete initialisation of *notify */
315 	if (notify) {
316 		notify->irq = irq;
317 		kref_init(&notify->kref);
318 		INIT_WORK(&notify->work, irq_affinity_notify);
319 	}
320 
321 	raw_spin_lock_irqsave(&desc->lock, flags);
322 	old_notify = desc->affinity_notify;
323 	desc->affinity_notify = notify;
324 	raw_spin_unlock_irqrestore(&desc->lock, flags);
325 
326 	if (old_notify)
327 		kref_put(&old_notify->kref, old_notify->release);
328 
329 	return 0;
330 }
331 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
332 
333 #ifndef CONFIG_AUTO_IRQ_AFFINITY
334 /*
335  * Generic version of the affinity autoselector.
336  */
337 int irq_setup_affinity(struct irq_desc *desc)
338 {
339 	struct cpumask *set = irq_default_affinity;
340 	int ret, node = irq_desc_get_node(desc);
341 	static DEFINE_RAW_SPINLOCK(mask_lock);
342 	static struct cpumask mask;
343 
344 	/* Excludes PER_CPU and NO_BALANCE interrupts */
345 	if (!__irq_can_set_affinity(desc))
346 		return 0;
347 
348 	raw_spin_lock(&mask_lock);
349 	/*
350 	 * Preserve the managed affinity setting and a userspace affinity
351 	 * setup, but make sure that one of the targets is online.
352 	 */
353 	if (irqd_affinity_is_managed(&desc->irq_data) ||
354 	    irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
355 		if (cpumask_intersects(desc->irq_common_data.affinity,
356 				       cpu_online_mask))
357 			set = desc->irq_common_data.affinity;
358 		else
359 			irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
360 	}
361 
362 	cpumask_and(&mask, cpu_online_mask, set);
363 	if (node != NUMA_NO_NODE) {
364 		const struct cpumask *nodemask = cpumask_of_node(node);
365 
366 		/* make sure at least one of the cpus in nodemask is online */
367 		if (cpumask_intersects(&mask, nodemask))
368 			cpumask_and(&mask, &mask, nodemask);
369 	}
370 	ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
371 	raw_spin_unlock(&mask_lock);
372 	return ret;
373 }
374 #else
375 /* Wrapper for ALPHA specific affinity selector magic */
376 int irq_setup_affinity(struct irq_desc *desc)
377 {
378 	return irq_select_affinity(irq_desc_get_irq(desc));
379 }
380 #endif
381 
382 /*
383  * Called when a bogus affinity is set via /proc/irq
384  */
385 int irq_select_affinity_usr(unsigned int irq)
386 {
387 	struct irq_desc *desc = irq_to_desc(irq);
388 	unsigned long flags;
389 	int ret;
390 
391 	raw_spin_lock_irqsave(&desc->lock, flags);
392 	ret = irq_setup_affinity(desc);
393 	raw_spin_unlock_irqrestore(&desc->lock, flags);
394 	return ret;
395 }
396 #endif
397 
398 /**
399  *	irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
400  *	@irq: interrupt number to set affinity
401  *	@vcpu_info: vCPU specific data
402  *
403  *	This function uses the vCPU specific data to set the vCPU
404  *	affinity for an irq. The vCPU specific data is passed from
405  *	outside, such as KVM. One example code path is as below:
406  *	KVM -> IOMMU -> irq_set_vcpu_affinity().
407  */
408 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
409 {
410 	unsigned long flags;
411 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
412 	struct irq_data *data;
413 	struct irq_chip *chip;
414 	int ret = -ENOSYS;
415 
416 	if (!desc)
417 		return -EINVAL;
418 
419 	data = irq_desc_get_irq_data(desc);
420 	do {
421 		chip = irq_data_get_irq_chip(data);
422 		if (chip && chip->irq_set_vcpu_affinity)
423 			break;
424 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
425 		data = data->parent_data;
426 #else
427 		data = NULL;
428 #endif
429 	} while (data);
430 
431 	if (data)
432 		ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
433 	irq_put_desc_unlock(desc, flags);
434 
435 	return ret;
436 }
437 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
438 
439 void __disable_irq(struct irq_desc *desc)
440 {
441 	if (!desc->depth++)
442 		irq_disable(desc);
443 }
444 
445 static int __disable_irq_nosync(unsigned int irq)
446 {
447 	unsigned long flags;
448 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
449 
450 	if (!desc)
451 		return -EINVAL;
452 	__disable_irq(desc);
453 	irq_put_desc_busunlock(desc, flags);
454 	return 0;
455 }
456 
457 /**
458  *	disable_irq_nosync - disable an irq without waiting
459  *	@irq: Interrupt to disable
460  *
461  *	Disable the selected interrupt line.  Disables and Enables are
462  *	nested.
463  *	Unlike disable_irq(), this function does not ensure existing
464  *	instances of the IRQ handler have completed before returning.
465  *
466  *	This function may be called from IRQ context.
467  */
468 void disable_irq_nosync(unsigned int irq)
469 {
470 	__disable_irq_nosync(irq);
471 }
472 EXPORT_SYMBOL(disable_irq_nosync);
473 
474 /**
475  *	disable_irq - disable an irq and wait for completion
476  *	@irq: Interrupt to disable
477  *
478  *	Disable the selected interrupt line.  Enables and Disables are
479  *	nested.
480  *	This function waits for any pending IRQ handlers for this interrupt
481  *	to complete before returning. If you use this function while
482  *	holding a resource the IRQ handler may need you will deadlock.
483  *
484  *	This function may be called - with care - from IRQ context.
485  */
486 void disable_irq(unsigned int irq)
487 {
488 	if (!__disable_irq_nosync(irq))
489 		synchronize_irq(irq);
490 }
491 EXPORT_SYMBOL(disable_irq);
492 
493 /**
494  *	disable_hardirq - disables an irq and waits for hardirq completion
495  *	@irq: Interrupt to disable
496  *
497  *	Disable the selected interrupt line.  Enables and Disables are
498  *	nested.
499  *	This function waits for any pending hard IRQ handlers for this
500  *	interrupt to complete before returning. If you use this function while
501  *	holding a resource the hard IRQ handler may need you will deadlock.
502  *
503  *	When used to optimistically disable an interrupt from atomic context
504  *	the return value must be checked.
505  *
506  *	Returns: false if a threaded handler is active.
507  *
508  *	This function may be called - with care - from IRQ context.
509  */
510 bool disable_hardirq(unsigned int irq)
511 {
512 	if (!__disable_irq_nosync(irq))
513 		return synchronize_hardirq(irq);
514 
515 	return false;
516 }
517 EXPORT_SYMBOL_GPL(disable_hardirq);
518 
519 void __enable_irq(struct irq_desc *desc)
520 {
521 	switch (desc->depth) {
522 	case 0:
523  err_out:
524 		WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
525 		     irq_desc_get_irq(desc));
526 		break;
527 	case 1: {
528 		if (desc->istate & IRQS_SUSPENDED)
529 			goto err_out;
530 		/* Prevent probing on this irq: */
531 		irq_settings_set_noprobe(desc);
532 		/*
533 		 * Call irq_startup() not irq_enable() here because the
534 		 * interrupt might be marked NOAUTOEN. So irq_startup()
535 		 * needs to be invoked when it gets enabled the first
536 		 * time. If it was already started up, then irq_startup()
537 		 * will invoke irq_enable() under the hood.
538 		 */
539 		irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
540 		break;
541 	}
542 	default:
543 		desc->depth--;
544 	}
545 }
546 
547 /**
548  *	enable_irq - enable handling of an irq
549  *	@irq: Interrupt to enable
550  *
551  *	Undoes the effect of one call to disable_irq().  If this
552  *	matches the last disable, processing of interrupts on this
553  *	IRQ line is re-enabled.
