1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar 4 * Copyright (C) 2005-2006 Thomas Gleixner 5 * 6 * This file contains driver APIs to the irq subsystem. 7 */ 8 9 #define pr_fmt(fmt) "genirq: " fmt 10 11 #include <linux/irq.h> 12 #include <linux/kthread.h> 13 #include <linux/module.h> 14 #include <linux/random.h> 15 #include <linux/interrupt.h> 16 #include <linux/irqdomain.h> 17 #include <linux/slab.h> 18 #include <linux/sched.h> 19 #include <linux/sched/rt.h> 20 #include <linux/sched/task.h> 21 #include <uapi/linux/sched/types.h> 22 #include <linux/task_work.h> 23 24 #include "internals.h" 25 26 #if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT) 27 __read_mostly bool force_irqthreads; 28 EXPORT_SYMBOL_GPL(force_irqthreads); 29 30 static int __init setup_forced_irqthreads(char *arg) 31 { 32 force_irqthreads = true; 33 return 0; 34 } 35 early_param("threadirqs", setup_forced_irqthreads); 36 #endif 37 38 static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip) 39 { 40 struct irq_data *irqd = irq_desc_get_irq_data(desc); 41 bool inprogress; 42 43 do { 44 unsigned long flags; 45 46 /* 47 * Wait until we're out of the critical section. This might 48 * give the wrong answer due to the lack of memory barriers. 49 */ 50 while (irqd_irq_inprogress(&desc->irq_data)) 51 cpu_relax(); 52 53 /* Ok, that indicated we're done: double-check carefully. */ 54 raw_spin_lock_irqsave(&desc->lock, flags); 55 inprogress = irqd_irq_inprogress(&desc->irq_data); 56 57 /* 58 * If requested and supported, check at the chip whether it 59 * is in flight at the hardware level, i.e. already pending 60 * in a CPU and waiting for service and acknowledge. 61 */ 62 if (!inprogress && sync_chip) { 63 /* 64 * Ignore the return code. inprogress is only updated 65 * when the chip supports it. 66 */ 67 __irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE, 68 &inprogress); 69 } 70 raw_spin_unlock_irqrestore(&desc->lock, flags); 71 72 /* Oops, that failed? */ 73 } while (inprogress); 74 } 75 76 /** 77 * synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs) 78 * @irq: interrupt number to wait for 79 * 80 * This function waits for any pending hard IRQ handlers for this 81 * interrupt to complete before returning. If you use this 82 * function while holding a resource the IRQ handler may need you 83 * will deadlock. It does not take associated threaded handlers 84 * into account. 85 * 86 * Do not use this for shutdown scenarios where you must be sure 87 * that all parts (hardirq and threaded handler) have completed. 88 * 89 * Returns: false if a threaded handler is active. 90 * 91 * This function may be called - with care - from IRQ context. 92 * 93 * It does not check whether there is an interrupt in flight at the 94 * hardware level, but not serviced yet, as this might deadlock when 95 * called with interrupts disabled and the target CPU of the interrupt 96 * is the current CPU. 97 */ 98 bool synchronize_hardirq(unsigned int irq) 99 { 100 struct irq_desc *desc = irq_to_desc(irq); 101 102 if (desc) { 103 __synchronize_hardirq(desc, false); 104 return !atomic_read(&desc->threads_active); 105 } 106 107 return true; 108 } 109 EXPORT_SYMBOL(synchronize_hardirq); 110 111 /** 112 * synchronize_irq - wait for pending IRQ handlers (on other CPUs) 113 * @irq: interrupt number to wait for 114 * 115 * This function waits for any pending IRQ handlers for this interrupt 116 * to complete before returning. If you use this function while 117 * holding a resource the IRQ handler may need you will deadlock. 118 * 119 * Can only be called from preemptible code as it might sleep when 120 * an interrupt thread is associated to @irq. 121 * 122 * It optionally makes sure (when the irq chip supports that method) 123 * that the interrupt is not pending in any CPU and waiting for 124 * service. 125 */ 126 void synchronize_irq(unsigned int irq) 127 { 128 struct irq_desc *desc = irq_to_desc(irq); 129 130 if (desc) { 131 __synchronize_hardirq(desc, true); 132 /* 133 * We made sure that no hardirq handler is 134 * running. Now verify that no threaded handlers are 135 * active. 136 */ 137 wait_event(desc->wait_for_threads, 138 !atomic_read(&desc->threads_active)); 139 } 140 } 141 EXPORT_SYMBOL(synchronize_irq); 142 143 #ifdef CONFIG_SMP 144 cpumask_var_t irq_default_affinity; 145 146 static bool __irq_can_set_affinity(struct irq_desc *desc) 147 { 148 if (!desc || !irqd_can_balance(&desc->irq_data) || 149 !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity) 150 return false; 151 return true; 152 } 153 154 /** 155 * irq_can_set_affinity - Check if the affinity of a given irq can be set 156 * @irq: Interrupt to check 157 * 158 */ 159 int irq_can_set_affinity(unsigned int irq) 160 { 161 return __irq_can_set_affinity(irq_to_desc(irq)); 162 } 163 164 /** 165 * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space 166 * @irq: Interrupt to check 167 * 168 * Like irq_can_set_affinity() above, but additionally checks for the 169 * AFFINITY_MANAGED flag. 170 */ 171 bool irq_can_set_affinity_usr(unsigned int irq) 172 { 173 struct irq_desc *desc = irq_to_desc(irq); 174 175 return __irq_can_set_affinity(desc) && 176 !irqd_affinity_is_managed(&desc->irq_data); 177 } 178 179 /** 180 * irq_set_thread_affinity - Notify irq threads to adjust affinity 181 * @desc: irq descriptor which has affitnity changed 182 * 183 * We just set IRQTF_AFFINITY and delegate the affinity setting 184 * to the interrupt thread itself. We can not call 185 * set_cpus_allowed_ptr() here as we hold desc->lock and this 186 * code can be called from hard interrupt context. 187 */ 188 void irq_set_thread_affinity(struct irq_desc *desc) 189 { 190 struct irqaction *action; 191 192 for_each_action_of_desc(desc, action) 193 if (action->thread) 194 set_bit(IRQTF_AFFINITY, &action->thread_flags); 195 } 196 197 static void irq_validate_effective_affinity(struct irq_data *data) 198 { 199 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK 200 const struct cpumask *m = irq_data_get_effective_affinity_mask(data); 201 struct irq_chip *chip = irq_data_get_irq_chip(data); 202 203 if (!cpumask_empty(m)) 204 return; 205 pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n", 206 chip->name, data->irq); 207 #endif 208 } 209 210 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask, 211 bool force) 212 { 213 struct irq_desc *desc = irq_data_to_desc(data); 214 struct irq_chip *chip = irq_data_get_irq_chip(data); 215 int ret; 216 217 if (!chip || !chip->irq_set_affinity) 218 return -EINVAL; 219 220 ret = chip->irq_set_affinity(data, mask, force); 221 switch (ret) { 222 case IRQ_SET_MASK_OK: 223 case IRQ_SET_MASK_OK_DONE: 224 cpumask_copy(desc->irq_common_data.affinity, mask); 225 /* fall through */ 226 case IRQ_SET_MASK_OK_NOCOPY: 227 irq_validate_effective_affinity(data); 228 irq_set_thread_affinity(desc); 229 ret = 0; 230 } 231 232 return ret; 233 } 234 235 #ifdef CONFIG_GENERIC_PENDING_IRQ 236 static inline int irq_set_affinity_pending(struct irq_data *data, 237 const struct cpumask *dest) 238 { 239 struct irq_desc *desc = irq_data_to_desc(data); 240 241 irqd_set_move_pending(data); 242 irq_copy_pending(desc, dest); 243 return 0; 244 } 245 #else 246 static inline int irq_set_affinity_pending(struct irq_data *data, 247 const struct cpumask *dest) 248 { 249 return -EBUSY; 250 } 251 #endif 252 253 static int irq_try_set_affinity(struct irq_data *data, 254 const struct cpumask *dest, bool force) 255 { 256 int ret = irq_do_set_affinity(data, dest, force); 257 258 /* 259 * In case that the underlying vector management is busy and the 260 * architecture supports the generic pending mechanism then utilize 261 * this to avoid returning an error to user space. 262 */ 263 if (ret == -EBUSY && !force) 264 ret = irq_set_affinity_pending(data, dest); 265 return ret; 266 } 267 268 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask, 269 bool force) 270 { 271 struct irq_chip *chip = irq_data_get_irq_chip(data); 272 struct irq_desc *desc = irq_data_to_desc(data); 273 int ret = 0; 274 275 if (!chip || !chip->irq_set_affinity) 276 return -EINVAL; 277 278 if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) { 279 ret = irq_try_set_affinity(data, mask, force); 280 } else { 281 irqd_set_move_pending(data); 282 irq_copy_pending(desc, mask); 283 } 284 285 if (desc->affinity_notify) { 286 kref_get(&desc->affinity_notify->kref); 287 schedule_work(&desc->affinity_notify->work); 288 } 289 irqd_set(data, IRQD_AFFINITY_SET); 290 291 return ret; 292 } 293 294 int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force) 295 { 296 struct irq_desc *desc = irq_to_desc(irq); 297 unsigned long flags; 298 int ret; 299 300 if (!desc) 301 return -EINVAL; 302 303 raw_spin_lock_irqsave(&desc->lock, flags); 304 ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force); 305 raw_spin_unlock_irqrestore(&desc->lock, flags); 306 return ret; 307 } 308 309 int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m) 310 { 311 unsigned long flags; 312 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 313 314 if (!desc) 315 return -EINVAL; 316 desc->affinity_hint = m; 317 irq_put_desc_unlock(desc, flags); 318 /* set the initial affinity to prevent every interrupt being on CPU0 */ 319 if (m) 320 __irq_set_affinity(irq, m, false); 321 return 0; 322 } 323 EXPORT_SYMBOL_GPL(irq_set_affinity_hint); 324 325 static void irq_affinity_notify(struct work_struct *work) 326 { 327 struct irq_affinity_notify *notify = 328 container_of(work, struct irq_affinity_notify, work); 329 struct irq_desc *desc = irq_to_desc(notify->irq); 330 cpumask_var_t cpumask; 331 unsigned long flags; 332 333 if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL)) 334 goto out; 335 336 raw_spin_lock_irqsave(&desc->lock, flags); 337 if (irq_move_pending(&desc->irq_data)) 338 irq_get_pending(cpumask, desc); 339 else 340 cpumask_copy(cpumask, desc->irq_common_data.affinity); 341 raw_spin_unlock_irqrestore(&desc->lock, flags); 342 343 notify->notify(notify, cpumask); 344 345 free_cpumask_var(cpumask); 346 out: 347 kref_put(¬ify->kref, notify->release); 348 } 349 350 /** 351 * irq_set_affinity_notifier - control notification of IRQ affinity changes 352 * @irq: Interrupt for which to enable/disable notification 353 * @notify: Context for notification, or %NULL to disable 354 * notification. Function pointers must be initialised; 355 * the other fields will be initialised by this function. 