xref: /openbmc/linux/kernel/irq/manage.c (revision 6b5fc336)
1 /*
2  * linux/kernel/irq/manage.c
3  *
4  * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
5  * Copyright (C) 2005-2006 Thomas Gleixner
6  *
7  * This file contains driver APIs to the irq subsystem.
8  */
9 
10 #define pr_fmt(fmt) "genirq: " fmt
11 
12 #include <linux/irq.h>
13 #include <linux/kthread.h>
14 #include <linux/module.h>
15 #include <linux/random.h>
16 #include <linux/interrupt.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/sched/rt.h>
20 #include <linux/sched/task.h>
21 #include <uapi/linux/sched/types.h>
22 #include <linux/task_work.h>
23 
24 #include "internals.h"
25 
26 #ifdef CONFIG_IRQ_FORCED_THREADING
27 __read_mostly bool force_irqthreads;
28 
29 static int __init setup_forced_irqthreads(char *arg)
30 {
31 	force_irqthreads = true;
32 	return 0;
33 }
34 early_param("threadirqs", setup_forced_irqthreads);
35 #endif
36 
37 static void __synchronize_hardirq(struct irq_desc *desc)
38 {
39 	bool inprogress;
40 
41 	do {
42 		unsigned long flags;
43 
44 		/*
45 		 * Wait until we're out of the critical section.  This might
46 		 * give the wrong answer due to the lack of memory barriers.
47 		 */
48 		while (irqd_irq_inprogress(&desc->irq_data))
49 			cpu_relax();
50 
51 		/* Ok, that indicated we're done: double-check carefully. */
52 		raw_spin_lock_irqsave(&desc->lock, flags);
53 		inprogress = irqd_irq_inprogress(&desc->irq_data);
54 		raw_spin_unlock_irqrestore(&desc->lock, flags);
55 
56 		/* Oops, that failed? */
57 	} while (inprogress);
58 }
59 
60 /**
61  *	synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
62  *	@irq: interrupt number to wait for
63  *
64  *	This function waits for any pending hard IRQ handlers for this
65  *	interrupt to complete before returning. If you use this
66  *	function while holding a resource the IRQ handler may need you
67  *	will deadlock. It does not take associated threaded handlers
68  *	into account.
69  *
70  *	Do not use this for shutdown scenarios where you must be sure
71  *	that all parts (hardirq and threaded handler) have completed.
72  *
73  *	Returns: false if a threaded handler is active.
74  *
75  *	This function may be called - with care - from IRQ context.
76  */
77 bool synchronize_hardirq(unsigned int irq)
78 {
79 	struct irq_desc *desc = irq_to_desc(irq);
80 
81 	if (desc) {
82 		__synchronize_hardirq(desc);
83 		return !atomic_read(&desc->threads_active);
84 	}
85 
86 	return true;
87 }
88 EXPORT_SYMBOL(synchronize_hardirq);
89 
90 /**
91  *	synchronize_irq - wait for pending IRQ handlers (on other CPUs)
92  *	@irq: interrupt number to wait for
93  *
94  *	This function waits for any pending IRQ handlers for this interrupt
95  *	to complete before returning. If you use this function while
96  *	holding a resource the IRQ handler may need you will deadlock.
97  *
98  *	This function may be called - with care - from IRQ context.
99  */
100 void synchronize_irq(unsigned int irq)
101 {
102 	struct irq_desc *desc = irq_to_desc(irq);
103 
104 	if (desc) {
105 		__synchronize_hardirq(desc);
106 		/*
107 		 * We made sure that no hardirq handler is
108 		 * running. Now verify that no threaded handlers are
109 		 * active.
110 		 */
111 		wait_event(desc->wait_for_threads,
112 			   !atomic_read(&desc->threads_active));
113 	}
114 }
115 EXPORT_SYMBOL(synchronize_irq);
116 
117 #ifdef CONFIG_SMP
118 cpumask_var_t irq_default_affinity;
119 
120 static bool __irq_can_set_affinity(struct irq_desc *desc)
121 {
122 	if (!desc || !irqd_can_balance(&desc->irq_data) ||
123 	    !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
124 		return false;
125 	return true;
126 }
127 
128 /**
129  *	irq_can_set_affinity - Check if the affinity of a given irq can be set
130  *	@irq:		Interrupt to check
131  *
132  */
133 int irq_can_set_affinity(unsigned int irq)
134 {
135 	return __irq_can_set_affinity(irq_to_desc(irq));
136 }
137 
138 /**
139  * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
140  * @irq:	Interrupt to check
141  *
142  * Like irq_can_set_affinity() above, but additionally checks for the
143  * AFFINITY_MANAGED flag.