554  *
555  *	This function may be called from IRQ context only when
556  *	desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
557  */
558 void enable_irq(unsigned int irq)
559 {
560 	unsigned long flags;
561 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
562 
563 	if (!desc)
564 		return;
565 	if (WARN(!desc->irq_data.chip,
566 		 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
567 		goto out;
568 
569 	__enable_irq(desc);
570 out:
571 	irq_put_desc_busunlock(desc, flags);
572 }
573 EXPORT_SYMBOL(enable_irq);
574 
575 static int set_irq_wake_real(unsigned int irq, unsigned int on)
576 {
577 	struct irq_desc *desc = irq_to_desc(irq);
578 	int ret = -ENXIO;
579 
580 	if (irq_desc_get_chip(desc)->flags &  IRQCHIP_SKIP_SET_WAKE)
581 		return 0;
582 
583 	if (desc->irq_data.chip->irq_set_wake)
584 		ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
585 
586 	return ret;
587 }
588 
589 /**
590  *	irq_set_irq_wake - control irq power management wakeup
591  *	@irq:	interrupt to control
592  *	@on:	enable/disable power management wakeup
593  *
594  *	Enable/disable power management wakeup mode, which is
595  *	disabled by default.  Enables and disables must match,
596  *	just as they match for non-wakeup mode support.
597  *
598  *	Wakeup mode lets this IRQ wake the system from sleep
599  *	states like "suspend to RAM".
600  */
601 int irq_set_irq_wake(unsigned int irq, unsigned int on)
602 {
603 	unsigned long flags;
604 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
605 	int ret = 0;
606 
607 	if (!desc)
608 		return -EINVAL;
609 
610 	/* wakeup-capable irqs can be shared between drivers that
611 	 * don't need to have the same sleep mode behaviors.
612 	 */
613 	if (on) {
614 		if (desc->wake_depth++ == 0) {
615 			ret = set_irq_wake_real(irq, on);
616 			if (ret)
617 				desc->wake_depth = 0;
618 			else
619 				irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
620 		}
621 	} else {
622 		if (desc->wake_depth == 0) {
623 			WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
624 		} else if (--desc->wake_depth == 0) {
625 			ret = set_irq_wake_real(irq, on);
626 			if (ret)
627 				desc->wake_depth = 1;
628 			else
629 				irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
630 		}
631 	}
632 	irq_put_desc_busunlock(desc, flags);
633 	return ret;
634 }
635 EXPORT_SYMBOL(irq_set_irq_wake);
636 
637 /*
638  * Internal function that tells the architecture code whether a
639  * particular irq has been exclusively allocated or is available
640  * for driver use.
641  */
642 int can_request_irq(unsigned int irq, unsigned long irqflags)
643 {
644 	unsigned long flags;
645 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
646 	int canrequest = 0;
647 
648 	if (!desc)
649 		return 0;
650 
651 	if (irq_settings_can_request(desc)) {
652 		if (!desc->action ||
653 		    irqflags & desc->action->flags & IRQF_SHARED)
654 			canrequest = 1;
655 	}
656 	irq_put_desc_unlock(desc, flags);
657 	return canrequest;
658 }
659 
660 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
661 {
662 	struct irq_chip *chip = desc->irq_data.chip;
663 	int ret, unmask = 0;
664 
665 	if (!chip || !chip->irq_set_type) {
666 		/*
667 		 * IRQF_TRIGGER_* but the PIC does not support multiple
668 		 * flow-types?
669 		 */
670 		pr_debug("No set_type function for IRQ %d (%s)\n",
671 			 irq_desc_get_irq(desc),
672 			 chip ? (chip->name ? : "unknown") : "unknown");
673 		return 0;
674 	}
675 
676 	if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
677 		if (!irqd_irq_masked(&desc->irq_data))
678 			mask_irq(desc);
679 		if (!irqd_irq_disabled(&desc->irq_data))
680 			unmask = 1;
681 	}
682 
683 	/* Mask all flags except trigger mode */
684 	flags &= IRQ_TYPE_SENSE_MASK;
685 	ret = chip->irq_set_type(&desc->irq_data, flags);
686 
687 	switch (ret) {
688 	case IRQ_SET_MASK_OK:
689 	case IRQ_SET_MASK_OK_DONE:
690 		irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
691 		irqd_set(&desc->irq_data, flags);
692 
693 	case IRQ_SET_MASK_OK_NOCOPY:
694 		flags = irqd_get_trigger_type(&desc->irq_data);
695 		irq_settings_set_trigger_mask(desc, flags);
696 		irqd_clear(&desc->irq_data, IRQD_LEVEL);
697 		irq_settings_clr_level(desc);
698 		if (flags & IRQ_TYPE_LEVEL_MASK) {
699 			irq_settings_set_level(desc);
700 			irqd_set(&desc->irq_data, IRQD_LEVEL);
701 		}
702 
703 		ret = 0;
704 		break;
705 	default:
706 		pr_err("Setting trigger mode %lu for irq %u failed (%pF)\n",
707 		       flags, irq_desc_get_irq(desc), chip->irq_set_type);
708 	}
709 	if (unmask)
710 		unmask_irq(desc);
711 	return ret;
712 }
713 
714 #ifdef CONFIG_HARDIRQS_SW_RESEND
715 int irq_set_parent(int irq, int parent_irq)
716 {
717 	unsigned long flags;
718 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
719 
720 	if (!desc)
721 		return -EINVAL;
722 
723 	desc->parent_irq = parent_irq;
724 
725 	irq_put_desc_unlock(desc, flags);
726 	return 0;
727 }
728 EXPORT_SYMBOL_GPL(irq_set_parent);
729 #endif
730 
731 /*
732  * Default primary interrupt handler for threaded interrupts. Is
733  * assigned as primary handler when request_threaded_irq is called
734  * with handler == NULL. Useful for oneshot interrupts.
735  */
736 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
737 {
738 	return IRQ_WAKE_THREAD;
739 }
740 
741 /*
742  * Primary handler for nested threaded interrupts. Should never be
743  * called.
744  */
745 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
746 {
747 	WARN(1, "Primary handler called for nested irq %d\n", irq);
748 	return IRQ_NONE;
749 }
750 
751 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
752 {
753 	WARN(1, "Secondary action handler called for irq %d\n", irq);
754 	return IRQ_NONE;
755 }
756 
757 static int irq_wait_for_interrupt(struct irqaction *action)
758 {
759 	set_current_state(TASK_INTERRUPTIBLE);
760 
761 	while (!kthread_should_stop()) {
762 
763 		if (test_and_clear_bit(IRQTF_RUNTHREAD,
764 				       &action->thread_flags)) {
765 			__set_current_state(TASK_RUNNING);
766 			return 0;
767 		}
768 		schedule();
769 		set_current_state(TASK_INTERRUPTIBLE);
770 	}
771 	__set_current_state(TASK_RUNNING);
772 	return -1;
773 }
774 
775 /*
776  * Oneshot interrupts keep the irq line masked until the threaded
777  * handler finished. unmask if the interrupt has not been disabled and
778  * is marked MASKED.
779  */
780 static void irq_finalize_oneshot(struct irq_desc *desc,
781 				 struct irqaction *action)
782 {
783 	if (!(desc->istate & IRQS_ONESHOT) ||
784 	    action->handler == irq_forced_secondary_handler)
785 		return;
786 again:
787 	chip_bus_lock(desc);
788 	raw_spin_lock_irq(&desc->lock);
789 
790 	/*
791 	 * Implausible though it may be we need to protect us against
792 	 * the following scenario:
793 	 *
794 	 * The thread is faster done than the hard interrupt handler
795 	 * on the other CPU. If we unmask the irq line then the
796 	 * interrupt can come in again and masks the line, leaves due
797 	 * to IRQS_INPROGRESS and the irq line is masked forever.
798 	 *
799 	 * This also serializes the state of shared oneshot handlers
800 	 * versus "desc->threads_onehsot |= action->thread_mask;" in
801 	 * irq_wake_thread(). See the comment there which explains the
802 	 * serialization.
