1 /* 2 * linux/kernel/irq/manage.c 3 * 4 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar 5 * Copyright (C) 2005-2006 Thomas Gleixner 6 * 7 * This file contains driver APIs to the irq subsystem. 8 */ 9 10 #define pr_fmt(fmt) "genirq: " fmt 11 12 #include <linux/irq.h> 13 #include <linux/kthread.h> 14 #include <linux/module.h> 15 #include <linux/random.h> 16 #include <linux/interrupt.h> 17 #include <linux/slab.h> 18 #include <linux/sched.h> 19 #include <linux/sched/rt.h> 20 #include <linux/sched/task.h> 21 #include <uapi/linux/sched/types.h> 22 #include <linux/task_work.h> 23 24 #include "internals.h" 25 26 #ifdef CONFIG_IRQ_FORCED_THREADING 27 __read_mostly bool force_irqthreads; 28 29 static int __init setup_forced_irqthreads(char *arg) 30 { 31 force_irqthreads = true; 32 return 0; 33 } 34 early_param("threadirqs", setup_forced_irqthreads); 35 #endif 36 37 static void __synchronize_hardirq(struct irq_desc *desc) 38 { 39 bool inprogress; 40 41 do { 42 unsigned long flags; 43 44 /* 45 * Wait until we're out of the critical section. This might 46 * give the wrong answer due to the lack of memory barriers. 47 */ 48 while (irqd_irq_inprogress(&desc->irq_data)) 49 cpu_relax(); 50 51 /* Ok, that indicated we're done: double-check carefully. */ 52 raw_spin_lock_irqsave(&desc->lock, flags); 53 inprogress = irqd_irq_inprogress(&desc->irq_data); 54 raw_spin_unlock_irqrestore(&desc->lock, flags); 55 56 /* Oops, that failed? */ 57 } while (inprogress); 58 } 59 60 /** 61 * synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs) 62 * @irq: interrupt number to wait for 63 * 64 * This function waits for any pending hard IRQ handlers for this 65 * interrupt to complete before returning. If you use this 66 * function while holding a resource the IRQ handler may need you 67 * will deadlock. It does not take associated threaded handlers 68 * into account. 69 * 70 * Do not use this for shutdown scenarios where you must be sure 71 * that all parts (hardirq and threaded handler) have completed. 72 * 73 * Returns: false if a threaded handler is active. 74 * 75 * This function may be called - with care - from IRQ context. 76 */ 77 bool synchronize_hardirq(unsigned int irq) 78 { 79 struct irq_desc *desc = irq_to_desc(irq); 80 81 if (desc) { 82 __synchronize_hardirq(desc); 83 return !atomic_read(&desc->threads_active); 84 } 85 86 return true; 87 } 88 EXPORT_SYMBOL(synchronize_hardirq); 89 90 /** 91 * synchronize_irq - wait for pending IRQ handlers (on other CPUs) 92 * @irq: interrupt number to wait for 93 * 94 * This function waits for any pending IRQ handlers for this interrupt 95 * to complete before returning. If you use this function while 96 * holding a resource the IRQ handler may need you will deadlock. 97 * 98 * This function may be called - with care - from IRQ context. 99 */ 100 void synchronize_irq(unsigned int irq) 101 { 102 struct irq_desc *desc = irq_to_desc(irq); 103 104 if (desc) { 105 __synchronize_hardirq(desc); 106 /* 107 * We made sure that no hardirq handler is 108 * running. Now verify that no threaded handlers are 109 * active. 110 */ 111 wait_event(desc->wait_for_threads, 112 !atomic_read(&desc->threads_active)); 113 } 114 } 115 EXPORT_SYMBOL(synchronize_irq); 116 117 #ifdef CONFIG_SMP 118 cpumask_var_t irq_default_affinity; 119 120 static bool __irq_can_set_affinity(struct irq_desc *desc) 121 { 122 if (!desc || !irqd_can_balance(&desc->irq_data) || 123 !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity) 124 return false; 125 return true; 126 } 127 128 /** 129 * irq_can_set_affinity - Check if the affinity of a given irq can be set 130 * @irq: Interrupt to check 131 * 132 */ 133 int irq_can_set_affinity(unsigned int irq) 134 { 135 return __irq_can_set_affinity(irq_to_desc(irq)); 136 } 137 138 /** 139 * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space 140 * @irq: Interrupt to check 141 * 142 * Like irq_can_set_affinity() above, but additionally checks for the 143 * AFFINITY_MANAGED flag. 144 */ 145 bool irq_can_set_affinity_usr(unsigned int irq) 146 { 147 struct irq_desc *desc = irq_to_desc(irq); 148 149 return __irq_can_set_affinity(desc) && 150 !irqd_affinity_is_managed(&desc->irq_data); 151 } 152 153 /** 154 * irq_set_thread_affinity - Notify irq threads to adjust affinity 155 * @desc: irq descriptor which has affitnity changed 156 * 157 * We just set IRQTF_AFFINITY and delegate the affinity setting 158 * to the interrupt thread itself. We can not call 159 * set_cpus_allowed_ptr() here as we hold desc->lock and this 160 * code can be called from hard interrupt context. 161 */ 162 void irq_set_thread_affinity(struct irq_desc *desc) 163 { 164 struct irqaction *action; 165 166 for_each_action_of_desc(desc, action) 167 if (action->thread) 168 set_bit(IRQTF_AFFINITY, &action->thread_flags); 169 } 170 171 static void irq_validate_effective_affinity(struct irq_data *data) 172 { 173 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK 174 const struct cpumask *m = irq_data_get_effective_affinity_mask(data); 175 struct irq_chip *chip = irq_data_get_irq_chip(data); 176 177 if (!cpumask_empty(m)) 178 return; 179 pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n", 180 chip->name, data->irq); 181 #endif 182 } 183 184 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask, 185 bool force) 186 { 187 struct irq_desc *desc = irq_data_to_desc(data); 188 struct irq_chip *chip = irq_data_get_irq_chip(data); 189 int ret; 190 191 if (!chip || !chip->irq_set_affinity) 192 return -EINVAL; 193 194 ret = chip->irq_set_affinity(data, mask, force); 195 switch (ret) { 196 case IRQ_SET_MASK_OK: 197 case IRQ_SET_MASK_OK_DONE: 198 cpumask_copy(desc->irq_common_data.affinity, mask); 199 case IRQ_SET_MASK_OK_NOCOPY: 200 irq_validate_effective_affinity(data); 201 irq_set_thread_affinity(desc); 202 ret = 0; 203 } 204 205 return ret; 206 } 207 208 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask, 209 bool force) 210 { 211 struct irq_chip *chip = irq_data_get_irq_chip(data); 212 struct irq_desc *desc = irq_data_to_desc(data); 213 int ret = 0; 214 215 if (!chip || !chip->irq_set_affinity) 216 return -EINVAL; 217 218 if (irq_can_move_pcntxt(data)) { 219 ret = irq_do_set_affinity(data, mask, force); 220 } else { 221 irqd_set_move_pending(data); 222 irq_copy_pending(desc, mask); 223 } 224 225 if (desc->affinity_notify) { 226 kref_get(&desc->affinity_notify->kref); 227 schedule_work(&desc->affinity_notify->work); 228 } 229 irqd_set(data, IRQD_AFFINITY_SET); 230 231 return ret; 232 } 233 234 int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force) 235 { 236 struct irq_desc *desc = irq_to_desc(irq); 237 unsigned long flags; 238 int ret; 239 240 if (!desc) 241 return -EINVAL; 242 243 raw_spin_lock_irqsave(&desc->lock, flags); 244 ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force); 245 raw_spin_unlock_irqrestore(&desc->lock, flags); 246 return ret; 247 } 248 249 int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m) 250 { 251 unsigned long flags; 252 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 253 254 if (!desc) 255 return -EINVAL; 256 desc->affinity_hint = m; 257 irq_put_desc_unlock(desc, flags); 258 /* set the initial affinity to prevent every interrupt being on CPU0 */ 259 if (m) 260 __irq_set_affinity(irq, m, false); 261 return 0; 262 } 263 EXPORT_SYMBOL_GPL(irq_set_affinity_hint); 264 265 static void irq_affinity_notify(struct work_struct *work) 266 { 267 struct irq_affinity_notify *notify = 268 container_of(work, struct irq_affinity_notify, work); 269 struct irq_desc *desc = irq_to_desc(notify->irq); 270 cpumask_var_t cpumask; 271 unsigned long flags; 272 273 if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL)) 274 goto out; 275 276 raw_spin_lock_irqsave(&desc->lock, flags); 277 if (irq_move_pending(&desc->irq_data)) 278 irq_get_pending(cpumask, desc); 279 else 280 cpumask_copy(cpumask, desc->irq_common_data.affinity); 281 raw_spin_unlock_irqrestore(&desc->lock, flags); 282 283 notify->notify(notify, cpumask); 284 285 free_cpumask_var(cpumask); 286 out: 287 kref_put(¬ify->kref, notify->release); 288 } 289 290 /** 291 * irq_set_affinity_notifier - control notification of IRQ affinity changes 292 * @irq: Interrupt for which to enable/disable notification 293 * @notify: Context for notification, or %NULL to disable 294 * notification. Function pointers must be initialised; 295 * the other fields will be initialised by this function. 