1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar 4 * Copyright (C) 2005-2006 Thomas Gleixner 5 * 6 * This file contains driver APIs to the irq subsystem. 7 */ 8 9 #define pr_fmt(fmt) "genirq: " fmt 10 11 #include <linux/irq.h> 12 #include <linux/kthread.h> 13 #include <linux/module.h> 14 #include <linux/random.h> 15 #include <linux/interrupt.h> 16 #include <linux/irqdomain.h> 17 #include <linux/slab.h> 18 #include <linux/sched.h> 19 #include <linux/sched/rt.h> 20 #include <linux/sched/task.h> 21 #include <linux/sched/isolation.h> 22 #include <uapi/linux/sched/types.h> 23 #include <linux/task_work.h> 24 25 #include "internals.h" 26 27 #if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT) 28 __read_mostly bool force_irqthreads; 29 EXPORT_SYMBOL_GPL(force_irqthreads); 30 31 static int __init setup_forced_irqthreads(char *arg) 32 { 33 force_irqthreads = true; 34 return 0; 35 } 36 early_param("threadirqs", setup_forced_irqthreads); 37 #endif 38 39 static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip) 40 { 41 struct irq_data *irqd = irq_desc_get_irq_data(desc); 42 bool inprogress; 43 44 do { 45 unsigned long flags; 46 47 /* 48 * Wait until we're out of the critical section. This might 49 * give the wrong answer due to the lack of memory barriers. 50 */ 51 while (irqd_irq_inprogress(&desc->irq_data)) 52 cpu_relax(); 53 54 /* Ok, that indicated we're done: double-check carefully. */ 55 raw_spin_lock_irqsave(&desc->lock, flags); 56 inprogress = irqd_irq_inprogress(&desc->irq_data); 57 58 /* 59 * If requested and supported, check at the chip whether it 60 * is in flight at the hardware level, i.e. already pending 61 * in a CPU and waiting for service and acknowledge. 62 */ 63 if (!inprogress && sync_chip) { 64 /* 65 * Ignore the return code. inprogress is only updated 66 * when the chip supports it. 67 */ 68 __irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE, 69 &inprogress); 70 } 71 raw_spin_unlock_irqrestore(&desc->lock, flags); 72 73 /* Oops, that failed? */ 74 } while (inprogress); 75 } 76 77 /** 78 * synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs) 79 * @irq: interrupt number to wait for 80 * 81 * This function waits for any pending hard IRQ handlers for this 82 * interrupt to complete before returning. If you use this 83 * function while holding a resource the IRQ handler may need you 84 * will deadlock. It does not take associated threaded handlers 85 * into account. 86 * 87 * Do not use this for shutdown scenarios where you must be sure 88 * that all parts (hardirq and threaded handler) have completed. 89 * 90 * Returns: false if a threaded handler is active. 91 * 92 * This function may be called - with care - from IRQ context. 93 * 94 * It does not check whether there is an interrupt in flight at the 95 * hardware level, but not serviced yet, as this might deadlock when 96 * called with interrupts disabled and the target CPU of the interrupt 97 * is the current CPU. 98 */ 99 bool synchronize_hardirq(unsigned int irq) 100 { 101 struct irq_desc *desc = irq_to_desc(irq); 102 103 if (desc) { 104 __synchronize_hardirq(desc, false); 105 return !atomic_read(&desc->threads_active); 106 } 107 108 return true; 109 } 110 EXPORT_SYMBOL(synchronize_hardirq); 111 112 /** 113 * synchronize_irq - wait for pending IRQ handlers (on other CPUs) 114 * @irq: interrupt number to wait for 115 * 116 * This function waits for any pending IRQ handlers for this interrupt 117 * to complete before returning. If you use this function while 118 * holding a resource the IRQ handler may need you will deadlock. 119 * 120 * Can only be called from preemptible code as it might sleep when 121 * an interrupt thread is associated to @irq. 122 * 123 * It optionally makes sure (when the irq chip supports that method) 124 * that the interrupt is not pending in any CPU and waiting for 125 * service. 126 */ 127 void synchronize_irq(unsigned int irq) 128 { 129 struct irq_desc *desc = irq_to_desc(irq); 130 131 if (desc) { 132 __synchronize_hardirq(desc, true); 133 /* 134 * We made sure that no hardirq handler is 135 * running. Now verify that no threaded handlers are 136 * active. 137 */ 138 wait_event(desc->wait_for_threads, 139 !atomic_read(&desc->threads_active)); 140 } 141 } 142 EXPORT_SYMBOL(synchronize_irq); 143 144 #ifdef CONFIG_SMP 145 cpumask_var_t irq_default_affinity; 146 147 static bool __irq_can_set_affinity(struct irq_desc *desc) 148 { 149 if (!desc || !irqd_can_balance(&desc->irq_data) || 150 !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity) 151 return false; 152 return true; 153 } 154 155 /** 156 * irq_can_set_affinity - Check if the affinity of a given irq can be set 157 * @irq: Interrupt to check 158 * 159 */ 160 int irq_can_set_affinity(unsigned int irq) 161 { 162 return __irq_can_set_affinity(irq_to_desc(irq)); 163 } 164 165 /** 166 * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space 167 * @irq: Interrupt to check 168 * 169 * Like irq_can_set_affinity() above, but additionally checks for the 170 * AFFINITY_MANAGED flag. 171 */ 172 bool irq_can_set_affinity_usr(unsigned int irq) 173 { 174 struct irq_desc *desc = irq_to_desc(irq); 175 176 return __irq_can_set_affinity(desc) && 177 !irqd_affinity_is_managed(&desc->irq_data); 178 } 179 180 /** 181 * irq_set_thread_affinity - Notify irq threads to adjust affinity 182 * @desc: irq descriptor which has affinity changed 183 * 184 * We just set IRQTF_AFFINITY and delegate the affinity setting 185 * to the interrupt thread itself. We can not call 186 * set_cpus_allowed_ptr() here as we hold desc->lock and this 187 * code can be called from hard interrupt context. 188 */ 189 void irq_set_thread_affinity(struct irq_desc *desc) 190 { 191 struct irqaction *action; 192 193 for_each_action_of_desc(desc, action) 194 if (action->thread) 195 set_bit(IRQTF_AFFINITY, &action->thread_flags); 196 } 197 198 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK 199 static void irq_validate_effective_affinity(struct irq_data *data) 200 { 201 const struct cpumask *m = irq_data_get_effective_affinity_mask(data); 202 struct irq_chip *chip = irq_data_get_irq_chip(data); 203 204 if (!cpumask_empty(m)) 205 return; 206 pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n", 207 chip->name, data->irq); 208 } 209 210 static inline void irq_init_effective_affinity(struct irq_data *data, 211 const struct cpumask *mask) 212 { 213 cpumask_copy(irq_data_get_effective_affinity_mask(data), mask); 214 } 215 #else 216 static inline void irq_validate_effective_affinity(struct irq_data *data) { } 217 static inline void irq_init_effective_affinity(struct irq_data *data, 218 const struct cpumask *mask) { } 219 #endif 220 221 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask, 222 bool force) 223 { 224 struct irq_desc *desc = irq_data_to_desc(data); 225 struct irq_chip *chip = irq_data_get_irq_chip(data); 226 int ret; 227 228 if (!chip || !chip->irq_set_affinity) 229 return -EINVAL; 230 231 /* 232 * If this is a managed interrupt and housekeeping is enabled on 233 * it check whether the requested affinity mask intersects with 234 * a housekeeping CPU. If so, then remove the isolated CPUs from 235 * the mask and just keep the housekeeping CPU(s). This prevents 236 * the affinity setter from routing the interrupt to an isolated 237 * CPU to avoid that I/O submitted from a housekeeping CPU causes 238 * interrupts on an isolated one. 239 * 240 * If the masks do not intersect or include online CPU(s) then 241 * keep the requested mask. The isolated target CPUs are only 242 * receiving interrupts when the I/O operation was submitted 243 * directly from them. 244 * 245 * If all housekeeping CPUs in the affinity mask are offline, the 246 * interrupt will be migrated by the CPU hotplug code once a 247 * housekeeping CPU which belongs to the affinity mask comes 248 * online. 249 */ 250 if (irqd_affinity_is_managed(data) && 251 housekeeping_enabled(HK_FLAG_MANAGED_IRQ)) { 252 const struct cpumask *hk_mask, *prog_mask; 253 254 static DEFINE_RAW_SPINLOCK(tmp_mask_lock); 255 static struct cpumask tmp_mask; 256 257 hk_mask = housekeeping_cpumask(HK_FLAG_MANAGED_IRQ); 258 259 raw_spin_lock(&tmp_mask_lock); 260 cpumask_and(&tmp_mask, mask, hk_mask); 261 if (!cpumask_intersects(&tmp_mask, cpu_online_mask)) 262 prog_mask = mask; 263 else 264 prog_mask = &tmp_mask; 265 ret = chip->irq_set_affinity(data, prog_mask, force); 266 raw_spin_unlock(&tmp_mask_lock); 267 } else { 268 ret = chip->irq_set_affinity(data, mask, force); 269 } 270 switch (ret) { 271 case IRQ_SET_MASK_OK: 272 case IRQ_SET_MASK_OK_DONE: 273 cpumask_copy(desc->irq_common_data.affinity, mask); 274 fallthrough; 275 case IRQ_SET_MASK_OK_NOCOPY: 276 irq_validate_effective_affinity(data); 277 irq_set_thread_affinity(desc); 278 ret = 0; 279 } 280 281 return ret; 282 } 283 284 #ifdef CONFIG_GENERIC_PENDING_IRQ 285 static inline int irq_set_affinity_pending(struct irq_data *data, 286 const struct cpumask *dest) 287 { 288 struct irq_desc *desc = irq_data_to_desc(data); 289 290 irqd_set_move_pending(data); 291 irq_copy_pending(desc, dest); 292 return 0; 293 } 294 #else 295 static inline int irq_set_affinity_pending(struct irq_data *data, 296 const struct cpumask *dest) 297 { 298 return -EBUSY; 299 } 300 #endif 301 302 static int irq_try_set_affinity(struct irq_data *data, 303 const struct cpumask *dest, bool force) 304 { 305 int ret = irq_do_set_affinity(data, dest, force); 306 307 /* 308 * In case that the underlying vector management is busy and the 309 * architecture supports the generic pending mechanism then utilize 310 * this to avoid returning an error to user space. 311 */ 312 if (ret == -EBUSY && !force) 313 ret = irq_set_affinity_pending(data, dest); 314 return ret; 315 } 316 317 static bool irq_set_affinity_deactivated(struct irq_data *data, 318 const struct cpumask *mask, bool force) 319 { 320 struct irq_desc *desc = irq_data_to_desc(data); 321 322 /* 323 * Handle irq chips which can handle affinity only in activated 324 * state correctly 325 * 326 * If the interrupt is not yet activated, just store the affinity 327 * mask and do not call the chip driver at all. On activation the 328 * driver has to make sure anyway that the interrupt is in a 329 * usable state so startup works. 