803 	 */
804 	if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
805 		raw_spin_unlock_irq(&desc->lock);
806 		chip_bus_sync_unlock(desc);
807 		cpu_relax();
808 		goto again;
809 	}
810 
811 	/*
812 	 * Now check again, whether the thread should run. Otherwise
813 	 * we would clear the threads_oneshot bit of this thread which
814 	 * was just set.
815 	 */
816 	if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
817 		goto out_unlock;
818 
819 	desc->threads_oneshot &= ~action->thread_mask;
820 
821 	if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
822 	    irqd_irq_masked(&desc->irq_data))
823 		unmask_threaded_irq(desc);
824 
825 out_unlock:
826 	raw_spin_unlock_irq(&desc->lock);
827 	chip_bus_sync_unlock(desc);
828 }
829 
830 #ifdef CONFIG_SMP
831 /*
832  * Check whether we need to change the affinity of the interrupt thread.
833  */
834 static void
835 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
836 {
837 	cpumask_var_t mask;
838 	bool valid = true;
839 
840 	if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
841 		return;
842 
843 	/*
844 	 * In case we are out of memory we set IRQTF_AFFINITY again and
845 	 * try again next time
846 	 */
847 	if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
848 		set_bit(IRQTF_AFFINITY, &action->thread_flags);
849 		return;
850 	}
851 
852 	raw_spin_lock_irq(&desc->lock);
853 	/*
854 	 * This code is triggered unconditionally. Check the affinity
855 	 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
856 	 */
857 	if (cpumask_available(desc->irq_common_data.affinity))
858 		cpumask_copy(mask, desc->irq_common_data.affinity);
859 	else
860 		valid = false;
861 	raw_spin_unlock_irq(&desc->lock);
862 
863 	if (valid)
864 		set_cpus_allowed_ptr(current, mask);
865 	free_cpumask_var(mask);
866 }
867 #else
868 static inline void
869 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
870 #endif
871 
872 /*
873  * Interrupts which are not explicitely requested as threaded
874  * interrupts rely on the implicit bh/preempt disable of the hard irq
875  * context. So we need to disable bh here to avoid deadlocks and other
876  * side effects.
877  */
878 static irqreturn_t
879 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
880 {
881 	irqreturn_t ret;
882 
883 	local_bh_disable();
884 	ret = action->thread_fn(action->irq, action->dev_id);
885 	irq_finalize_oneshot(desc, action);
886 	local_bh_enable();
887 	return ret;
888 }
889 
890 /*
891  * Interrupts explicitly requested as threaded interrupts want to be
892  * preemtible - many of them need to sleep and wait for slow busses to
893  * complete.
894  */
895 static irqreturn_t irq_thread_fn(struct irq_desc *desc,
896 		struct irqaction *action)
897 {
898 	irqreturn_t ret;
899 
900 	ret = action->thread_fn(action->irq, action->dev_id);
901 	irq_finalize_oneshot(desc, action);
902 	return ret;
903 }
904 
905 static void wake_threads_waitq(struct irq_desc *desc)
906 {
907 	if (atomic_dec_and_test(&desc->threads_active))
908 		wake_up(&desc->wait_for_threads);
909 }
910 
911 static void irq_thread_dtor(struct callback_head *unused)
912 {
913 	struct task_struct *tsk = current;
914 	struct irq_desc *desc;
915 	struct irqaction *action;
916 
917 	if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
918 		return;
919 
920 	action = kthread_data(tsk);
921 
922 	pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
923 	       tsk->comm, tsk->pid, action->irq);
924 
925 
926 	desc = irq_to_desc(action->irq);
927 	/*
928 	 * If IRQTF_RUNTHREAD is set, we need to decrement
929 	 * desc->threads_active and wake possible waiters.
930 	 */
931 	if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
932 		wake_threads_waitq(desc);
933 
934 	/* Prevent a stale desc->threads_oneshot */
935 	irq_finalize_oneshot(desc, action);
936 }
937 
938 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
939 {
940 	struct irqaction *secondary = action->secondary;
941 
942 	if (WARN_ON_ONCE(!secondary))
943 		return;
944 
945 	raw_spin_lock_irq(&desc->lock);
946 	__irq_wake_thread(desc, secondary);
947 	raw_spin_unlock_irq(&desc->lock);
948 }
949 
950 /*
951  * Interrupt handler thread
952  */
953 static int irq_thread(void *data)
954 {
955 	struct callback_head on_exit_work;
956 	struct irqaction *action = data;
957 	struct irq_desc *desc = irq_to_desc(action->irq);
958 	irqreturn_t (*handler_fn)(struct irq_desc *desc,
959 			struct irqaction *action);
960 
961 	if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD,
962 					&action->thread_flags))
963 		handler_fn = irq_forced_thread_fn;
964 	else
965 		handler_fn = irq_thread_fn;
966 
967 	init_task_work(&on_exit_work, irq_thread_dtor);
968 	task_work_add(current, &on_exit_work, false);
969 
970 	irq_thread_check_affinity(desc, action);
971 
972 	while (!irq_wait_for_interrupt(action)) {
973 		irqreturn_t action_ret;
974 
975 		irq_thread_check_affinity(desc, action);
976 
977 		action_ret = handler_fn(desc, action);
978 		if (action_ret == IRQ_HANDLED)
979 			atomic_inc(&desc->threads_handled);
980 		if (action_ret == IRQ_WAKE_THREAD)
981 			irq_wake_secondary(desc, action);
982 
983 		wake_threads_waitq(desc);
984 	}
985 
986 	/*
987 	 * This is the regular exit path. __free_irq() is stopping the
988 	 * thread via kthread_stop() after calling
989 	 * synchronize_irq(). So neither IRQTF_RUNTHREAD nor the
990 	 * oneshot mask bit can be set. We cannot verify that as we
991 	 * cannot touch the oneshot mask at this point anymore as
992 	 * __setup_irq() might have given out currents thread_mask
993 	 * again.
994 	 */
995 	task_work_cancel(current, irq_thread_dtor);
996 	return 0;
997 }
998 
999 /**
1000  *	irq_wake_thread - wake the irq thread for the action identified by dev_id
1001  *	@irq:		Interrupt line
1002  *	@dev_id:	Device identity for which the thread should be woken
1003  *
1004  */
1005 void irq_wake_thread(unsigned int irq, void *dev_id)
1006 {
1007 	struct irq_desc *desc = irq_to_desc(irq);
1008 	struct irqaction *action;
1009 	unsigned long flags;
1010 
1011 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1012 		return;
1013 
1014 	raw_spin_lock_irqsave(&desc->lock, flags);
1015 	for_each_action_of_desc(desc, action) {
1016 		if (action->dev_id == dev_id) {
1017 			if (action->thread)
1018 				__irq_wake_thread(desc, action);
1019 			break;
1020 		}
1021 	}
1022 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1023 }
1024 EXPORT_SYMBOL_GPL(irq_wake_thread);
1025 
1026 static int irq_setup_forced_threading(struct irqaction *new)
1027 {
1028 	if (!force_irqthreads)
1029 		return 0;
1030 	if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1031 		return 0;
1032 
1033 	new->flags |= IRQF_ONESHOT;
1034 
1035 	/*
1036 	 * Handle the case where we have a real primary handler and a
1037 	 * thread handler. We force thread them as well by creating a
1038 	 * secondary action.