356 * 357 * Must be called in process context. Notification may only be enabled 358 * after the IRQ is allocated and must be disabled before the IRQ is 359 * freed using free_irq(). 360 */ 361 int 362 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify) 363 { 364 struct irq_desc *desc = irq_to_desc(irq); 365 struct irq_affinity_notify *old_notify; 366 unsigned long flags; 367 368 /* The release function is promised process context */ 369 might_sleep(); 370 371 if (!desc || desc->istate & IRQS_NMI) 372 return -EINVAL; 373 374 /* Complete initialisation of *notify */ 375 if (notify) { 376 notify->irq = irq; 377 kref_init(¬ify->kref); 378 INIT_WORK(¬ify->work, irq_affinity_notify); 379 } 380 381 raw_spin_lock_irqsave(&desc->lock, flags); 382 old_notify = desc->affinity_notify; 383 desc->affinity_notify = notify; 384 raw_spin_unlock_irqrestore(&desc->lock, flags); 385 386 if (old_notify) { 387 cancel_work_sync(&old_notify->work); 388 kref_put(&old_notify->kref, old_notify->release); 389 } 390 391 return 0; 392 } 393 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier); 394 395 #ifndef CONFIG_AUTO_IRQ_AFFINITY 396 /* 397 * Generic version of the affinity autoselector. 398 */ 399 int irq_setup_affinity(struct irq_desc *desc) 400 { 401 struct cpumask *set = irq_default_affinity; 402 int ret, node = irq_desc_get_node(desc); 403 static DEFINE_RAW_SPINLOCK(mask_lock); 404 static struct cpumask mask; 405 406 /* Excludes PER_CPU and NO_BALANCE interrupts */ 407 if (!__irq_can_set_affinity(desc)) 408 return 0; 409 410 raw_spin_lock(&mask_lock); 411 /* 412 * Preserve the managed affinity setting and a userspace affinity 413 * setup, but make sure that one of the targets is online. 414 */ 415 if (irqd_affinity_is_managed(&desc->irq_data) || 416 irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) { 417 if (cpumask_intersects(desc->irq_common_data.affinity, 418 cpu_online_mask)) 419 set = desc->irq_common_data.affinity; 420 else 421 irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET); 422 } 423 424 cpumask_and(&mask, cpu_online_mask, set); 425 if (cpumask_empty(&mask)) 426 cpumask_copy(&mask, cpu_online_mask); 427 428 if (node != NUMA_NO_NODE) { 429 const struct cpumask *nodemask = cpumask_of_node(node); 430 431 /* make sure at least one of the cpus in nodemask is online */ 432 if (cpumask_intersects(&mask, nodemask)) 433 cpumask_and(&mask, &mask, nodemask); 434 } 435 ret = irq_do_set_affinity(&desc->irq_data, &mask, false); 436 raw_spin_unlock(&mask_lock); 437 return ret; 438 } 439 #else 440 /* Wrapper for ALPHA specific affinity selector magic */ 441 int irq_setup_affinity(struct irq_desc *desc) 442 { 443 return irq_select_affinity(irq_desc_get_irq(desc)); 444 } 445 #endif 446 447 /* 448 * Called when a bogus affinity is set via /proc/irq 449 */ 450 int irq_select_affinity_usr(unsigned int irq) 451 { 452 struct irq_desc *desc = irq_to_desc(irq); 453 unsigned long flags; 454 int ret; 455 456 raw_spin_lock_irqsave(&desc->lock, flags); 457 ret = irq_setup_affinity(desc); 458 raw_spin_unlock_irqrestore(&desc->lock, flags); 459 return ret; 460 } 461 #endif 462 463 /** 464 * irq_set_vcpu_affinity - Set vcpu affinity for the interrupt 465 * @irq: interrupt number to set affinity 466 * @vcpu_info: vCPU specific data or pointer to a percpu array of vCPU 467 * specific data for percpu_devid interrupts 468 * 469 * This function uses the vCPU specific data to set the vCPU 470 * affinity for an irq. The vCPU specific data is passed from 471 * outside, such as KVM. One example code path is as below: 472 * KVM -> IOMMU -> irq_set_vcpu_affinity(). 473 */ 474 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info) 475 { 476 unsigned long flags; 477 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 478 struct irq_data *data; 479 struct irq_chip *chip; 480 int ret = -ENOSYS; 481 482 if (!desc) 483 return -EINVAL; 484 485 data = irq_desc_get_irq_data(desc); 486 do { 487 chip = irq_data_get_irq_chip(data); 488 if (chip && chip->irq_set_vcpu_affinity) 489 break; 490 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 491 data = data->parent_data; 492 #else 493 data = NULL; 494 #endif 495 } while (data); 496 497 if (data) 498 ret = chip->irq_set_vcpu_affinity(data, vcpu_info); 499 irq_put_desc_unlock(desc, flags); 500 501 return ret; 502 } 503 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity); 504 505 void __disable_irq(struct irq_desc *desc) 506 { 507 if (!desc->depth++) 508 irq_disable(desc); 509 } 510 511 static int __disable_irq_nosync(unsigned int irq) 512 { 513 unsigned long flags; 514 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 515 516 if (!desc) 517 return -EINVAL; 518 __disable_irq(desc); 519 irq_put_desc_busunlock(desc, flags); 520 return 0; 521 } 522 523 /** 524 * disable_irq_nosync - disable an irq without waiting 525 * @irq: Interrupt to disable 526 * 527 * Disable the selected interrupt line. Disables and Enables are 528 * nested. 529 * Unlike disable_irq(), this function does not ensure existing 530 * instances of the IRQ handler have completed before returning. 531 * 532 * This function may be called from IRQ context. 533 */ 534 void disable_irq_nosync(unsigned int irq) 535 { 536 __disable_irq_nosync(irq); 537 } 538 EXPORT_SYMBOL(disable_irq_nosync); 539 540 /** 541 * disable_irq - disable an irq and wait for completion 542 * @irq: Interrupt to disable 543 * 544 * Disable the selected interrupt line. Enables and Disables are 545 * nested. 546 * This function waits for any pending IRQ handlers for this interrupt 547 * to complete before returning. If you use this function while 548 * holding a resource the IRQ handler may need you will deadlock. 549 * 550 * This function may be called - with care - from IRQ context. 551 */ 552 void disable_irq(unsigned int irq) 553 { 554 if (!__disable_irq_nosync(irq)) 555 synchronize_irq(irq); 556 } 557 EXPORT_SYMBOL(disable_irq); 558 559 /** 560 * disable_hardirq - disables an irq and waits for hardirq completion 561 * @irq: Interrupt to disable 562 * 563 * Disable the selected interrupt line. Enables and Disables are 564 * nested. 565 * This function waits for any pending hard IRQ handlers for this 566 * interrupt to complete before returning. If you use this function while 567 * holding a resource the hard IRQ handler may need you will deadlock. 568 * 569 * When used to optimistically disable an interrupt from atomic context 570 * the return value must be checked. 571 * 572 * Returns: false if a threaded handler is active. 573 * 574 * This function may be called - with care - from IRQ context. 575 */ 576 bool disable_hardirq(unsigned int irq) 577 { 578 if (!__disable_irq_nosync(irq)) 579 return synchronize_hardirq(irq); 580 581 return false; 582 } 583 EXPORT_SYMBOL_GPL(disable_hardirq); 584 585 /** 586 * disable_nmi_nosync - disable an nmi without waiting 587 * @irq: Interrupt to disable 588 * 589 * Disable the selected interrupt line. Disables and enables are 590 * nested. 591 * The interrupt to disable must have been requested through request_nmi. 592 * Unlike disable_nmi(), this function does not ensure existing 593 * instances of the IRQ handler have completed before returning. 594 */ 595 void disable_nmi_nosync(unsigned int irq) 596 { 597 disable_irq_nosync(irq); 598 } 599 600 void __enable_irq(struct irq_desc *desc) 601 { 602 switch (desc->depth) { 603 case 0: 604 err_out: 605 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n", 606 irq_desc_get_irq(desc)); 607 break; 608 case 1: { 609 if (desc->istate & IRQS_SUSPENDED) 610 goto err_out; 611 /* Prevent probing on this irq: */ 612 irq_settings_set_noprobe(desc); 613 /* 614 * Call irq_startup() not irq_enable() here because the 615 * interrupt might be marked NOAUTOEN. So irq_startup() 616 * needs to be invoked when it gets enabled the first 617 * time. If it was already started up, then irq_startup() 618 * will invoke irq_enable() under the hood. 619 */ 620 irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE); 621 break; 622 } 623 default: 624 desc->depth--; 625 } 626 } 627 628 /** 629 * enable_irq - enable handling of an irq 630 * @irq: Interrupt to enable 631 * 632 * Undoes the effect of one call to disable_irq(). If this 633 * matches the last disable, processing of interrupts on this 634 * IRQ line is re-enabled. 635 * 636 * This function may be called from IRQ context only when 637 * desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL ! 638 */ 639 void enable_irq(unsigned int irq) 640 { 641 unsigned long flags; 642 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 643 644 if (!desc) 645 return; 646 if (WARN(!desc->irq_data.chip, 647 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq)) 648 goto out; 649 650 __enable_irq(desc); 651 out: 652 irq_put_desc_busunlock(desc, flags); 653 } 654 EXPORT_SYMBOL(enable_irq); 655 656 /** 657 * enable_nmi - enable handling of an nmi 658 * @irq: Interrupt to enable 659 * 660 * The interrupt to enable must have been requested through request_nmi. 661 * Undoes the effect of one call to disable_nmi(). If this 662 * matches the last disable, processing of interrupts on this 663 * IRQ line is re-enabled. 664 */ 665 void enable_nmi(unsigned int irq) 666 { 667 enable_irq(irq); 668 } 669 670 static int set_irq_wake_real(unsigned int irq, unsigned int on) 671 { 672 struct irq_desc *desc = irq_to_desc(irq); 673 int ret = -ENXIO; 674 675 if (irq_desc_get_chip(desc)->flags & IRQCHIP_SKIP_SET_WAKE) 676 return 0; 677 678 if (desc->irq_data.chip->irq_set_wake) 679 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on); 680 681 return ret; 682 } 683 684 /** 685 * irq_set_irq_wake - control irq power management wakeup 686 * @irq: interrupt to control 687 * @on: enable/disable power management wakeup 688 * 689 * Enable/disable power management wakeup mode, which is 690 * disabled by default. Enables and disables must match, 691 * just as they match for non-wakeup mode support. 