144  */
145 bool irq_can_set_affinity_usr(unsigned int irq)
146 {
147 	struct irq_desc *desc = irq_to_desc(irq);
148 
149 	return __irq_can_set_affinity(desc) &&
150 		!irqd_affinity_is_managed(&desc->irq_data);
151 }
152 
153 /**
154  *	irq_set_thread_affinity - Notify irq threads to adjust affinity
155  *	@desc:		irq descriptor which has affitnity changed
156  *
157  *	We just set IRQTF_AFFINITY and delegate the affinity setting
158  *	to the interrupt thread itself. We can not call
159  *	set_cpus_allowed_ptr() here as we hold desc->lock and this
160  *	code can be called from hard interrupt context.
161  */
162 void irq_set_thread_affinity(struct irq_desc *desc)
163 {
164 	struct irqaction *action;
165 
166 	for_each_action_of_desc(desc, action)
167 		if (action->thread)
168 			set_bit(IRQTF_AFFINITY, &action->thread_flags);
169 }
170 
171 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
172 			bool force)
173 {
174 	struct irq_desc *desc = irq_data_to_desc(data);
175 	struct irq_chip *chip = irq_data_get_irq_chip(data);
176 	int ret;
177 
178 	ret = chip->irq_set_affinity(data, mask, force);
179 	switch (ret) {
180 	case IRQ_SET_MASK_OK:
181 	case IRQ_SET_MASK_OK_DONE:
182 		cpumask_copy(desc->irq_common_data.affinity, mask);
183 	case IRQ_SET_MASK_OK_NOCOPY:
184 		irq_set_thread_affinity(desc);
185 		ret = 0;
186 	}
187 
188 	return ret;
189 }
190 
191 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
192 			    bool force)
193 {
194 	struct irq_chip *chip = irq_data_get_irq_chip(data);
195 	struct irq_desc *desc = irq_data_to_desc(data);
196 	int ret = 0;
197 
198 	if (!chip || !chip->irq_set_affinity)
199 		return -EINVAL;
200 
201 	if (irq_can_move_pcntxt(data)) {
202 		ret = irq_do_set_affinity(data, mask, force);
203 	} else {
204 		irqd_set_move_pending(data);
205 		irq_copy_pending(desc, mask);
206 	}
207 
208 	if (desc->affinity_notify) {
209 		kref_get(&desc->affinity_notify->kref);
210 		schedule_work(&desc->affinity_notify->work);
211 	}
212 	irqd_set(data, IRQD_AFFINITY_SET);
213 
214 	return ret;
215 }
216 
217 int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force)
218 {
219 	struct irq_desc *desc = irq_to_desc(irq);
220 	unsigned long flags;
221 	int ret;
222 
223 	if (!desc)
224 		return -EINVAL;
225 
226 	raw_spin_lock_irqsave(&desc->lock, flags);
227 	ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
228 	raw_spin_unlock_irqrestore(&desc->lock, flags);
229 	return ret;
230 }
231 
232 int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m)
233 {
234 	unsigned long flags;
235 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
236 
237 	if (!desc)
238 		return -EINVAL;
239 	desc->affinity_hint = m;
240 	irq_put_desc_unlock(desc, flags);
241 	/* set the initial affinity to prevent every interrupt being on CPU0 */
242 	if (m)
243 		__irq_set_affinity(irq, m, false);
244 	return 0;
245 }
246 EXPORT_SYMBOL_GPL(irq_set_affinity_hint);
247 
248 static void irq_affinity_notify(struct work_struct *work)
249 {
250 	struct irq_affinity_notify *notify =
251 		container_of(work, struct irq_affinity_notify, work);
252 	struct irq_desc *desc = irq_to_desc(notify->irq);
253 	cpumask_var_t cpumask;
254 	unsigned long flags;
255 
256 	if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
257 		goto out;
258 
259 	raw_spin_lock_irqsave(&desc->lock, flags);
260 	if (irq_move_pending(&desc->irq_data))
261 		irq_get_pending(cpumask, desc);
262 	else
263 		cpumask_copy(cpumask, desc->irq_common_data.affinity);
264 	raw_spin_unlock_irqrestore(&desc->lock, flags);
265 
266 	notify->notify(notify, cpumask);
267 
268 	free_cpumask_var(cpumask);
269 out:
270 	kref_put(&notify->kref, notify->release);
271 }
272 
273 /**
274  *	irq_set_affinity_notifier - control notification of IRQ affinity changes
275  *	@irq:		Interrupt for which to enable/disable notification
276  *	@notify:	Context for notification, or %NULL to disable
277  *			notification.  Function pointers must be initialised;
278  *			the other fields will be initialised by this function.