330 */ 331 if (!IS_ENABLED(CONFIG_IRQ_DOMAIN_HIERARCHY) || 332 irqd_is_activated(data) || !irqd_affinity_on_activate(data)) 333 return false; 334 335 cpumask_copy(desc->irq_common_data.affinity, mask); 336 irq_init_effective_affinity(data, mask); 337 irqd_set(data, IRQD_AFFINITY_SET); 338 return true; 339 } 340 341 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask, 342 bool force) 343 { 344 struct irq_chip *chip = irq_data_get_irq_chip(data); 345 struct irq_desc *desc = irq_data_to_desc(data); 346 int ret = 0; 347 348 if (!chip || !chip->irq_set_affinity) 349 return -EINVAL; 350 351 if (irq_set_affinity_deactivated(data, mask, force)) 352 return 0; 353 354 if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) { 355 ret = irq_try_set_affinity(data, mask, force); 356 } else { 357 irqd_set_move_pending(data); 358 irq_copy_pending(desc, mask); 359 } 360 361 if (desc->affinity_notify) { 362 kref_get(&desc->affinity_notify->kref); 363 if (!schedule_work(&desc->affinity_notify->work)) { 364 /* Work was already scheduled, drop our extra ref */ 365 kref_put(&desc->affinity_notify->kref, 366 desc->affinity_notify->release); 367 } 368 } 369 irqd_set(data, IRQD_AFFINITY_SET); 370 371 return ret; 372 } 373 374 /** 375 * irq_update_affinity_desc - Update affinity management for an interrupt 376 * @irq: The interrupt number to update 377 * @affinity: Pointer to the affinity descriptor 378 * 379 * This interface can be used to configure the affinity management of 380 * interrupts which have been allocated already. 381 * 382 * There are certain limitations on when it may be used - attempts to use it 383 * for when the kernel is configured for generic IRQ reservation mode (in 384 * config GENERIC_IRQ_RESERVATION_MODE) will fail, as it may conflict with 385 * managed/non-managed interrupt accounting. In addition, attempts to use it on 386 * an interrupt which is already started or which has already been configured 387 * as managed will also fail, as these mean invalid init state or double init. 388 */ 389 int irq_update_affinity_desc(unsigned int irq, 390 struct irq_affinity_desc *affinity) 391 { 392 struct irq_desc *desc; 393 unsigned long flags; 394 bool activated; 395 int ret = 0; 396 397 /* 398 * Supporting this with the reservation scheme used by x86 needs 399 * some more thought. Fail it for now. 400 */ 401 if (IS_ENABLED(CONFIG_GENERIC_IRQ_RESERVATION_MODE)) 402 return -EOPNOTSUPP; 403 404 desc = irq_get_desc_buslock(irq, &flags, 0); 405 if (!desc) 406 return -EINVAL; 407 408 /* Requires the interrupt to be shut down */ 409 if (irqd_is_started(&desc->irq_data)) { 410 ret = -EBUSY; 411 goto out_unlock; 412 } 413 414 /* Interrupts which are already managed cannot be modified */ 415 if (irqd_affinity_is_managed(&desc->irq_data)) { 416 ret = -EBUSY; 417 goto out_unlock; 418 } 419 420 /* 421 * Deactivate the interrupt. That's required to undo 422 * anything an earlier activation has established. 423 */ 424 activated = irqd_is_activated(&desc->irq_data); 425 if (activated) 426 irq_domain_deactivate_irq(&desc->irq_data); 427 428 if (affinity->is_managed) { 429 irqd_set(&desc->irq_data, IRQD_AFFINITY_MANAGED); 430 irqd_set(&desc->irq_data, IRQD_MANAGED_SHUTDOWN); 431 } 432 433 cpumask_copy(desc->irq_common_data.affinity, &affinity->mask); 434 435 /* Restore the activation state */ 436 if (activated) 437 irq_domain_activate_irq(&desc->irq_data, false); 438 439 out_unlock: 440 irq_put_desc_busunlock(desc, flags); 441 return ret; 442 } 443 444 static int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, 445 bool force) 446 { 447 struct irq_desc *desc = irq_to_desc(irq); 448 unsigned long flags; 449 int ret; 450 451 if (!desc) 452 return -EINVAL; 453 454 raw_spin_lock_irqsave(&desc->lock, flags); 455 ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force); 456 raw_spin_unlock_irqrestore(&desc->lock, flags); 457 return ret; 458 } 459 460 /** 461 * irq_set_affinity - Set the irq affinity of a given irq 462 * @irq: Interrupt to set affinity 463 * @cpumask: cpumask 464 * 465 * Fails if cpumask does not contain an online CPU 466 */ 467 int irq_set_affinity(unsigned int irq, const struct cpumask *cpumask) 468 { 469 return __irq_set_affinity(irq, cpumask, false); 470 } 471 EXPORT_SYMBOL_GPL(irq_set_affinity); 472 473 /** 474 * irq_force_affinity - Force the irq affinity of a given irq 475 * @irq: Interrupt to set affinity 476 * @cpumask: cpumask 477 * 478 * Same as irq_set_affinity, but without checking the mask against 479 * online cpus. 480 * 481 * Solely for low level cpu hotplug code, where we need to make per 482 * cpu interrupts affine before the cpu becomes online. 483 */ 484 int irq_force_affinity(unsigned int irq, const struct cpumask *cpumask) 485 { 486 return __irq_set_affinity(irq, cpumask, true); 487 } 488 EXPORT_SYMBOL_GPL(irq_force_affinity); 489 490 int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m) 491 { 492 unsigned long flags; 493 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 494 495 if (!desc) 496 return -EINVAL; 497 desc->affinity_hint = m; 498 irq_put_desc_unlock(desc, flags); 499 /* set the initial affinity to prevent every interrupt being on CPU0 */ 500 if (m) 501 __irq_set_affinity(irq, m, false); 502 return 0; 503 } 504 EXPORT_SYMBOL_GPL(irq_set_affinity_hint); 505 506 static void irq_affinity_notify(struct work_struct *work) 507 { 508 struct irq_affinity_notify *notify = 509 container_of(work, struct irq_affinity_notify, work); 510 struct irq_desc *desc = irq_to_desc(notify->irq); 511 cpumask_var_t cpumask; 512 unsigned long flags; 513 514 if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL)) 515 goto out; 516 517 raw_spin_lock_irqsave(&desc->lock, flags); 518 if (irq_move_pending(&desc->irq_data)) 519 irq_get_pending(cpumask, desc); 520 else 521 cpumask_copy(cpumask, desc->irq_common_data.affinity); 522 raw_spin_unlock_irqrestore(&desc->lock, flags); 523 524 notify->notify(notify, cpumask); 525 526 free_cpumask_var(cpumask); 527 out: 528 kref_put(¬ify->kref, notify->release); 529 } 530 531 /** 532 * irq_set_affinity_notifier - control notification of IRQ affinity changes 533 * @irq: Interrupt for which to enable/disable notification 534 * @notify: Context for notification, or %NULL to disable 535 * notification. Function pointers must be initialised; 536 * the other fields will be initialised by this function. 537 * 538 * Must be called in process context. Notification may only be enabled 539 * after the IRQ is allocated and must be disabled before the IRQ is 540 * freed using free_irq(). 541 */ 542 int 543 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify) 544 { 545 struct irq_desc *desc = irq_to_desc(irq); 546 struct irq_affinity_notify *old_notify; 547 unsigned long flags; 548 549 /* The release function is promised process context */ 550 might_sleep(); 551 552 if (!desc || desc->istate & IRQS_NMI) 553 return -EINVAL; 554 555 /* Complete initialisation of *notify */ 556 if (notify) { 557 notify->irq = irq; 558 kref_init(¬ify->kref); 559 INIT_WORK(¬ify->work, irq_affinity_notify); 560 } 561 562 raw_spin_lock_irqsave(&desc->lock, flags); 563 old_notify = desc->affinity_notify; 564 desc->affinity_notify = notify; 565 raw_spin_unlock_irqrestore(&desc->lock, flags); 566 567 if (old_notify) { 568 if (cancel_work_sync(&old_notify->work)) { 569 /* Pending work had a ref, put that one too */ 570 kref_put(&old_notify->kref, old_notify->release); 571 } 572 kref_put(&old_notify->kref, old_notify->release); 573 } 574 575 return 0; 576 } 577 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier); 578 579 #ifndef CONFIG_AUTO_IRQ_AFFINITY 580 /* 581 * Generic version of the affinity autoselector. 582 */ 583 int irq_setup_affinity(struct irq_desc *desc) 584 { 585 struct cpumask *set = irq_default_affinity; 586 int ret, node = irq_desc_get_node(desc); 587 static DEFINE_RAW_SPINLOCK(mask_lock); 588 static struct cpumask mask; 589 590 /* Excludes PER_CPU and NO_BALANCE interrupts */ 591 if (!__irq_can_set_affinity(desc)) 592 return 0; 593 594 raw_spin_lock(&mask_lock); 595 /* 596 * Preserve the managed affinity setting and a userspace affinity 597 * setup, but make sure that one of the targets is online. 598 */ 599 if (irqd_affinity_is_managed(&desc->irq_data) || 600 irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) { 601 if (cpumask_intersects(desc->irq_common_data.affinity, 602 cpu_online_mask)) 603 set = desc->irq_common_data.affinity; 604 else 605 irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET); 606 } 607 608 cpumask_and(&mask, cpu_online_mask, set); 609 if (cpumask_empty(&mask)) 610 cpumask_copy(&mask, cpu_online_mask); 611 612 if (node != NUMA_NO_NODE) { 613 const struct cpumask *nodemask = cpumask_of_node(node); 614 615 /* make sure at least one of the cpus in nodemask is online */ 616 if (cpumask_intersects(&mask, nodemask)) 617 cpumask_and(&mask, &mask, nodemask); 618 } 619 ret = irq_do_set_affinity(&desc->irq_data, &mask, false); 620 raw_spin_unlock(&mask_lock); 621 return ret; 622 } 623 #else 624 /* Wrapper for ALPHA specific affinity selector magic */ 625 int irq_setup_affinity(struct irq_desc *desc) 626 { 627 return irq_select_affinity(irq_desc_get_irq(desc)); 628 } 629 #endif /* CONFIG_AUTO_IRQ_AFFINITY */ 630 #endif /* CONFIG_SMP */ 631 632 633 /** 634 * irq_set_vcpu_affinity - Set vcpu affinity for the interrupt 635 * @irq: interrupt number to set affinity 636 * @vcpu_info: vCPU specific data or pointer to a percpu array of vCPU 637 * specific data for percpu_devid interrupts 638 * 639 * This function uses the vCPU specific data to set the vCPU 640 * affinity for an irq. The vCPU specific data is passed from 641 * outside, such as KVM. One example code path is as below: 642 * KVM -> IOMMU -> irq_set_vcpu_affinity(). 643 */ 644 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info) 645 { 646 unsigned long flags; 647 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 648 struct irq_data *data; 649 struct irq_chip *chip; 650 int ret = -ENOSYS; 651 652 if (!desc) 653 return -EINVAL; 654 655 data = irq_desc_get_irq_data(desc); 656 do { 657 chip = irq_data_get_irq_chip(data); 658 if (chip && chip->irq_set_vcpu_affinity) 659 break; 660 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 661 data = data->parent_data; 662 #else 663 data = NULL; 664 #endif 665 } while (data); 666 667 if (data) 668 ret = chip->irq_set_vcpu_affinity(data, vcpu_info); 669 irq_put_desc_unlock(desc, flags); 670 671 return ret; 672 } 673 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity); 674 675 void __disable_irq(struct irq_desc *desc) 676 { 677 if (!desc->depth++) 678 irq_disable(desc); 679 } 680 681 static int __disable_irq_nosync(unsigned int irq) 682 { 683 unsigned long flags; 684 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 685 686 if (!desc) 687 return -EINVAL; 688 __disable_irq(desc); 689 irq_put_desc_busunlock(desc, flags); 690 return 0; 691 } 692 693 /** 694 * disable_irq_nosync - disable an irq without waiting 695 * @irq: Interrupt to disable 696 * 697 * Disable the selected interrupt line. Disables and Enables are 698 * nested. 699 * Unlike disable_irq(), this function does not ensure existing 700 * instances of the IRQ handler have completed before returning. 701 * 702 * This function may be called from IRQ context. 703 */ 704 void disable_irq_nosync(unsigned int irq) 705 { 706 __disable_irq_nosync(irq); 707 } 708 EXPORT_SYMBOL(disable_irq_nosync); 709 710 /** 711 * disable_irq - disable an irq and wait for completion 712 * @irq: Interrupt to disable 713 * 714 * Disable the selected interrupt line. Enables and Disables are 715 * nested. 