692 * 693 * Wakeup mode lets this IRQ wake the system from sleep 694 * states like "suspend to RAM". 695 */ 696 int irq_set_irq_wake(unsigned int irq, unsigned int on) 697 { 698 unsigned long flags; 699 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 700 int ret = 0; 701 702 if (!desc) 703 return -EINVAL; 704 705 /* Don't use NMIs as wake up interrupts please */ 706 if (desc->istate & IRQS_NMI) { 707 ret = -EINVAL; 708 goto out_unlock; 709 } 710 711 /* wakeup-capable irqs can be shared between drivers that 712 * don't need to have the same sleep mode behaviors. 713 */ 714 if (on) { 715 if (desc->wake_depth++ == 0) { 716 ret = set_irq_wake_real(irq, on); 717 if (ret) 718 desc->wake_depth = 0; 719 else 720 irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE); 721 } 722 } else { 723 if (desc->wake_depth == 0) { 724 WARN(1, "Unbalanced IRQ %d wake disable\n", irq); 725 } else if (--desc->wake_depth == 0) { 726 ret = set_irq_wake_real(irq, on); 727 if (ret) 728 desc->wake_depth = 1; 729 else 730 irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE); 731 } 732 } 733 734 out_unlock: 735 irq_put_desc_busunlock(desc, flags); 736 return ret; 737 } 738 EXPORT_SYMBOL(irq_set_irq_wake); 739 740 /* 741 * Internal function that tells the architecture code whether a 742 * particular irq has been exclusively allocated or is available 743 * for driver use. 744 */ 745 int can_request_irq(unsigned int irq, unsigned long irqflags) 746 { 747 unsigned long flags; 748 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 749 int canrequest = 0; 750 751 if (!desc) 752 return 0; 753 754 if (irq_settings_can_request(desc)) { 755 if (!desc->action || 756 irqflags & desc->action->flags & IRQF_SHARED) 757 canrequest = 1; 758 } 759 irq_put_desc_unlock(desc, flags); 760 return canrequest; 761 } 762 763 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags) 764 { 765 struct irq_chip *chip = desc->irq_data.chip; 766 int ret, unmask = 0; 767 768 if (!chip || !chip->irq_set_type) { 769 /* 770 * IRQF_TRIGGER_* but the PIC does not support multiple 771 * flow-types? 772 */ 773 pr_debug("No set_type function for IRQ %d (%s)\n", 774 irq_desc_get_irq(desc), 775 chip ? (chip->name ? : "unknown") : "unknown"); 776 return 0; 777 } 778 779 if (chip->flags & IRQCHIP_SET_TYPE_MASKED) { 780 if (!irqd_irq_masked(&desc->irq_data)) 781 mask_irq(desc); 782 if (!irqd_irq_disabled(&desc->irq_data)) 783 unmask = 1; 784 } 785 786 /* Mask all flags except trigger mode */ 787 flags &= IRQ_TYPE_SENSE_MASK; 788 ret = chip->irq_set_type(&desc->irq_data, flags); 789 790 switch (ret) { 791 case IRQ_SET_MASK_OK: 792 case IRQ_SET_MASK_OK_DONE: 793 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK); 794 irqd_set(&desc->irq_data, flags); 795 /* fall through */ 796 797 case IRQ_SET_MASK_OK_NOCOPY: 798 flags = irqd_get_trigger_type(&desc->irq_data); 799 irq_settings_set_trigger_mask(desc, flags); 800 irqd_clear(&desc->irq_data, IRQD_LEVEL); 801 irq_settings_clr_level(desc); 802 if (flags & IRQ_TYPE_LEVEL_MASK) { 803 irq_settings_set_level(desc); 804 irqd_set(&desc->irq_data, IRQD_LEVEL); 805 } 806 807 ret = 0; 808 break; 809 default: 810 pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n", 811 flags, irq_desc_get_irq(desc), chip->irq_set_type); 812 } 813 if (unmask) 814 unmask_irq(desc); 815 return ret; 816 } 817 818 #ifdef CONFIG_HARDIRQS_SW_RESEND 819 int irq_set_parent(int irq, int parent_irq) 820 { 821 unsigned long flags; 822 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 823 824 if (!desc) 825 return -EINVAL; 826 827 desc->parent_irq = parent_irq; 828 829 irq_put_desc_unlock(desc, flags); 830 return 0; 831 } 832 EXPORT_SYMBOL_GPL(irq_set_parent); 833 #endif 834 835 /* 836 * Default primary interrupt handler for threaded interrupts. Is 837 * assigned as primary handler when request_threaded_irq is called 838 * with handler == NULL. Useful for oneshot interrupts. 839 */ 840 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id) 841 { 842 return IRQ_WAKE_THREAD; 843 } 844 845 /* 846 * Primary handler for nested threaded interrupts. Should never be 847 * called. 848 */ 849 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id) 850 { 851 WARN(1, "Primary handler called for nested irq %d\n", irq); 852 return IRQ_NONE; 853 } 854 855 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id) 856 { 857 WARN(1, "Secondary action handler called for irq %d\n", irq); 858 return IRQ_NONE; 859 } 860 861 static int irq_wait_for_interrupt(struct irqaction *action) 862 { 863 for (;;) { 864 set_current_state(TASK_INTERRUPTIBLE); 865 866 if (kthread_should_stop()) { 867 /* may need to run one last time */ 868 if (test_and_clear_bit(IRQTF_RUNTHREAD, 869 &action->thread_flags)) { 870 __set_current_state(TASK_RUNNING); 871 return 0; 872 } 873 __set_current_state(TASK_RUNNING); 874 return -1; 875 } 876 877 if (test_and_clear_bit(IRQTF_RUNTHREAD, 878 &action->thread_flags)) { 879 __set_current_state(TASK_RUNNING); 880 return 0; 881 } 882 schedule(); 883 } 884 } 885 886 /* 887 * Oneshot interrupts keep the irq line masked until the threaded 888 * handler finished. unmask if the interrupt has not been disabled and 889 * is marked MASKED. 890 */ 891 static void irq_finalize_oneshot(struct irq_desc *desc, 892 struct irqaction *action) 893 { 894 if (!(desc->istate & IRQS_ONESHOT) || 895 action->handler == irq_forced_secondary_handler) 896 return; 897 again: 898 chip_bus_lock(desc); 899 raw_spin_lock_irq(&desc->lock); 900 901 /* 902 * Implausible though it may be we need to protect us against 903 * the following scenario: 904 * 905 * The thread is faster done than the hard interrupt handler 906 * on the other CPU. If we unmask the irq line then the 907 * interrupt can come in again and masks the line, leaves due 908 * to IRQS_INPROGRESS and the irq line is masked forever. 909 * 910 * This also serializes the state of shared oneshot handlers 911 * versus "desc->threads_onehsot |= action->thread_mask;" in 912 * irq_wake_thread(). See the comment there which explains the 913 * serialization. 914 */ 915 if (unlikely(irqd_irq_inprogress(&desc->irq_data))) { 916 raw_spin_unlock_irq(&desc->lock); 917 chip_bus_sync_unlock(desc); 918 cpu_relax(); 919 goto again; 920 } 921 922 /* 923 * Now check again, whether the thread should run. Otherwise 924 * we would clear the threads_oneshot bit of this thread which 925 * was just set. 926 */ 927 if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags)) 928 goto out_unlock; 929 930 desc->threads_oneshot &= ~action->thread_mask; 931 932 if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) && 933 irqd_irq_masked(&desc->irq_data)) 934 unmask_threaded_irq(desc); 935 936 out_unlock: 937 raw_spin_unlock_irq(&desc->lock); 938 chip_bus_sync_unlock(desc); 939 } 940 941 #ifdef CONFIG_SMP 942 /* 943 * Check whether we need to change the affinity of the interrupt thread. 944 */ 945 static void 946 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) 947 { 948 cpumask_var_t mask; 949 bool valid = true; 950 951 if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags)) 952 return; 953 954 /* 955 * In case we are out of memory we set IRQTF_AFFINITY again and 956 * try again next time 957 */ 958 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) { 959 set_bit(IRQTF_AFFINITY, &action->thread_flags); 960 return; 961 } 962 963 raw_spin_lock_irq(&desc->lock); 964 /* 965 * This code is triggered unconditionally. Check the affinity 966 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out. 967 */ 968 if (cpumask_available(desc->irq_common_data.affinity)) { 969 const struct cpumask *m; 970 971 m = irq_data_get_effective_affinity_mask(&desc->irq_data); 972 cpumask_copy(mask, m); 973 } else { 974 valid = false; 975 } 976 raw_spin_unlock_irq(&desc->lock); 977 978 if (valid) 979 set_cpus_allowed_ptr(current, mask); 980 free_cpumask_var(mask); 981 } 982 #else 983 static inline void 984 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { } 985 #endif 986 987 /* 988 * Interrupts which are not explicitly requested as threaded 989 * interrupts rely on the implicit bh/preempt disable of the hard irq 990 * context. So we need to disable bh here to avoid deadlocks and other 991 * side effects. 992 */ 993 static irqreturn_t 994 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action) 995 { 996 irqreturn_t ret; 997 998 local_bh_disable(); 999 ret = action->thread_fn(action->irq, action->dev_id); 1000 if (ret == IRQ_HANDLED) 1001 atomic_inc(&desc->threads_handled); 1002 1003 irq_finalize_oneshot(desc, action); 1004 local_bh_enable(); 1005 return ret; 1006 } 1007 1008 /* 1009 * Interrupts explicitly requested as threaded interrupts want to be 1010 * preemtible - many of them need to sleep and wait for slow busses to 1011 * complete. 1012 */ 1013 static irqreturn_t irq_thread_fn(struct irq_desc *desc, 1014 struct irqaction *action) 1015 { 1016 irqreturn_t ret; 1017 1018 ret = action->thread_fn(action->irq, action->dev_id); 1019 if (ret == IRQ_HANDLED) 1020 atomic_inc(&desc->threads_handled); 1021 1022 irq_finalize_oneshot(desc, action); 1023 return ret; 1024 } 1025 1026 static void wake_threads_waitq(struct irq_desc *desc) 1027 { 1028 if (atomic_dec_and_test(&desc->threads_active)) 1029 wake_up(&desc->wait_for_threads); 1030 } 1031 1032 static void irq_thread_dtor(struct callback_head *unused) 1033 { 1034 struct task_struct *tsk = current; 1035 struct irq_desc *desc; 1036 struct irqaction *action; 1037 1038 if (WARN_ON_ONCE(!(current->flags & PF_EXITING))) 1039 return; 1040 1041 action = kthread_data(tsk); 1042 1043 pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n", 1044 tsk->comm, tsk->pid, action->irq); 1045 1046 1047 desc = irq_to_desc(action->irq); 1048 /* 1049 * If IRQTF_RUNTHREAD is set, we need to decrement 1050 * desc->threads_active and wake possible waiters. 