279  *
280  *	Must be called in process context.  Notification may only be enabled
281  *	after the IRQ is allocated and must be disabled before the IRQ is
282  *	freed using free_irq().
283  */
284 int
285 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
286 {
287 	struct irq_desc *desc = irq_to_desc(irq);
288 	struct irq_affinity_notify *old_notify;
289 	unsigned long flags;
290 
291 	/* The release function is promised process context */
292 	might_sleep();
293 
294 	if (!desc)
295 		return -EINVAL;
296 
297 	/* Complete initialisation of *notify */
298 	if (notify) {
299 		notify->irq = irq;
300 		kref_init(&notify->kref);
301 		INIT_WORK(&notify->work, irq_affinity_notify);
302 	}
303 
304 	raw_spin_lock_irqsave(&desc->lock, flags);
305 	old_notify = desc->affinity_notify;
306 	desc->affinity_notify = notify;
307 	raw_spin_unlock_irqrestore(&desc->lock, flags);
308 
309 	if (old_notify)
310 		kref_put(&old_notify->kref, old_notify->release);
311 
312 	return 0;
313 }
314 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
315 
316 #ifndef CONFIG_AUTO_IRQ_AFFINITY
317 /*
318  * Generic version of the affinity autoselector.
319  */
320 int irq_setup_affinity(struct irq_desc *desc)
321 {
322 	struct cpumask *set = irq_default_affinity;
323 	int ret, node = irq_desc_get_node(desc);
324 	static DEFINE_RAW_SPINLOCK(mask_lock);
325 	static struct cpumask mask;
326 
327 	/* Excludes PER_CPU and NO_BALANCE interrupts */
328 	if (!__irq_can_set_affinity(desc))
329 		return 0;
330 
331 	raw_spin_lock(&mask_lock);
332 	/*
333 	 * Preserve the managed affinity setting and a userspace affinity
334 	 * setup, but make sure that one of the targets is online.
335 	 */
336 	if (irqd_affinity_is_managed(&desc->irq_data) ||
337 	    irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
338 		if (cpumask_intersects(desc->irq_common_data.affinity,
339 				       cpu_online_mask))
340 			set = desc->irq_common_data.affinity;
341 		else
342 			irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
343 	}
344 
345 	cpumask_and(&mask, cpu_online_mask, set);
346 	if (node != NUMA_NO_NODE) {
347 		const struct cpumask *nodemask = cpumask_of_node(node);
348 
349 		/* make sure at least one of the cpus in nodemask is online */
350 		if (cpumask_intersects(&mask, nodemask))
351 			cpumask_and(&mask, &mask, nodemask);
352 	}
353 	ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
354 	raw_spin_unlock(&mask_lock);
355 	return ret;
356 }
357 #else
358 /* Wrapper for ALPHA specific affinity selector magic */
359 int irq_setup_affinity(struct irq_desc *desc)
360 {
361 	return irq_select_affinity(irq_desc_get_irq(desc));
362 }
363 #endif
364 
365 /*
366  * Called when a bogus affinity is set via /proc/irq
367  */
368 int irq_select_affinity_usr(unsigned int irq)
369 {
370 	struct irq_desc *desc = irq_to_desc(irq);
371 	unsigned long flags;
372 	int ret;
373 
374 	raw_spin_lock_irqsave(&desc->lock, flags);
375 	ret = irq_setup_affinity(desc);
376 	raw_spin_unlock_irqrestore(&desc->lock, flags);
377 	return ret;
378 }
379 #endif
380 
381 /**
382  *	irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
383  *	@irq: interrupt number to set affinity
384  *	@vcpu_info: vCPU specific data
385  *
386  *	This function uses the vCPU specific data to set the vCPU
387  *	affinity for an irq. The vCPU specific data is passed from
388  *	outside, such as KVM. One example code path is as below:
389  *	KVM -> IOMMU -> irq_set_vcpu_affinity().