716 * This function waits for any pending IRQ handlers for this interrupt 717 * to complete before returning. If you use this function while 718 * holding a resource the IRQ handler may need you will deadlock. 719 * 720 * This function may be called - with care - from IRQ context. 721 */ 722 void disable_irq(unsigned int irq) 723 { 724 if (!__disable_irq_nosync(irq)) 725 synchronize_irq(irq); 726 } 727 EXPORT_SYMBOL(disable_irq); 728 729 /** 730 * disable_hardirq - disables an irq and waits for hardirq completion 731 * @irq: Interrupt to disable 732 * 733 * Disable the selected interrupt line. Enables and Disables are 734 * nested. 735 * This function waits for any pending hard IRQ handlers for this 736 * interrupt to complete before returning. If you use this function while 737 * holding a resource the hard IRQ handler may need you will deadlock. 738 * 739 * When used to optimistically disable an interrupt from atomic context 740 * the return value must be checked. 741 * 742 * Returns: false if a threaded handler is active. 743 * 744 * This function may be called - with care - from IRQ context. 745 */ 746 bool disable_hardirq(unsigned int irq) 747 { 748 if (!__disable_irq_nosync(irq)) 749 return synchronize_hardirq(irq); 750 751 return false; 752 } 753 EXPORT_SYMBOL_GPL(disable_hardirq); 754 755 /** 756 * disable_nmi_nosync - disable an nmi without waiting 757 * @irq: Interrupt to disable 758 * 759 * Disable the selected interrupt line. Disables and enables are 760 * nested. 761 * The interrupt to disable must have been requested through request_nmi. 762 * Unlike disable_nmi(), this function does not ensure existing 763 * instances of the IRQ handler have completed before returning. 764 */ 765 void disable_nmi_nosync(unsigned int irq) 766 { 767 disable_irq_nosync(irq); 768 } 769 770 void __enable_irq(struct irq_desc *desc) 771 { 772 switch (desc->depth) { 773 case 0: 774 err_out: 775 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n", 776 irq_desc_get_irq(desc)); 777 break; 778 case 1: { 779 if (desc->istate & IRQS_SUSPENDED) 780 goto err_out; 781 /* Prevent probing on this irq: */ 782 irq_settings_set_noprobe(desc); 783 /* 784 * Call irq_startup() not irq_enable() here because the 785 * interrupt might be marked NOAUTOEN. So irq_startup() 786 * needs to be invoked when it gets enabled the first 787 * time. If it was already started up, then irq_startup() 788 * will invoke irq_enable() under the hood. 789 */ 790 irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE); 791 break; 792 } 793 default: 794 desc->depth--; 795 } 796 } 797 798 /** 799 * enable_irq - enable handling of an irq 800 * @irq: Interrupt to enable 801 * 802 * Undoes the effect of one call to disable_irq(). If this 803 * matches the last disable, processing of interrupts on this 804 * IRQ line is re-enabled. 805 * 806 * This function may be called from IRQ context only when 807 * desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL ! 808 */ 809 void enable_irq(unsigned int irq) 810 { 811 unsigned long flags; 812 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 813 814 if (!desc) 815 return; 816 if (WARN(!desc->irq_data.chip, 817 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq)) 818 goto out; 819 820 __enable_irq(desc); 821 out: 822 irq_put_desc_busunlock(desc, flags); 823 } 824 EXPORT_SYMBOL(enable_irq); 825 826 /** 827 * enable_nmi - enable handling of an nmi 828 * @irq: Interrupt to enable 829 * 830 * The interrupt to enable must have been requested through request_nmi. 831 * Undoes the effect of one call to disable_nmi(). If this 832 * matches the last disable, processing of interrupts on this 833 * IRQ line is re-enabled. 834 */ 835 void enable_nmi(unsigned int irq) 836 { 837 enable_irq(irq); 838 } 839 840 static int set_irq_wake_real(unsigned int irq, unsigned int on) 841 { 842 struct irq_desc *desc = irq_to_desc(irq); 843 int ret = -ENXIO; 844 845 if (irq_desc_get_chip(desc)->flags & IRQCHIP_SKIP_SET_WAKE) 846 return 0; 847 848 if (desc->irq_data.chip->irq_set_wake) 849 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on); 850 851 return ret; 852 } 853 854 /** 855 * irq_set_irq_wake - control irq power management wakeup 856 * @irq: interrupt to control 857 * @on: enable/disable power management wakeup 858 * 859 * Enable/disable power management wakeup mode, which is 860 * disabled by default. Enables and disables must match, 861 * just as they match for non-wakeup mode support. 862 * 863 * Wakeup mode lets this IRQ wake the system from sleep 864 * states like "suspend to RAM". 865 * 866 * Note: irq enable/disable state is completely orthogonal 867 * to the enable/disable state of irq wake. An irq can be 868 * disabled with disable_irq() and still wake the system as 869 * long as the irq has wake enabled. If this does not hold, 870 * then the underlying irq chip and the related driver need 871 * to be investigated. 872 */ 873 int irq_set_irq_wake(unsigned int irq, unsigned int on) 874 { 875 unsigned long flags; 876 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 877 int ret = 0; 878 879 if (!desc) 880 return -EINVAL; 881 882 /* Don't use NMIs as wake up interrupts please */ 883 if (desc->istate & IRQS_NMI) { 884 ret = -EINVAL; 885 goto out_unlock; 886 } 887 888 /* wakeup-capable irqs can be shared between drivers that 889 * don't need to have the same sleep mode behaviors. 890 */ 891 if (on) { 892 if (desc->wake_depth++ == 0) { 893 ret = set_irq_wake_real(irq, on); 894 if (ret) 895 desc->wake_depth = 0; 896 else 897 irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE); 898 } 899 } else { 900 if (desc->wake_depth == 0) { 901 WARN(1, "Unbalanced IRQ %d wake disable\n", irq); 902 } else if (--desc->wake_depth == 0) { 903 ret = set_irq_wake_real(irq, on); 904 if (ret) 905 desc->wake_depth = 1; 906 else 907 irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE); 908 } 909 } 910 911 out_unlock: 912 irq_put_desc_busunlock(desc, flags); 913 return ret; 914 } 915 EXPORT_SYMBOL(irq_set_irq_wake); 916 917 /* 918 * Internal function that tells the architecture code whether a 919 * particular irq has been exclusively allocated or is available 920 * for driver use. 921 */ 922 int can_request_irq(unsigned int irq, unsigned long irqflags) 923 { 924 unsigned long flags; 925 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 926 int canrequest = 0; 927 928 if (!desc) 929 return 0; 930 931 if (irq_settings_can_request(desc)) { 932 if (!desc->action || 933 irqflags & desc->action->flags & IRQF_SHARED) 934 canrequest = 1; 935 } 936 irq_put_desc_unlock(desc, flags); 937 return canrequest; 938 } 939 940 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags) 941 { 942 struct irq_chip *chip = desc->irq_data.chip; 943 int ret, unmask = 0; 944 945 if (!chip || !chip->irq_set_type) { 946 /* 947 * IRQF_TRIGGER_* but the PIC does not support multiple 948 * flow-types? 949 */ 950 pr_debug("No set_type function for IRQ %d (%s)\n", 951 irq_desc_get_irq(desc), 952 chip ? (chip->name ? : "unknown") : "unknown"); 953 return 0; 954 } 955 956 if (chip->flags & IRQCHIP_SET_TYPE_MASKED) { 957 if (!irqd_irq_masked(&desc->irq_data)) 958 mask_irq(desc); 959 if (!irqd_irq_disabled(&desc->irq_data)) 960 unmask = 1; 961 } 962 963 /* Mask all flags except trigger mode */ 964 flags &= IRQ_TYPE_SENSE_MASK; 965 ret = chip->irq_set_type(&desc->irq_data, flags); 966 967 switch (ret) { 968 case IRQ_SET_MASK_OK: 969 case IRQ_SET_MASK_OK_DONE: 970 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK); 971 irqd_set(&desc->irq_data, flags); 972 fallthrough; 973 974 case IRQ_SET_MASK_OK_NOCOPY: 975 flags = irqd_get_trigger_type(&desc->irq_data); 976 irq_settings_set_trigger_mask(desc, flags); 977 irqd_clear(&desc->irq_data, IRQD_LEVEL); 978 irq_settings_clr_level(desc); 979 if (flags & IRQ_TYPE_LEVEL_MASK) { 980 irq_settings_set_level(desc); 981 irqd_set(&desc->irq_data, IRQD_LEVEL); 982 } 983 984 ret = 0; 985 break; 986 default: 987 pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n", 988 flags, irq_desc_get_irq(desc), chip->irq_set_type); 989 } 990 if (unmask) 991 unmask_irq(desc); 992 return ret; 993 } 994 995 #ifdef CONFIG_HARDIRQS_SW_RESEND 996 int irq_set_parent(int irq, int parent_irq) 997 { 998 unsigned long flags; 999 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 1000 1001 if (!desc) 1002 return -EINVAL; 1003 1004 desc->parent_irq = parent_irq; 1005 1006 irq_put_desc_unlock(desc, flags); 1007 return 0; 1008 } 1009 EXPORT_SYMBOL_GPL(irq_set_parent); 1010 #endif 1011 1012 /* 1013 * Default primary interrupt handler for threaded interrupts. Is 1014 * assigned as primary handler when request_threaded_irq is called 1015 * with handler == NULL. Useful for oneshot interrupts. 1016 */ 1017 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id) 1018 { 1019 return IRQ_WAKE_THREAD; 1020 } 1021 1022 /* 1023 * Primary handler for nested threaded interrupts. Should never be 1024 * called. 1025 */ 1026 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id) 1027 { 1028 WARN(1, "Primary handler called for nested irq %d\n", irq); 1029 return IRQ_NONE; 1030 } 1031 1032 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id) 1033 { 1034 WARN(1, "Secondary action handler called for irq %d\n", irq); 1035 return IRQ_NONE; 1036 } 1037 1038 static int irq_wait_for_interrupt(struct irqaction *action) 1039 { 1040 for (;;) { 1041 set_current_state(TASK_INTERRUPTIBLE); 1042 1043 if (kthread_should_stop()) { 1044 /* may need to run one last time */ 1045 if (test_and_clear_bit(IRQTF_RUNTHREAD, 1046 &action->thread_flags)) { 1047 __set_current_state(TASK_RUNNING); 1048 return 0; 1049 } 1050 __set_current_state(TASK_RUNNING); 1051 return -1; 1052 } 1053 1054 if (test_and_clear_bit(IRQTF_RUNTHREAD, 1055 &action->thread_flags)) { 1056 __set_current_state(TASK_RUNNING); 1057 return 0; 1058 } 1059 schedule(); 1060 } 1061 } 1062 1063 /* 1064 * Oneshot interrupts keep the irq line masked until the threaded 1065 * handler finished. unmask if the interrupt has not been disabled and 1066 * is marked MASKED. 1067 */ 1068 static void irq_finalize_oneshot(struct irq_desc *desc, 1069 struct irqaction *action) 1070 { 1071 if (!(desc->istate & IRQS_ONESHOT) || 1072 action->handler == irq_forced_secondary_handler) 1073 return; 1074 again: 1075 chip_bus_lock(desc); 1076 raw_spin_lock_irq(&desc->lock); 1077 1078 /* 1079 * Implausible though it may be we need to protect us against 1080 * the following scenario: 1081 * 1082 * The thread is faster done than the hard interrupt handler 1083 * on the other CPU. If we unmask the irq line then the 1084 * interrupt can come in again and masks the line, leaves due 1085 * to IRQS_INPROGRESS and the irq line is masked forever. 1086 * 1087 * This also serializes the state of shared oneshot handlers 1088 * versus "desc->threads_oneshot |= action->thread_mask;" in 1089 * irq_wake_thread(). See the comment there which explains the 1090 * serialization. 