1051 */ 1052 if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags)) 1053 wake_threads_waitq(desc); 1054 1055 /* Prevent a stale desc->threads_oneshot */ 1056 irq_finalize_oneshot(desc, action); 1057 } 1058 1059 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action) 1060 { 1061 struct irqaction *secondary = action->secondary; 1062 1063 if (WARN_ON_ONCE(!secondary)) 1064 return; 1065 1066 raw_spin_lock_irq(&desc->lock); 1067 __irq_wake_thread(desc, secondary); 1068 raw_spin_unlock_irq(&desc->lock); 1069 } 1070 1071 /* 1072 * Interrupt handler thread 1073 */ 1074 static int irq_thread(void *data) 1075 { 1076 struct callback_head on_exit_work; 1077 struct irqaction *action = data; 1078 struct irq_desc *desc = irq_to_desc(action->irq); 1079 irqreturn_t (*handler_fn)(struct irq_desc *desc, 1080 struct irqaction *action); 1081 1082 if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD, 1083 &action->thread_flags)) 1084 handler_fn = irq_forced_thread_fn; 1085 else 1086 handler_fn = irq_thread_fn; 1087 1088 init_task_work(&on_exit_work, irq_thread_dtor); 1089 task_work_add(current, &on_exit_work, false); 1090 1091 irq_thread_check_affinity(desc, action); 1092 1093 while (!irq_wait_for_interrupt(action)) { 1094 irqreturn_t action_ret; 1095 1096 irq_thread_check_affinity(desc, action); 1097 1098 action_ret = handler_fn(desc, action); 1099 if (action_ret == IRQ_WAKE_THREAD) 1100 irq_wake_secondary(desc, action); 1101 1102 wake_threads_waitq(desc); 1103 } 1104 1105 /* 1106 * This is the regular exit path. __free_irq() is stopping the 1107 * thread via kthread_stop() after calling 1108 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the 1109 * oneshot mask bit can be set. 1110 */ 1111 task_work_cancel(current, irq_thread_dtor); 1112 return 0; 1113 } 1114 1115 /** 1116 * irq_wake_thread - wake the irq thread for the action identified by dev_id 1117 * @irq: Interrupt line 1118 * @dev_id: Device identity for which the thread should be woken 1119 * 1120 */ 1121 void irq_wake_thread(unsigned int irq, void *dev_id) 1122 { 1123 struct irq_desc *desc = irq_to_desc(irq); 1124 struct irqaction *action; 1125 unsigned long flags; 1126 1127 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1128 return; 1129 1130 raw_spin_lock_irqsave(&desc->lock, flags); 1131 for_each_action_of_desc(desc, action) { 1132 if (action->dev_id == dev_id) { 1133 if (action->thread) 1134 __irq_wake_thread(desc, action); 1135 break; 1136 } 1137 } 1138 raw_spin_unlock_irqrestore(&desc->lock, flags); 1139 } 1140 EXPORT_SYMBOL_GPL(irq_wake_thread); 1141 1142 static int irq_setup_forced_threading(struct irqaction *new) 1143 { 1144 if (!force_irqthreads) 1145 return 0; 1146 if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT)) 1147 return 0; 1148 1149 /* 1150 * No further action required for interrupts which are requested as 1151 * threaded interrupts already 1152 */ 1153 if (new->handler == irq_default_primary_handler) 1154 return 0; 1155 1156 new->flags |= IRQF_ONESHOT; 1157 1158 /* 1159 * Handle the case where we have a real primary handler and a 1160 * thread handler. We force thread them as well by creating a 1161 * secondary action. 1162 */ 1163 if (new->handler && new->thread_fn) { 1164 /* Allocate the secondary action */ 1165 new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 1166 if (!new->secondary) 1167 return -ENOMEM; 1168 new->secondary->handler = irq_forced_secondary_handler; 1169 new->secondary->thread_fn = new->thread_fn; 1170 new->secondary->dev_id = new->dev_id; 1171 new->secondary->irq = new->irq; 1172 new->secondary->name = new->name; 1173 } 1174 /* Deal with the primary handler */ 1175 set_bit(IRQTF_FORCED_THREAD, &new->thread_flags); 1176 new->thread_fn = new->handler; 1177 new->handler = irq_default_primary_handler; 1178 return 0; 1179 } 1180 1181 static int irq_request_resources(struct irq_desc *desc) 1182 { 1183 struct irq_data *d = &desc->irq_data; 1184 struct irq_chip *c = d->chip; 1185 1186 return c->irq_request_resources ? c->irq_request_resources(d) : 0; 1187 } 1188 1189 static void irq_release_resources(struct irq_desc *desc) 1190 { 1191 struct irq_data *d = &desc->irq_data; 1192 struct irq_chip *c = d->chip; 1193 1194 if (c->irq_release_resources) 1195 c->irq_release_resources(d); 1196 } 1197 1198 static bool irq_supports_nmi(struct irq_desc *desc) 1199 { 1200 struct irq_data *d = irq_desc_get_irq_data(desc); 1201 1202 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 1203 /* Only IRQs directly managed by the root irqchip can be set as NMI */ 1204 if (d->parent_data) 1205 return false; 1206 #endif 1207 /* Don't support NMIs for chips behind a slow bus */ 1208 if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock) 1209 return false; 1210 1211 return d->chip->flags & IRQCHIP_SUPPORTS_NMI; 1212 } 1213 1214 static int irq_nmi_setup(struct irq_desc *desc) 1215 { 1216 struct irq_data *d = irq_desc_get_irq_data(desc); 1217 struct irq_chip *c = d->chip; 1218 1219 return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL; 1220 } 1221 1222 static void irq_nmi_teardown(struct irq_desc *desc) 1223 { 1224 struct irq_data *d = irq_desc_get_irq_data(desc); 1225 struct irq_chip *c = d->chip; 1226 1227 if (c->irq_nmi_teardown) 1228 c->irq_nmi_teardown(d); 1229 } 1230 1231 static int 1232 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary) 1233 { 1234 struct task_struct *t; 1235 struct sched_param param = { 1236 .sched_priority = MAX_USER_RT_PRIO/2, 1237 }; 1238 1239 if (!secondary) { 1240 t = kthread_create(irq_thread, new, "irq/%d-%s", irq, 1241 new->name); 1242 } else { 1243 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq, 1244 new->name); 1245 param.sched_priority -= 1; 1246 } 1247 1248 if (IS_ERR(t)) 1249 return PTR_ERR(t); 1250 1251 sched_setscheduler_nocheck(t, SCHED_FIFO, ¶m); 1252 1253 /* 1254 * We keep the reference to the task struct even if 1255 * the thread dies to avoid that the interrupt code 1256 * references an already freed task_struct. 1257 */ 1258 new->thread = get_task_struct(t); 1259 /* 1260 * Tell the thread to set its affinity. This is 1261 * important for shared interrupt handlers as we do 1262 * not invoke setup_affinity() for the secondary 1263 * handlers as everything is already set up. Even for 1264 * interrupts marked with IRQF_NO_BALANCE this is 1265 * correct as we want the thread to move to the cpu(s) 1266 * on which the requesting code placed the interrupt. 1267 */ 1268 set_bit(IRQTF_AFFINITY, &new->thread_flags); 1269 return 0; 1270 } 1271 1272 /* 1273 * Internal function to register an irqaction - typically used to 1274 * allocate special interrupts that are part of the architecture. 1275 * 1276 * Locking rules: 1277 * 1278 * desc->request_mutex Provides serialization against a concurrent free_irq() 1279 * chip_bus_lock Provides serialization for slow bus operations 1280 * desc->lock Provides serialization against hard interrupts 1281 * 1282 * chip_bus_lock and desc->lock are sufficient for all other management and 1283 * interrupt related functions. desc->request_mutex solely serializes 1284 * request/free_irq(). 1285 */ 1286 static int 1287 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new) 1288 { 1289 struct irqaction *old, **old_ptr; 1290 unsigned long flags, thread_mask = 0; 1291 int ret, nested, shared = 0; 1292 1293 if (!desc) 1294 return -EINVAL; 1295 1296 if (desc->irq_data.chip == &no_irq_chip) 1297 return -ENOSYS; 1298 if (!try_module_get(desc->owner)) 1299 return -ENODEV; 1300 1301 new->irq = irq; 1302 1303 /* 1304 * If the trigger type is not specified by the caller, 1305 * then use the default for this interrupt. 1306 */ 1307 if (!(new->flags & IRQF_TRIGGER_MASK)) 1308 new->flags |= irqd_get_trigger_type(&desc->irq_data); 1309 1310 /* 1311 * Check whether the interrupt nests into another interrupt 1312 * thread. 1313 */ 1314 nested = irq_settings_is_nested_thread(desc); 1315 if (nested) { 1316 if (!new->thread_fn) { 1317 ret = -EINVAL; 1318 goto out_mput; 1319 } 1320 /* 1321 * Replace the primary handler which was provided from 1322 * the driver for non nested interrupt handling by the 1323 * dummy function which warns when called. 1324 */ 1325 new->handler = irq_nested_primary_handler; 1326 } else { 1327 if (irq_settings_can_thread(desc)) { 1328 ret = irq_setup_forced_threading(new); 1329 if (ret) 1330 goto out_mput; 1331 } 1332 } 1333 1334 /* 1335 * Create a handler thread when a thread function is supplied 1336 * and the interrupt does not nest into another interrupt 1337 * thread. 1338 */ 1339 if (new->thread_fn && !nested) { 1340 ret = setup_irq_thread(new, irq, false); 1341 if (ret) 1342 goto out_mput; 1343 if (new->secondary) { 1344 ret = setup_irq_thread(new->secondary, irq, true); 1345 if (ret) 1346 goto out_thread; 1347 } 1348 } 1349 1350 /* 1351 * Drivers are often written to work w/o knowledge about the 1352 * underlying irq chip implementation, so a request for a 1353 * threaded irq without a primary hard irq context handler 1354 * requires the ONESHOT flag to be set. Some irq chips like 1355 * MSI based interrupts are per se one shot safe. Check the 1356 * chip flags, so we can avoid the unmask dance at the end of 1357 * the threaded handler for those. 1358 */ 1359 if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE) 1360 new->flags &= ~IRQF_ONESHOT; 1361 1362 /* 1363 * Protects against a concurrent __free_irq() call which might wait 1364 * for synchronize_hardirq() to complete without holding the optional 1365 * chip bus lock and desc->lock. Also protects against handing out 1366 * a recycled oneshot thread_mask bit while it's still in use by 1367 * its previous owner. 