390  */
391 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
392 {
393 	unsigned long flags;
394 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
395 	struct irq_data *data;
396 	struct irq_chip *chip;
397 	int ret = -ENOSYS;
398 
399 	if (!desc)
400 		return -EINVAL;
401 
402 	data = irq_desc_get_irq_data(desc);
403 	chip = irq_data_get_irq_chip(data);
404 	if (chip && chip->irq_set_vcpu_affinity)
405 		ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
406 	irq_put_desc_unlock(desc, flags);
407 
408 	return ret;
409 }
410 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
411 
412 void __disable_irq(struct irq_desc *desc)
413 {
414 	if (!desc->depth++)
415 		irq_disable(desc);
416 }
417 
418 static int __disable_irq_nosync(unsigned int irq)
419 {
420 	unsigned long flags;
421 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
422 
423 	if (!desc)
424 		return -EINVAL;
425 	__disable_irq(desc);
426 	irq_put_desc_busunlock(desc, flags);
427 	return 0;
428 }
429 
430 /**
431  *	disable_irq_nosync - disable an irq without waiting
432  *	@irq: Interrupt to disable
433  *
434  *	Disable the selected interrupt line.  Disables and Enables are
435  *	nested.
436  *	Unlike disable_irq(), this function does not ensure existing
437  *	instances of the IRQ handler have completed before returning.
438  *
439  *	This function may be called from IRQ context.
440  */
441 void disable_irq_nosync(unsigned int irq)
442 {
443 	__disable_irq_nosync(irq);
444 }
445 EXPORT_SYMBOL(disable_irq_nosync);
446 
447 /**
448  *	disable_irq - disable an irq and wait for completion
449  *	@irq: Interrupt to disable
450  *
451  *	Disable the selected interrupt line.  Enables and Disables are
452  *	nested.
453  *	This function waits for any pending IRQ handlers for this interrupt
454  *	to complete before returning. If you use this function while
455  *	holding a resource the IRQ handler may need you will deadlock.
456  *
457  *	This function may be called - with care - from IRQ context.
458  */
459 void disable_irq(unsigned int irq)
460 {
461 	if (!__disable_irq_nosync(irq))
462 		synchronize_irq(irq);
463 }
464 EXPORT_SYMBOL(disable_irq);
465 
466 /**
467  *	disable_hardirq - disables an irq and waits for hardirq completion
468  *	@irq: Interrupt to disable
469  *
470  *	Disable the selected interrupt line.  Enables and Disables are
471  *	nested.
472  *	This function waits for any pending hard IRQ handlers for this
473  *	interrupt to complete before returning. If you use this function while
474  *	holding a resource the hard IRQ handler may need you will deadlock.
475  *
476  *	When used to optimistically disable an interrupt from atomic context
477  *	the return value must be checked.
478  *
479  *	Returns: false if a threaded handler is active.
480  *
481  *	This function may be called - with care - from IRQ context.
482  */
483 bool disable_hardirq(unsigned int irq)
484 {
485 	if (!__disable_irq_nosync(irq))
486 		return synchronize_hardirq(irq);
487 
488 	return false;
489 }
490 EXPORT_SYMBOL_GPL(disable_hardirq);
491 
492 void __enable_irq(struct irq_desc *desc)
493 {
494 	switch (desc->depth) {
495 	case 0:
496  err_out:
497 		WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
498 		     irq_desc_get_irq(desc));
499 		break;
500 	case 1: {
501 		if (desc->istate & IRQS_SUSPENDED)
502 			goto err_out;
503 		/* Prevent probing on this irq: */
504 		irq_settings_set_noprobe(desc);
505 		/*
506 		 * Call irq_startup() not irq_enable() here because the
507 		 * interrupt might be marked NOAUTOEN. So irq_startup()
508 		 * needs to be invoked when it gets enabled the first
509 		 * time. If it was already started up, then irq_startup()
510 		 * will invoke irq_enable() under the hood.
511 		 */
512 		irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
513 		break;
514 	}
515 	default:
516 		desc->depth--;
517 	}
518 }
519 
520 /**
521  *	enable_irq - enable handling of an irq
522  *	@irq: Interrupt to enable
523  *
524  *	Undoes the effect of one call to disable_irq().  If this
525  *	matches the last disable, processing of interrupts on this
526  *	IRQ line is re-enabled.