1039 	 */
1040 	if (new->handler != irq_default_primary_handler && new->thread_fn) {
1041 		/* Allocate the secondary action */
1042 		new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1043 		if (!new->secondary)
1044 			return -ENOMEM;
1045 		new->secondary->handler = irq_forced_secondary_handler;
1046 		new->secondary->thread_fn = new->thread_fn;
1047 		new->secondary->dev_id = new->dev_id;
1048 		new->secondary->irq = new->irq;
1049 		new->secondary->name = new->name;
1050 	}
1051 	/* Deal with the primary handler */
1052 	set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1053 	new->thread_fn = new->handler;
1054 	new->handler = irq_default_primary_handler;
1055 	return 0;
1056 }
1057 
1058 static int irq_request_resources(struct irq_desc *desc)
1059 {
1060 	struct irq_data *d = &desc->irq_data;
1061 	struct irq_chip *c = d->chip;
1062 
1063 	return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1064 }
1065 
1066 static void irq_release_resources(struct irq_desc *desc)
1067 {
1068 	struct irq_data *d = &desc->irq_data;
1069 	struct irq_chip *c = d->chip;
1070 
1071 	if (c->irq_release_resources)
1072 		c->irq_release_resources(d);
1073 }
1074 
1075 static int
1076 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1077 {
1078 	struct task_struct *t;
1079 	struct sched_param param = {
1080 		.sched_priority = MAX_USER_RT_PRIO/2,
1081 	};
1082 
1083 	if (!secondary) {
1084 		t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1085 				   new->name);
1086 	} else {
1087 		t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1088 				   new->name);
1089 		param.sched_priority -= 1;
1090 	}
1091 
1092 	if (IS_ERR(t))
1093 		return PTR_ERR(t);
1094 
1095 	sched_setscheduler_nocheck(t, SCHED_FIFO, &param);
1096 
1097 	/*
1098 	 * We keep the reference to the task struct even if
1099 	 * the thread dies to avoid that the interrupt code
1100 	 * references an already freed task_struct.
1101 	 */
1102 	get_task_struct(t);
1103 	new->thread = t;
1104 	/*
1105 	 * Tell the thread to set its affinity. This is
1106 	 * important for shared interrupt handlers as we do
1107 	 * not invoke setup_affinity() for the secondary
1108 	 * handlers as everything is already set up. Even for
1109 	 * interrupts marked with IRQF_NO_BALANCE this is
1110 	 * correct as we want the thread to move to the cpu(s)
1111 	 * on which the requesting code placed the interrupt.
1112 	 */
1113 	set_bit(IRQTF_AFFINITY, &new->thread_flags);
1114 	return 0;
1115 }
1116 
1117 /*
1118  * Internal function to register an irqaction - typically used to
1119  * allocate special interrupts that are part of the architecture.
1120  *
1121  * Locking rules:
1122  *
1123  * desc->request_mutex	Provides serialization against a concurrent free_irq()
1124  *   chip_bus_lock	Provides serialization for slow bus operations
1125  *     desc->lock	Provides serialization against hard interrupts
1126  *
1127  * chip_bus_lock and desc->lock are sufficient for all other management and
1128  * interrupt related functions. desc->request_mutex solely serializes
1129  * request/free_irq().
1130  */
1131 static int
1132 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1133 {
1134 	struct irqaction *old, **old_ptr;
1135 	unsigned long flags, thread_mask = 0;
1136 	int ret, nested, shared = 0;
1137 
1138 	if (!desc)
1139 		return -EINVAL;
1140 
1141 	if (desc->irq_data.chip == &no_irq_chip)
1142 		return -ENOSYS;
1143 	if (!try_module_get(desc->owner))
1144 		return -ENODEV;
1145 
1146 	new->irq = irq;
1147 
1148 	/*
1149 	 * If the trigger type is not specified by the caller,
1150 	 * then use the default for this interrupt.
1151 	 */
1152 	if (!(new->flags & IRQF_TRIGGER_MASK))
1153 		new->flags |= irqd_get_trigger_type(&desc->irq_data);
1154 
1155 	/*
1156 	 * Check whether the interrupt nests into another interrupt
1157 	 * thread.
1158 	 */
1159 	nested = irq_settings_is_nested_thread(desc);
1160 	if (nested) {
1161 		if (!new->thread_fn) {
1162 			ret = -EINVAL;
1163 			goto out_mput;
1164 		}
1165 		/*
1166 		 * Replace the primary handler which was provided from
1167 		 * the driver for non nested interrupt handling by the
1168 		 * dummy function which warns when called.
1169 		 */
1170 		new->handler = irq_nested_primary_handler;
1171 	} else {
1172 		if (irq_settings_can_thread(desc)) {
1173 			ret = irq_setup_forced_threading(new);
1174 			if (ret)
1175 				goto out_mput;
1176 		}
1177 	}
1178 
1179 	/*
1180 	 * Create a handler thread when a thread function is supplied
1181 	 * and the interrupt does not nest into another interrupt
1182 	 * thread.
1183 	 */
1184 	if (new->thread_fn && !nested) {
1185 		ret = setup_irq_thread(new, irq, false);
1186 		if (ret)
1187 			goto out_mput;
1188 		if (new->secondary) {
1189 			ret = setup_irq_thread(new->secondary, irq, true);
1190 			if (ret)
1191 				goto out_thread;
1192 		}
1193 	}
1194 
1195 	/*
1196 	 * Drivers are often written to work w/o knowledge about the
1197 	 * underlying irq chip implementation, so a request for a
1198 	 * threaded irq without a primary hard irq context handler
1199 	 * requires the ONESHOT flag to be set. Some irq chips like
1200 	 * MSI based interrupts are per se one shot safe. Check the
1201 	 * chip flags, so we can avoid the unmask dance at the end of
1202 	 * the threaded handler for those.
1203 	 */
1204 	if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1205 		new->flags &= ~IRQF_ONESHOT;
1206 
1207 	/*
1208 	 * Protects against a concurrent __free_irq() call which might wait
1209 	 * for synchronize_irq() to complete without holding the optional
1210 	 * chip bus lock and desc->lock.
1211 	 */
1212 	mutex_lock(&desc->request_mutex);
1213 
1214 	/*
1215 	 * Acquire bus lock as the irq_request_resources() callback below
1216 	 * might rely on the serialization or the magic power management
1217 	 * functions which are abusing the irq_bus_lock() callback,
1218 	 */
1219 	chip_bus_lock(desc);
1220 
1221 	/* First installed action requests resources. */
1222 	if (!desc->action) {
1223 		ret = irq_request_resources(desc);
1224 		if (ret) {
1225 			pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1226 			       new->name, irq, desc->irq_data.chip->name);
1227 			goto out_bus_unlock;
1228 		}
1229 	}
1230 
1231 	/*
1232 	 * The following block of code has to be executed atomically
1233 	 * protected against a concurrent interrupt and any of the other
1234 	 * management calls which are not serialized via
1235 	 * desc->request_mutex or the optional bus lock.
1236 	 */
1237 	raw_spin_lock_irqsave(&desc->lock, flags);
1238 	old_ptr = &desc->action;
1239 	old = *old_ptr;
1240 	if (old) {
1241 		/*
1242 		 * Can't share interrupts unless both agree to and are
1243 		 * the same type (level, edge, polarity). So both flag
1244 		 * fields must have IRQF_SHARED set and the bits which
1245 		 * set the trigger type must match. Also all must
1246 		 * agree on ONESHOT.
1247 		 */
1248 		unsigned int oldtype = irqd_get_trigger_type(&desc->irq_data);
1249 
1250 		if (!((old->flags & new->flags) & IRQF_SHARED) ||
1251 		    (oldtype != (new->flags & IRQF_TRIGGER_MASK)) ||
1252 		    ((old->flags ^ new->flags) & IRQF_ONESHOT))
1253 			goto mismatch;
1254 
1255 		/* All handlers must agree on per-cpuness */
1256 		if ((old->flags & IRQF_PERCPU) !=
1257 		    (new->flags & IRQF_PERCPU))
1258 			goto mismatch;
1259 
1260 		/* add new interrupt at end of irq queue */
1261 		do {
1262 			/*
1263 			 * Or all existing action->thread_mask bits,
1264 			 * so we can find the next zero bit for this
1265 			 * new action.
1266 			 */
1267 			thread_mask |= old->thread_mask;
1268 			old_ptr = &old->next;
1269 			old = *old_ptr;
1270 		} while (old);
1271 		shared = 1;
1272 	}
1273 
1274 	/*
1275 	 * Setup the thread mask for this irqaction for ONESHOT. For
1276 	 * !ONESHOT irqs the thread mask is 0 so we can avoid a
1277 	 * conditional in irq_wake_thread().