1091 */ 1092 if (unlikely(irqd_irq_inprogress(&desc->irq_data))) { 1093 raw_spin_unlock_irq(&desc->lock); 1094 chip_bus_sync_unlock(desc); 1095 cpu_relax(); 1096 goto again; 1097 } 1098 1099 /* 1100 * Now check again, whether the thread should run. Otherwise 1101 * we would clear the threads_oneshot bit of this thread which 1102 * was just set. 1103 */ 1104 if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags)) 1105 goto out_unlock; 1106 1107 desc->threads_oneshot &= ~action->thread_mask; 1108 1109 if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) && 1110 irqd_irq_masked(&desc->irq_data)) 1111 unmask_threaded_irq(desc); 1112 1113 out_unlock: 1114 raw_spin_unlock_irq(&desc->lock); 1115 chip_bus_sync_unlock(desc); 1116 } 1117 1118 #ifdef CONFIG_SMP 1119 /* 1120 * Check whether we need to change the affinity of the interrupt thread. 1121 */ 1122 static void 1123 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) 1124 { 1125 cpumask_var_t mask; 1126 bool valid = true; 1127 1128 if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags)) 1129 return; 1130 1131 /* 1132 * In case we are out of memory we set IRQTF_AFFINITY again and 1133 * try again next time 1134 */ 1135 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) { 1136 set_bit(IRQTF_AFFINITY, &action->thread_flags); 1137 return; 1138 } 1139 1140 raw_spin_lock_irq(&desc->lock); 1141 /* 1142 * This code is triggered unconditionally. Check the affinity 1143 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out. 1144 */ 1145 if (cpumask_available(desc->irq_common_data.affinity)) { 1146 const struct cpumask *m; 1147 1148 m = irq_data_get_effective_affinity_mask(&desc->irq_data); 1149 cpumask_copy(mask, m); 1150 } else { 1151 valid = false; 1152 } 1153 raw_spin_unlock_irq(&desc->lock); 1154 1155 if (valid) 1156 set_cpus_allowed_ptr(current, mask); 1157 free_cpumask_var(mask); 1158 } 1159 #else 1160 static inline void 1161 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { } 1162 #endif 1163 1164 /* 1165 * Interrupts which are not explicitly requested as threaded 1166 * interrupts rely on the implicit bh/preempt disable of the hard irq 1167 * context. So we need to disable bh here to avoid deadlocks and other 1168 * side effects. 1169 */ 1170 static irqreturn_t 1171 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action) 1172 { 1173 irqreturn_t ret; 1174 1175 local_bh_disable(); 1176 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 1177 local_irq_disable(); 1178 ret = action->thread_fn(action->irq, action->dev_id); 1179 if (ret == IRQ_HANDLED) 1180 atomic_inc(&desc->threads_handled); 1181 1182 irq_finalize_oneshot(desc, action); 1183 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 1184 local_irq_enable(); 1185 local_bh_enable(); 1186 return ret; 1187 } 1188 1189 /* 1190 * Interrupts explicitly requested as threaded interrupts want to be 1191 * preemptible - many of them need to sleep and wait for slow busses to 1192 * complete. 1193 */ 1194 static irqreturn_t irq_thread_fn(struct irq_desc *desc, 1195 struct irqaction *action) 1196 { 1197 irqreturn_t ret; 1198 1199 ret = action->thread_fn(action->irq, action->dev_id); 1200 if (ret == IRQ_HANDLED) 1201 atomic_inc(&desc->threads_handled); 1202 1203 irq_finalize_oneshot(desc, action); 1204 return ret; 1205 } 1206 1207 static void wake_threads_waitq(struct irq_desc *desc) 1208 { 1209 if (atomic_dec_and_test(&desc->threads_active)) 1210 wake_up(&desc->wait_for_threads); 1211 } 1212 1213 static void irq_thread_dtor(struct callback_head *unused) 1214 { 1215 struct task_struct *tsk = current; 1216 struct irq_desc *desc; 1217 struct irqaction *action; 1218 1219 if (WARN_ON_ONCE(!(current->flags & PF_EXITING))) 1220 return; 1221 1222 action = kthread_data(tsk); 1223 1224 pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n", 1225 tsk->comm, tsk->pid, action->irq); 1226 1227 1228 desc = irq_to_desc(action->irq); 1229 /* 1230 * If IRQTF_RUNTHREAD is set, we need to decrement 1231 * desc->threads_active and wake possible waiters. 1232 */ 1233 if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags)) 1234 wake_threads_waitq(desc); 1235 1236 /* Prevent a stale desc->threads_oneshot */ 1237 irq_finalize_oneshot(desc, action); 1238 } 1239 1240 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action) 1241 { 1242 struct irqaction *secondary = action->secondary; 1243 1244 if (WARN_ON_ONCE(!secondary)) 1245 return; 1246 1247 raw_spin_lock_irq(&desc->lock); 1248 __irq_wake_thread(desc, secondary); 1249 raw_spin_unlock_irq(&desc->lock); 1250 } 1251 1252 /* 1253 * Interrupt handler thread 1254 */ 1255 static int irq_thread(void *data) 1256 { 1257 struct callback_head on_exit_work; 1258 struct irqaction *action = data; 1259 struct irq_desc *desc = irq_to_desc(action->irq); 1260 irqreturn_t (*handler_fn)(struct irq_desc *desc, 1261 struct irqaction *action); 1262 1263 if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD, 1264 &action->thread_flags)) 1265 handler_fn = irq_forced_thread_fn; 1266 else 1267 handler_fn = irq_thread_fn; 1268 1269 init_task_work(&on_exit_work, irq_thread_dtor); 1270 task_work_add(current, &on_exit_work, TWA_NONE); 1271 1272 irq_thread_check_affinity(desc, action); 1273 1274 while (!irq_wait_for_interrupt(action)) { 1275 irqreturn_t action_ret; 1276 1277 irq_thread_check_affinity(desc, action); 1278 1279 action_ret = handler_fn(desc, action); 1280 if (action_ret == IRQ_WAKE_THREAD) 1281 irq_wake_secondary(desc, action); 1282 1283 wake_threads_waitq(desc); 1284 } 1285 1286 /* 1287 * This is the regular exit path. __free_irq() is stopping the 1288 * thread via kthread_stop() after calling 1289 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the 1290 * oneshot mask bit can be set. 1291 */ 1292 task_work_cancel(current, irq_thread_dtor); 1293 return 0; 1294 } 1295 1296 /** 1297 * irq_wake_thread - wake the irq thread for the action identified by dev_id 1298 * @irq: Interrupt line 1299 * @dev_id: Device identity for which the thread should be woken 1300 * 1301 */ 1302 void irq_wake_thread(unsigned int irq, void *dev_id) 1303 { 1304 struct irq_desc *desc = irq_to_desc(irq); 1305 struct irqaction *action; 1306 unsigned long flags; 1307 1308 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1309 return; 1310 1311 raw_spin_lock_irqsave(&desc->lock, flags); 1312 for_each_action_of_desc(desc, action) { 1313 if (action->dev_id == dev_id) { 1314 if (action->thread) 1315 __irq_wake_thread(desc, action); 1316 break; 1317 } 1318 } 1319 raw_spin_unlock_irqrestore(&desc->lock, flags); 1320 } 1321 EXPORT_SYMBOL_GPL(irq_wake_thread); 1322 1323 static int irq_setup_forced_threading(struct irqaction *new) 1324 { 1325 if (!force_irqthreads) 1326 return 0; 1327 if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT)) 1328 return 0; 1329 1330 /* 1331 * No further action required for interrupts which are requested as 1332 * threaded interrupts already 1333 */ 1334 if (new->handler == irq_default_primary_handler) 1335 return 0; 1336 1337 new->flags |= IRQF_ONESHOT; 1338 1339 /* 1340 * Handle the case where we have a real primary handler and a 1341 * thread handler. We force thread them as well by creating a 1342 * secondary action. 1343 */ 1344 if (new->handler && new->thread_fn) { 1345 /* Allocate the secondary action */ 1346 new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 1347 if (!new->secondary) 1348 return -ENOMEM; 1349 new->secondary->handler = irq_forced_secondary_handler; 1350 new->secondary->thread_fn = new->thread_fn; 1351 new->secondary->dev_id = new->dev_id; 1352 new->secondary->irq = new->irq; 1353 new->secondary->name = new->name; 1354 } 1355 /* Deal with the primary handler */ 1356 set_bit(IRQTF_FORCED_THREAD, &new->thread_flags); 1357 new->thread_fn = new->handler; 1358 new->handler = irq_default_primary_handler; 1359 return 0; 1360 } 1361 1362 static int irq_request_resources(struct irq_desc *desc) 1363 { 1364 struct irq_data *d = &desc->irq_data; 1365 struct irq_chip *c = d->chip; 1366 1367 return c->irq_request_resources ? c->irq_request_resources(d) : 0; 1368 } 1369 1370 static void irq_release_resources(struct irq_desc *desc) 1371 { 1372 struct irq_data *d = &desc->irq_data; 1373 struct irq_chip *c = d->chip; 1374 1375 if (c->irq_release_resources) 1376 c->irq_release_resources(d); 1377 } 1378 1379 static bool irq_supports_nmi(struct irq_desc *desc) 1380 { 1381 struct irq_data *d = irq_desc_get_irq_data(desc); 1382 1383 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 1384 /* Only IRQs directly managed by the root irqchip can be set as NMI */ 1385 if (d->parent_data) 1386 return false; 1387 #endif 1388 /* Don't support NMIs for chips behind a slow bus */ 1389 if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock) 1390 return false; 1391 1392 return d->chip->flags & IRQCHIP_SUPPORTS_NMI; 1393 } 1394 1395 static int irq_nmi_setup(struct irq_desc *desc) 1396 { 1397 struct irq_data *d = irq_desc_get_irq_data(desc); 1398 struct irq_chip *c = d->chip; 1399 1400 return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL; 1401 } 1402 1403 static void irq_nmi_teardown(struct irq_desc *desc) 1404 { 1405 struct irq_data *d = irq_desc_get_irq_data(desc); 1406 struct irq_chip *c = d->chip; 1407 1408 if (c->irq_nmi_teardown) 1409 c->irq_nmi_teardown(d); 1410 } 1411 1412 static int 1413 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary) 1414 { 1415 struct task_struct *t; 1416 1417 if (!secondary) { 1418 t = kthread_create(irq_thread, new, "irq/%d-%s", irq, 1419 new->name); 1420 } else { 1421 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq, 1422 new->name); 1423 } 1424 1425 if (IS_ERR(t)) 1426 return PTR_ERR(t); 1427 1428 sched_set_fifo(t); 1429 1430 /* 1431 * We keep the reference to the task struct even if 1432 * the thread dies to avoid that the interrupt code 1433 * references an already freed task_struct. 1434 */ 1435 new->thread = get_task_struct(t); 1436 /* 1437 * Tell the thread to set its affinity. This is 1438 * important for shared interrupt handlers as we do 1439 * not invoke setup_affinity() for the secondary 1440 * handlers as everything is already set up. Even for 1441 * interrupts marked with IRQF_NO_BALANCE this is 1442 * correct as we want the thread to move to the cpu(s) 1443 * on which the requesting code placed the interrupt. 1444 */ 1445 set_bit(IRQTF_AFFINITY, &new->thread_flags); 1446 return 0; 1447 } 1448 1449 /* 1450 * Internal function to register an irqaction - typically used to 1451 * allocate special interrupts that are part of the architecture. 1452 * 1453 * Locking rules: 1454 * 1455 * desc->request_mutex Provides serialization against a concurrent free_irq() 1456 * chip_bus_lock Provides serialization for slow bus operations 1457 * desc->lock Provides serialization against hard interrupts 1458 * 1459 * chip_bus_lock and desc->lock are sufficient for all other management and 1460 * interrupt related functions. desc->request_mutex solely serializes 1461 * request/free_irq(). 