296 * 297 * Must be called in process context. Notification may only be enabled 298 * after the IRQ is allocated and must be disabled before the IRQ is 299 * freed using free_irq(). 300 */ 301 int 302 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify) 303 { 304 struct irq_desc *desc = irq_to_desc(irq); 305 struct irq_affinity_notify *old_notify; 306 unsigned long flags; 307 308 /* The release function is promised process context */ 309 might_sleep(); 310 311 if (!desc) 312 return -EINVAL; 313 314 /* Complete initialisation of *notify */ 315 if (notify) { 316 notify->irq = irq; 317 kref_init(¬ify->kref); 318 INIT_WORK(¬ify->work, irq_affinity_notify); 319 } 320 321 raw_spin_lock_irqsave(&desc->lock, flags); 322 old_notify = desc->affinity_notify; 323 desc->affinity_notify = notify; 324 raw_spin_unlock_irqrestore(&desc->lock, flags); 325 326 if (old_notify) 327 kref_put(&old_notify->kref, old_notify->release); 328 329 return 0; 330 } 331 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier); 332 333 #ifndef CONFIG_AUTO_IRQ_AFFINITY 334 /* 335 * Generic version of the affinity autoselector. 336 */ 337 int irq_setup_affinity(struct irq_desc *desc) 338 { 339 struct cpumask *set = irq_default_affinity; 340 int ret, node = irq_desc_get_node(desc); 341 static DEFINE_RAW_SPINLOCK(mask_lock); 342 static struct cpumask mask; 343 344 /* Excludes PER_CPU and NO_BALANCE interrupts */ 345 if (!__irq_can_set_affinity(desc)) 346 return 0; 347 348 raw_spin_lock(&mask_lock); 349 /* 350 * Preserve the managed affinity setting and a userspace affinity 351 * setup, but make sure that one of the targets is online. 352 */ 353 if (irqd_affinity_is_managed(&desc->irq_data) || 354 irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) { 355 if (cpumask_intersects(desc->irq_common_data.affinity, 356 cpu_online_mask)) 357 set = desc->irq_common_data.affinity; 358 else 359 irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET); 360 } 361 362 cpumask_and(&mask, cpu_online_mask, set); 363 if (node != NUMA_NO_NODE) { 364 const struct cpumask *nodemask = cpumask_of_node(node); 365 366 /* make sure at least one of the cpus in nodemask is online */ 367 if (cpumask_intersects(&mask, nodemask)) 368 cpumask_and(&mask, &mask, nodemask); 369 } 370 ret = irq_do_set_affinity(&desc->irq_data, &mask, false); 371 raw_spin_unlock(&mask_lock); 372 return ret; 373 } 374 #else 375 /* Wrapper for ALPHA specific affinity selector magic */ 376 int irq_setup_affinity(struct irq_desc *desc) 377 { 378 return irq_select_affinity(irq_desc_get_irq(desc)); 379 } 380 #endif 381 382 /* 383 * Called when a bogus affinity is set via /proc/irq 384 */ 385 int irq_select_affinity_usr(unsigned int irq) 386 { 387 struct irq_desc *desc = irq_to_desc(irq); 388 unsigned long flags; 389 int ret; 390 391 raw_spin_lock_irqsave(&desc->lock, flags); 392 ret = irq_setup_affinity(desc); 393 raw_spin_unlock_irqrestore(&desc->lock, flags); 394 return ret; 395 } 396 #endif 397 398 /** 399 * irq_set_vcpu_affinity - Set vcpu affinity for the interrupt 400 * @irq: interrupt number to set affinity 401 * @vcpu_info: vCPU specific data 402 * 403 * This function uses the vCPU specific data to set the vCPU 404 * affinity for an irq. The vCPU specific data is passed from 405 * outside, such as KVM. One example code path is as below: 406 * KVM -> IOMMU -> irq_set_vcpu_affinity(). 407 */ 408 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info) 409 { 410 unsigned long flags; 411 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 412 struct irq_data *data; 413 struct irq_chip *chip; 414 int ret = -ENOSYS; 415 416 if (!desc) 417 return -EINVAL; 418 419 data = irq_desc_get_irq_data(desc); 420 do { 421 chip = irq_data_get_irq_chip(data); 422 if (chip && chip->irq_set_vcpu_affinity) 423 break; 424 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 425 data = data->parent_data; 426 #else 427 data = NULL; 428 #endif 429 } while (data); 430 431 if (data) 432 ret = chip->irq_set_vcpu_affinity(data, vcpu_info); 433 irq_put_desc_unlock(desc, flags); 434 435 return ret; 436 } 437 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity); 438 439 void __disable_irq(struct irq_desc *desc) 440 { 441 if (!desc->depth++) 442 irq_disable(desc); 443 } 444 445 static int __disable_irq_nosync(unsigned int irq) 446 { 447 unsigned long flags; 448 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 449 450 if (!desc) 451 return -EINVAL; 452 __disable_irq(desc); 453 irq_put_desc_busunlock(desc, flags); 454 return 0; 455 } 456 457 /** 458 * disable_irq_nosync - disable an irq without waiting 459 * @irq: Interrupt to disable 460 * 461 * Disable the selected interrupt line. Disables and Enables are 462 * nested. 463 * Unlike disable_irq(), this function does not ensure existing 464 * instances of the IRQ handler have completed before returning. 465 * 466 * This function may be called from IRQ context. 467 */ 468 void disable_irq_nosync(unsigned int irq) 469 { 470 __disable_irq_nosync(irq); 471 } 472 EXPORT_SYMBOL(disable_irq_nosync); 473 474 /** 475 * disable_irq - disable an irq and wait for completion 476 * @irq: Interrupt to disable 477 * 478 * Disable the selected interrupt line. Enables and Disables are 479 * nested. 480 * This function waits for any pending IRQ handlers for this interrupt 481 * to complete before returning. If you use this function while 482 * holding a resource the IRQ handler may need you will deadlock. 483 * 484 * This function may be called - with care - from IRQ context. 485 */ 486 void disable_irq(unsigned int irq) 487 { 488 if (!__disable_irq_nosync(irq)) 489 synchronize_irq(irq); 490 } 491 EXPORT_SYMBOL(disable_irq); 492 493 /** 494 * disable_hardirq - disables an irq and waits for hardirq completion 495 * @irq: Interrupt to disable 496 * 497 * Disable the selected interrupt line. Enables and Disables are 498 * nested. 499 * This function waits for any pending hard IRQ handlers for this 500 * interrupt to complete before returning. If you use this function while 501 * holding a resource the hard IRQ handler may need you will deadlock. 502 * 503 * When used to optimistically disable an interrupt from atomic context 504 * the return value must be checked. 505 * 506 * Returns: false if a threaded handler is active. 507 * 508 * This function may be called - with care - from IRQ context. 509 */ 510 bool disable_hardirq(unsigned int irq) 511 { 512 if (!__disable_irq_nosync(irq)) 513 return synchronize_hardirq(irq); 514 515 return false; 516 } 517 EXPORT_SYMBOL_GPL(disable_hardirq); 518 519 void __enable_irq(struct irq_desc *desc) 520 { 521 switch (desc->depth) { 522 case 0: 523 err_out: 524 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n", 525 irq_desc_get_irq(desc)); 526 break; 527 case 1: { 528 if (desc->istate & IRQS_SUSPENDED) 529 goto err_out; 530 /* Prevent probing on this irq: */ 531 irq_settings_set_noprobe(desc); 532 /* 533 * Call irq_startup() not irq_enable() here because the 534 * interrupt might be marked NOAUTOEN. So irq_startup() 535 * needs to be invoked when it gets enabled the first 536 * time. If it was already started up, then irq_startup() 537 * will invoke irq_enable() under the hood. 538 */ 539 irq_startup(desc, IRQ_RESEND, IRQ_START_COND); 540 break; 541 } 542 default: 543 desc->depth--; 544 } 545 } 546 547 /** 548 * enable_irq - enable handling of an irq 549 * @irq: Interrupt to enable 550 * 551 * Undoes the effect of one call to disable_irq(). If this 552 * matches the last disable, processing of interrupts on this 553 * IRQ line is re-enabled. 554 * 555 * This function may be called from IRQ context only when 556 * desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL ! 