527  *
528  *	This function may be called from IRQ context only when
529  *	desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
530  */
531 void enable_irq(unsigned int irq)
532 {
533 	unsigned long flags;
534 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
535 
536 	if (!desc)
537 		return;
538 	if (WARN(!desc->irq_data.chip,
539 		 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
540 		goto out;
541 
542 	__enable_irq(desc);
543 out:
544 	irq_put_desc_busunlock(desc, flags);
545 }
546 EXPORT_SYMBOL(enable_irq);
547 
548 static int set_irq_wake_real(unsigned int irq, unsigned int on)
549 {
550 	struct irq_desc *desc = irq_to_desc(irq);
551 	int ret = -ENXIO;
552 
553 	if (irq_desc_get_chip(desc)->flags &  IRQCHIP_SKIP_SET_WAKE)
554 		return 0;
555 
556 	if (desc->irq_data.chip->irq_set_wake)
557 		ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
558 
559 	return ret;
560 }
561 
562 /**
563  *	irq_set_irq_wake - control irq power management wakeup
564  *	@irq:	interrupt to control
565  *	@on:	enable/disable power management wakeup
566  *
567  *	Enable/disable power management wakeup mode, which is
568  *	disabled by default.  Enables and disables must match,
569  *	just as they match for non-wakeup mode support.
570  *
571  *	Wakeup mode lets this IRQ wake the system from sleep
572  *	states like "suspend to RAM".
573  */
574 int irq_set_irq_wake(unsigned int irq, unsigned int on)
575 {
576 	unsigned long flags;
577 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
578 	int ret = 0;
579 
580 	if (!desc)
581 		return -EINVAL;
582 
583 	/* wakeup-capable irqs can be shared between drivers that
584 	 * don't need to have the same sleep mode behaviors.
585 	 */
586 	if (on) {
587 		if (desc->wake_depth++ == 0) {
588 			ret = set_irq_wake_real(irq, on);
589 			if (ret)
590 				desc->wake_depth = 0;
591 			else
592 				irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
593 		}
594 	} else {
595 		if (desc->wake_depth == 0) {
596 			WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
597 		} else if (--desc->wake_depth == 0) {
598 			ret = set_irq_wake_real(irq, on);
599 			if (ret)
600 				desc->wake_depth = 1;
601 			else
602 				irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
603 		}
604 	}
605 	irq_put_desc_busunlock(desc, flags);
606 	return ret;
607 }
608 EXPORT_SYMBOL(irq_set_irq_wake);
609 
610 /*
611  * Internal function that tells the architecture code whether a
612  * particular irq has been exclusively allocated or is available
613  * for driver use.
614  */
615 int can_request_irq(unsigned int irq, unsigned long irqflags)
616 {
617 	unsigned long flags;
618 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
619 	int canrequest = 0;
620 
621 	if (!desc)
622 		return 0;
623 
624 	if (irq_settings_can_request(desc)) {
625 		if (!desc->action ||
626 		    irqflags & desc->action->flags & IRQF_SHARED)
627 			canrequest = 1;
628 	}
629 	irq_put_desc_unlock(desc, flags);
630 	return canrequest;
631 }
632 
633 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
634 {
635 	struct irq_chip *chip = desc->irq_data.chip;
636 	int ret, unmask = 0;
637 
638 	if (!chip || !chip->irq_set_type) {
639 		/*
640 		 * IRQF_TRIGGER_* but the PIC does not support multiple
641 		 * flow-types?