1462 */ 1463 static int 1464 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new) 1465 { 1466 struct irqaction *old, **old_ptr; 1467 unsigned long flags, thread_mask = 0; 1468 int ret, nested, shared = 0; 1469 1470 if (!desc) 1471 return -EINVAL; 1472 1473 if (desc->irq_data.chip == &no_irq_chip) 1474 return -ENOSYS; 1475 if (!try_module_get(desc->owner)) 1476 return -ENODEV; 1477 1478 new->irq = irq; 1479 1480 /* 1481 * If the trigger type is not specified by the caller, 1482 * then use the default for this interrupt. 1483 */ 1484 if (!(new->flags & IRQF_TRIGGER_MASK)) 1485 new->flags |= irqd_get_trigger_type(&desc->irq_data); 1486 1487 /* 1488 * Check whether the interrupt nests into another interrupt 1489 * thread. 1490 */ 1491 nested = irq_settings_is_nested_thread(desc); 1492 if (nested) { 1493 if (!new->thread_fn) { 1494 ret = -EINVAL; 1495 goto out_mput; 1496 } 1497 /* 1498 * Replace the primary handler which was provided from 1499 * the driver for non nested interrupt handling by the 1500 * dummy function which warns when called. 1501 */ 1502 new->handler = irq_nested_primary_handler; 1503 } else { 1504 if (irq_settings_can_thread(desc)) { 1505 ret = irq_setup_forced_threading(new); 1506 if (ret) 1507 goto out_mput; 1508 } 1509 } 1510 1511 /* 1512 * Create a handler thread when a thread function is supplied 1513 * and the interrupt does not nest into another interrupt 1514 * thread. 1515 */ 1516 if (new->thread_fn && !nested) { 1517 ret = setup_irq_thread(new, irq, false); 1518 if (ret) 1519 goto out_mput; 1520 if (new->secondary) { 1521 ret = setup_irq_thread(new->secondary, irq, true); 1522 if (ret) 1523 goto out_thread; 1524 } 1525 } 1526 1527 /* 1528 * Drivers are often written to work w/o knowledge about the 1529 * underlying irq chip implementation, so a request for a 1530 * threaded irq without a primary hard irq context handler 1531 * requires the ONESHOT flag to be set. Some irq chips like 1532 * MSI based interrupts are per se one shot safe. Check the 1533 * chip flags, so we can avoid the unmask dance at the end of 1534 * the threaded handler for those. 1535 */ 1536 if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE) 1537 new->flags &= ~IRQF_ONESHOT; 1538 1539 /* 1540 * Protects against a concurrent __free_irq() call which might wait 1541 * for synchronize_hardirq() to complete without holding the optional 1542 * chip bus lock and desc->lock. Also protects against handing out 1543 * a recycled oneshot thread_mask bit while it's still in use by 1544 * its previous owner. 1545 */ 1546 mutex_lock(&desc->request_mutex); 1547 1548 /* 1549 * Acquire bus lock as the irq_request_resources() callback below 1550 * might rely on the serialization or the magic power management 1551 * functions which are abusing the irq_bus_lock() callback, 1552 */ 1553 chip_bus_lock(desc); 1554 1555 /* First installed action requests resources. */ 1556 if (!desc->action) { 1557 ret = irq_request_resources(desc); 1558 if (ret) { 1559 pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n", 1560 new->name, irq, desc->irq_data.chip->name); 1561 goto out_bus_unlock; 1562 } 1563 } 1564 1565 /* 1566 * The following block of code has to be executed atomically 1567 * protected against a concurrent interrupt and any of the other 1568 * management calls which are not serialized via 1569 * desc->request_mutex or the optional bus lock. 1570 */ 1571 raw_spin_lock_irqsave(&desc->lock, flags); 1572 old_ptr = &desc->action; 1573 old = *old_ptr; 1574 if (old) { 1575 /* 1576 * Can't share interrupts unless both agree to and are 1577 * the same type (level, edge, polarity). So both flag 1578 * fields must have IRQF_SHARED set and the bits which 1579 * set the trigger type must match. Also all must 1580 * agree on ONESHOT. 1581 * Interrupt lines used for NMIs cannot be shared. 1582 */ 1583 unsigned int oldtype; 1584 1585 if (desc->istate & IRQS_NMI) { 1586 pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n", 1587 new->name, irq, desc->irq_data.chip->name); 1588 ret = -EINVAL; 1589 goto out_unlock; 1590 } 1591 1592 /* 1593 * If nobody did set the configuration before, inherit 1594 * the one provided by the requester. 1595 */ 1596 if (irqd_trigger_type_was_set(&desc->irq_data)) { 1597 oldtype = irqd_get_trigger_type(&desc->irq_data); 1598 } else { 1599 oldtype = new->flags & IRQF_TRIGGER_MASK; 1600 irqd_set_trigger_type(&desc->irq_data, oldtype); 1601 } 1602 1603 if (!((old->flags & new->flags) & IRQF_SHARED) || 1604 (oldtype != (new->flags & IRQF_TRIGGER_MASK)) || 1605 ((old->flags ^ new->flags) & IRQF_ONESHOT)) 1606 goto mismatch; 1607 1608 /* All handlers must agree on per-cpuness */ 1609 if ((old->flags & IRQF_PERCPU) != 1610 (new->flags & IRQF_PERCPU)) 1611 goto mismatch; 1612 1613 /* add new interrupt at end of irq queue */ 1614 do { 1615 /* 1616 * Or all existing action->thread_mask bits, 1617 * so we can find the next zero bit for this 1618 * new action. 1619 */ 1620 thread_mask |= old->thread_mask; 1621 old_ptr = &old->next; 1622 old = *old_ptr; 1623 } while (old); 1624 shared = 1; 1625 } 1626 1627 /* 1628 * Setup the thread mask for this irqaction for ONESHOT. For 1629 * !ONESHOT irqs the thread mask is 0 so we can avoid a 1630 * conditional in irq_wake_thread(). 1631 */ 1632 if (new->flags & IRQF_ONESHOT) { 1633 /* 1634 * Unlikely to have 32 resp 64 irqs sharing one line, 1635 * but who knows. 1636 */ 1637 if (thread_mask == ~0UL) { 1638 ret = -EBUSY; 1639 goto out_unlock; 1640 } 1641 /* 1642 * The thread_mask for the action is or'ed to 1643 * desc->thread_active to indicate that the 1644 * IRQF_ONESHOT thread handler has been woken, but not 1645 * yet finished. The bit is cleared when a thread 1646 * completes. When all threads of a shared interrupt 1647 * line have completed desc->threads_active becomes 1648 * zero and the interrupt line is unmasked. See 1649 * handle.c:irq_wake_thread() for further information. 1650 * 1651 * If no thread is woken by primary (hard irq context) 1652 * interrupt handlers, then desc->threads_active is 1653 * also checked for zero to unmask the irq line in the 1654 * affected hard irq flow handlers 1655 * (handle_[fasteoi|level]_irq). 1656 * 1657 * The new action gets the first zero bit of 1658 * thread_mask assigned. See the loop above which or's 1659 * all existing action->thread_mask bits. 1660 */ 1661 new->thread_mask = 1UL << ffz(thread_mask); 1662 1663 } else if (new->handler == irq_default_primary_handler && 1664 !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) { 1665 /* 1666 * The interrupt was requested with handler = NULL, so 1667 * we use the default primary handler for it. But it 1668 * does not have the oneshot flag set. In combination 1669 * with level interrupts this is deadly, because the 1670 * default primary handler just wakes the thread, then 1671 * the irq lines is reenabled, but the device still 1672 * has the level irq asserted. Rinse and repeat.... 1673 * 1674 * While this works for edge type interrupts, we play 1675 * it safe and reject unconditionally because we can't 1676 * say for sure which type this interrupt really 1677 * has. The type flags are unreliable as the 1678 * underlying chip implementation can override them. 1679 */ 1680 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for %s (irq %d)\n", 1681 new->name, irq); 1682 ret = -EINVAL; 1683 goto out_unlock; 1684 } 1685 1686 if (!shared) { 1687 init_waitqueue_head(&desc->wait_for_threads); 1688 1689 /* Setup the type (level, edge polarity) if configured: */ 1690 if (new->flags & IRQF_TRIGGER_MASK) { 1691 ret = __irq_set_trigger(desc, 1692 new->flags & IRQF_TRIGGER_MASK); 1693 1694 if (ret) 1695 goto out_unlock; 1696 } 1697 1698 /* 1699 * Activate the interrupt. That activation must happen 1700 * independently of IRQ_NOAUTOEN. request_irq() can fail 1701 * and the callers are supposed to handle 1702 * that. enable_irq() of an interrupt requested with 1703 * IRQ_NOAUTOEN is not supposed to fail. The activation 1704 * keeps it in shutdown mode, it merily associates 1705 * resources if necessary and if that's not possible it 1706 * fails. Interrupts which are in managed shutdown mode 1707 * will simply ignore that activation request. 1708 */ 1709 ret = irq_activate(desc); 1710 if (ret) 1711 goto out_unlock; 1712 1713 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \ 1714 IRQS_ONESHOT | IRQS_WAITING); 1715 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS); 1716 1717 if (new->flags & IRQF_PERCPU) { 1718 irqd_set(&desc->irq_data, IRQD_PER_CPU); 1719 irq_settings_set_per_cpu(desc); 1720 if (new->flags & IRQF_NO_DEBUG) 1721 irq_settings_set_no_debug(desc); 1722 } 1723 1724 if (noirqdebug) 1725 irq_settings_set_no_debug(desc); 1726 1727 if (new->flags & IRQF_ONESHOT) 1728 desc->istate |= IRQS_ONESHOT; 1729 1730 /* Exclude IRQ from balancing if requested */ 1731 if (new->flags & IRQF_NOBALANCING) { 1732 irq_settings_set_no_balancing(desc); 1733 irqd_set(&desc->irq_data, IRQD_NO_BALANCING); 1734 } 1735 1736 if (!(new->flags & IRQF_NO_AUTOEN) && 1737 irq_settings_can_autoenable(desc)) { 1738 irq_startup(desc, IRQ_RESEND, IRQ_START_COND); 1739 } else { 1740 /* 1741 * Shared interrupts do not go well with disabling 1742 * auto enable. The sharing interrupt might request 1743 * it while it's still disabled and then wait for 1744 * interrupts forever. 1745 */ 1746 WARN_ON_ONCE(new->flags & IRQF_SHARED); 1747 /* Undo nested disables: */ 1748 desc->depth = 1; 1749 } 1750 1751 } else if (new->flags & IRQF_TRIGGER_MASK) { 1752 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK; 1753 unsigned int omsk = irqd_get_trigger_type(&desc->irq_data); 1754 1755 if (nmsk != omsk) 1756 /* hope the handler works with current trigger mode */ 1757 pr_warn("irq %d uses trigger mode %u; requested %u\n", 1758 irq, omsk, nmsk); 1759 } 1760 1761 *old_ptr = new; 1762 1763 irq_pm_install_action(desc, new); 1764 1765 /* Reset broken irq detection when installing new handler */ 1766 desc->irq_count = 0; 1767 desc->irqs_unhandled = 0; 1768 1769 /* 1770 * Check whether we disabled the irq via the spurious handler 1771 * before. Reenable it and give it another chance. 1772 */ 1773 if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) { 1774 desc->istate &= ~IRQS_SPURIOUS_DISABLED; 1775 __enable_irq(desc); 1776 } 1777 1778 raw_spin_unlock_irqrestore(&desc->lock, flags); 1779 chip_bus_sync_unlock(desc); 1780 mutex_unlock(&desc->request_mutex); 1781 1782 irq_setup_timings(desc, new); 1783 1784 /* 1785 * Strictly no need to wake it up, but hung_task complains 1786 * when no hard interrupt wakes the thread up. 1787 */ 1788 if (new->thread) 1789 wake_up_process(new->thread); 1790 if (new->secondary) 1791 wake_up_process(new->secondary->thread); 1792 1793 register_irq_proc(irq, desc); 1794 new->dir = NULL; 1795 register_handler_proc(irq, new); 1796 return 0; 1797 1798 mismatch: 1799 if (!