1278 	 */
1279 	if (new->flags & IRQF_ONESHOT) {
1280 		/*
1281 		 * Unlikely to have 32 resp 64 irqs sharing one line,
1282 		 * but who knows.
1283 		 */
1284 		if (thread_mask == ~0UL) {
1285 			ret = -EBUSY;
1286 			goto out_unlock;
1287 		}
1288 		/*
1289 		 * The thread_mask for the action is or'ed to
1290 		 * desc->thread_active to indicate that the
1291 		 * IRQF_ONESHOT thread handler has been woken, but not
1292 		 * yet finished. The bit is cleared when a thread
1293 		 * completes. When all threads of a shared interrupt
1294 		 * line have completed desc->threads_active becomes
1295 		 * zero and the interrupt line is unmasked. See
1296 		 * handle.c:irq_wake_thread() for further information.
1297 		 *
1298 		 * If no thread is woken by primary (hard irq context)
1299 		 * interrupt handlers, then desc->threads_active is
1300 		 * also checked for zero to unmask the irq line in the
1301 		 * affected hard irq flow handlers
1302 		 * (handle_[fasteoi|level]_irq).
1303 		 *
1304 		 * The new action gets the first zero bit of
1305 		 * thread_mask assigned. See the loop above which or's
1306 		 * all existing action->thread_mask bits.
1307 		 */
1308 		new->thread_mask = 1 << ffz(thread_mask);
1309 
1310 	} else if (new->handler == irq_default_primary_handler &&
1311 		   !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1312 		/*
1313 		 * The interrupt was requested with handler = NULL, so
1314 		 * we use the default primary handler for it. But it
1315 		 * does not have the oneshot flag set. In combination
1316 		 * with level interrupts this is deadly, because the
1317 		 * default primary handler just wakes the thread, then
1318 		 * the irq lines is reenabled, but the device still
1319 		 * has the level irq asserted. Rinse and repeat....
1320 		 *
1321 		 * While this works for edge type interrupts, we play
1322 		 * it safe and reject unconditionally because we can't
1323 		 * say for sure which type this interrupt really
1324 		 * has. The type flags are unreliable as the
1325 		 * underlying chip implementation can override them.
1326 		 */
1327 		pr_err("Threaded irq requested with handler=NULL and !ONESHOT for irq %d\n",
1328 		       irq);
1329 		ret = -EINVAL;
1330 		goto out_unlock;
1331 	}
1332 
1333 	if (!shared) {
1334 		init_waitqueue_head(&desc->wait_for_threads);
1335 
1336 		/* Setup the type (level, edge polarity) if configured: */
1337 		if (new->flags & IRQF_TRIGGER_MASK) {
1338 			ret = __irq_set_trigger(desc,
1339 						new->flags & IRQF_TRIGGER_MASK);
1340 
1341 			if (ret)
1342 				goto out_unlock;
1343 		}
1344 
1345 		desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1346 				  IRQS_ONESHOT | IRQS_WAITING);
1347 		irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1348 
1349 		if (new->flags & IRQF_PERCPU) {
1350 			irqd_set(&desc->irq_data, IRQD_PER_CPU);
1351 			irq_settings_set_per_cpu(desc);
1352 		}
1353 
1354 		if (new->flags & IRQF_ONESHOT)
1355 			desc->istate |= IRQS_ONESHOT;
1356 
1357 		/* Exclude IRQ from balancing if requested */
1358 		if (new->flags & IRQF_NOBALANCING) {
1359 			irq_settings_set_no_balancing(desc);
1360 			irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1361 		}
1362 
1363 		if (irq_settings_can_autoenable(desc)) {
1364 			irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1365 		} else {
1366 			/*
1367 			 * Shared interrupts do not go well with disabling
1368 			 * auto enable. The sharing interrupt might request
1369 			 * it while it's still disabled and then wait for
1370 			 * interrupts forever.
1371 			 */
1372 			WARN_ON_ONCE(new->flags & IRQF_SHARED);
1373 			/* Undo nested disables: */
1374 			desc->depth = 1;
1375 		}
1376 
1377 	} else if (new->flags & IRQF_TRIGGER_MASK) {
1378 		unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1379 		unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1380 
1381 		if (nmsk != omsk)
1382 			/* hope the handler works with current  trigger mode */
1383 			pr_warn("irq %d uses trigger mode %u; requested %u\n",
1384 				irq, omsk, nmsk);
1385 	}
1386 
1387 	*old_ptr = new;
1388 
1389 	irq_pm_install_action(desc, new);
1390 
1391 	/* Reset broken irq detection when installing new handler */
1392 	desc->irq_count = 0;
1393 	desc->irqs_unhandled = 0;
1394 
1395 	/*
1396 	 * Check whether we disabled the irq via the spurious handler
1397 	 * before. Reenable it and give it another chance.
1398 	 */
1399 	if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1400 		desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1401 		__enable_irq(desc);
1402 	}
1403 
1404 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1405 	chip_bus_sync_unlock(desc);
1406 	mutex_unlock(&desc->request_mutex);
1407 
1408 	irq_setup_timings(desc, new);
1409 
1410 	/*
1411 	 * Strictly no need to wake it up, but hung_task complains
1412 	 * when no hard interrupt wakes the thread up.
1413 	 */
1414 	if (new->thread)
1415 		wake_up_process(new->thread);
1416 	if (new->secondary)
1417 		wake_up_process(new->secondary->thread);
1418 
1419 	register_irq_proc(irq, desc);
1420 	irq_add_debugfs_entry(irq, desc);
1421 	new->dir = NULL;
1422 	register_handler_proc(irq, new);
1423 	return 0;
1424 
1425 mismatch:
1426 	if (!(new->flags & IRQF_PROBE_SHARED)) {
1427 		pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1428 		       irq, new->flags, new->name, old->flags, old->name);
1429 #ifdef CONFIG_DEBUG_SHIRQ
1430 		dump_stack();
1431 #endif
1432 	}
1433 	ret = -EBUSY;
1434 
1435 out_unlock:
1436 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1437 
1438 	if (!desc->action)
1439 		irq_release_resources(desc);
1440 out_bus_unlock:
1441 	chip_bus_sync_unlock(desc);
1442 	mutex_unlock(&desc->request_mutex);
1443 
1444 out_thread:
1445 	if (new->thread) {
1446 		struct task_struct *t = new->thread;
1447 
1448 		new->thread = NULL;
1449 		kthread_stop(t);
1450 		put_task_struct(t);
1451 	}
1452 	if (new->secondary && new->secondary->thread) {
1453 		struct task_struct *t = new->secondary->thread;
1454 
1455 		new->secondary->thread = NULL;
1456 		kthread_stop(t);
1457 		put_task_struct(t);
1458 	}
1459 out_mput:
1460 	module_put(desc->owner);
1461 	return ret;
1462 }
1463 
1464 /**
1465  *	setup_irq - setup an interrupt
1466  *	@irq: Interrupt line to setup
1467  *	@act: irqaction for the interrupt
1468  *
1469  * Used to statically setup interrupts in the early boot process.
1470  */
1471 int setup_irq(unsigned int irq, struct irqaction *act)
1472 {
1473 	int retval;
1474 	struct irq_desc *desc = irq_to_desc(irq);
1475 
1476 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1477 		return -EINVAL;
1478 
1479 	retval = irq_chip_pm_get(&desc->irq_data);
1480 	if (retval < 0)
1481 		return retval;
1482 
1483 	retval = __setup_irq(irq, desc, act);
1484 
1485 	if (retval)
1486 		irq_chip_pm_put(&desc->irq_data);
1487 
1488 	return retval;
1489 }
1490 EXPORT_SYMBOL_GPL(setup_irq);
1491 
1492 /*
1493  * Internal function to unregister an irqaction - used to free
1494  * regular and special interrupts that are part of the architecture.