1368 */ 1369 mutex_lock(&desc->request_mutex); 1370 1371 /* 1372 * Acquire bus lock as the irq_request_resources() callback below 1373 * might rely on the serialization or the magic power management 1374 * functions which are abusing the irq_bus_lock() callback, 1375 */ 1376 chip_bus_lock(desc); 1377 1378 /* First installed action requests resources. */ 1379 if (!desc->action) { 1380 ret = irq_request_resources(desc); 1381 if (ret) { 1382 pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n", 1383 new->name, irq, desc->irq_data.chip->name); 1384 goto out_bus_unlock; 1385 } 1386 } 1387 1388 /* 1389 * The following block of code has to be executed atomically 1390 * protected against a concurrent interrupt and any of the other 1391 * management calls which are not serialized via 1392 * desc->request_mutex or the optional bus lock. 1393 */ 1394 raw_spin_lock_irqsave(&desc->lock, flags); 1395 old_ptr = &desc->action; 1396 old = *old_ptr; 1397 if (old) { 1398 /* 1399 * Can't share interrupts unless both agree to and are 1400 * the same type (level, edge, polarity). So both flag 1401 * fields must have IRQF_SHARED set and the bits which 1402 * set the trigger type must match. Also all must 1403 * agree on ONESHOT. 1404 * Interrupt lines used for NMIs cannot be shared. 1405 */ 1406 unsigned int oldtype; 1407 1408 if (desc->istate & IRQS_NMI) { 1409 pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n", 1410 new->name, irq, desc->irq_data.chip->name); 1411 ret = -EINVAL; 1412 goto out_unlock; 1413 } 1414 1415 /* 1416 * If nobody did set the configuration before, inherit 1417 * the one provided by the requester. 1418 */ 1419 if (irqd_trigger_type_was_set(&desc->irq_data)) { 1420 oldtype = irqd_get_trigger_type(&desc->irq_data); 1421 } else { 1422 oldtype = new->flags & IRQF_TRIGGER_MASK; 1423 irqd_set_trigger_type(&desc->irq_data, oldtype); 1424 } 1425 1426 if (!((old->flags & new->flags) & IRQF_SHARED) || 1427 (oldtype != (new->flags & IRQF_TRIGGER_MASK)) || 1428 ((old->flags ^ new->flags) & IRQF_ONESHOT)) 1429 goto mismatch; 1430 1431 /* All handlers must agree on per-cpuness */ 1432 if ((old->flags & IRQF_PERCPU) != 1433 (new->flags & IRQF_PERCPU)) 1434 goto mismatch; 1435 1436 /* add new interrupt at end of irq queue */ 1437 do { 1438 /* 1439 * Or all existing action->thread_mask bits, 1440 * so we can find the next zero bit for this 1441 * new action. 1442 */ 1443 thread_mask |= old->thread_mask; 1444 old_ptr = &old->next; 1445 old = *old_ptr; 1446 } while (old); 1447 shared = 1; 1448 } 1449 1450 /* 1451 * Setup the thread mask for this irqaction for ONESHOT. For 1452 * !ONESHOT irqs the thread mask is 0 so we can avoid a 1453 * conditional in irq_wake_thread(). 1454 */ 1455 if (new->flags & IRQF_ONESHOT) { 1456 /* 1457 * Unlikely to have 32 resp 64 irqs sharing one line, 1458 * but who knows. 1459 */ 1460 if (thread_mask == ~0UL) { 1461 ret = -EBUSY; 1462 goto out_unlock; 1463 } 1464 /* 1465 * The thread_mask for the action is or'ed to 1466 * desc->thread_active to indicate that the 1467 * IRQF_ONESHOT thread handler has been woken, but not 1468 * yet finished. The bit is cleared when a thread 1469 * completes. When all threads of a shared interrupt 1470 * line have completed desc->threads_active becomes 1471 * zero and the interrupt line is unmasked. See 1472 * handle.c:irq_wake_thread() for further information. 1473 * 1474 * If no thread is woken by primary (hard irq context) 1475 * interrupt handlers, then desc->threads_active is 1476 * also checked for zero to unmask the irq line in the 1477 * affected hard irq flow handlers 1478 * (handle_[fasteoi|level]_irq). 1479 * 1480 * The new action gets the first zero bit of 1481 * thread_mask assigned. See the loop above which or's 1482 * all existing action->thread_mask bits. 1483 */ 1484 new->thread_mask = 1UL << ffz(thread_mask); 1485 1486 } else if (new->handler == irq_default_primary_handler && 1487 !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) { 1488 /* 1489 * The interrupt was requested with handler = NULL, so 1490 * we use the default primary handler for it. But it 1491 * does not have the oneshot flag set. In combination 1492 * with level interrupts this is deadly, because the 1493 * default primary handler just wakes the thread, then 1494 * the irq lines is reenabled, but the device still 1495 * has the level irq asserted. Rinse and repeat.... 1496 * 1497 * While this works for edge type interrupts, we play 1498 * it safe and reject unconditionally because we can't 1499 * say for sure which type this interrupt really 1500 * has. The type flags are unreliable as the 1501 * underlying chip implementation can override them. 1502 */ 1503 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for irq %d\n", 1504 irq); 1505 ret = -EINVAL; 1506 goto out_unlock; 1507 } 1508 1509 if (!shared) { 1510 init_waitqueue_head(&desc->wait_for_threads); 1511 1512 /* Setup the type (level, edge polarity) if configured: */ 1513 if (new->flags & IRQF_TRIGGER_MASK) { 1514 ret = __irq_set_trigger(desc, 1515 new->flags & IRQF_TRIGGER_MASK); 1516 1517 if (ret) 1518 goto out_unlock; 1519 } 1520 1521 /* 1522 * Activate the interrupt. That activation must happen 1523 * independently of IRQ_NOAUTOEN. request_irq() can fail 1524 * and the callers are supposed to handle 1525 * that. enable_irq() of an interrupt requested with 1526 * IRQ_NOAUTOEN is not supposed to fail. The activation 1527 * keeps it in shutdown mode, it merily associates 1528 * resources if necessary and if that's not possible it 1529 * fails. Interrupts which are in managed shutdown mode 1530 * will simply ignore that activation request. 1531 */ 1532 ret = irq_activate(desc); 1533 if (ret) 1534 goto out_unlock; 1535 1536 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \ 1537 IRQS_ONESHOT | IRQS_WAITING); 1538 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS); 1539 1540 if (new->flags & IRQF_PERCPU) { 1541 irqd_set(&desc->irq_data, IRQD_PER_CPU); 1542 irq_settings_set_per_cpu(desc); 1543 } 1544 1545 if (new->flags & IRQF_ONESHOT) 1546 desc->istate |= IRQS_ONESHOT; 1547 1548 /* Exclude IRQ from balancing if requested */ 1549 if (new->flags & IRQF_NOBALANCING) { 1550 irq_settings_set_no_balancing(desc); 1551 irqd_set(&desc->irq_data, IRQD_NO_BALANCING); 1552 } 1553 1554 if (irq_settings_can_autoenable(desc)) { 1555 irq_startup(desc, IRQ_RESEND, IRQ_START_COND); 1556 } else { 1557 /* 1558 * Shared interrupts do not go well with disabling 1559 * auto enable. The sharing interrupt might request 1560 * it while it's still disabled and then wait for 1561 * interrupts forever. 1562 */ 1563 WARN_ON_ONCE(new->flags & IRQF_SHARED); 1564 /* Undo nested disables: */ 1565 desc->depth = 1; 1566 } 1567 1568 } else if (new->flags & IRQF_TRIGGER_MASK) { 1569 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK; 1570 unsigned int omsk = irqd_get_trigger_type(&desc->irq_data); 1571 1572 if (nmsk != omsk) 1573 /* hope the handler works with current trigger mode */ 1574 pr_warn("irq %d uses trigger mode %u; requested %u\n", 1575 irq, omsk, nmsk); 1576 } 1577 1578 *old_ptr = new; 1579 1580 irq_pm_install_action(desc, new); 1581 1582 /* Reset broken irq detection when installing new handler */ 1583 desc->irq_count = 0; 1584 desc->irqs_unhandled = 0; 1585 1586 /* 1587 * Check whether we disabled the irq via the spurious handler 1588 * before. Reenable it and give it another chance. 1589 */ 1590 if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) { 1591 desc->istate &= ~IRQS_SPURIOUS_DISABLED; 1592 __enable_irq(desc); 1593 } 1594 1595 raw_spin_unlock_irqrestore(&desc->lock, flags); 1596 chip_bus_sync_unlock(desc); 1597 mutex_unlock(&desc->request_mutex); 1598 1599 irq_setup_timings(desc, new); 1600 1601 /* 1602 * Strictly no need to wake it up, but hung_task complains 1603 * when no hard interrupt wakes the thread up. 1604 */ 1605 if (new->thread) 1606 wake_up_process(new->thread); 1607 if (new->secondary) 1608 wake_up_process(new->secondary->thread); 1609 1610 register_irq_proc(irq, desc); 1611 new->dir = NULL; 1612 register_handler_proc(irq, new); 1613 return 0; 1614 1615 mismatch: 1616 if (!(new->flags & IRQF_PROBE_SHARED)) { 1617 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n", 1618 irq, new->flags, new->name, old->flags, old->name); 1619 #ifdef CONFIG_DEBUG_SHIRQ 1620 dump_stack(); 1621 #endif 1622 } 1623 ret = -EBUSY; 1624 1625 out_unlock: 1626 raw_spin_unlock_irqrestore(&desc->lock, flags); 1627 1628 if (!desc->action) 1629 irq_release_resources(desc); 1630 out_bus_unlock: 1631 chip_bus_sync_unlock(desc); 1632 mutex_unlock(&desc->request_mutex); 1633 1634 out_thread: 1635 if (new->thread) { 1636 struct task_struct *t = new->thread; 1637 1638 new->thread = NULL; 1639 kthread_stop(t); 1640 put_task_struct(t); 1641 } 1642 if (new->secondary && new->secondary->thread) { 1643 struct task_struct *t = new->secondary->thread; 1644 1645 new->secondary->thread = NULL; 1646 kthread_stop(t); 1647 put_task_struct(t); 1648 } 1649 out_mput: 1650 module_put(desc->owner); 1651 return ret; 1652 } 1653 1654 /** 1655 * setup_irq - setup an interrupt 1656 * @irq: Interrupt line to setup 1657 * @act: irqaction for the interrupt 1658 * 1659 * Used to statically setup interrupts in the early boot process. 1660 */ 1661 int setup_irq(unsigned int irq, struct irqaction *act) 1662 { 1663 int retval; 1664 struct irq_desc *desc = irq_to_desc(irq); 1665 1666 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1667 return -EINVAL; 1668 1669 retval = irq_chip_pm_get(&desc->irq_data); 1670 if (retval < 0) 1671 return retval; 1672 1673 retval = __setup_irq(irq, desc, act); 1674 1675 if (retval) 1676 irq_chip_pm_put(&desc->irq_data); 1677 1678 return retval; 1679 } 1680 EXPORT_SYMBOL_GPL(setup_irq); 1681 1682 /* 1683 * Internal function to unregister an irqaction - used to free 1684 * regular and special interrupts that are part of the architecture. 