557 */ 558 void enable_irq(unsigned int irq) 559 { 560 unsigned long flags; 561 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 562 563 if (!desc) 564 return; 565 if (WARN(!desc->irq_data.chip, 566 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq)) 567 goto out; 568 569 __enable_irq(desc); 570 out: 571 irq_put_desc_busunlock(desc, flags); 572 } 573 EXPORT_SYMBOL(enable_irq); 574 575 static int set_irq_wake_real(unsigned int irq, unsigned int on) 576 { 577 struct irq_desc *desc = irq_to_desc(irq); 578 int ret = -ENXIO; 579 580 if (irq_desc_get_chip(desc)->flags & IRQCHIP_SKIP_SET_WAKE) 581 return 0; 582 583 if (desc->irq_data.chip->irq_set_wake) 584 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on); 585 586 return ret; 587 } 588 589 /** 590 * irq_set_irq_wake - control irq power management wakeup 591 * @irq: interrupt to control 592 * @on: enable/disable power management wakeup 593 * 594 * Enable/disable power management wakeup mode, which is 595 * disabled by default. Enables and disables must match, 596 * just as they match for non-wakeup mode support. 597 * 598 * Wakeup mode lets this IRQ wake the system from sleep 599 * states like "suspend to RAM". 600 */ 601 int irq_set_irq_wake(unsigned int irq, unsigned int on) 602 { 603 unsigned long flags; 604 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 605 int ret = 0; 606 607 if (!desc) 608 return -EINVAL; 609 610 /* wakeup-capable irqs can be shared between drivers that 611 * don't need to have the same sleep mode behaviors. 612 */ 613 if (on) { 614 if (desc->wake_depth++ == 0) { 615 ret = set_irq_wake_real(irq, on); 616 if (ret) 617 desc->wake_depth = 0; 618 else 619 irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE); 620 } 621 } else { 622 if (desc->wake_depth == 0) { 623 WARN(1, "Unbalanced IRQ %d wake disable\n", irq); 624 } else if (--desc->wake_depth == 0) { 625 ret = set_irq_wake_real(irq, on); 626 if (ret) 627 desc->wake_depth = 1; 628 else 629 irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE); 630 } 631 } 632 irq_put_desc_busunlock(desc, flags); 633 return ret; 634 } 635 EXPORT_SYMBOL(irq_set_irq_wake); 636 637 /* 638 * Internal function that tells the architecture code whether a 639 * particular irq has been exclusively allocated or is available 640 * for driver use. 641 */ 642 int can_request_irq(unsigned int irq, unsigned long irqflags) 643 { 644 unsigned long flags; 645 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 646 int canrequest = 0; 647 648 if (!desc) 649 return 0; 650 651 if (irq_settings_can_request(desc)) { 652 if (!desc->action || 653 irqflags & desc->action->flags & IRQF_SHARED) 654 canrequest = 1; 655 } 656 irq_put_desc_unlock(desc, flags); 657 return canrequest; 658 } 659 660 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags) 661 { 662 struct irq_chip *chip = desc->irq_data.chip; 663 int ret, unmask = 0; 664 665 if (!chip || !chip->irq_set_type) { 666 /* 667 * IRQF_TRIGGER_* but the PIC does not support multiple 668 * flow-types? 669 */ 670 pr_debug("No set_type function for IRQ %d (%s)\n", 671 irq_desc_get_irq(desc), 672 chip ? (chip->name ? : "unknown") : "unknown"); 673 return 0; 674 } 675 676 if (chip->flags & IRQCHIP_SET_TYPE_MASKED) { 677 if (!irqd_irq_masked(&desc->irq_data)) 678 mask_irq(desc); 679 if (!irqd_irq_disabled(&desc->irq_data)) 680 unmask = 1; 681 } 682 683 /* Mask all flags except trigger mode */ 684 flags &= IRQ_TYPE_SENSE_MASK; 685 ret = chip->irq_set_type(&desc->irq_data, flags); 686 687 switch (ret) { 688 case IRQ_SET_MASK_OK: 689 case IRQ_SET_MASK_OK_DONE: 690 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK); 691 irqd_set(&desc->irq_data, flags); 692 693 case IRQ_SET_MASK_OK_NOCOPY: 694 flags = irqd_get_trigger_type(&desc->irq_data); 695 irq_settings_set_trigger_mask(desc, flags); 696 irqd_clear(&desc->irq_data, IRQD_LEVEL); 697 irq_settings_clr_level(desc); 698 if (flags & IRQ_TYPE_LEVEL_MASK) { 699 irq_settings_set_level(desc); 700 irqd_set(&desc->irq_data, IRQD_LEVEL); 701 } 702 703 ret = 0; 704 break; 705 default: 706 pr_err("Setting trigger mode %lu for irq %u failed (%pF)\n", 707 flags, irq_desc_get_irq(desc), chip->irq_set_type); 708 } 709 if (unmask) 710 unmask_irq(desc); 711 return ret; 712 } 713 714 #ifdef CONFIG_HARDIRQS_SW_RESEND 715 int irq_set_parent(int irq, int parent_irq) 716 { 717 unsigned long flags; 718 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 719 720 if (!desc) 721 return -EINVAL; 722 723 desc->parent_irq = parent_irq; 724 725 irq_put_desc_unlock(desc, flags); 726 return 0; 727 } 728 EXPORT_SYMBOL_GPL(irq_set_parent); 729 #endif 730 731 /* 732 * Default primary interrupt handler for threaded interrupts. Is 733 * assigned as primary handler when request_threaded_irq is called 734 * with handler == NULL. Useful for oneshot interrupts. 735 */ 736 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id) 737 { 738 return IRQ_WAKE_THREAD; 739 } 740 741 /* 742 * Primary handler for nested threaded interrupts. Should never be 743 * called. 744 */ 745 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id) 746 { 747 WARN(1, "Primary handler called for nested irq %d\n", irq); 748 return IRQ_NONE; 749 } 750 751 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id) 752 { 753 WARN(1, "Secondary action handler called for irq %d\n", irq); 754 return IRQ_NONE; 755 } 756 757 static int irq_wait_for_interrupt(struct irqaction *action) 758 { 759 set_current_state(TASK_INTERRUPTIBLE); 760 761 while (!kthread_should_stop()) { 762 763 if (test_and_clear_bit(IRQTF_RUNTHREAD, 764 &action->thread_flags)) { 765 __set_current_state(TASK_RUNNING); 766 return 0; 767 } 768 schedule(); 769 set_current_state(TASK_INTERRUPTIBLE); 770 } 771 __set_current_state(TASK_RUNNING); 772 return -1; 773 } 774 775 /* 776 * Oneshot interrupts keep the irq line masked until the threaded 777 * handler finished. unmask if the interrupt has not been disabled and 778 * is marked MASKED. 779 */ 780 static void irq_finalize_oneshot(struct irq_desc *desc, 781 struct irqaction *action) 782 { 783 if (!(desc->istate & IRQS_ONESHOT) || 784 action->handler == irq_forced_secondary_handler) 785 return; 786 again: 787 chip_bus_lock(desc); 788 raw_spin_lock_irq(&desc->lock); 789 790 /* 791 * Implausible though it may be we need to protect us against 792 * the following scenario: 793 * 794 * The thread is faster done than the hard interrupt handler 795 * on the other CPU. If we unmask the irq line then the 796 * interrupt can come in again and masks the line, leaves due 797 * to IRQS_INPROGRESS and the irq line is masked forever. 798 * 799 * This also serializes the state of shared oneshot handlers 800 * versus "desc->threads_onehsot |= action->thread_mask;" in 801 * irq_wake_thread(). See the comment there which explains the 802 * serialization. 803 */ 804 if (unlikely(irqd_irq_inprogress(&desc->irq_data))) { 805 raw_spin_unlock_irq(&desc->lock); 806 chip_bus_sync_unlock(desc); 807 cpu_relax(); 808 goto again; 809 } 810 811 /* 812 * Now check again, whether the thread should run. Otherwise 813 * we would clear the threads_oneshot bit of this thread which 814 * was just set. 815 */ 816 if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags)) 817 goto out_unlock; 818 819 desc->threads_oneshot &= ~action->thread_mask; 820 821 if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) && 822 irqd_irq_masked(&desc->irq_data)) 823 unmask_threaded_irq(desc); 824 825 out_unlock: 826 raw_spin_unlock_irq(&desc->lock); 827 chip_bus_sync_unlock(desc); 828 } 829 830 #ifdef CONFIG_SMP 831 /* 832 * Check whether we need to change the affinity of the interrupt thread. 