(new->flags & IRQF_PROBE_SHARED)) { 1800 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n", 1801 irq, new->flags, new->name, old->flags, old->name); 1802 #ifdef CONFIG_DEBUG_SHIRQ 1803 dump_stack(); 1804 #endif 1805 } 1806 ret = -EBUSY; 1807 1808 out_unlock: 1809 raw_spin_unlock_irqrestore(&desc->lock, flags); 1810 1811 if (!desc->action) 1812 irq_release_resources(desc); 1813 out_bus_unlock: 1814 chip_bus_sync_unlock(desc); 1815 mutex_unlock(&desc->request_mutex); 1816 1817 out_thread: 1818 if (new->thread) { 1819 struct task_struct *t = new->thread; 1820 1821 new->thread = NULL; 1822 kthread_stop(t); 1823 put_task_struct(t); 1824 } 1825 if (new->secondary && new->secondary->thread) { 1826 struct task_struct *t = new->secondary->thread; 1827 1828 new->secondary->thread = NULL; 1829 kthread_stop(t); 1830 put_task_struct(t); 1831 } 1832 out_mput: 1833 module_put(desc->owner); 1834 return ret; 1835 } 1836 1837 /* 1838 * Internal function to unregister an irqaction - used to free 1839 * regular and special interrupts that are part of the architecture. 1840 */ 1841 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id) 1842 { 1843 unsigned irq = desc->irq_data.irq; 1844 struct irqaction *action, **action_ptr; 1845 unsigned long flags; 1846 1847 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq); 1848 1849 mutex_lock(&desc->request_mutex); 1850 chip_bus_lock(desc); 1851 raw_spin_lock_irqsave(&desc->lock, flags); 1852 1853 /* 1854 * There can be multiple actions per IRQ descriptor, find the right 1855 * one based on the dev_id: 1856 */ 1857 action_ptr = &desc->action; 1858 for (;;) { 1859 action = *action_ptr; 1860 1861 if (!action) { 1862 WARN(1, "Trying to free already-free IRQ %d\n", irq); 1863 raw_spin_unlock_irqrestore(&desc->lock, flags); 1864 chip_bus_sync_unlock(desc); 1865 mutex_unlock(&desc->request_mutex); 1866 return NULL; 1867 } 1868 1869 if (action->dev_id == dev_id) 1870 break; 1871 action_ptr = &action->next; 1872 } 1873 1874 /* Found it - now remove it from the list of entries: */ 1875 *action_ptr = action->next; 1876 1877 irq_pm_remove_action(desc, action); 1878 1879 /* If this was the last handler, shut down the IRQ line: */ 1880 if (!desc->action) { 1881 irq_settings_clr_disable_unlazy(desc); 1882 /* Only shutdown. Deactivate after synchronize_hardirq() */ 1883 irq_shutdown(desc); 1884 } 1885 1886 #ifdef CONFIG_SMP 1887 /* make sure affinity_hint is cleaned up */ 1888 if (WARN_ON_ONCE(desc->affinity_hint)) 1889 desc->affinity_hint = NULL; 1890 #endif 1891 1892 raw_spin_unlock_irqrestore(&desc->lock, flags); 1893 /* 1894 * Drop bus_lock here so the changes which were done in the chip 1895 * callbacks above are synced out to the irq chips which hang 1896 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq(). 1897 * 1898 * Aside of that the bus_lock can also be taken from the threaded 1899 * handler in irq_finalize_oneshot() which results in a deadlock 1900 * because kthread_stop() would wait forever for the thread to 1901 * complete, which is blocked on the bus lock. 1902 * 1903 * The still held desc->request_mutex() protects against a 1904 * concurrent request_irq() of this irq so the release of resources 1905 * and timing data is properly serialized. 1906 */ 1907 chip_bus_sync_unlock(desc); 1908 1909 unregister_handler_proc(irq, action); 1910 1911 /* 1912 * Make sure it's not being used on another CPU and if the chip 1913 * supports it also make sure that there is no (not yet serviced) 1914 * interrupt in flight at the hardware level. 1915 */ 1916 __synchronize_hardirq(desc, true); 1917 1918 #ifdef CONFIG_DEBUG_SHIRQ 1919 /* 1920 * It's a shared IRQ -- the driver ought to be prepared for an IRQ 1921 * event to happen even now it's being freed, so let's make sure that 1922 * is so by doing an extra call to the handler .... 1923 * 1924 * ( We do this after actually deregistering it, to make sure that a 1925 * 'real' IRQ doesn't run in parallel with our fake. ) 1926 */ 1927 if (action->flags & IRQF_SHARED) { 1928 local_irq_save(flags); 1929 action->handler(irq, dev_id); 1930 local_irq_restore(flags); 1931 } 1932 #endif 1933 1934 /* 1935 * The action has already been removed above, but the thread writes 1936 * its oneshot mask bit when it completes. Though request_mutex is 1937 * held across this which prevents __setup_irq() from handing out 1938 * the same bit to a newly requested action. 1939 */ 1940 if (action->thread) { 1941 kthread_stop(action->thread); 1942 put_task_struct(action->thread); 1943 if (action->secondary && action->secondary->thread) { 1944 kthread_stop(action->secondary->thread); 1945 put_task_struct(action->secondary->thread); 1946 } 1947 } 1948 1949 /* Last action releases resources */ 1950 if (!desc->action) { 1951 /* 1952 * Reacquire bus lock as irq_release_resources() might 1953 * require it to deallocate resources over the slow bus. 1954 */ 1955 chip_bus_lock(desc); 1956 /* 1957 * There is no interrupt on the fly anymore. Deactivate it 1958 * completely. 1959 */ 1960 raw_spin_lock_irqsave(&desc->lock, flags); 1961 irq_domain_deactivate_irq(&desc->irq_data); 1962 raw_spin_unlock_irqrestore(&desc->lock, flags); 1963 1964 irq_release_resources(desc); 1965 chip_bus_sync_unlock(desc); 1966 irq_remove_timings(desc); 1967 } 1968 1969 mutex_unlock(&desc->request_mutex); 1970 1971 irq_chip_pm_put(&desc->irq_data); 1972 module_put(desc->owner); 1973 kfree(action->secondary); 1974 return action; 1975 } 1976 1977 /** 1978 * free_irq - free an interrupt allocated with request_irq 1979 * @irq: Interrupt line to free 1980 * @dev_id: Device identity to free 1981 * 1982 * Remove an interrupt handler. The handler is removed and if the 1983 * interrupt line is no longer in use by any driver it is disabled. 1984 * On a shared IRQ the caller must ensure the interrupt is disabled 1985 * on the card it drives before calling this function. The function 1986 * does not return until any executing interrupts for this IRQ 1987 * have completed. 1988 * 1989 * This function must not be called from interrupt context. 1990 * 1991 * Returns the devname argument passed to request_irq. 1992 */ 1993 const void *free_irq(unsigned int irq, void *dev_id) 1994 { 1995 struct irq_desc *desc = irq_to_desc(irq); 1996 struct irqaction *action; 1997 const char *devname; 1998 1999 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc))) 2000 return NULL; 2001 2002 #ifdef CONFIG_SMP 2003 if (WARN_ON(desc->affinity_notify)) 2004 desc->affinity_notify = NULL; 2005 #endif 2006 2007 action = __free_irq(desc, dev_id); 2008 2009 if (!action) 2010 return NULL; 2011 2012 devname = action->name; 2013 kfree(action); 2014 return devname; 2015 } 2016 EXPORT_SYMBOL(free_irq); 2017 2018 /* This function must be called with desc->lock held */ 2019 static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc) 2020 { 2021 const char *devname = NULL; 2022 2023 desc->istate &= ~IRQS_NMI; 2024 2025 if (!WARN_ON(desc->action == NULL)) { 2026 irq_pm_remove_action(desc, desc->action); 2027 devname = desc->action->name; 2028 unregister_handler_proc(irq, desc->action); 2029 2030 kfree(desc->action); 2031 desc->action = NULL; 2032 } 2033 2034 irq_settings_clr_disable_unlazy(desc); 2035 irq_shutdown_and_deactivate(desc); 2036 2037 irq_release_resources(desc); 2038 2039 irq_chip_pm_put(&desc->irq_data); 2040 module_put(desc->owner); 2041 2042 return devname; 2043 } 2044 2045 const void *free_nmi(unsigned int irq, void *dev_id) 2046 { 2047 struct irq_desc *desc = irq_to_desc(irq); 2048 unsigned long flags; 2049 const void *devname; 2050 2051 if (!desc || WARN_ON(!(desc->istate & IRQS_NMI))) 2052 return NULL; 2053 2054 if (WARN_ON(irq_settings_is_per_cpu_devid(desc))) 2055 return NULL; 2056 2057 /* NMI still enabled */ 2058 if (WARN_ON(desc->depth == 0)) 2059 disable_nmi_nosync(irq); 2060 2061 raw_spin_lock_irqsave(&desc->lock, flags); 2062 2063 irq_nmi_teardown(desc); 2064 devname = __cleanup_nmi(irq, desc); 2065 2066 raw_spin_unlock_irqrestore(&desc->lock, flags); 2067 2068 return devname; 2069 } 2070 2071 /** 2072 * request_threaded_irq - allocate an interrupt line 2073 * @irq: Interrupt line to allocate 2074 * @handler: Function to be called when the IRQ occurs. 2075 * Primary handler for threaded interrupts 2076 * If NULL and thread_fn != NULL the default 2077 * primary handler is installed 2078 * @thread_fn: Function called from the irq handler thread 2079 * If NULL, no irq thread is created 2080 * @irqflags: Interrupt type flags 2081 * @devname: An ascii name for the claiming device 2082 * @dev_id: A cookie passed back to the handler function 2083 * 2084 * This call allocates interrupt resources and enables the 2085 * interrupt line and IRQ handling. From the point this 2086 * call is made your handler function may be invoked. Since 2087 * your handler function must clear any interrupt the board 2088 * raises, you must take care both to initialise your hardware 2089 * and to set up the interrupt handler in the right order. 2090 * 2091 * If you want to set up a threaded irq handler for your device 2092 * then you need to supply @handler and @thread_fn. @handler is 2093 * still called in hard interrupt context and has to check 2094 * whether the interrupt originates from the device. If yes it 2095 * needs to disable the interrupt on the device and return 2096 * IRQ_WAKE_THREAD which will wake up the handler thread and run 2097 * @thread_fn. This split handler design is necessary to support 2098 * shared interrupts. 2099 * 2100 * Dev_id must be globally unique. Normally the address of the 2101 * device data structure is used as the cookie. Since the handler 2102 * receives this value it makes sense to use it. 2103 * 2104 * If your interrupt is shared you must pass a non NULL dev_id 2105 * as this is required when freeing the interrupt. 2106 * 2107 * Flags: 2108 * 2109 * IRQF_SHARED Interrupt is shared 2110 * IRQF_TRIGGER_* Specify active edge(s) or level 2111 * 2112 */ 2113 int request_threaded_irq(unsigned int irq, irq_handler_t handler, 2114 irq_handler_t thread_fn, unsigned long irqflags, 2115 const char *devname, void *dev_id) 2116 { 2117 struct irqaction *action; 2118 struct irq_desc *desc; 2119 int retval; 2120 2121 if (irq == IRQ_NOTCONNECTED) 2122 return -ENOTCONN; 2123 2124 /* 2125 * Sanity-check: shared interrupts must pass in a real dev-ID, 2126 * otherwise we'll have trouble later trying to figure out 2127 * which interrupt is which (messes up the interrupt freeing 2128 * logic etc). 2129 * 2130 * Also shared interrupts do not go well with disabling auto enable. 2131 * The sharing interrupt might request it while it's still disabled 2132 * and then wait for interrupts forever. 2133 * 2134 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and 2135 * it cannot be set along with IRQF_NO_SUSPEND. 