1685 */ 1686 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id) 1687 { 1688 unsigned irq = desc->irq_data.irq; 1689 struct irqaction *action, **action_ptr; 1690 unsigned long flags; 1691 1692 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq); 1693 1694 mutex_lock(&desc->request_mutex); 1695 chip_bus_lock(desc); 1696 raw_spin_lock_irqsave(&desc->lock, flags); 1697 1698 /* 1699 * There can be multiple actions per IRQ descriptor, find the right 1700 * one based on the dev_id: 1701 */ 1702 action_ptr = &desc->action; 1703 for (;;) { 1704 action = *action_ptr; 1705 1706 if (!action) { 1707 WARN(1, "Trying to free already-free IRQ %d\n", irq); 1708 raw_spin_unlock_irqrestore(&desc->lock, flags); 1709 chip_bus_sync_unlock(desc); 1710 mutex_unlock(&desc->request_mutex); 1711 return NULL; 1712 } 1713 1714 if (action->dev_id == dev_id) 1715 break; 1716 action_ptr = &action->next; 1717 } 1718 1719 /* Found it - now remove it from the list of entries: */ 1720 *action_ptr = action->next; 1721 1722 irq_pm_remove_action(desc, action); 1723 1724 /* If this was the last handler, shut down the IRQ line: */ 1725 if (!desc->action) { 1726 irq_settings_clr_disable_unlazy(desc); 1727 /* Only shutdown. Deactivate after synchronize_hardirq() */ 1728 irq_shutdown(desc); 1729 } 1730 1731 #ifdef CONFIG_SMP 1732 /* make sure affinity_hint is cleaned up */ 1733 if (WARN_ON_ONCE(desc->affinity_hint)) 1734 desc->affinity_hint = NULL; 1735 #endif 1736 1737 raw_spin_unlock_irqrestore(&desc->lock, flags); 1738 /* 1739 * Drop bus_lock here so the changes which were done in the chip 1740 * callbacks above are synced out to the irq chips which hang 1741 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq(). 1742 * 1743 * Aside of that the bus_lock can also be taken from the threaded 1744 * handler in irq_finalize_oneshot() which results in a deadlock 1745 * because kthread_stop() would wait forever for the thread to 1746 * complete, which is blocked on the bus lock. 1747 * 1748 * The still held desc->request_mutex() protects against a 1749 * concurrent request_irq() of this irq so the release of resources 1750 * and timing data is properly serialized. 1751 */ 1752 chip_bus_sync_unlock(desc); 1753 1754 unregister_handler_proc(irq, action); 1755 1756 /* 1757 * Make sure it's not being used on another CPU and if the chip 1758 * supports it also make sure that there is no (not yet serviced) 1759 * interrupt in flight at the hardware level. 1760 */ 1761 __synchronize_hardirq(desc, true); 1762 1763 #ifdef CONFIG_DEBUG_SHIRQ 1764 /* 1765 * It's a shared IRQ -- the driver ought to be prepared for an IRQ 1766 * event to happen even now it's being freed, so let's make sure that 1767 * is so by doing an extra call to the handler .... 1768 * 1769 * ( We do this after actually deregistering it, to make sure that a 1770 * 'real' IRQ doesn't run in parallel with our fake. ) 1771 */ 1772 if (action->flags & IRQF_SHARED) { 1773 local_irq_save(flags); 1774 action->handler(irq, dev_id); 1775 local_irq_restore(flags); 1776 } 1777 #endif 1778 1779 /* 1780 * The action has already been removed above, but the thread writes 1781 * its oneshot mask bit when it completes. Though request_mutex is 1782 * held across this which prevents __setup_irq() from handing out 1783 * the same bit to a newly requested action. 1784 */ 1785 if (action->thread) { 1786 kthread_stop(action->thread); 1787 put_task_struct(action->thread); 1788 if (action->secondary && action->secondary->thread) { 1789 kthread_stop(action->secondary->thread); 1790 put_task_struct(action->secondary->thread); 1791 } 1792 } 1793 1794 /* Last action releases resources */ 1795 if (!desc->action) { 1796 /* 1797 * Reaquire bus lock as irq_release_resources() might 1798 * require it to deallocate resources over the slow bus. 1799 */ 1800 chip_bus_lock(desc); 1801 /* 1802 * There is no interrupt on the fly anymore. Deactivate it 1803 * completely. 1804 */ 1805 raw_spin_lock_irqsave(&desc->lock, flags); 1806 irq_domain_deactivate_irq(&desc->irq_data); 1807 raw_spin_unlock_irqrestore(&desc->lock, flags); 1808 1809 irq_release_resources(desc); 1810 chip_bus_sync_unlock(desc); 1811 irq_remove_timings(desc); 1812 } 1813 1814 mutex_unlock(&desc->request_mutex); 1815 1816 irq_chip_pm_put(&desc->irq_data); 1817 module_put(desc->owner); 1818 kfree(action->secondary); 1819 return action; 1820 } 1821 1822 /** 1823 * remove_irq - free an interrupt 1824 * @irq: Interrupt line to free 1825 * @act: irqaction for the interrupt 1826 * 1827 * Used to remove interrupts statically setup by the early boot process. 1828 */ 1829 void remove_irq(unsigned int irq, struct irqaction *act) 1830 { 1831 struct irq_desc *desc = irq_to_desc(irq); 1832 1833 if (desc && !WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1834 __free_irq(desc, act->dev_id); 1835 } 1836 EXPORT_SYMBOL_GPL(remove_irq); 1837 1838 /** 1839 * free_irq - free an interrupt allocated with request_irq 1840 * @irq: Interrupt line to free 1841 * @dev_id: Device identity to free 1842 * 1843 * Remove an interrupt handler. The handler is removed and if the 1844 * interrupt line is no longer in use by any driver it is disabled. 1845 * On a shared IRQ the caller must ensure the interrupt is disabled 1846 * on the card it drives before calling this function. The function 1847 * does not return until any executing interrupts for this IRQ 1848 * have completed. 1849 * 1850 * This function must not be called from interrupt context. 1851 * 1852 * Returns the devname argument passed to request_irq. 1853 */ 1854 const void *free_irq(unsigned int irq, void *dev_id) 1855 { 1856 struct irq_desc *desc = irq_to_desc(irq); 1857 struct irqaction *action; 1858 const char *devname; 1859 1860 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1861 return NULL; 1862 1863 #ifdef CONFIG_SMP 1864 if (WARN_ON(desc->affinity_notify)) 1865 desc->affinity_notify = NULL; 1866 #endif 1867 1868 action = __free_irq(desc, dev_id); 1869 1870 if (!action) 1871 return NULL; 1872 1873 devname = action->name; 1874 kfree(action); 1875 return devname; 1876 } 1877 EXPORT_SYMBOL(free_irq); 1878 1879 /* This function must be called with desc->lock held */ 1880 static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc) 1881 { 1882 const char *devname = NULL; 1883 1884 desc->istate &= ~IRQS_NMI; 1885 1886 if (!WARN_ON(desc->action == NULL)) { 1887 irq_pm_remove_action(desc, desc->action); 1888 devname = desc->action->name; 1889 unregister_handler_proc(irq, desc->action); 1890 1891 kfree(desc->action); 1892 desc->action = NULL; 1893 } 1894 1895 irq_settings_clr_disable_unlazy(desc); 1896 irq_shutdown_and_deactivate(desc); 1897 1898 irq_release_resources(desc); 1899 1900 irq_chip_pm_put(&desc->irq_data); 1901 module_put(desc->owner); 1902 1903 return devname; 1904 } 1905 1906 const void *free_nmi(unsigned int irq, void *dev_id) 1907 { 1908 struct irq_desc *desc = irq_to_desc(irq); 1909 unsigned long flags; 1910 const void *devname; 1911 1912 if (!desc || WARN_ON(!(desc->istate & IRQS_NMI))) 1913 return NULL; 1914 1915 if (WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1916 return NULL; 1917 1918 /* NMI still enabled */ 1919 if (WARN_ON(desc->depth == 0)) 1920 disable_nmi_nosync(irq); 1921 1922 raw_spin_lock_irqsave(&desc->lock, flags); 1923 1924 irq_nmi_teardown(desc); 1925 devname = __cleanup_nmi(irq, desc); 1926 1927 raw_spin_unlock_irqrestore(&desc->lock, flags); 1928 1929 return devname; 1930 } 1931 1932 /** 1933 * request_threaded_irq - allocate an interrupt line 1934 * @irq: Interrupt line to allocate 1935 * @handler: Function to be called when the IRQ occurs. 1936 * Primary handler for threaded interrupts 1937 * If NULL and thread_fn != NULL the default 1938 * primary handler is installed 1939 * @thread_fn: Function called from the irq handler thread 1940 * If NULL, no irq thread is created 1941 * @irqflags: Interrupt type flags 1942 * @devname: An ascii name for the claiming device 1943 * @dev_id: A cookie passed back to the handler function 1944 * 1945 * This call allocates interrupt resources and enables the 1946 * interrupt line and IRQ handling. From the point this 1947 * call is made your handler function may be invoked. Since 1948 * your handler function must clear any interrupt the board 1949 * raises, you must take care both to initialise your hardware 1950 * and to set up the interrupt handler in the right order. 1951 * 1952 * If you want to set up a threaded irq handler for your device 1953 * then you need to supply @handler and @thread_fn. @handler is 1954 * still called in hard interrupt context and has to check 1955 * whether the interrupt originates from the device. If yes it 1956 * needs to disable the interrupt on the device and return 1957 * IRQ_WAKE_THREAD which will wake up the handler thread and run 1958 * @thread_fn. This split handler design is necessary to support 1959 * shared interrupts. 1960 * 1961 * Dev_id must be globally unique. Normally the address of the 1962 * device data structure is used as the cookie. Since the handler 1963 * receives this value it makes sense to use it. 1964 * 1965 * If your interrupt is shared you must pass a non NULL dev_id 1966 * as this is required when freeing the interrupt. 1967 * 1968 * Flags: 1969 * 1970 * IRQF_SHARED Interrupt is shared 1971 * IRQF_TRIGGER_* Specify active edge(s) or level 1972 * 1973 */ 1974 int request_threaded_irq(unsigned int irq, irq_handler_t handler, 1975 irq_handler_t thread_fn, unsigned long irqflags, 1976 const char *devname, void *dev_id) 1977 { 1978 struct irqaction *action; 1979 struct irq_desc *desc; 1980 int retval; 1981 1982 if (irq == IRQ_NOTCONNECTED) 1983 return -ENOTCONN; 1984 1985 /* 1986 * Sanity-check: shared interrupts must pass in a real dev-ID, 1987 * otherwise we'll have trouble later trying to figure out 1988 * which interrupt is which (messes up the interrupt freeing 1989 * logic etc). 1990 * 1991 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and 1992 * it cannot be set along with IRQF_NO_SUSPEND. 