833 */ 834 static void 835 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) 836 { 837 cpumask_var_t mask; 838 bool valid = true; 839 840 if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags)) 841 return; 842 843 /* 844 * In case we are out of memory we set IRQTF_AFFINITY again and 845 * try again next time 846 */ 847 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) { 848 set_bit(IRQTF_AFFINITY, &action->thread_flags); 849 return; 850 } 851 852 raw_spin_lock_irq(&desc->lock); 853 /* 854 * This code is triggered unconditionally. Check the affinity 855 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out. 856 */ 857 if (cpumask_available(desc->irq_common_data.affinity)) 858 cpumask_copy(mask, desc->irq_common_data.affinity); 859 else 860 valid = false; 861 raw_spin_unlock_irq(&desc->lock); 862 863 if (valid) 864 set_cpus_allowed_ptr(current, mask); 865 free_cpumask_var(mask); 866 } 867 #else 868 static inline void 869 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { } 870 #endif 871 872 /* 873 * Interrupts which are not explicitely requested as threaded 874 * interrupts rely on the implicit bh/preempt disable of the hard irq 875 * context. So we need to disable bh here to avoid deadlocks and other 876 * side effects. 877 */ 878 static irqreturn_t 879 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action) 880 { 881 irqreturn_t ret; 882 883 local_bh_disable(); 884 ret = action->thread_fn(action->irq, action->dev_id); 885 irq_finalize_oneshot(desc, action); 886 local_bh_enable(); 887 return ret; 888 } 889 890 /* 891 * Interrupts explicitly requested as threaded interrupts want to be 892 * preemtible - many of them need to sleep and wait for slow busses to 893 * complete. 894 */ 895 static irqreturn_t irq_thread_fn(struct irq_desc *desc, 896 struct irqaction *action) 897 { 898 irqreturn_t ret; 899 900 ret = action->thread_fn(action->irq, action->dev_id); 901 irq_finalize_oneshot(desc, action); 902 return ret; 903 } 904 905 static void wake_threads_waitq(struct irq_desc *desc) 906 { 907 if (atomic_dec_and_test(&desc->threads_active)) 908 wake_up(&desc->wait_for_threads); 909 } 910 911 static void irq_thread_dtor(struct callback_head *unused) 912 { 913 struct task_struct *tsk = current; 914 struct irq_desc *desc; 915 struct irqaction *action; 916 917 if (WARN_ON_ONCE(!(current->flags & PF_EXITING))) 918 return; 919 920 action = kthread_data(tsk); 921 922 pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n", 923 tsk->comm, tsk->pid, action->irq); 924 925 926 desc = irq_to_desc(action->irq); 927 /* 928 * If IRQTF_RUNTHREAD is set, we need to decrement 929 * desc->threads_active and wake possible waiters. 930 */ 931 if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags)) 932 wake_threads_waitq(desc); 933 934 /* Prevent a stale desc->threads_oneshot */ 935 irq_finalize_oneshot(desc, action); 936 } 937 938 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action) 939 { 940 struct irqaction *secondary = action->secondary; 941 942 if (WARN_ON_ONCE(!secondary)) 943 return; 944 945 raw_spin_lock_irq(&desc->lock); 946 __irq_wake_thread(desc, secondary); 947 raw_spin_unlock_irq(&desc->lock); 948 } 949 950 /* 951 * Interrupt handler thread 952 */ 953 static int irq_thread(void *data) 954 { 955 struct callback_head on_exit_work; 956 struct irqaction *action = data; 957 struct irq_desc *desc = irq_to_desc(action->irq); 958 irqreturn_t (*handler_fn)(struct irq_desc *desc, 959 struct irqaction *action); 960 961 if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD, 962 &action->thread_flags)) 963 handler_fn = irq_forced_thread_fn; 964 else 965 handler_fn = irq_thread_fn; 966 967 init_task_work(&on_exit_work, irq_thread_dtor); 968 task_work_add(current, &on_exit_work, false); 969 970 irq_thread_check_affinity(desc, action); 971 972 while (!irq_wait_for_interrupt(action)) { 973 irqreturn_t action_ret; 974 975 irq_thread_check_affinity(desc, action); 976 977 action_ret = handler_fn(desc, action); 978 if (action_ret == IRQ_HANDLED) 979 atomic_inc(&desc->threads_handled); 980 if (action_ret == IRQ_WAKE_THREAD) 981 irq_wake_secondary(desc, action); 982 983 wake_threads_waitq(desc); 984 } 985 986 /* 987 * This is the regular exit path. __free_irq() is stopping the 988 * thread via kthread_stop() after calling 989 * synchronize_irq(). So neither IRQTF_RUNTHREAD nor the 990 * oneshot mask bit can be set. We cannot verify that as we 991 * cannot touch the oneshot mask at this point anymore as 992 * __setup_irq() might have given out currents thread_mask 993 * again. 994 */ 995 task_work_cancel(current, irq_thread_dtor); 996 return 0; 997 } 998 999 /** 1000 * irq_wake_thread - wake the irq thread for the action identified by dev_id 1001 * @irq: Interrupt line 1002 * @dev_id: Device identity for which the thread should be woken 1003 * 1004 */ 1005 void irq_wake_thread(unsigned int irq, void *dev_id) 1006 { 1007 struct irq_desc *desc = irq_to_desc(irq); 1008 struct irqaction *action; 1009 unsigned long flags; 1010 1011 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1012 return; 1013 1014 raw_spin_lock_irqsave(&desc->lock, flags); 1015 for_each_action_of_desc(desc, action) { 1016 if (action->dev_id == dev_id) { 1017 if (action->thread) 1018 __irq_wake_thread(desc, action); 1019 break; 1020 } 1021 } 1022 raw_spin_unlock_irqrestore(&desc->lock, flags); 1023 } 1024 EXPORT_SYMBOL_GPL(irq_wake_thread); 1025 1026 static int irq_setup_forced_threading(struct irqaction *new) 1027 { 1028 if (!force_irqthreads) 1029 return 0; 1030 if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT)) 1031 return 0; 1032 1033 new->flags |= IRQF_ONESHOT; 1034 1035 /* 1036 * Handle the case where we have a real primary handler and a 1037 * thread handler. We force thread them as well by creating a 1038 * secondary action. 1039 */ 1040 if (new->handler != irq_default_primary_handler && new->thread_fn) { 1041 /* Allocate the secondary action */ 1042 new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 1043 if (!new->secondary) 1044 return -ENOMEM; 1045 new->secondary->handler = irq_forced_secondary_handler; 1046 new->secondary->thread_fn = new->thread_fn; 1047 new->secondary->dev_id = new->dev_id; 1048 new->secondary->irq = new->irq; 1049 new->secondary->name = new->name; 1050 } 1051 /* Deal with the primary handler */ 1052 set_bit(IRQTF_FORCED_THREAD, &new->thread_flags); 1053 new->thread_fn = new->handler; 1054 new->handler = irq_default_primary_handler; 1055 return 0; 1056 } 1057 1058 static int irq_request_resources(struct irq_desc *desc) 1059 { 1060 struct irq_data *d = &desc->irq_data; 1061 struct irq_chip *c = d->chip; 1062 1063 return c->irq_request_resources ? c->irq_request_resources(d) : 0; 1064 } 1065 1066 static void irq_release_resources(struct irq_desc *desc) 1067 { 1068 struct irq_data *d = &desc->irq_data; 1069 struct irq_chip *c = d->chip; 1070 1071 if (c->irq_release_resources) 1072 c->irq_release_resources(d); 1073 } 1074 1075 static int 1076 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary) 1077 { 1078 struct task_struct *t; 1079 struct sched_param param = { 1080 .sched_priority = MAX_USER_RT_PRIO/2, 1081 }; 1082 1083 if (!secondary) { 1084 t = kthread_create(irq_thread, new, "irq/%d-%s", irq, 1085 new->name); 1086 } else { 1087 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq, 1088 new->name); 1089 param.sched_priority -= 1; 1090 } 1091 1092 if (IS_ERR(t)) 1093 return PTR_ERR(t); 1094 1095 sched_setscheduler_nocheck(t, SCHED_FIFO, ¶m); 1096 1097 /* 1098 * We keep the reference to the task struct even if 1099 * the thread dies to avoid that the interrupt code 1100 * references an already freed task_struct. 1101 */ 1102 get_task_struct(t); 1103 new->thread = t; 1104 /* 1105 * Tell the thread to set its affinity. This is 1106 * important for shared interrupt handlers as we do 1107 * not invoke setup_affinity() for the secondary 1108 * handlers as everything is already set up. Even for 1109 * interrupts marked with IRQF_NO_BALANCE this is 1110 * correct as we want the thread to move to the cpu(s) 1111 * on which the requesting code placed the interrupt. 1112 */ 1113 set_bit(IRQTF_AFFINITY, &new->thread_flags); 1114 return 0; 1115 } 1116 1117 /* 1118 * Internal function to register an irqaction - typically used to 1119 * allocate special interrupts that are part of the architecture. 