1495  */
1496 static struct irqaction *__free_irq(unsigned int irq, void *dev_id)
1497 {
1498 	struct irq_desc *desc = irq_to_desc(irq);
1499 	struct irqaction *action, **action_ptr;
1500 	unsigned long flags;
1501 
1502 	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1503 
1504 	if (!desc)
1505 		return NULL;
1506 
1507 	mutex_lock(&desc->request_mutex);
1508 	chip_bus_lock(desc);
1509 	raw_spin_lock_irqsave(&desc->lock, flags);
1510 
1511 	/*
1512 	 * There can be multiple actions per IRQ descriptor, find the right
1513 	 * one based on the dev_id:
1514 	 */
1515 	action_ptr = &desc->action;
1516 	for (;;) {
1517 		action = *action_ptr;
1518 
1519 		if (!action) {
1520 			WARN(1, "Trying to free already-free IRQ %d\n", irq);
1521 			raw_spin_unlock_irqrestore(&desc->lock, flags);
1522 			chip_bus_sync_unlock(desc);
1523 			mutex_unlock(&desc->request_mutex);
1524 			return NULL;
1525 		}
1526 
1527 		if (action->dev_id == dev_id)
1528 			break;
1529 		action_ptr = &action->next;
1530 	}
1531 
1532 	/* Found it - now remove it from the list of entries: */
1533 	*action_ptr = action->next;
1534 
1535 	irq_pm_remove_action(desc, action);
1536 
1537 	/* If this was the last handler, shut down the IRQ line: */
1538 	if (!desc->action) {
1539 		irq_settings_clr_disable_unlazy(desc);
1540 		irq_shutdown(desc);
1541 	}
1542 
1543 #ifdef CONFIG_SMP
1544 	/* make sure affinity_hint is cleaned up */
1545 	if (WARN_ON_ONCE(desc->affinity_hint))
1546 		desc->affinity_hint = NULL;
1547 #endif
1548 
1549 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1550 	/*
1551 	 * Drop bus_lock here so the changes which were done in the chip
1552 	 * callbacks above are synced out to the irq chips which hang
1553 	 * behind a slow bus (I2C, SPI) before calling synchronize_irq().
1554 	 *
1555 	 * Aside of that the bus_lock can also be taken from the threaded
1556 	 * handler in irq_finalize_oneshot() which results in a deadlock
1557 	 * because synchronize_irq() would wait forever for the thread to
1558 	 * complete, which is blocked on the bus lock.
1559 	 *
1560 	 * The still held desc->request_mutex() protects against a
1561 	 * concurrent request_irq() of this irq so the release of resources
1562 	 * and timing data is properly serialized.
1563 	 */
1564 	chip_bus_sync_unlock(desc);
1565 
1566 	unregister_handler_proc(irq, action);
1567 
1568 	/* Make sure it's not being used on another CPU: */
1569 	synchronize_irq(irq);
1570 
1571 #ifdef CONFIG_DEBUG_SHIRQ
1572 	/*
1573 	 * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1574 	 * event to happen even now it's being freed, so let's make sure that
1575 	 * is so by doing an extra call to the handler ....
1576 	 *
1577 	 * ( We do this after actually deregistering it, to make sure that a
1578 	 *   'real' IRQ doesn't run in * parallel with our fake. )
1579 	 */
1580 	if (action->flags & IRQF_SHARED) {
1581 		local_irq_save(flags);
1582 		action->handler(irq, dev_id);
1583 		local_irq_restore(flags);
1584 	}
1585 #endif
1586 
1587 	if (action->thread) {
1588 		kthread_stop(action->thread);
1589 		put_task_struct(action->thread);
1590 		if (action->secondary && action->secondary->thread) {
1591 			kthread_stop(action->secondary->thread);
1592 			put_task_struct(action->secondary->thread);
1593 		}
1594 	}
1595 
1596 	/* Last action releases resources */
1597 	if (!desc->action) {
1598 		/*
1599 		 * Reaquire bus lock as irq_release_resources() might
1600 		 * require it to deallocate resources over the slow bus.
1601 		 */
1602 		chip_bus_lock(desc);
1603 		irq_release_resources(desc);
1604 		chip_bus_sync_unlock(desc);
1605 		irq_remove_timings(desc);
1606 	}
1607 
1608 	mutex_unlock(&desc->request_mutex);
1609 
1610 	irq_chip_pm_put(&desc->irq_data);
1611 	module_put(desc->owner);
1612 	kfree(action->secondary);
1613 	return action;
1614 }
1615 
1616 /**
1617  *	remove_irq - free an interrupt
1618  *	@irq: Interrupt line to free
1619  *	@act: irqaction for the interrupt
1620  *
1621  * Used to remove interrupts statically setup by the early boot process.
1622  */
1623 void remove_irq(unsigned int irq, struct irqaction *act)
1624 {
1625 	struct irq_desc *desc = irq_to_desc(irq);
1626 
1627 	if (desc && !WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1628 		__free_irq(irq, act->dev_id);
1629 }
1630 EXPORT_SYMBOL_GPL(remove_irq);
1631 
1632 /**
1633  *	free_irq - free an interrupt allocated with request_irq
1634  *	@irq: Interrupt line to free
1635  *	@dev_id: Device identity to free
1636  *
1637  *	Remove an interrupt handler. The handler is removed and if the
1638  *	interrupt line is no longer in use by any driver it is disabled.
1639  *	On a shared IRQ the caller must ensure the interrupt is disabled
1640  *	on the card it drives before calling this function. The function
1641  *	does not return until any executing interrupts for this IRQ
1642  *	have completed.
1643  *
1644  *	This function must not be called from interrupt context.
1645  *
1646  *	Returns the devname argument passed to request_irq.
1647  */
1648 const void *free_irq(unsigned int irq, void *dev_id)
1649 {
1650 	struct irq_desc *desc = irq_to_desc(irq);
1651 	struct irqaction *action;
1652 	const char *devname;
1653 
1654 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1655 		return NULL;
1656 
1657 #ifdef CONFIG_SMP
1658 	if (WARN_ON(desc->affinity_notify))
1659 		desc->affinity_notify = NULL;
1660 #endif
1661 
1662 	action = __free_irq(irq, dev_id);
1663 
1664 	if (!action)
1665 		return NULL;
1666 
1667 	devname = action->name;
1668 	kfree(action);
1669 	return devname;
1670 }
1671 EXPORT_SYMBOL(free_irq);
1672 
1673 /**
1674  *	request_threaded_irq - allocate an interrupt line
1675  *	@irq: Interrupt line to allocate
1676  *	@handler: Function to be called when the IRQ occurs.
1677  *		  Primary handler for threaded interrupts
1678  *		  If NULL and thread_fn != NULL the default
1679  *		  primary handler is installed
1680  *	@thread_fn: Function called from the irq handler thread
1681  *		    If NULL, no irq thread is created
1682  *	@irqflags: Interrupt type flags
1683  *	@devname: An ascii name for the claiming device
1684  *	@dev_id: A cookie passed back to the handler function
1685  *
1686  *	This call allocates interrupt resources and enables the
1687  *	interrupt line and IRQ handling. From the point this
1688  *	call is made your handler function may be invoked. Since
1689  *	your handler function must clear any interrupt the board
1690  *	raises, you must take care both to initialise your hardware
1691  *	and to set up the interrupt handler in the right order.
1692  *
1693  *	If you want to set up a threaded irq handler for your device
1694  *	then you need to supply @handler and @thread_fn. @handler is
1695  *	still called in hard interrupt context and has to check
1696  *	whether the interrupt originates from the device. If yes it
1697  *	needs to disable the interrupt on the device and return
1698  *	IRQ_WAKE_THREAD which will wake up the handler thread and run
1699  *	@thread_fn. This split handler design is necessary to support
1700  *	shared interrupts.