2136 */ 2137 if (((irqflags & IRQF_SHARED) && !dev_id) || 2138 ((irqflags & IRQF_SHARED) && (irqflags & IRQF_NO_AUTOEN)) || 2139 (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) || 2140 ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND))) 2141 return -EINVAL; 2142 2143 desc = irq_to_desc(irq); 2144 if (!desc) 2145 return -EINVAL; 2146 2147 if (!irq_settings_can_request(desc) || 2148 WARN_ON(irq_settings_is_per_cpu_devid(desc))) 2149 return -EINVAL; 2150 2151 if (!handler) { 2152 if (!thread_fn) 2153 return -EINVAL; 2154 handler = irq_default_primary_handler; 2155 } 2156 2157 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2158 if (!action) 2159 return -ENOMEM; 2160 2161 action->handler = handler; 2162 action->thread_fn = thread_fn; 2163 action->flags = irqflags; 2164 action->name = devname; 2165 action->dev_id = dev_id; 2166 2167 retval = irq_chip_pm_get(&desc->irq_data); 2168 if (retval < 0) { 2169 kfree(action); 2170 return retval; 2171 } 2172 2173 retval = __setup_irq(irq, desc, action); 2174 2175 if (retval) { 2176 irq_chip_pm_put(&desc->irq_data); 2177 kfree(action->secondary); 2178 kfree(action); 2179 } 2180 2181 #ifdef CONFIG_DEBUG_SHIRQ_FIXME 2182 if (!retval && (irqflags & IRQF_SHARED)) { 2183 /* 2184 * It's a shared IRQ -- the driver ought to be prepared for it 2185 * to happen immediately, so let's make sure.... 2186 * We disable the irq to make sure that a 'real' IRQ doesn't 2187 * run in parallel with our fake. 2188 */ 2189 unsigned long flags; 2190 2191 disable_irq(irq); 2192 local_irq_save(flags); 2193 2194 handler(irq, dev_id); 2195 2196 local_irq_restore(flags); 2197 enable_irq(irq); 2198 } 2199 #endif 2200 return retval; 2201 } 2202 EXPORT_SYMBOL(request_threaded_irq); 2203 2204 /** 2205 * request_any_context_irq - allocate an interrupt line 2206 * @irq: Interrupt line to allocate 2207 * @handler: Function to be called when the IRQ occurs. 2208 * Threaded handler for threaded interrupts. 2209 * @flags: Interrupt type flags 2210 * @name: An ascii name for the claiming device 2211 * @dev_id: A cookie passed back to the handler function 2212 * 2213 * This call allocates interrupt resources and enables the 2214 * interrupt line and IRQ handling. It selects either a 2215 * hardirq or threaded handling method depending on the 2216 * context. 2217 * 2218 * On failure, it returns a negative value. On success, 2219 * it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED. 2220 */ 2221 int request_any_context_irq(unsigned int irq, irq_handler_t handler, 2222 unsigned long flags, const char *name, void *dev_id) 2223 { 2224 struct irq_desc *desc; 2225 int ret; 2226 2227 if (irq == IRQ_NOTCONNECTED) 2228 return -ENOTCONN; 2229 2230 desc = irq_to_desc(irq); 2231 if (!desc) 2232 return -EINVAL; 2233 2234 if (irq_settings_is_nested_thread(desc)) { 2235 ret = request_threaded_irq(irq, NULL, handler, 2236 flags, name, dev_id); 2237 return !ret ? IRQC_IS_NESTED : ret; 2238 } 2239 2240 ret = request_irq(irq, handler, flags, name, dev_id); 2241 return !ret ? IRQC_IS_HARDIRQ : ret; 2242 } 2243 EXPORT_SYMBOL_GPL(request_any_context_irq); 2244 2245 /** 2246 * request_nmi - allocate an interrupt line for NMI delivery 2247 * @irq: Interrupt line to allocate 2248 * @handler: Function to be called when the IRQ occurs. 2249 * Threaded handler for threaded interrupts. 2250 * @irqflags: Interrupt type flags 2251 * @name: An ascii name for the claiming device 2252 * @dev_id: A cookie passed back to the handler function 2253 * 2254 * This call allocates interrupt resources and enables the 2255 * interrupt line and IRQ handling. It sets up the IRQ line 2256 * to be handled as an NMI. 2257 * 2258 * An interrupt line delivering NMIs cannot be shared and IRQ handling 2259 * cannot be threaded. 2260 * 2261 * Interrupt lines requested for NMI delivering must produce per cpu 2262 * interrupts and have auto enabling setting disabled. 2263 * 2264 * Dev_id must be globally unique. Normally the address of the 2265 * device data structure is used as the cookie. Since the handler 2266 * receives this value it makes sense to use it. 2267 * 2268 * If the interrupt line cannot be used to deliver NMIs, function 2269 * will fail and return a negative value. 2270 */ 2271 int request_nmi(unsigned int irq, irq_handler_t handler, 2272 unsigned long irqflags, const char *name, void *dev_id) 2273 { 2274 struct irqaction *action; 2275 struct irq_desc *desc; 2276 unsigned long flags; 2277 int retval; 2278 2279 if (irq == IRQ_NOTCONNECTED) 2280 return -ENOTCONN; 2281 2282 /* NMI cannot be shared, used for Polling */ 2283 if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL)) 2284 return -EINVAL; 2285 2286 if (!(irqflags & IRQF_PERCPU)) 2287 return -EINVAL; 2288 2289 if (!handler) 2290 return -EINVAL; 2291 2292 desc = irq_to_desc(irq); 2293 2294 if (!desc || (irq_settings_can_autoenable(desc) && 2295 !(irqflags & IRQF_NO_AUTOEN)) || 2296 !irq_settings_can_request(desc) || 2297 WARN_ON(irq_settings_is_per_cpu_devid(desc)) || 2298 !irq_supports_nmi(desc)) 2299 return -EINVAL; 2300 2301 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2302 if (!action) 2303 return -ENOMEM; 2304 2305 action->handler = handler; 2306 action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING; 2307 action->name = name; 2308 action->dev_id = dev_id; 2309 2310 retval = irq_chip_pm_get(&desc->irq_data); 2311 if (retval < 0) 2312 goto err_out; 2313 2314 retval = __setup_irq(irq, desc, action); 2315 if (retval) 2316 goto err_irq_setup; 2317 2318 raw_spin_lock_irqsave(&desc->lock, flags); 2319 2320 /* Setup NMI state */ 2321 desc->istate |= IRQS_NMI; 2322 retval = irq_nmi_setup(desc); 2323 if (retval) { 2324 __cleanup_nmi(irq, desc); 2325 raw_spin_unlock_irqrestore(&desc->lock, flags); 2326 return -EINVAL; 2327 } 2328 2329 raw_spin_unlock_irqrestore(&desc->lock, flags); 2330 2331 return 0; 2332 2333 err_irq_setup: 2334 irq_chip_pm_put(&desc->irq_data); 2335 err_out: 2336 kfree(action); 2337 2338 return retval; 2339 } 2340 2341 void enable_percpu_irq(unsigned int irq, unsigned int type) 2342 { 2343 unsigned int cpu = smp_processor_id(); 2344 unsigned long flags; 2345 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 2346 2347 if (!desc) 2348 return; 2349 2350 /* 2351 * If the trigger type is not specified by the caller, then 2352 * use the default for this interrupt. 2353 */ 2354 type &= IRQ_TYPE_SENSE_MASK; 2355 if (type == IRQ_TYPE_NONE) 2356 type = irqd_get_trigger_type(&desc->irq_data); 2357 2358 if (type != IRQ_TYPE_NONE) { 2359 int ret; 2360 2361 ret = __irq_set_trigger(desc, type); 2362 2363 if (ret) { 2364 WARN(1, "failed to set type for IRQ%d\n", irq); 2365 goto out; 2366 } 2367 } 2368 2369 irq_percpu_enable(desc, cpu); 2370 out: 2371 irq_put_desc_unlock(desc, flags); 2372 } 2373 EXPORT_SYMBOL_GPL(enable_percpu_irq); 2374 2375 void enable_percpu_nmi(unsigned int irq, unsigned int type) 2376 { 2377 enable_percpu_irq(irq, type); 2378 } 2379 2380 /** 2381 * irq_percpu_is_enabled - Check whether the per cpu irq is enabled 2382 * @irq: Linux irq number to check for 2383 * 2384 * Must be called from a non migratable context. Returns the enable 2385 * state of a per cpu interrupt on the current cpu. 2386 */ 2387 bool irq_percpu_is_enabled(unsigned int irq) 2388 { 2389 unsigned int cpu = smp_processor_id(); 2390 struct irq_desc *desc; 2391 unsigned long flags; 2392 bool is_enabled; 2393 2394 desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 2395 if (!desc) 2396 return false; 2397 2398 is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled); 2399 irq_put_desc_unlock(desc, flags); 2400 2401 return is_enabled; 2402 } 2403 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled); 2404 2405 void disable_percpu_irq(unsigned int irq) 2406 { 2407 unsigned int cpu = smp_processor_id(); 2408 unsigned long flags; 2409 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 2410 2411 if (!desc) 2412 return; 2413 2414 irq_percpu_disable(desc, cpu); 2415 irq_put_desc_unlock(desc, flags); 2416 } 2417 EXPORT_SYMBOL_GPL(disable_percpu_irq); 2418 2419 void disable_percpu_nmi(unsigned int irq) 2420 { 2421 disable_percpu_irq(irq); 2422 } 2423 2424 /* 2425 * Internal function to unregister a percpu irqaction. 2426 */ 2427 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id) 2428 { 2429 struct irq_desc *desc = irq_to_desc(irq); 2430 struct irqaction *action; 2431 unsigned long flags; 2432 2433 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq); 2434 2435 if (!desc) 2436 return NULL; 2437 2438 raw_spin_lock_irqsave(&desc->lock, flags); 2439 2440 action = desc->action; 2441 if (!action || action->percpu_dev_id != dev_id) { 2442 WARN(1, "Trying to free already-free IRQ %d\n", irq); 2443 goto bad; 2444 } 2445 2446 if (!cpumask_empty(desc->percpu_enabled)) { 2447 WARN(1, "percpu IRQ %d still enabled on CPU%d!\n", 2448 irq, cpumask_first(desc->percpu_enabled)); 2449 goto bad; 2450 } 2451 2452 /* Found it - now remove it from the list of entries: */ 2453 desc->action = NULL; 2454 2455 desc->istate &= ~IRQS_NMI; 2456 2457 raw_spin_unlock_irqrestore(&desc->lock, flags); 2458 2459 unregister_handler_proc(irq, action); 2460 2461 irq_chip_pm_put(&desc->irq_data); 2462 module_put(desc->owner); 2463 return action; 2464 2465 bad: 2466 raw_spin_unlock_irqrestore(&desc->lock, flags); 2467 return NULL; 2468 } 2469 2470 /** 2471 * remove_percpu_irq - free a per-cpu interrupt 2472 * @irq: Interrupt line to free 2473 * @act: irqaction for the interrupt 2474 * 2475 * Used to remove interrupts statically setup by the early boot process. 2476 */ 2477 void remove_percpu_irq(unsigned int irq, struct irqaction *act) 2478 { 2479 struct irq_desc *desc = irq_to_desc(irq); 2480 2481 if (desc && irq_settings_is_per_cpu_devid(desc)) 2482 __free_percpu_irq(irq, act->percpu_dev_id); 2483 } 2484 2485 /** 2486 * free_percpu_irq - free an interrupt allocated with request_percpu_irq 2487 * @irq: Interrupt line to free 2488 * @dev_id: Device identity to free 2489 * 2490 * Remove a percpu interrupt handler. The handler is removed, but 2491 * the interrupt line is not disabled. This must be done on each 2492 * CPU before calling this function. The function does not return 2493 * until any executing interrupts for this IRQ have completed. 2494 * 2495 * This function must not be called from interrupt context. 2496 */ 2497 void free_percpu_irq(unsigned int irq, void __percpu *dev_id) 2498 { 2499 struct irq_desc *desc = irq_to_desc(irq); 2500 2501 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2502 return; 2503 2504 chip_bus_lock(desc); 2505 kfree(__free_percpu_irq(irq, dev_id)); 2506 chip_bus_sync_unlock(desc); 2507 } 2508 EXPORT_SYMBOL_GPL(free_percpu_irq); 2509 2510 void free_percpu_nmi(unsigned int irq, void __percpu *dev_id) 2511 { 2512 struct irq_desc *desc = irq_to_desc(irq); 2513 2514 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2515 return; 2516 2517 if (WARN_ON(!