1120 * 1121 * Locking rules: 1122 * 1123 * desc->request_mutex Provides serialization against a concurrent free_irq() 1124 * chip_bus_lock Provides serialization for slow bus operations 1125 * desc->lock Provides serialization against hard interrupts 1126 * 1127 * chip_bus_lock and desc->lock are sufficient for all other management and 1128 * interrupt related functions. desc->request_mutex solely serializes 1129 * request/free_irq(). 1130 */ 1131 static int 1132 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new) 1133 { 1134 struct irqaction *old, **old_ptr; 1135 unsigned long flags, thread_mask = 0; 1136 int ret, nested, shared = 0; 1137 1138 if (!desc) 1139 return -EINVAL; 1140 1141 if (desc->irq_data.chip == &no_irq_chip) 1142 return -ENOSYS; 1143 if (!try_module_get(desc->owner)) 1144 return -ENODEV; 1145 1146 new->irq = irq; 1147 1148 /* 1149 * If the trigger type is not specified by the caller, 1150 * then use the default for this interrupt. 1151 */ 1152 if (!(new->flags & IRQF_TRIGGER_MASK)) 1153 new->flags |= irqd_get_trigger_type(&desc->irq_data); 1154 1155 /* 1156 * Check whether the interrupt nests into another interrupt 1157 * thread. 1158 */ 1159 nested = irq_settings_is_nested_thread(desc); 1160 if (nested) { 1161 if (!new->thread_fn) { 1162 ret = -EINVAL; 1163 goto out_mput; 1164 } 1165 /* 1166 * Replace the primary handler which was provided from 1167 * the driver for non nested interrupt handling by the 1168 * dummy function which warns when called. 1169 */ 1170 new->handler = irq_nested_primary_handler; 1171 } else { 1172 if (irq_settings_can_thread(desc)) { 1173 ret = irq_setup_forced_threading(new); 1174 if (ret) 1175 goto out_mput; 1176 } 1177 } 1178 1179 /* 1180 * Create a handler thread when a thread function is supplied 1181 * and the interrupt does not nest into another interrupt 1182 * thread. 1183 */ 1184 if (new->thread_fn && !nested) { 1185 ret = setup_irq_thread(new, irq, false); 1186 if (ret) 1187 goto out_mput; 1188 if (new->secondary) { 1189 ret = setup_irq_thread(new->secondary, irq, true); 1190 if (ret) 1191 goto out_thread; 1192 } 1193 } 1194 1195 /* 1196 * Drivers are often written to work w/o knowledge about the 1197 * underlying irq chip implementation, so a request for a 1198 * threaded irq without a primary hard irq context handler 1199 * requires the ONESHOT flag to be set. Some irq chips like 1200 * MSI based interrupts are per se one shot safe. Check the 1201 * chip flags, so we can avoid the unmask dance at the end of 1202 * the threaded handler for those. 1203 */ 1204 if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE) 1205 new->flags &= ~IRQF_ONESHOT; 1206 1207 /* 1208 * Protects against a concurrent __free_irq() call which might wait 1209 * for synchronize_irq() to complete without holding the optional 1210 * chip bus lock and desc->lock. 1211 */ 1212 mutex_lock(&desc->request_mutex); 1213 1214 /* 1215 * Acquire bus lock as the irq_request_resources() callback below 1216 * might rely on the serialization or the magic power management 1217 * functions which are abusing the irq_bus_lock() callback, 1218 */ 1219 chip_bus_lock(desc); 1220 1221 /* First installed action requests resources. */ 1222 if (!desc->action) { 1223 ret = irq_request_resources(desc); 1224 if (ret) { 1225 pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n", 1226 new->name, irq, desc->irq_data.chip->name); 1227 goto out_bus_unlock; 1228 } 1229 } 1230 1231 /* 1232 * The following block of code has to be executed atomically 1233 * protected against a concurrent interrupt and any of the other 1234 * management calls which are not serialized via 1235 * desc->request_mutex or the optional bus lock. 1236 */ 1237 raw_spin_lock_irqsave(&desc->lock, flags); 1238 old_ptr = &desc->action; 1239 old = *old_ptr; 1240 if (old) { 1241 /* 1242 * Can't share interrupts unless both agree to and are 1243 * the same type (level, edge, polarity). So both flag 1244 * fields must have IRQF_SHARED set and the bits which 1245 * set the trigger type must match. Also all must 1246 * agree on ONESHOT. 1247 */ 1248 unsigned int oldtype = irqd_get_trigger_type(&desc->irq_data); 1249 1250 if (!((old->flags & new->flags) & IRQF_SHARED) || 1251 (oldtype != (new->flags & IRQF_TRIGGER_MASK)) || 1252 ((old->flags ^ new->flags) & IRQF_ONESHOT)) 1253 goto mismatch; 1254 1255 /* All handlers must agree on per-cpuness */ 1256 if ((old->flags & IRQF_PERCPU) != 1257 (new->flags & IRQF_PERCPU)) 1258 goto mismatch; 1259 1260 /* add new interrupt at end of irq queue */ 1261 do { 1262 /* 1263 * Or all existing action->thread_mask bits, 1264 * so we can find the next zero bit for this 1265 * new action. 1266 */ 1267 thread_mask |= old->thread_mask; 1268 old_ptr = &old->next; 1269 old = *old_ptr; 1270 } while (old); 1271 shared = 1; 1272 } 1273 1274 /* 1275 * Setup the thread mask for this irqaction for ONESHOT. For 1276 * !ONESHOT irqs the thread mask is 0 so we can avoid a 1277 * conditional in irq_wake_thread(). 1278 */ 1279 if (new->flags & IRQF_ONESHOT) { 1280 /* 1281 * Unlikely to have 32 resp 64 irqs sharing one line, 1282 * but who knows. 1283 */ 1284 if (thread_mask == ~0UL) { 1285 ret = -EBUSY; 1286 goto out_unlock; 1287 } 1288 /* 1289 * The thread_mask for the action is or'ed to 1290 * desc->thread_active to indicate that the 1291 * IRQF_ONESHOT thread handler has been woken, but not 1292 * yet finished. The bit is cleared when a thread 1293 * completes. When all threads of a shared interrupt 1294 * line have completed desc->threads_active becomes 1295 * zero and the interrupt line is unmasked. See 1296 * handle.c:irq_wake_thread() for further information. 1297 * 1298 * If no thread is woken by primary (hard irq context) 1299 * interrupt handlers, then desc->threads_active is 1300 * also checked for zero to unmask the irq line in the 1301 * affected hard irq flow handlers 1302 * (handle_[fasteoi|level]_irq). 1303 * 1304 * The new action gets the first zero bit of 1305 * thread_mask assigned. See the loop above which or's 1306 * all existing action->thread_mask bits. 1307 */ 1308 new->thread_mask = 1 << ffz(thread_mask); 1309 1310 } else if (new->handler == irq_default_primary_handler && 1311 !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) { 1312 /* 1313 * The interrupt was requested with handler = NULL, so 1314 * we use the default primary handler for it. But it 1315 * does not have the oneshot flag set. In combination 1316 * with level interrupts this is deadly, because the 1317 * default primary handler just wakes the thread, then 1318 * the irq lines is reenabled, but the device still 1319 * has the level irq asserted. Rinse and repeat.... 1320 * 1321 * While this works for edge type interrupts, we play 1322 * it safe and reject unconditionally because we can't 1323 * say for sure which type this interrupt really 1324 * has. The type flags are unreliable as the 1325 * underlying chip implementation can override them. 1326 */ 1327 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for irq %d\n", 1328 irq); 1329 ret = -EINVAL; 1330 goto out_unlock; 1331 } 1332 1333 if (!shared) { 1334 init_waitqueue_head(&desc->wait_for_threads); 1335 1336 /* Setup the type (level, edge polarity) if configured: */ 1337 if (new->flags & IRQF_TRIGGER_MASK) { 1338 ret = __irq_set_trigger(desc, 1339 new->flags & IRQF_TRIGGER_MASK); 1340 1341 if (ret) 1342 goto out_unlock; 1343 } 1344 1345 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \ 1346 IRQS_ONESHOT | IRQS_WAITING); 1347 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS); 1348 1349 if (new->flags & IRQF_PERCPU) { 1350 irqd_set(&desc->irq_data, IRQD_PER_CPU); 1351 irq_settings_set_per_cpu(desc); 1352 } 1353 1354 if (new->flags & IRQF_ONESHOT) 1355 desc->istate |= IRQS_ONESHOT; 1356 1357 /* Exclude IRQ from balancing if requested */ 1358 if (new->flags & IRQF_NOBALANCING) { 1359 irq_settings_set_no_balancing(desc); 1360 irqd_set(&desc->irq_data, IRQD_NO_BALANCING); 1361 } 1362 1363 if (irq_settings_can_autoenable(desc)) { 1364 irq_startup(desc, IRQ_RESEND, IRQ_START_COND); 1365 } else { 1366 /* 1367 * Shared interrupts do not go well with disabling 1368 * auto enable. The sharing interrupt might request 1369 * it while it's still disabled and then wait for 1370 * interrupts forever. 