642 		 */
643 		pr_debug("No set_type function for IRQ %d (%s)\n",
644 			 irq_desc_get_irq(desc),
645 			 chip ? (chip->name ? : "unknown") : "unknown");
646 		return 0;
647 	}
648 
649 	if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
650 		if (!irqd_irq_masked(&desc->irq_data))
651 			mask_irq(desc);
652 		if (!irqd_irq_disabled(&desc->irq_data))
653 			unmask = 1;
654 	}
655 
656 	/* Mask all flags except trigger mode */
657 	flags &= IRQ_TYPE_SENSE_MASK;
658 	ret = chip->irq_set_type(&desc->irq_data, flags);
659 
660 	switch (ret) {
661 	case IRQ_SET_MASK_OK:
662 	case IRQ_SET_MASK_OK_DONE:
663 		irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
664 		irqd_set(&desc->irq_data, flags);
665 
666 	case IRQ_SET_MASK_OK_NOCOPY:
667 		flags = irqd_get_trigger_type(&desc->irq_data);
668 		irq_settings_set_trigger_mask(desc, flags);
669 		irqd_clear(&desc->irq_data, IRQD_LEVEL);
670 		irq_settings_clr_level(desc);
671 		if (flags & IRQ_TYPE_LEVEL_MASK) {
672 			irq_settings_set_level(desc);
673 			irqd_set(&desc->irq_data, IRQD_LEVEL);
674 		}
675 
676 		ret = 0;
677 		break;
678 	default:
679 		pr_err("Setting trigger mode %lu for irq %u failed (%pF)\n",
680 		       flags, irq_desc_get_irq(desc), chip->irq_set_type);
681 	}
682 	if (unmask)
683 		unmask_irq(desc);
684 	return ret;
685 }
686 
687 #ifdef CONFIG_HARDIRQS_SW_RESEND
688 int irq_set_parent(int irq, int parent_irq)
689 {
690 	unsigned long flags;
691 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
692 
693 	if (!desc)
694 		return -EINVAL;
695 
696 	desc->parent_irq = parent_irq;
697 
698 	irq_put_desc_unlock(desc, flags);
699 	return 0;
700 }
701 EXPORT_SYMBOL_GPL(irq_set_parent);
702 #endif
703 
704 /*
705  * Default primary interrupt handler for threaded interrupts. Is
706  * assigned as primary handler when request_threaded_irq is called
707  * with handler == NULL. Useful for oneshot interrupts.
708  */
709 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
710 {
711 	return IRQ_WAKE_THREAD;
712 }
713 
714 /*
715  * Primary handler for nested threaded interrupts. Should never be
716  * called.
717  */
718 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
719 {
720 	WARN(1, "Primary handler called for nested irq %d\n", irq);
721 	return IRQ_NONE;
722 }
723 
724 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
725 {
726 	WARN(1, "Secondary action handler called for irq %d\n", irq);
727 	return IRQ_NONE;
728 }
729 
730 static int irq_wait_for_interrupt(struct irqaction *action)
731 {
732 	set_current_state(TASK_INTERRUPTIBLE);
733 
734 	while (!kthread_should_stop()) {
735 
736 		if (test_and_clear_bit(IRQTF_RUNTHREAD,
737 				       &action->thread_flags)) {
738 			__set_current_state(TASK_RUNNING);
739 			return 0;
740 		}
741 		schedule();
742 		set_current_state(TASK_INTERRUPTIBLE);
743 	}
744 	__set_current_state(TASK_RUNNING);
745 	return -1;
746 }
747 
748 /*
749  * Oneshot interrupts keep the irq line masked until the threaded
750  * handler finished. unmask if the interrupt has not been disabled and
751  * is marked MASKED.
752  */
753 static void irq_finalize_oneshot(struct irq_desc *desc,
754 				 struct irqaction *action)
755 {
756 	if (!(desc->istate & IRQS_ONESHOT) ||
757 	    action->handler == irq_forced_secondary_handler)
758 		return;
759 again:
760 	chip_bus_lock(desc);
761 	raw_spin_lock_irq(&desc->lock);
762 
763 	/*
764 	 * Implausible though it may be we need to protect us against
765 	 * the following scenario:
766 	 *
767 	 * The thread is faster done than the hard interrupt handler
768 	 * on the other CPU. If we unmask the irq line then the
769 	 * interrupt can come in again and masks the line, leaves due
770 	 * to IRQS_INPROGRESS and the irq line is masked forever.
771 	 *
772 	 * This also serializes the state of shared oneshot handlers
773 	 * versus "desc->threads_onehsot |= action->thread_mask;" in
774 	 * irq_wake_thread(). See the comment there which explains the
775 	 * serialization.
776 	 */
777 	if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
778 		raw_spin_unlock_irq(&desc->lock);
779 		chip_bus_sync_unlock(desc);
780 		cpu_relax();
781 		goto again;
782 	}
783 
784 	/*
785 	 * Now check again, whether the thread should run. Otherwise
786 	 * we would clear the threads_oneshot bit of this thread which
787 	 * was just set.
788 	 */
789 	if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
790 		goto out_unlock;
791 
792 	desc->threads_oneshot &= ~action->thread_mask;
793 
794 	if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
795 	    irqd_irq_masked(&desc->irq_data))
796 		unmask_threaded_irq(desc);
797 
798 out_unlock:
799 	raw_spin_unlock_irq(&desc->lock);
800 	chip_bus_sync_unlock(desc);
801 }
802 
803 #ifdef CONFIG_SMP
804 /*
805  * Check whether we need to change the affinity of the interrupt thread.