1701  *
1702  *	Dev_id must be globally unique. Normally the address of the
1703  *	device data structure is used as the cookie. Since the handler
1704  *	receives this value it makes sense to use it.
1705  *
1706  *	If your interrupt is shared you must pass a non NULL dev_id
1707  *	as this is required when freeing the interrupt.
1708  *
1709  *	Flags:
1710  *
1711  *	IRQF_SHARED		Interrupt is shared
1712  *	IRQF_TRIGGER_*		Specify active edge(s) or level
1713  *
1714  */
1715 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
1716 			 irq_handler_t thread_fn, unsigned long irqflags,
1717 			 const char *devname, void *dev_id)
1718 {
1719 	struct irqaction *action;
1720 	struct irq_desc *desc;
1721 	int retval;
1722 
1723 	if (irq == IRQ_NOTCONNECTED)
1724 		return -ENOTCONN;
1725 
1726 	/*
1727 	 * Sanity-check: shared interrupts must pass in a real dev-ID,
1728 	 * otherwise we'll have trouble later trying to figure out
1729 	 * which interrupt is which (messes up the interrupt freeing
1730 	 * logic etc).
1731 	 *
1732 	 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
1733 	 * it cannot be set along with IRQF_NO_SUSPEND.
1734 	 */
1735 	if (((irqflags & IRQF_SHARED) && !dev_id) ||
1736 	    (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
1737 	    ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
1738 		return -EINVAL;
1739 
1740 	desc = irq_to_desc(irq);
1741 	if (!desc)
1742 		return -EINVAL;
1743 
1744 	if (!irq_settings_can_request(desc) ||
1745 	    WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1746 		return -EINVAL;
1747 
1748 	if (!handler) {
1749 		if (!thread_fn)
1750 			return -EINVAL;
1751 		handler = irq_default_primary_handler;
1752 	}
1753 
1754 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1755 	if (!action)
1756 		return -ENOMEM;
1757 
1758 	action->handler = handler;
1759 	action->thread_fn = thread_fn;
1760 	action->flags = irqflags;
1761 	action->name = devname;
1762 	action->dev_id = dev_id;
1763 
1764 	retval = irq_chip_pm_get(&desc->irq_data);
1765 	if (retval < 0) {
1766 		kfree(action);
1767 		return retval;
1768 	}
1769 
1770 	retval = __setup_irq(irq, desc, action);
1771 
1772 	if (retval) {
1773 		irq_chip_pm_put(&desc->irq_data);
1774 		kfree(action->secondary);
1775 		kfree(action);
1776 	}
1777 
1778 #ifdef CONFIG_DEBUG_SHIRQ_FIXME
1779 	if (!retval && (irqflags & IRQF_SHARED)) {
1780 		/*
1781 		 * It's a shared IRQ -- the driver ought to be prepared for it
1782 		 * to happen immediately, so let's make sure....
1783 		 * We disable the irq to make sure that a 'real' IRQ doesn't
1784 		 * run in parallel with our fake.
1785 		 */
1786 		unsigned long flags;
1787 
1788 		disable_irq(irq);
1789 		local_irq_save(flags);
1790 
1791 		handler(irq, dev_id);
1792 
1793 		local_irq_restore(flags);
1794 		enable_irq(irq);
1795 	}
1796 #endif
1797 	return retval;
1798 }
1799 EXPORT_SYMBOL(request_threaded_irq);
1800 
1801 /**
1802  *	request_any_context_irq - allocate an interrupt line
1803  *	@irq: Interrupt line to allocate
1804  *	@handler: Function to be called when the IRQ occurs.
1805  *		  Threaded handler for threaded interrupts.
1806  *	@flags: Interrupt type flags
1807  *	@name: An ascii name for the claiming device
1808  *	@dev_id: A cookie passed back to the handler function
1809  *
1810  *	This call allocates interrupt resources and enables the
1811  *	interrupt line and IRQ handling. It selects either a
1812  *	hardirq or threaded handling method depending on the
1813  *	context.
1814  *
1815  *	On failure, it returns a negative value. On success,
1816  *	it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
1817  */
1818 int request_any_context_irq(unsigned int irq, irq_handler_t handler,
1819 			    unsigned long flags, const char *name, void *dev_id)
1820 {
1821 	struct irq_desc *desc;
1822 	int ret;
1823 
1824 	if (irq == IRQ_NOTCONNECTED)
1825 		return -ENOTCONN;
1826 
1827 	desc = irq_to_desc(irq);
1828 	if (!desc)
1829 		return -EINVAL;
1830 
1831 	if (irq_settings_is_nested_thread(desc)) {
1832 		ret = request_threaded_irq(irq, NULL, handler,
1833 					   flags, name, dev_id);
1834 		return !ret ? IRQC_IS_NESTED : ret;
1835 	}
1836 
1837 	ret = request_irq(irq, handler, flags, name, dev_id);
1838 	return !ret ? IRQC_IS_HARDIRQ : ret;
1839 }
1840 EXPORT_SYMBOL_GPL(request_any_context_irq);
1841 
1842 void enable_percpu_irq(unsigned int irq, unsigned int type)
1843 {
1844 	unsigned int cpu = smp_processor_id();
1845 	unsigned long flags;
1846 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1847 
1848 	if (!desc)
1849 		return;
1850 
1851 	/*
1852 	 * If the trigger type is not specified by the caller, then
1853 	 * use the default for this interrupt.
1854 	 */
1855 	type &= IRQ_TYPE_SENSE_MASK;
1856 	if (type == IRQ_TYPE_NONE)
1857 		type = irqd_get_trigger_type(&desc->irq_data);
1858 
1859 	if (type != IRQ_TYPE_NONE) {
1860 		int ret;
1861 
1862 		ret = __irq_set_trigger(desc, type);
1863 
1864 		if (ret) {
1865 			WARN(1, "failed to set type for IRQ%d\n", irq);
1866 			goto out;
1867 		}
1868 	}
1869 
1870 	irq_percpu_enable(desc, cpu);
1871 out:
1872 	irq_put_desc_unlock(desc, flags);
1873 }
1874 EXPORT_SYMBOL_GPL(enable_percpu_irq);
1875 
1876 /**
1877  * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
1878  * @irq:	Linux irq number to check for
1879  *
1880  * Must be called from a non migratable context. Returns the enable
1881  * state of a per cpu interrupt on the current cpu.
1882  */
1883 bool irq_percpu_is_enabled(unsigned int irq)
1884 {
1885 	unsigned int cpu = smp_processor_id();
1886 	struct irq_desc *desc;
1887 	unsigned long flags;
1888 	bool is_enabled;
1889 
1890 	desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1891 	if (!desc)
1892 		return false;
1893 
1894 	is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
1895 	irq_put_desc_unlock(desc, flags);
1896 
1897 	return is_enabled;
1898 }
1899 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
1900 
1901 void disable_percpu_irq(unsigned int irq)
1902 {
1903 	unsigned int cpu = smp_processor_id();
1904 	unsigned long flags;
1905 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1906 
1907 	if (!desc)
1908 		return;
1909 
1910 	irq_percpu_disable(desc, cpu);
1911 	irq_put_desc_unlock(desc, flags);
1912 }
1913 EXPORT_SYMBOL_GPL(disable_percpu_irq);
1914 
1915 /*
1916  * Internal function to unregister a percpu irqaction.