1371 */ 1372 WARN_ON_ONCE(new->flags & IRQF_SHARED); 1373 /* Undo nested disables: */ 1374 desc->depth = 1; 1375 } 1376 1377 } else if (new->flags & IRQF_TRIGGER_MASK) { 1378 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK; 1379 unsigned int omsk = irqd_get_trigger_type(&desc->irq_data); 1380 1381 if (nmsk != omsk) 1382 /* hope the handler works with current trigger mode */ 1383 pr_warn("irq %d uses trigger mode %u; requested %u\n", 1384 irq, omsk, nmsk); 1385 } 1386 1387 *old_ptr = new; 1388 1389 irq_pm_install_action(desc, new); 1390 1391 /* Reset broken irq detection when installing new handler */ 1392 desc->irq_count = 0; 1393 desc->irqs_unhandled = 0; 1394 1395 /* 1396 * Check whether we disabled the irq via the spurious handler 1397 * before. Reenable it and give it another chance. 1398 */ 1399 if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) { 1400 desc->istate &= ~IRQS_SPURIOUS_DISABLED; 1401 __enable_irq(desc); 1402 } 1403 1404 raw_spin_unlock_irqrestore(&desc->lock, flags); 1405 chip_bus_sync_unlock(desc); 1406 mutex_unlock(&desc->request_mutex); 1407 1408 irq_setup_timings(desc, new); 1409 1410 /* 1411 * Strictly no need to wake it up, but hung_task complains 1412 * when no hard interrupt wakes the thread up. 1413 */ 1414 if (new->thread) 1415 wake_up_process(new->thread); 1416 if (new->secondary) 1417 wake_up_process(new->secondary->thread); 1418 1419 register_irq_proc(irq, desc); 1420 irq_add_debugfs_entry(irq, desc); 1421 new->dir = NULL; 1422 register_handler_proc(irq, new); 1423 return 0; 1424 1425 mismatch: 1426 if (!(new->flags & IRQF_PROBE_SHARED)) { 1427 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n", 1428 irq, new->flags, new->name, old->flags, old->name); 1429 #ifdef CONFIG_DEBUG_SHIRQ 1430 dump_stack(); 1431 #endif 1432 } 1433 ret = -EBUSY; 1434 1435 out_unlock: 1436 raw_spin_unlock_irqrestore(&desc->lock, flags); 1437 1438 if (!desc->action) 1439 irq_release_resources(desc); 1440 out_bus_unlock: 1441 chip_bus_sync_unlock(desc); 1442 mutex_unlock(&desc->request_mutex); 1443 1444 out_thread: 1445 if (new->thread) { 1446 struct task_struct *t = new->thread; 1447 1448 new->thread = NULL; 1449 kthread_stop(t); 1450 put_task_struct(t); 1451 } 1452 if (new->secondary && new->secondary->thread) { 1453 struct task_struct *t = new->secondary->thread; 1454 1455 new->secondary->thread = NULL; 1456 kthread_stop(t); 1457 put_task_struct(t); 1458 } 1459 out_mput: 1460 module_put(desc->owner); 1461 return ret; 1462 } 1463 1464 /** 1465 * setup_irq - setup an interrupt 1466 * @irq: Interrupt line to setup 1467 * @act: irqaction for the interrupt 1468 * 1469 * Used to statically setup interrupts in the early boot process. 1470 */ 1471 int setup_irq(unsigned int irq, struct irqaction *act) 1472 { 1473 int retval; 1474 struct irq_desc *desc = irq_to_desc(irq); 1475 1476 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1477 return -EINVAL; 1478 1479 retval = irq_chip_pm_get(&desc->irq_data); 1480 if (retval < 0) 1481 return retval; 1482 1483 retval = __setup_irq(irq, desc, act); 1484 1485 if (retval) 1486 irq_chip_pm_put(&desc->irq_data); 1487 1488 return retval; 1489 } 1490 EXPORT_SYMBOL_GPL(setup_irq); 1491 1492 /* 1493 * Internal function to unregister an irqaction - used to free 1494 * regular and special interrupts that are part of the architecture. 1495 */ 1496 static struct irqaction *__free_irq(unsigned int irq, void *dev_id) 1497 { 1498 struct irq_desc *desc = irq_to_desc(irq); 1499 struct irqaction *action, **action_ptr; 1500 unsigned long flags; 1501 1502 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq); 1503 1504 if (!desc) 1505 return NULL; 1506 1507 mutex_lock(&desc->request_mutex); 1508 chip_bus_lock(desc); 1509 raw_spin_lock_irqsave(&desc->lock, flags); 1510 1511 /* 1512 * There can be multiple actions per IRQ descriptor, find the right 1513 * one based on the dev_id: 1514 */ 1515 action_ptr = &desc->action; 1516 for (;;) { 1517 action = *action_ptr; 1518 1519 if (!action) { 1520 WARN(1, "Trying to free already-free IRQ %d\n", irq); 1521 raw_spin_unlock_irqrestore(&desc->lock, flags); 1522 chip_bus_sync_unlock(desc); 1523 mutex_unlock(&desc->request_mutex); 1524 return NULL; 1525 } 1526 1527 if (action->dev_id == dev_id) 1528 break; 1529 action_ptr = &action->next; 1530 } 1531 1532 /* Found it - now remove it from the list of entries: */ 1533 *action_ptr = action->next; 1534 1535 irq_pm_remove_action(desc, action); 1536 1537 /* If this was the last handler, shut down the IRQ line: */ 1538 if (!desc->action) { 1539 irq_settings_clr_disable_unlazy(desc); 1540 irq_shutdown(desc); 1541 } 1542 1543 #ifdef CONFIG_SMP 1544 /* make sure affinity_hint is cleaned up */ 1545 if (WARN_ON_ONCE(desc->affinity_hint)) 1546 desc->affinity_hint = NULL; 1547 #endif 1548 1549 raw_spin_unlock_irqrestore(&desc->lock, flags); 1550 /* 1551 * Drop bus_lock here so the changes which were done in the chip 1552 * callbacks above are synced out to the irq chips which hang 1553 * behind a slow bus (I2C, SPI) before calling synchronize_irq(). 1554 * 1555 * Aside of that the bus_lock can also be taken from the threaded 1556 * handler in irq_finalize_oneshot() which results in a deadlock 1557 * because synchronize_irq() would wait forever for the thread to 1558 * complete, which is blocked on the bus lock. 1559 * 1560 * The still held desc->request_mutex() protects against a 1561 * concurrent request_irq() of this irq so the release of resources 1562 * and timing data is properly serialized. 1563 */ 1564 chip_bus_sync_unlock(desc); 1565 1566 unregister_handler_proc(irq, action); 1567 1568 /* Make sure it's not being used on another CPU: */ 1569 synchronize_irq(irq); 1570 1571 #ifdef CONFIG_DEBUG_SHIRQ 1572 /* 1573 * It's a shared IRQ -- the driver ought to be prepared for an IRQ 1574 * event to happen even now it's being freed, so let's make sure that 1575 * is so by doing an extra call to the handler .... 1576 * 1577 * ( We do this after actually deregistering it, to make sure that a 1578 * 'real' IRQ doesn't run in * parallel with our fake. ) 1579 */ 1580 if (action->flags & IRQF_SHARED) { 1581 local_irq_save(flags); 1582 action->handler(irq, dev_id); 1583 local_irq_restore(flags); 1584 } 1585 #endif 1586 1587 if (action->thread) { 1588 kthread_stop(action->thread); 1589 put_task_struct(action->thread); 1590 if (action->secondary && action->secondary->thread) { 1591 kthread_stop(action->secondary->thread); 1592 put_task_struct(action->secondary->thread); 1593 } 1594 } 1595 1596 /* Last action releases resources */ 1597 if (!desc->action) { 1598 /* 1599 * Reaquire bus lock as irq_release_resources() might 1600 * require it to deallocate resources over the slow bus. 1601 */ 1602 chip_bus_lock(desc); 1603 irq_release_resources(desc); 1604 chip_bus_sync_unlock(desc); 1605 irq_remove_timings(desc); 1606 } 1607 1608 mutex_unlock(&desc->request_mutex); 1609 1610 irq_chip_pm_put(&desc->irq_data); 1611 module_put(desc->owner); 1612 kfree(action->secondary); 1613 return action; 1614 } 1615 1616 /** 1617 * remove_irq - free an interrupt 1618 * @irq: Interrupt line to free 1619 * @act: irqaction for the interrupt 1620 * 1621 * Used to remove interrupts statically setup by the early boot process. 1622 */ 1623 void remove_irq(unsigned int irq, struct irqaction *act) 1624 { 1625 struct irq_desc *desc = irq_to_desc(irq); 1626 1627 if (desc && !WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1628 __free_irq(irq, act->dev_id); 1629 } 1630 EXPORT_SYMBOL_GPL(remove_irq); 1631 1632 /** 1633 * free_irq - free an interrupt allocated with request_irq 1634 * @irq: Interrupt line to free 1635 * @dev_id: Device identity to free 1636 * 1637 * Remove an interrupt handler. The handler is removed and if the 1638 * interrupt line is no longer in use by any driver it is disabled. 1639 * On a shared IRQ the caller must ensure the interrupt is disabled 1640 * on the card it drives before calling this function. The function 1641 * does not return until any executing interrupts for this IRQ 1642 * have completed. 