1993 */ 1994 if (((irqflags & IRQF_SHARED) && !dev_id) || 1995 (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) || 1996 ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND))) 1997 return -EINVAL; 1998 1999 desc = irq_to_desc(irq); 2000 if (!desc) 2001 return -EINVAL; 2002 2003 if (!irq_settings_can_request(desc) || 2004 WARN_ON(irq_settings_is_per_cpu_devid(desc))) 2005 return -EINVAL; 2006 2007 if (!handler) { 2008 if (!thread_fn) 2009 return -EINVAL; 2010 handler = irq_default_primary_handler; 2011 } 2012 2013 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2014 if (!action) 2015 return -ENOMEM; 2016 2017 action->handler = handler; 2018 action->thread_fn = thread_fn; 2019 action->flags = irqflags; 2020 action->name = devname; 2021 action->dev_id = dev_id; 2022 2023 retval = irq_chip_pm_get(&desc->irq_data); 2024 if (retval < 0) { 2025 kfree(action); 2026 return retval; 2027 } 2028 2029 retval = __setup_irq(irq, desc, action); 2030 2031 if (retval) { 2032 irq_chip_pm_put(&desc->irq_data); 2033 kfree(action->secondary); 2034 kfree(action); 2035 } 2036 2037 #ifdef CONFIG_DEBUG_SHIRQ_FIXME 2038 if (!retval && (irqflags & IRQF_SHARED)) { 2039 /* 2040 * It's a shared IRQ -- the driver ought to be prepared for it 2041 * to happen immediately, so let's make sure.... 2042 * We disable the irq to make sure that a 'real' IRQ doesn't 2043 * run in parallel with our fake. 2044 */ 2045 unsigned long flags; 2046 2047 disable_irq(irq); 2048 local_irq_save(flags); 2049 2050 handler(irq, dev_id); 2051 2052 local_irq_restore(flags); 2053 enable_irq(irq); 2054 } 2055 #endif 2056 return retval; 2057 } 2058 EXPORT_SYMBOL(request_threaded_irq); 2059 2060 /** 2061 * request_any_context_irq - allocate an interrupt line 2062 * @irq: Interrupt line to allocate 2063 * @handler: Function to be called when the IRQ occurs. 2064 * Threaded handler for threaded interrupts. 2065 * @flags: Interrupt type flags 2066 * @name: An ascii name for the claiming device 2067 * @dev_id: A cookie passed back to the handler function 2068 * 2069 * This call allocates interrupt resources and enables the 2070 * interrupt line and IRQ handling. It selects either a 2071 * hardirq or threaded handling method depending on the 2072 * context. 2073 * 2074 * On failure, it returns a negative value. On success, 2075 * it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED. 2076 */ 2077 int request_any_context_irq(unsigned int irq, irq_handler_t handler, 2078 unsigned long flags, const char *name, void *dev_id) 2079 { 2080 struct irq_desc *desc; 2081 int ret; 2082 2083 if (irq == IRQ_NOTCONNECTED) 2084 return -ENOTCONN; 2085 2086 desc = irq_to_desc(irq); 2087 if (!desc) 2088 return -EINVAL; 2089 2090 if (irq_settings_is_nested_thread(desc)) { 2091 ret = request_threaded_irq(irq, NULL, handler, 2092 flags, name, dev_id); 2093 return !ret ? IRQC_IS_NESTED : ret; 2094 } 2095 2096 ret = request_irq(irq, handler, flags, name, dev_id); 2097 return !ret ? IRQC_IS_HARDIRQ : ret; 2098 } 2099 EXPORT_SYMBOL_GPL(request_any_context_irq); 2100 2101 /** 2102 * request_nmi - allocate an interrupt line for NMI delivery 2103 * @irq: Interrupt line to allocate 2104 * @handler: Function to be called when the IRQ occurs. 2105 * Threaded handler for threaded interrupts. 2106 * @irqflags: Interrupt type flags 2107 * @name: An ascii name for the claiming device 2108 * @dev_id: A cookie passed back to the handler function 2109 * 2110 * This call allocates interrupt resources and enables the 2111 * interrupt line and IRQ handling. It sets up the IRQ line 2112 * to be handled as an NMI. 2113 * 2114 * An interrupt line delivering NMIs cannot be shared and IRQ handling 2115 * cannot be threaded. 2116 * 2117 * Interrupt lines requested for NMI delivering must produce per cpu 2118 * interrupts and have auto enabling setting disabled. 2119 * 2120 * Dev_id must be globally unique. Normally the address of the 2121 * device data structure is used as the cookie. Since the handler 2122 * receives this value it makes sense to use it. 2123 * 2124 * If the interrupt line cannot be used to deliver NMIs, function 2125 * will fail and return a negative value. 2126 */ 2127 int request_nmi(unsigned int irq, irq_handler_t handler, 2128 unsigned long irqflags, const char *name, void *dev_id) 2129 { 2130 struct irqaction *action; 2131 struct irq_desc *desc; 2132 unsigned long flags; 2133 int retval; 2134 2135 if (irq == IRQ_NOTCONNECTED) 2136 return -ENOTCONN; 2137 2138 /* NMI cannot be shared, used for Polling */ 2139 if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL)) 2140 return -EINVAL; 2141 2142 if (!(irqflags & IRQF_PERCPU)) 2143 return -EINVAL; 2144 2145 if (!handler) 2146 return -EINVAL; 2147 2148 desc = irq_to_desc(irq); 2149 2150 if (!desc || irq_settings_can_autoenable(desc) || 2151 !irq_settings_can_request(desc) || 2152 WARN_ON(irq_settings_is_per_cpu_devid(desc)) || 2153 !irq_supports_nmi(desc)) 2154 return -EINVAL; 2155 2156 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2157 if (!action) 2158 return -ENOMEM; 2159 2160 action->handler = handler; 2161 action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING; 2162 action->name = name; 2163 action->dev_id = dev_id; 2164 2165 retval = irq_chip_pm_get(&desc->irq_data); 2166 if (retval < 0) 2167 goto err_out; 2168 2169 retval = __setup_irq(irq, desc, action); 2170 if (retval) 2171 goto err_irq_setup; 2172 2173 raw_spin_lock_irqsave(&desc->lock, flags); 2174 2175 /* Setup NMI state */ 2176 desc->istate |= IRQS_NMI; 2177 retval = irq_nmi_setup(desc); 2178 if (retval) { 2179 __cleanup_nmi(irq, desc); 2180 raw_spin_unlock_irqrestore(&desc->lock, flags); 2181 return -EINVAL; 2182 } 2183 2184 raw_spin_unlock_irqrestore(&desc->lock, flags); 2185 2186 return 0; 2187 2188 err_irq_setup: 2189 irq_chip_pm_put(&desc->irq_data); 2190 err_out: 2191 kfree(action); 2192 2193 return retval; 2194 } 2195 2196 void enable_percpu_irq(unsigned int irq, unsigned int type) 2197 { 2198 unsigned int cpu = smp_processor_id(); 2199 unsigned long flags; 2200 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 2201 2202 if (!desc) 2203 return; 2204 2205 /* 2206 * If the trigger type is not specified by the caller, then 2207 * use the default for this interrupt. 2208 */ 2209 type &= IRQ_TYPE_SENSE_MASK; 2210 if (type == IRQ_TYPE_NONE) 2211 type = irqd_get_trigger_type(&desc->irq_data); 2212 2213 if (type != IRQ_TYPE_NONE) { 2214 int ret; 2215 2216 ret = __irq_set_trigger(desc, type); 2217 2218 if (ret) { 2219 WARN(1, "failed to set type for IRQ%d\n", irq); 2220 goto out; 2221 } 2222 } 2223 2224 irq_percpu_enable(desc, cpu); 2225 out: 2226 irq_put_desc_unlock(desc, flags); 2227 } 2228 EXPORT_SYMBOL_GPL(enable_percpu_irq); 2229 2230 void enable_percpu_nmi(unsigned int irq, unsigned int type) 2231 { 2232 enable_percpu_irq(irq, type); 2233 } 2234 2235 /** 2236 * irq_percpu_is_enabled - Check whether the per cpu irq is enabled 2237 * @irq: Linux irq number to check for 2238 * 2239 * Must be called from a non migratable context. Returns the enable 2240 * state of a per cpu interrupt on the current cpu. 2241 */ 2242 bool irq_percpu_is_enabled(unsigned int irq) 2243 { 2244 unsigned int cpu = smp_processor_id(); 2245 struct irq_desc *desc; 2246 unsigned long flags; 2247 bool is_enabled; 2248 2249 desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 2250 if (!desc) 2251 return false; 2252 2253 is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled); 2254 irq_put_desc_unlock(desc, flags); 2255 2256 return is_enabled; 2257 } 2258 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled); 2259 2260 void disable_percpu_irq(unsigned int irq) 2261 { 2262 unsigned int cpu = smp_processor_id(); 2263 unsigned long flags; 2264 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 2265 2266 if (!desc) 2267 return; 2268 2269 irq_percpu_disable(desc, cpu); 2270 irq_put_desc_unlock(desc, flags); 2271 } 2272 EXPORT_SYMBOL_GPL(disable_percpu_irq); 2273 2274 void disable_percpu_nmi(unsigned int irq) 2275 { 2276 disable_percpu_irq(irq); 2277 } 2278 2279 /* 2280 * Internal function to unregister a percpu irqaction. 2281 */ 2282 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id) 2283 { 2284 struct irq_desc *desc = irq_to_desc(irq); 2285 struct irqaction *action; 2286 unsigned long flags; 2287 2288 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq); 2289 2290 if (!desc) 2291 return NULL; 2292 2293 raw_spin_lock_irqsave(&desc->lock, flags); 2294 2295 action = desc->action; 2296 if (!action || action->percpu_dev_id != dev_id) { 2297 WARN(1, "Trying to free already-free IRQ %d\n", irq); 2298 goto bad; 2299 } 2300 2301 if (!cpumask_empty(desc->percpu_enabled)) { 2302 WARN(1, "percpu IRQ %d still enabled on CPU%d!\n", 2303 irq, cpumask_first(desc->percpu_enabled)); 2304 goto bad; 2305 } 2306 2307 /* Found it - now remove it from the list of entries: */ 2308 desc->action = NULL; 2309 2310 desc->istate &= ~IRQS_NMI; 2311 2312 raw_spin_unlock_irqrestore(&desc->lock, flags); 2313 2314 unregister_handler_proc(irq, action); 2315 2316 irq_chip_pm_put(&desc->irq_data); 2317 module_put(desc->owner); 2318 return action; 2319 2320 bad: 2321 raw_spin_unlock_irqrestore(&desc->lock, flags); 2322 return NULL; 2323 } 2324 2325 /** 2326 * remove_percpu_irq - free a per-cpu interrupt 2327 * @irq: Interrupt line to free 2328 * @act: irqaction for the interrupt 2329 * 2330 * Used to remove interrupts statically setup by the early boot process. 2331 */ 2332 void remove_percpu_irq(unsigned int irq, struct irqaction *act) 2333 { 2334 struct irq_desc *desc = irq_to_desc(irq); 2335 2336 if (desc && irq_settings_is_per_cpu_devid(desc)) 2337 __free_percpu_irq(irq, act->percpu_dev_id); 2338 } 2339 2340 /** 2341 * free_percpu_irq - free an interrupt allocated with request_percpu_irq 2342 * @irq: Interrupt line to free 2343 * @dev_id: Device identity to free 2344 * 2345 * Remove a percpu interrupt handler. The handler is removed, but 2346 * the interrupt line is not disabled. This must be done on each 2347 * CPU before calling this function. The function does not return 2348 * until any executing interrupts for this IRQ have completed. 2349 * 2350 * This function must not be called from interrupt context. 2351 */ 2352 void free_percpu_irq(unsigned int irq, void __percpu *dev_id) 2353 { 2354 struct irq_desc *desc = irq_to_desc(irq); 2355 2356 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2357 return; 2358 2359 chip_bus_lock(desc); 2360 kfree(__free_percpu_irq(irq, dev_id)); 2361 chip_bus_sync_unlock(desc); 2362 } 2363 EXPORT_SYMBOL_GPL(free_percpu_irq); 2364 2365 void free_percpu_nmi(unsigned int irq, void __percpu *dev_id) 2366 { 2367 struct irq_desc *desc = irq_to_desc(irq); 2368 2369 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2370 return; 2371 2372 if (WARN_ON(!