1917  */
1918 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
1919 {
1920 	struct irq_desc *desc = irq_to_desc(irq);
1921 	struct irqaction *action;
1922 	unsigned long flags;
1923 
1924 	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1925 
1926 	if (!desc)
1927 		return NULL;
1928 
1929 	raw_spin_lock_irqsave(&desc->lock, flags);
1930 
1931 	action = desc->action;
1932 	if (!action || action->percpu_dev_id != dev_id) {
1933 		WARN(1, "Trying to free already-free IRQ %d\n", irq);
1934 		goto bad;
1935 	}
1936 
1937 	if (!cpumask_empty(desc->percpu_enabled)) {
1938 		WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
1939 		     irq, cpumask_first(desc->percpu_enabled));
1940 		goto bad;
1941 	}
1942 
1943 	/* Found it - now remove it from the list of entries: */
1944 	desc->action = NULL;
1945 
1946 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1947 
1948 	unregister_handler_proc(irq, action);
1949 
1950 	irq_chip_pm_put(&desc->irq_data);
1951 	module_put(desc->owner);
1952 	return action;
1953 
1954 bad:
1955 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1956 	return NULL;
1957 }
1958 
1959 /**
1960  *	remove_percpu_irq - free a per-cpu interrupt
1961  *	@irq: Interrupt line to free
1962  *	@act: irqaction for the interrupt
1963  *
1964  * Used to remove interrupts statically setup by the early boot process.
1965  */
1966 void remove_percpu_irq(unsigned int irq, struct irqaction *act)
1967 {
1968 	struct irq_desc *desc = irq_to_desc(irq);
1969 
1970 	if (desc && irq_settings_is_per_cpu_devid(desc))
1971 	    __free_percpu_irq(irq, act->percpu_dev_id);
1972 }
1973 
1974 /**
1975  *	free_percpu_irq - free an interrupt allocated with request_percpu_irq
1976  *	@irq: Interrupt line to free
1977  *	@dev_id: Device identity to free
1978  *
1979  *	Remove a percpu interrupt handler. The handler is removed, but
1980  *	the interrupt line is not disabled. This must be done on each
1981  *	CPU before calling this function. The function does not return
1982  *	until any executing interrupts for this IRQ have completed.
1983  *
1984  *	This function must not be called from interrupt context.
1985  */
1986 void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
1987 {
1988 	struct irq_desc *desc = irq_to_desc(irq);
1989 
1990 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
1991 		return;
1992 
1993 	chip_bus_lock(desc);
1994 	kfree(__free_percpu_irq(irq, dev_id));
1995 	chip_bus_sync_unlock(desc);
1996 }
1997 EXPORT_SYMBOL_GPL(free_percpu_irq);
1998 
1999 /**
2000  *	setup_percpu_irq - setup a per-cpu interrupt
2001  *	@irq: Interrupt line to setup
2002  *	@act: irqaction for the interrupt
2003  *
2004  * Used to statically setup per-cpu interrupts in the early boot process.
2005  */
2006 int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2007 {
2008 	struct irq_desc *desc = irq_to_desc(irq);
2009 	int retval;
2010 
2011 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2012 		return -EINVAL;
2013 
2014 	retval = irq_chip_pm_get(&desc->irq_data);
2015 	if (retval < 0)
2016 		return retval;
2017 
2018 	retval = __setup_irq(irq, desc, act);
2019 
2020 	if (retval)
2021 		irq_chip_pm_put(&desc->irq_data);
2022 
2023 	return retval;
2024 }
2025 
2026 /**
2027  *	__request_percpu_irq - allocate a percpu interrupt line
2028  *	@irq: Interrupt line to allocate
2029  *	@handler: Function to be called when the IRQ occurs.
2030  *	@flags: Interrupt type flags (IRQF_TIMER only)
2031  *	@devname: An ascii name for the claiming device
2032  *	@dev_id: A percpu cookie passed back to the handler function
2033  *
2034  *	This call allocates interrupt resources and enables the
2035  *	interrupt on the local CPU. If the interrupt is supposed to be
2036  *	enabled on other CPUs, it has to be done on each CPU using
2037  *	enable_percpu_irq().
2038  *
2039  *	Dev_id must be globally unique. It is a per-cpu variable, and
2040  *	the handler gets called with the interrupted CPU's instance of
2041  *	that variable.
2042  */
2043 int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2044 			 unsigned long flags, const char *devname,
2045 			 void __percpu *dev_id)
2046 {
2047 	struct irqaction *action;
2048 	struct irq_desc *desc;
2049 	int retval;
2050 
2051 	if (!dev_id)
2052 		return -EINVAL;
2053 
2054 	desc = irq_to_desc(irq);
2055 	if (!desc || !irq_settings_can_request(desc) ||
2056 	    !irq_settings_is_per_cpu_devid(desc))
2057 		return -EINVAL;
2058 
2059 	if (flags && flags != IRQF_TIMER)
2060 		return -EINVAL;
2061 
2062 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2063 	if (!action)
2064 		return -ENOMEM;
2065 
2066 	action->handler = handler;
2067 	action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2068 	action->name = devname;
2069 	action->percpu_dev_id = dev_id;
2070 
2071 	retval = irq_chip_pm_get(&desc->irq_data);
2072 	if (retval < 0) {
2073 		kfree(action);
2074 		return retval;
2075 	}
2076 
2077 	retval = __setup_irq(irq, desc, action);
2078 
2079 	if (retval) {
2080 		irq_chip_pm_put(&desc->irq_data);
2081 		kfree(action);
2082 	}
2083 
2084 	return retval;
2085 }
2086 EXPORT_SYMBOL_GPL(__request_percpu_irq);
2087 
2088 /**
2089  *	irq_get_irqchip_state - returns the irqchip state of a interrupt.
2090  *	@irq: Interrupt line that is forwarded to a VM
2091  *	@which: One of IRQCHIP_STATE_* the caller wants to know about
2092  *	@state: a pointer to a boolean where the state is to be storeed
2093  *
2094  *	This call snapshots the internal irqchip state of an
2095  *	interrupt, returning into @state the bit corresponding to
2096  *	stage @which
2097  *
2098  *	This function should be called with preemption disabled if the
2099  *	interrupt controller has per-cpu registers.
2100  */
2101 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2102 			  bool *state)
2103 {
2104 	struct irq_desc *desc;
2105 	struct irq_data *data;
2106 	struct irq_chip *chip;
2107 	unsigned long flags;
2108 	int err = -EINVAL;
2109 
2110 	desc = irq_get_desc_buslock(irq, &flags, 0);
2111 	if (!desc)
2112 		return err;
2113 
2114 	data = irq_desc_get_irq_data(desc);
2115 
2116 	do {
2117 		chip = irq_data_get_irq_chip(data);
2118 		if (chip->irq_get_irqchip_state)
2119 			break;
2120 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2121 		data = data->parent_data;
2122 #else
2123 		data = NULL;
2124 #endif
2125 	} while (data);
2126 
2127 	if (data)
2128 		err = chip->irq_get_irqchip_state(data, which, state);
2129 
2130 	irq_put_desc_busunlock(desc, flags);
2131 	return err;
2132 }
2133 EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2134 
2135 /**
2136  *	irq_set_irqchip_state - set the state of a forwarded interrupt.
2137  *	@irq: Interrupt line that is forwarded to a VM
2138  *	@which: State to be restored (one of IRQCHIP_STATE_*)
2139  *	@val: Value corresponding to @which
2140  *
2141  *	This call sets the internal irqchip state of an interrupt,
2142  *	depending on the value of @which.
2143  *
2144  *	This function should be called with preemption disabled if the
2145  *	interrupt controller has per-cpu registers.
2146  */
2147 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2148 			  bool val)
2149 {
2150 	struct irq_desc *desc;
2151 	struct irq_data *data;
2152 	struct irq_chip *chip;
2153 	unsigned long flags;
2154 	int err = -EINVAL;
2155 
2156 	desc = irq_get_desc_buslock(irq, &flags, 0);
2157 	if (!desc)
2158 		return err;
2159 
2160 	data = irq_desc_get_irq_data(desc);
2161 
2162 	do {
2163 		chip = irq_data_get_irq_chip(data);
2164 		if (chip->irq_set_irqchip_state)
2165 			break;
2166 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2167 		data = data->parent_data;
2168 #else
2169 		data = NULL;
2170 #endif
2171 	} while (data);
2172 
2173 	if (data)
2174 		err = chip->irq_set_irqchip_state(data, which, val);
2175 
2176 	irq_put_desc_busunlock(desc, flags);
2177 	return err;
2178 }
2179 EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
2180