1643 * 1644 * This function must not be called from interrupt context. 1645 * 1646 * Returns the devname argument passed to request_irq. 1647 */ 1648 const void *free_irq(unsigned int irq, void *dev_id) 1649 { 1650 struct irq_desc *desc = irq_to_desc(irq); 1651 struct irqaction *action; 1652 const char *devname; 1653 1654 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1655 return NULL; 1656 1657 #ifdef CONFIG_SMP 1658 if (WARN_ON(desc->affinity_notify)) 1659 desc->affinity_notify = NULL; 1660 #endif 1661 1662 action = __free_irq(irq, dev_id); 1663 1664 if (!action) 1665 return NULL; 1666 1667 devname = action->name; 1668 kfree(action); 1669 return devname; 1670 } 1671 EXPORT_SYMBOL(free_irq); 1672 1673 /** 1674 * request_threaded_irq - allocate an interrupt line 1675 * @irq: Interrupt line to allocate 1676 * @handler: Function to be called when the IRQ occurs. 1677 * Primary handler for threaded interrupts 1678 * If NULL and thread_fn != NULL the default 1679 * primary handler is installed 1680 * @thread_fn: Function called from the irq handler thread 1681 * If NULL, no irq thread is created 1682 * @irqflags: Interrupt type flags 1683 * @devname: An ascii name for the claiming device 1684 * @dev_id: A cookie passed back to the handler function 1685 * 1686 * This call allocates interrupt resources and enables the 1687 * interrupt line and IRQ handling. From the point this 1688 * call is made your handler function may be invoked. Since 1689 * your handler function must clear any interrupt the board 1690 * raises, you must take care both to initialise your hardware 1691 * and to set up the interrupt handler in the right order. 1692 * 1693 * If you want to set up a threaded irq handler for your device 1694 * then you need to supply @handler and @thread_fn. @handler is 1695 * still called in hard interrupt context and has to check 1696 * whether the interrupt originates from the device. If yes it 1697 * needs to disable the interrupt on the device and return 1698 * IRQ_WAKE_THREAD which will wake up the handler thread and run 1699 * @thread_fn. This split handler design is necessary to support 1700 * shared interrupts. 1701 * 1702 * Dev_id must be globally unique. Normally the address of the 1703 * device data structure is used as the cookie. Since the handler 1704 * receives this value it makes sense to use it. 1705 * 1706 * If your interrupt is shared you must pass a non NULL dev_id 1707 * as this is required when freeing the interrupt. 1708 * 1709 * Flags: 1710 * 1711 * IRQF_SHARED Interrupt is shared 1712 * IRQF_TRIGGER_* Specify active edge(s) or level 1713 * 1714 */ 1715 int request_threaded_irq(unsigned int irq, irq_handler_t handler, 1716 irq_handler_t thread_fn, unsigned long irqflags, 1717 const char *devname, void *dev_id) 1718 { 1719 struct irqaction *action; 1720 struct irq_desc *desc; 1721 int retval; 1722 1723 if (irq == IRQ_NOTCONNECTED) 1724 return -ENOTCONN; 1725 1726 /* 1727 * Sanity-check: shared interrupts must pass in a real dev-ID, 1728 * otherwise we'll have trouble later trying to figure out 1729 * which interrupt is which (messes up the interrupt freeing 1730 * logic etc). 1731 * 1732 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and 1733 * it cannot be set along with IRQF_NO_SUSPEND. 1734 */ 1735 if (((irqflags & IRQF_SHARED) && !dev_id) || 1736 (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) || 1737 ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND))) 1738 return -EINVAL; 1739 1740 desc = irq_to_desc(irq); 1741 if (!desc) 1742 return -EINVAL; 1743 1744 if (!irq_settings_can_request(desc) || 1745 WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1746 return -EINVAL; 1747 1748 if (!handler) { 1749 if (!thread_fn) 1750 return -EINVAL; 1751 handler = irq_default_primary_handler; 1752 } 1753 1754 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 1755 if (!action) 1756 return -ENOMEM; 1757 1758 action->handler = handler; 1759 action->thread_fn = thread_fn; 1760 action->flags = irqflags; 1761 action->name = devname; 1762 action->dev_id = dev_id; 1763 1764 retval = irq_chip_pm_get(&desc->irq_data); 1765 if (retval < 0) { 1766 kfree(action); 1767 return retval; 1768 } 1769 1770 retval = __setup_irq(irq, desc, action); 1771 1772 if (retval) { 1773 irq_chip_pm_put(&desc->irq_data); 1774 kfree(action->secondary); 1775 kfree(action); 1776 } 1777 1778 #ifdef CONFIG_DEBUG_SHIRQ_FIXME 1779 if (!retval && (irqflags & IRQF_SHARED)) { 1780 /* 1781 * It's a shared IRQ -- the driver ought to be prepared for it 1782 * to happen immediately, so let's make sure.... 1783 * We disable the irq to make sure that a 'real' IRQ doesn't 1784 * run in parallel with our fake. 1785 */ 1786 unsigned long flags; 1787 1788 disable_irq(irq); 1789 local_irq_save(flags); 1790 1791 handler(irq, dev_id); 1792 1793 local_irq_restore(flags); 1794 enable_irq(irq); 1795 } 1796 #endif 1797 return retval; 1798 } 1799 EXPORT_SYMBOL(request_threaded_irq); 1800 1801 /** 1802 * request_any_context_irq - allocate an interrupt line 1803 * @irq: Interrupt line to allocate 1804 * @handler: Function to be called when the IRQ occurs. 1805 * Threaded handler for threaded interrupts. 1806 * @flags: Interrupt type flags 1807 * @name: An ascii name for the claiming device 1808 * @dev_id: A cookie passed back to the handler function 1809 * 1810 * This call allocates interrupt resources and enables the 1811 * interrupt line and IRQ handling. It selects either a 1812 * hardirq or threaded handling method depending on the 1813 * context. 1814 * 1815 * On failure, it returns a negative value. On success, 1816 * it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED. 1817 */ 1818 int request_any_context_irq(unsigned int irq, irq_handler_t handler, 1819 unsigned long flags, const char *name, void *dev_id) 1820 { 1821 struct irq_desc *desc; 1822 int ret; 1823 1824 if (irq == IRQ_NOTCONNECTED) 1825 return -ENOTCONN; 1826 1827 desc = irq_to_desc(irq); 1828 if (!desc) 1829 return -EINVAL; 1830 1831 if (irq_settings_is_nested_thread(desc)) { 1832 ret = request_threaded_irq(irq, NULL, handler, 1833 flags, name, dev_id); 1834 return !ret ? IRQC_IS_NESTED : ret; 1835 } 1836 1837 ret = request_irq(irq, handler, flags, name, dev_id); 1838 return !ret ? IRQC_IS_HARDIRQ : ret; 1839 } 1840 EXPORT_SYMBOL_GPL(request_any_context_irq); 1841 1842 void enable_percpu_irq(unsigned int irq, unsigned int type) 1843 { 1844 unsigned int cpu = smp_processor_id(); 1845 unsigned long flags; 1846 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 1847 1848 if (!desc) 1849 return; 1850 1851 /* 1852 * If the trigger type is not specified by the caller, then 1853 * use the default for this interrupt. 1854 */ 1855 type &= IRQ_TYPE_SENSE_MASK; 1856 if (type == IRQ_TYPE_NONE) 1857 type = irqd_get_trigger_type(&desc->irq_data); 1858 1859 if (type != IRQ_TYPE_NONE) { 1860 int ret; 1861 1862 ret = __irq_set_trigger(desc, type); 1863 1864 if (ret) { 1865 WARN(1, "failed to set type for IRQ%d\n", irq); 1866 goto out; 1867 } 1868 } 1869 1870 irq_percpu_enable(desc, cpu); 1871 out: 1872 irq_put_desc_unlock(desc, flags); 1873 } 1874 EXPORT_SYMBOL_GPL(enable_percpu_irq); 1875 1876 /** 1877 * irq_percpu_is_enabled - Check whether the per cpu irq is enabled 1878 * @irq: Linux irq number to check for 1879 * 1880 * Must be called from a non migratable context. Returns the enable 1881 * state of a per cpu interrupt on the current cpu. 1882 */ 1883 bool irq_percpu_is_enabled(unsigned int irq) 1884 { 1885 unsigned int cpu = smp_processor_id(); 1886 struct irq_desc *desc; 1887 unsigned long flags; 1888 bool is_enabled; 1889 1890 desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 1891 if (!desc) 1892 return false; 1893 1894 is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled); 1895 irq_put_desc_unlock(desc, flags); 1896 1897 return is_enabled; 1898 } 1899 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled); 1900 1901 void disable_percpu_irq(unsigned int irq) 1902 { 1903 unsigned int cpu = smp_processor_id(); 1904 unsigned long flags; 1905 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 1906 1907 if (!desc) 1908 return; 1909 1910 irq_percpu_disable(desc, cpu); 1911 irq_put_desc_unlock(desc, flags); 1912 } 1913 EXPORT_SYMBOL_GPL(disable_percpu_irq); 1914 1915 /* 1916 * Internal function to unregister a percpu irqaction. 