(desc->istate & IRQS_NMI))) 2373 return; 2374 2375 kfree(__free_percpu_irq(irq, dev_id)); 2376 } 2377 2378 /** 2379 * setup_percpu_irq - setup a per-cpu interrupt 2380 * @irq: Interrupt line to setup 2381 * @act: irqaction for the interrupt 2382 * 2383 * Used to statically setup per-cpu interrupts in the early boot process. 2384 */ 2385 int setup_percpu_irq(unsigned int irq, struct irqaction *act) 2386 { 2387 struct irq_desc *desc = irq_to_desc(irq); 2388 int retval; 2389 2390 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2391 return -EINVAL; 2392 2393 retval = irq_chip_pm_get(&desc->irq_data); 2394 if (retval < 0) 2395 return retval; 2396 2397 retval = __setup_irq(irq, desc, act); 2398 2399 if (retval) 2400 irq_chip_pm_put(&desc->irq_data); 2401 2402 return retval; 2403 } 2404 2405 /** 2406 * __request_percpu_irq - allocate a percpu interrupt line 2407 * @irq: Interrupt line to allocate 2408 * @handler: Function to be called when the IRQ occurs. 2409 * @flags: Interrupt type flags (IRQF_TIMER only) 2410 * @devname: An ascii name for the claiming device 2411 * @dev_id: A percpu cookie passed back to the handler function 2412 * 2413 * This call allocates interrupt resources and enables the 2414 * interrupt on the local CPU. If the interrupt is supposed to be 2415 * enabled on other CPUs, it has to be done on each CPU using 2416 * enable_percpu_irq(). 2417 * 2418 * Dev_id must be globally unique. It is a per-cpu variable, and 2419 * the handler gets called with the interrupted CPU's instance of 2420 * that variable. 2421 */ 2422 int __request_percpu_irq(unsigned int irq, irq_handler_t handler, 2423 unsigned long flags, const char *devname, 2424 void __percpu *dev_id) 2425 { 2426 struct irqaction *action; 2427 struct irq_desc *desc; 2428 int retval; 2429 2430 if (!dev_id) 2431 return -EINVAL; 2432 2433 desc = irq_to_desc(irq); 2434 if (!desc || !irq_settings_can_request(desc) || 2435 !irq_settings_is_per_cpu_devid(desc)) 2436 return -EINVAL; 2437 2438 if (flags && flags != IRQF_TIMER) 2439 return -EINVAL; 2440 2441 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2442 if (!action) 2443 return -ENOMEM; 2444 2445 action->handler = handler; 2446 action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND; 2447 action->name = devname; 2448 action->percpu_dev_id = dev_id; 2449 2450 retval = irq_chip_pm_get(&desc->irq_data); 2451 if (retval < 0) { 2452 kfree(action); 2453 return retval; 2454 } 2455 2456 retval = __setup_irq(irq, desc, action); 2457 2458 if (retval) { 2459 irq_chip_pm_put(&desc->irq_data); 2460 kfree(action); 2461 } 2462 2463 return retval; 2464 } 2465 EXPORT_SYMBOL_GPL(__request_percpu_irq); 2466 2467 /** 2468 * request_percpu_nmi - allocate a percpu interrupt line for NMI delivery 2469 * @irq: Interrupt line to allocate 2470 * @handler: Function to be called when the IRQ occurs. 2471 * @name: An ascii name for the claiming device 2472 * @dev_id: A percpu cookie passed back to the handler function 2473 * 2474 * This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs 2475 * have to be setup on each CPU by calling prepare_percpu_nmi() before 2476 * being enabled on the same CPU by using enable_percpu_nmi(). 2477 * 2478 * Dev_id must be globally unique. It is a per-cpu variable, and 2479 * the handler gets called with the interrupted CPU's instance of 2480 * that variable. 2481 * 2482 * Interrupt lines requested for NMI delivering should have auto enabling 2483 * setting disabled. 2484 * 2485 * If the interrupt line cannot be used to deliver NMIs, function 2486 * will fail returning a negative value. 2487 */ 2488 int request_percpu_nmi(unsigned int irq, irq_handler_t handler, 2489 const char *name, void __percpu *dev_id) 2490 { 2491 struct irqaction *action; 2492 struct irq_desc *desc; 2493 unsigned long flags; 2494 int retval; 2495 2496 if (!handler) 2497 return -EINVAL; 2498 2499 desc = irq_to_desc(irq); 2500 2501 if (!desc || !irq_settings_can_request(desc) || 2502 !irq_settings_is_per_cpu_devid(desc) || 2503 irq_settings_can_autoenable(desc) || 2504 !irq_supports_nmi(desc)) 2505 return -EINVAL; 2506 2507 /* The line cannot already be NMI */ 2508 if (desc->istate & IRQS_NMI) 2509 return -EINVAL; 2510 2511 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2512 if (!action) 2513 return -ENOMEM; 2514 2515 action->handler = handler; 2516 action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD 2517 | IRQF_NOBALANCING; 2518 action->name = name; 2519 action->percpu_dev_id = dev_id; 2520 2521 retval = irq_chip_pm_get(&desc->irq_data); 2522 if (retval < 0) 2523 goto err_out; 2524 2525 retval = __setup_irq(irq, desc, action); 2526 if (retval) 2527 goto err_irq_setup; 2528 2529 raw_spin_lock_irqsave(&desc->lock, flags); 2530 desc->istate |= IRQS_NMI; 2531 raw_spin_unlock_irqrestore(&desc->lock, flags); 2532 2533 return 0; 2534 2535 err_irq_setup: 2536 irq_chip_pm_put(&desc->irq_data); 2537 err_out: 2538 kfree(action); 2539 2540 return retval; 2541 } 2542 2543 /** 2544 * prepare_percpu_nmi - performs CPU local setup for NMI delivery 2545 * @irq: Interrupt line to prepare for NMI delivery 2546 * 2547 * This call prepares an interrupt line to deliver NMI on the current CPU, 2548 * before that interrupt line gets enabled with enable_percpu_nmi(). 2549 * 2550 * As a CPU local operation, this should be called from non-preemptible 2551 * context. 2552 * 2553 * If the interrupt line cannot be used to deliver NMIs, function 2554 * will fail returning a negative value. 2555 */ 2556 int prepare_percpu_nmi(unsigned int irq) 2557 { 2558 unsigned long flags; 2559 struct irq_desc *desc; 2560 int ret = 0; 2561 2562 WARN_ON(preemptible()); 2563 2564 desc = irq_get_desc_lock(irq, &flags, 2565 IRQ_GET_DESC_CHECK_PERCPU); 2566 if (!desc) 2567 return -EINVAL; 2568 2569 if (WARN(!(desc->istate & IRQS_NMI), 2570 KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n", 2571 irq)) { 2572 ret = -EINVAL; 2573 goto out; 2574 } 2575 2576 ret = irq_nmi_setup(desc); 2577 if (ret) { 2578 pr_err("Failed to setup NMI delivery: irq %u\n", irq); 2579 goto out; 2580 } 2581 2582 out: 2583 irq_put_desc_unlock(desc, flags); 2584 return ret; 2585 } 2586 2587 /** 2588 * teardown_percpu_nmi - undoes NMI setup of IRQ line 2589 * @irq: Interrupt line from which CPU local NMI configuration should be 2590 * removed 2591 * 2592 * This call undoes the setup done by prepare_percpu_nmi(). 2593 * 2594 * IRQ line should not be enabled for the current CPU. 2595 * 2596 * As a CPU local operation, this should be called from non-preemptible 2597 * context. 2598 */ 2599 void teardown_percpu_nmi(unsigned int irq) 2600 { 2601 unsigned long flags; 2602 struct irq_desc *desc; 2603 2604 WARN_ON(preemptible()); 2605 2606 desc = irq_get_desc_lock(irq, &flags, 2607 IRQ_GET_DESC_CHECK_PERCPU); 2608 if (!desc) 2609 return; 2610 2611 if (WARN_ON(!(desc->istate & IRQS_NMI))) 2612 goto out; 2613 2614 irq_nmi_teardown(desc); 2615 out: 2616 irq_put_desc_unlock(desc, flags); 2617 } 2618 2619 int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which, 2620 bool *state) 2621 { 2622 struct irq_chip *chip; 2623 int err = -EINVAL; 2624 2625 do { 2626 chip = irq_data_get_irq_chip(data); 2627 if (chip->irq_get_irqchip_state) 2628 break; 2629 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 2630 data = data->parent_data; 2631 #else 2632 data = NULL; 2633 #endif 2634 } while (data); 2635 2636 if (data) 2637 err = chip->irq_get_irqchip_state(data, which, state); 2638 return err; 2639 } 2640 2641 /** 2642 * irq_get_irqchip_state - returns the irqchip state of a interrupt. 2643 * @irq: Interrupt line that is forwarded to a VM 2644 * @which: One of IRQCHIP_STATE_* the caller wants to know about 2645 * @state: a pointer to a boolean where the state is to be storeed 2646 * 2647 * This call snapshots the internal irqchip state of an 2648 * interrupt, returning into @state the bit corresponding to 2649 * stage @which 2650 * 2651 * This function should be called with preemption disabled if the 2652 * interrupt controller has per-cpu registers. 2653 */ 2654 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which, 2655 bool *state) 2656 { 2657 struct irq_desc *desc; 2658 struct irq_data *data; 2659 unsigned long flags; 2660 int err = -EINVAL; 2661 2662 desc = irq_get_desc_buslock(irq, &flags, 0); 2663 if (!desc) 2664 return err; 2665 2666 data = irq_desc_get_irq_data(desc); 2667 2668 err = __irq_get_irqchip_state(data, which, state); 2669 2670 irq_put_desc_busunlock(desc, flags); 2671 return err; 2672 } 2673 EXPORT_SYMBOL_GPL(irq_get_irqchip_state); 2674 2675 /** 2676 * irq_set_irqchip_state - set the state of a forwarded interrupt. 2677 * @irq: Interrupt line that is forwarded to a VM 2678 * @which: State to be restored (one of IRQCHIP_STATE_*) 2679 * @val: Value corresponding to @which 2680 * 2681 * This call sets the internal irqchip state of an interrupt, 2682 * depending on the value of @which. 2683 * 2684 * This function should be called with preemption disabled if the 2685 * interrupt controller has per-cpu registers. 2686 */ 2687 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which, 2688 bool val) 2689 { 2690 struct irq_desc *desc; 2691 struct irq_data *data; 2692 struct irq_chip *chip; 2693 unsigned long flags; 2694 int err = -EINVAL; 2695 2696 desc = irq_get_desc_buslock(irq, &flags, 0); 2697 if (!desc) 2698 return err; 2699 2700 data = irq_desc_get_irq_data(desc); 2701 2702 do { 2703 chip = irq_data_get_irq_chip(data); 2704 if (chip->irq_set_irqchip_state) 2705 break; 2706 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 2707 data = data->parent_data; 2708 #else 2709 data = NULL; 2710 #endif 2711 } while (data); 2712 2713 if (data) 2714 err = chip->irq_set_irqchip_state(data, which, val); 2715 2716 irq_put_desc_busunlock(desc, flags); 2717 return err; 2718 } 2719 EXPORT_SYMBOL_GPL(irq_set_irqchip_state); 2720