(desc->istate & IRQS_NMI))) 2518 return; 2519 2520 kfree(__free_percpu_irq(irq, dev_id)); 2521 } 2522 2523 /** 2524 * setup_percpu_irq - setup a per-cpu interrupt 2525 * @irq: Interrupt line to setup 2526 * @act: irqaction for the interrupt 2527 * 2528 * Used to statically setup per-cpu interrupts in the early boot process. 2529 */ 2530 int setup_percpu_irq(unsigned int irq, struct irqaction *act) 2531 { 2532 struct irq_desc *desc = irq_to_desc(irq); 2533 int retval; 2534 2535 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2536 return -EINVAL; 2537 2538 retval = irq_chip_pm_get(&desc->irq_data); 2539 if (retval < 0) 2540 return retval; 2541 2542 retval = __setup_irq(irq, desc, act); 2543 2544 if (retval) 2545 irq_chip_pm_put(&desc->irq_data); 2546 2547 return retval; 2548 } 2549 2550 /** 2551 * __request_percpu_irq - allocate a percpu interrupt line 2552 * @irq: Interrupt line to allocate 2553 * @handler: Function to be called when the IRQ occurs. 2554 * @flags: Interrupt type flags (IRQF_TIMER only) 2555 * @devname: An ascii name for the claiming device 2556 * @dev_id: A percpu cookie passed back to the handler function 2557 * 2558 * This call allocates interrupt resources and enables the 2559 * interrupt on the local CPU. If the interrupt is supposed to be 2560 * enabled on other CPUs, it has to be done on each CPU using 2561 * enable_percpu_irq(). 2562 * 2563 * Dev_id must be globally unique. It is a per-cpu variable, and 2564 * the handler gets called with the interrupted CPU's instance of 2565 * that variable. 2566 */ 2567 int __request_percpu_irq(unsigned int irq, irq_handler_t handler, 2568 unsigned long flags, const char *devname, 2569 void __percpu *dev_id) 2570 { 2571 struct irqaction *action; 2572 struct irq_desc *desc; 2573 int retval; 2574 2575 if (!dev_id) 2576 return -EINVAL; 2577 2578 desc = irq_to_desc(irq); 2579 if (!desc || !irq_settings_can_request(desc) || 2580 !irq_settings_is_per_cpu_devid(desc)) 2581 return -EINVAL; 2582 2583 if (flags && flags != IRQF_TIMER) 2584 return -EINVAL; 2585 2586 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2587 if (!action) 2588 return -ENOMEM; 2589 2590 action->handler = handler; 2591 action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND; 2592 action->name = devname; 2593 action->percpu_dev_id = dev_id; 2594 2595 retval = irq_chip_pm_get(&desc->irq_data); 2596 if (retval < 0) { 2597 kfree(action); 2598 return retval; 2599 } 2600 2601 retval = __setup_irq(irq, desc, action); 2602 2603 if (retval) { 2604 irq_chip_pm_put(&desc->irq_data); 2605 kfree(action); 2606 } 2607 2608 return retval; 2609 } 2610 EXPORT_SYMBOL_GPL(__request_percpu_irq); 2611 2612 /** 2613 * request_percpu_nmi - allocate a percpu interrupt line for NMI delivery 2614 * @irq: Interrupt line to allocate 2615 * @handler: Function to be called when the IRQ occurs. 2616 * @name: An ascii name for the claiming device 2617 * @dev_id: A percpu cookie passed back to the handler function 2618 * 2619 * This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs 2620 * have to be setup on each CPU by calling prepare_percpu_nmi() before 2621 * being enabled on the same CPU by using enable_percpu_nmi(). 2622 * 2623 * Dev_id must be globally unique. It is a per-cpu variable, and 2624 * the handler gets called with the interrupted CPU's instance of 2625 * that variable. 2626 * 2627 * Interrupt lines requested for NMI delivering should have auto enabling 2628 * setting disabled. 2629 * 2630 * If the interrupt line cannot be used to deliver NMIs, function 2631 * will fail returning a negative value. 2632 */ 2633 int request_percpu_nmi(unsigned int irq, irq_handler_t handler, 2634 const char *name, void __percpu *dev_id) 2635 { 2636 struct irqaction *action; 2637 struct irq_desc *desc; 2638 unsigned long flags; 2639 int retval; 2640 2641 if (!handler) 2642 return -EINVAL; 2643 2644 desc = irq_to_desc(irq); 2645 2646 if (!desc || !irq_settings_can_request(desc) || 2647 !irq_settings_is_per_cpu_devid(desc) || 2648 irq_settings_can_autoenable(desc) || 2649 !irq_supports_nmi(desc)) 2650 return -EINVAL; 2651 2652 /* The line cannot already be NMI */ 2653 if (desc->istate & IRQS_NMI) 2654 return -EINVAL; 2655 2656 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2657 if (!action) 2658 return -ENOMEM; 2659 2660 action->handler = handler; 2661 action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD 2662 | IRQF_NOBALANCING; 2663 action->name = name; 2664 action->percpu_dev_id = dev_id; 2665 2666 retval = irq_chip_pm_get(&desc->irq_data); 2667 if (retval < 0) 2668 goto err_out; 2669 2670 retval = __setup_irq(irq, desc, action); 2671 if (retval) 2672 goto err_irq_setup; 2673 2674 raw_spin_lock_irqsave(&desc->lock, flags); 2675 desc->istate |= IRQS_NMI; 2676 raw_spin_unlock_irqrestore(&desc->lock, flags); 2677 2678 return 0; 2679 2680 err_irq_setup: 2681 irq_chip_pm_put(&desc->irq_data); 2682 err_out: 2683 kfree(action); 2684 2685 return retval; 2686 } 2687 2688 /** 2689 * prepare_percpu_nmi - performs CPU local setup for NMI delivery 2690 * @irq: Interrupt line to prepare for NMI delivery 2691 * 2692 * This call prepares an interrupt line to deliver NMI on the current CPU, 2693 * before that interrupt line gets enabled with enable_percpu_nmi(). 2694 * 2695 * As a CPU local operation, this should be called from non-preemptible 2696 * context. 2697 * 2698 * If the interrupt line cannot be used to deliver NMIs, function 2699 * will fail returning a negative value. 2700 */ 2701 int prepare_percpu_nmi(unsigned int irq) 2702 { 2703 unsigned long flags; 2704 struct irq_desc *desc; 2705 int ret = 0; 2706 2707 WARN_ON(preemptible()); 2708 2709 desc = irq_get_desc_lock(irq, &flags, 2710 IRQ_GET_DESC_CHECK_PERCPU); 2711 if (!desc) 2712 return -EINVAL; 2713 2714 if (WARN(!(desc->istate & IRQS_NMI), 2715 KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n", 2716 irq)) { 2717 ret = -EINVAL; 2718 goto out; 2719 } 2720 2721 ret = irq_nmi_setup(desc); 2722 if (ret) { 2723 pr_err("Failed to setup NMI delivery: irq %u\n", irq); 2724 goto out; 2725 } 2726 2727 out: 2728 irq_put_desc_unlock(desc, flags); 2729 return ret; 2730 } 2731 2732 /** 2733 * teardown_percpu_nmi - undoes NMI setup of IRQ line 2734 * @irq: Interrupt line from which CPU local NMI configuration should be 2735 * removed 2736 * 2737 * This call undoes the setup done by prepare_percpu_nmi(). 2738 * 2739 * IRQ line should not be enabled for the current CPU. 2740 * 2741 * As a CPU local operation, this should be called from non-preemptible 2742 * context. 2743 */ 2744 void teardown_percpu_nmi(unsigned int irq) 2745 { 2746 unsigned long flags; 2747 struct irq_desc *desc; 2748 2749 WARN_ON(preemptible()); 2750 2751 desc = irq_get_desc_lock(irq, &flags, 2752 IRQ_GET_DESC_CHECK_PERCPU); 2753 if (!desc) 2754 return; 2755 2756 if (WARN_ON(!(desc->istate & IRQS_NMI))) 2757 goto out; 2758 2759 irq_nmi_teardown(desc); 2760 out: 2761 irq_put_desc_unlock(desc, flags); 2762 } 2763 2764 int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which, 2765 bool *state) 2766 { 2767 struct irq_chip *chip; 2768 int err = -EINVAL; 2769 2770 do { 2771 chip = irq_data_get_irq_chip(data); 2772 if (WARN_ON_ONCE(!chip)) 2773 return -ENODEV; 2774 if (chip->irq_get_irqchip_state) 2775 break; 2776 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 2777 data = data->parent_data; 2778 #else 2779 data = NULL; 2780 #endif 2781 } while (data); 2782 2783 if (data) 2784 err = chip->irq_get_irqchip_state(data, which, state); 2785 return err; 2786 } 2787 2788 /** 2789 * irq_get_irqchip_state - returns the irqchip state of a interrupt. 2790 * @irq: Interrupt line that is forwarded to a VM 2791 * @which: One of IRQCHIP_STATE_* the caller wants to know about 2792 * @state: a pointer to a boolean where the state is to be stored 2793 * 2794 * This call snapshots the internal irqchip state of an 2795 * interrupt, returning into @state the bit corresponding to 2796 * stage @which 2797 * 2798 * This function should be called with preemption disabled if the 2799 * interrupt controller has per-cpu registers. 2800 */ 2801 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which, 2802 bool *state) 2803 { 2804 struct irq_desc *desc; 2805 struct irq_data *data; 2806 unsigned long flags; 2807 int err = -EINVAL; 2808 2809 desc = irq_get_desc_buslock(irq, &flags, 0); 2810 if (!desc) 2811 return err; 2812 2813 data = irq_desc_get_irq_data(desc); 2814 2815 err = __irq_get_irqchip_state(data, which, state); 2816 2817 irq_put_desc_busunlock(desc, flags); 2818 return err; 2819 } 2820 EXPORT_SYMBOL_GPL(irq_get_irqchip_state); 2821 2822 /** 2823 * irq_set_irqchip_state - set the state of a forwarded interrupt. 2824 * @irq: Interrupt line that is forwarded to a VM 2825 * @which: State to be restored (one of IRQCHIP_STATE_*) 2826 * @val: Value corresponding to @which 2827 * 2828 * This call sets the internal irqchip state of an interrupt, 2829 * depending on the value of @which. 2830 * 2831 * This function should be called with preemption disabled if the 2832 * interrupt controller has per-cpu registers. 2833 */ 2834 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which, 2835 bool val) 2836 { 2837 struct irq_desc *desc; 2838 struct irq_data *data; 2839 struct irq_chip *chip; 2840 unsigned long flags; 2841 int err = -EINVAL; 2842 2843 desc = irq_get_desc_buslock(irq, &flags, 0); 2844 if (!desc) 2845 return err; 2846 2847 data = irq_desc_get_irq_data(desc); 2848 2849 do { 2850 chip = irq_data_get_irq_chip(data); 2851 if (WARN_ON_ONCE(!chip)) { 2852 err = -ENODEV; 2853 goto out_unlock; 2854 } 2855 if (chip->irq_set_irqchip_state) 2856 break; 2857 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 2858 data = data->parent_data; 2859 #else 2860 data = NULL; 2861 #endif 2862 } while (data); 2863 2864 if (data) 2865 err = chip->irq_set_irqchip_state(data, which, val); 2866 2867 out_unlock: 2868 irq_put_desc_busunlock(desc, flags); 2869 return err; 2870 } 2871 EXPORT_SYMBOL_GPL(irq_set_irqchip_state); 2872 2873 /** 2874 * irq_has_action - Check whether an interrupt is requested 2875 * @irq: The linux irq number 2876 * 2877 * Returns: A snapshot of the current state 2878 */ 2879 bool irq_has_action(unsigned int irq) 2880 { 2881 bool res; 2882 2883 rcu_read_lock(); 2884 res = irq_desc_has_action(irq_to_desc(irq)); 2885 rcu_read_unlock(); 2886 return res; 2887 } 2888 EXPORT_SYMBOL_GPL(irq_has_action); 2889 2890 /** 2891 * irq_check_status_bit - Check whether bits in the irq descriptor status are set 2892 * @irq: The linux irq number 2893 * @bitmask: The bitmask to evaluate 2894 * 2895 * Returns: True if one of the bits in @bitmask is set 2896 */ 2897 bool irq_check_status_bit(unsigned int irq, unsigned int bitmask) 2898 { 2899 struct irq_desc *desc; 2900 bool res = false; 2901 2902 rcu_read_lock(); 2903 desc = irq_to_desc(irq); 2904 if (desc) 2905 res = !!(desc->status_use_accessors & bitmask); 2906 rcu_read_unlock(); 2907 return res; 2908 } 2909 EXPORT_SYMBOL_GPL(irq_check_status_bit); 2910