1917 */ 1918 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id) 1919 { 1920 struct irq_desc *desc = irq_to_desc(irq); 1921 struct irqaction *action; 1922 unsigned long flags; 1923 1924 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq); 1925 1926 if (!desc) 1927 return NULL; 1928 1929 raw_spin_lock_irqsave(&desc->lock, flags); 1930 1931 action = desc->action; 1932 if (!action || action->percpu_dev_id != dev_id) { 1933 WARN(1, "Trying to free already-free IRQ %d\n", irq); 1934 goto bad; 1935 } 1936 1937 if (!cpumask_empty(desc->percpu_enabled)) { 1938 WARN(1, "percpu IRQ %d still enabled on CPU%d!\n", 1939 irq, cpumask_first(desc->percpu_enabled)); 1940 goto bad; 1941 } 1942 1943 /* Found it - now remove it from the list of entries: */ 1944 desc->action = NULL; 1945 1946 raw_spin_unlock_irqrestore(&desc->lock, flags); 1947 1948 unregister_handler_proc(irq, action); 1949 1950 irq_chip_pm_put(&desc->irq_data); 1951 module_put(desc->owner); 1952 return action; 1953 1954 bad: 1955 raw_spin_unlock_irqrestore(&desc->lock, flags); 1956 return NULL; 1957 } 1958 1959 /** 1960 * remove_percpu_irq - free a per-cpu interrupt 1961 * @irq: Interrupt line to free 1962 * @act: irqaction for the interrupt 1963 * 1964 * Used to remove interrupts statically setup by the early boot process. 1965 */ 1966 void remove_percpu_irq(unsigned int irq, struct irqaction *act) 1967 { 1968 struct irq_desc *desc = irq_to_desc(irq); 1969 1970 if (desc && irq_settings_is_per_cpu_devid(desc)) 1971 __free_percpu_irq(irq, act->percpu_dev_id); 1972 } 1973 1974 /** 1975 * free_percpu_irq - free an interrupt allocated with request_percpu_irq 1976 * @irq: Interrupt line to free 1977 * @dev_id: Device identity to free 1978 * 1979 * Remove a percpu interrupt handler. The handler is removed, but 1980 * the interrupt line is not disabled. This must be done on each 1981 * CPU before calling this function. The function does not return 1982 * until any executing interrupts for this IRQ have completed. 1983 * 1984 * This function must not be called from interrupt context. 1985 */ 1986 void free_percpu_irq(unsigned int irq, void __percpu *dev_id) 1987 { 1988 struct irq_desc *desc = irq_to_desc(irq); 1989 1990 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 1991 return; 1992 1993 chip_bus_lock(desc); 1994 kfree(__free_percpu_irq(irq, dev_id)); 1995 chip_bus_sync_unlock(desc); 1996 } 1997 EXPORT_SYMBOL_GPL(free_percpu_irq); 1998 1999 /** 2000 * setup_percpu_irq - setup a per-cpu interrupt 2001 * @irq: Interrupt line to setup 2002 * @act: irqaction for the interrupt 2003 * 2004 * Used to statically setup per-cpu interrupts in the early boot process. 2005 */ 2006 int setup_percpu_irq(unsigned int irq, struct irqaction *act) 2007 { 2008 struct irq_desc *desc = irq_to_desc(irq); 2009 int retval; 2010 2011 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2012 return -EINVAL; 2013 2014 retval = irq_chip_pm_get(&desc->irq_data); 2015 if (retval < 0) 2016 return retval; 2017 2018 retval = __setup_irq(irq, desc, act); 2019 2020 if (retval) 2021 irq_chip_pm_put(&desc->irq_data); 2022 2023 return retval; 2024 } 2025 2026 /** 2027 * __request_percpu_irq - allocate a percpu interrupt line 2028 * @irq: Interrupt line to allocate 2029 * @handler: Function to be called when the IRQ occurs. 2030 * @flags: Interrupt type flags (IRQF_TIMER only) 2031 * @devname: An ascii name for the claiming device 2032 * @dev_id: A percpu cookie passed back to the handler function 2033 * 2034 * This call allocates interrupt resources and enables the 2035 * interrupt on the local CPU. If the interrupt is supposed to be 2036 * enabled on other CPUs, it has to be done on each CPU using 2037 * enable_percpu_irq(). 2038 * 2039 * Dev_id must be globally unique. It is a per-cpu variable, and 2040 * the handler gets called with the interrupted CPU's instance of 2041 * that variable. 2042 */ 2043 int __request_percpu_irq(unsigned int irq, irq_handler_t handler, 2044 unsigned long flags, const char *devname, 2045 void __percpu *dev_id) 2046 { 2047 struct irqaction *action; 2048 struct irq_desc *desc; 2049 int retval; 2050 2051 if (!dev_id) 2052 return -EINVAL; 2053 2054 desc = irq_to_desc(irq); 2055 if (!desc || !irq_settings_can_request(desc) || 2056 !irq_settings_is_per_cpu_devid(desc)) 2057 return -EINVAL; 2058 2059 if (flags && flags != IRQF_TIMER) 2060 return -EINVAL; 2061 2062 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2063 if (!action) 2064 return -ENOMEM; 2065 2066 action->handler = handler; 2067 action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND; 2068 action->name = devname; 2069 action->percpu_dev_id = dev_id; 2070 2071 retval = irq_chip_pm_get(&desc->irq_data); 2072 if (retval < 0) { 2073 kfree(action); 2074 return retval; 2075 } 2076 2077 retval = __setup_irq(irq, desc, action); 2078 2079 if (retval) { 2080 irq_chip_pm_put(&desc->irq_data); 2081 kfree(action); 2082 } 2083 2084 return retval; 2085 } 2086 EXPORT_SYMBOL_GPL(__request_percpu_irq); 2087 2088 /** 2089 * irq_get_irqchip_state - returns the irqchip state of a interrupt. 2090 * @irq: Interrupt line that is forwarded to a VM 2091 * @which: One of IRQCHIP_STATE_* the caller wants to know about 2092 * @state: a pointer to a boolean where the state is to be storeed 2093 * 2094 * This call snapshots the internal irqchip state of an 2095 * interrupt, returning into @state the bit corresponding to 2096 * stage @which 2097 * 2098 * This function should be called with preemption disabled if the 2099 * interrupt controller has per-cpu registers. 2100 */ 2101 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which, 2102 bool *state) 2103 { 2104 struct irq_desc *desc; 2105 struct irq_data *data; 2106 struct irq_chip *chip; 2107 unsigned long flags; 2108 int err = -EINVAL; 2109 2110 desc = irq_get_desc_buslock(irq, &flags, 0); 2111 if (!desc) 2112 return err; 2113 2114 data = irq_desc_get_irq_data(desc); 2115 2116 do { 2117 chip = irq_data_get_irq_chip(data); 2118 if (chip->irq_get_irqchip_state) 2119 break; 2120 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 2121 data = data->parent_data; 2122 #else 2123 data = NULL; 2124 #endif 2125 } while (data); 2126 2127 if (data) 2128 err = chip->irq_get_irqchip_state(data, which, state); 2129 2130 irq_put_desc_busunlock(desc, flags); 2131 return err; 2132 } 2133 EXPORT_SYMBOL_GPL(irq_get_irqchip_state); 2134 2135 /** 2136 * irq_set_irqchip_state - set the state of a forwarded interrupt. 2137 * @irq: Interrupt line that is forwarded to a VM 2138 * @which: State to be restored (one of IRQCHIP_STATE_*) 2139 * @val: Value corresponding to @which 2140 * 2141 * This call sets the internal irqchip state of an interrupt, 2142 * depending on the value of @which. 2143 * 2144 * This function should be called with preemption disabled if the 2145 * interrupt controller has per-cpu registers. 2146 */ 2147 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which, 2148 bool val) 2149 { 2150 struct irq_desc *desc; 2151 struct irq_data *data; 2152 struct irq_chip *chip; 2153 unsigned long flags; 2154 int err = -EINVAL; 2155 2156 desc = irq_get_desc_buslock(irq, &flags, 0); 2157 if (!desc) 2158 return err; 2159 2160 data = irq_desc_get_irq_data(desc); 2161 2162 do { 2163 chip = irq_data_get_irq_chip(data); 2164 if (chip->irq_set_irqchip_state) 2165 break; 2166 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 2167 data = data->parent_data; 2168 #else 2169 data = NULL; 2170 #endif 2171 } while (data); 2172 2173 if (data) 2174 err = chip->irq_set_irqchip_state(data, which, val); 2175 2176 irq_put_desc_busunlock(desc, flags); 2177 return err; 2178 } 2179 EXPORT_SYMBOL_GPL(irq_set_irqchip_state); 2180