806  */
807 static void
808 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
809 {
810 	cpumask_var_t mask;
811 	bool valid = true;
812 
813 	if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
814 		return;
815 
816 	/*
817 	 * In case we are out of memory we set IRQTF_AFFINITY again and
818 	 * try again next time
819 	 */
820 	if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
821 		set_bit(IRQTF_AFFINITY, &action->thread_flags);
822 		return;
823 	}
824 
825 	raw_spin_lock_irq(&desc->lock);
826 	/*
827 	 * This code is triggered unconditionally. Check the affinity
828 	 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
829 	 */
830 	if (cpumask_available(desc->irq_common_data.affinity))
831 		cpumask_copy(mask, desc->irq_common_data.affinity);
832 	else
833 		valid = false;
834 	raw_spin_unlock_irq(&desc->lock);
835 
836 	if (valid)
837 		set_cpus_allowed_ptr(current, mask);
838 	free_cpumask_var(mask);
839 }
840 #else
841 static inline void
842 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
843 #endif
844 
845 /*
846  * Interrupts which are not explicitely requested as threaded
847  * interrupts rely on the implicit bh/preempt disable of the hard irq
848  * context. So we need to disable bh here to avoid deadlocks and other
849  * side effects.
850  */
851 static irqreturn_t
852 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
853 {
854 	irqreturn_t ret;
855 
856 	local_bh_disable();
857 	ret = action->thread_fn(action->irq, action->dev_id);
858 	irq_finalize_oneshot(desc, action);
859 	local_bh_enable();
860 	return ret;
861 }
862 
863 /*
864  * Interrupts explicitly requested as threaded interrupts want to be
865  * preemtible - many of them need to sleep and wait for slow busses to
866  * complete.
867  */
868 static irqreturn_t irq_thread_fn(struct irq_desc *desc,
869 		struct irqaction *action)
870 {
871 	irqreturn_t ret;
872 
873 	ret = action->thread_fn(action->irq, action->dev_id);
874 	irq_finalize_oneshot(desc, action);
875 	return ret;
876 }
877 
878 static void wake_threads_waitq(struct irq_desc *desc)
879 {
880 	if (atomic_dec_and_test(&desc->threads_active))
881 		wake_up(&desc->wait_for_threads);
882 }
883 
884 static void irq_thread_dtor(struct callback_head *unused)
885 {
886 	struct task_struct *tsk = current;
887 	struct irq_desc *desc;
888 	struct irqaction *action;
889 
890 	if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
891 		return;
892 
893 	action = kthread_data(tsk);
894 
895 	pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
896 	       tsk->comm, tsk->pid, action->irq);
897 
898 
899 	desc = irq_to_desc(action->irq);
900 	/*
901 	 * If IRQTF_RUNTHREAD is set, we need to decrement
902 	 * desc->threads_active and wake possible waiters.
903 	 */
904 	if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
905 		wake_threads_waitq(desc);
906 
907 	/* Prevent a stale desc->threads_oneshot */
908 	irq_finalize_oneshot(desc, action);
909 }
910 
911 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
912 {
913 	struct irqaction *secondary = action->secondary;
914 
915 	if (WARN_ON_ONCE(!secondary))
916 		return;
917 
918 	raw_spin_lock_irq(&desc->lock);
919 	__irq_wake_thread(desc, secondary);
920 	raw_spin_unlock_irq(&desc->lock);
921 }
922 
923 /*
924  * Interrupt handler thread
925  */
926 static int irq_thread(void *data)
927 {
928 	struct callback_head on_exit_work;
929 	struct irqaction *action = data;
930 	struct irq_desc *desc = irq_to_desc(action->irq);
931 	irqreturn_t (*handler_fn)(struct irq_desc *desc,
932 			struct irqaction *action);
933 
934 	if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD,
935 					&action->thread_flags))
936 		handler_fn = irq_forced_thread_fn;
937 	else
938 		handler_fn = irq_thread_fn;
939 
940 	init_task_work(&on_exit_work, irq_thread_dtor);
941 	task_work_add(current, &on_exit_work, false);
942 
943 	irq_thread_check_affinity(desc, action);
944 
945 	while (!irq_wait_for_interrupt(action)) {
946 		irqreturn_t action_ret;
947 
948 		irq_thread_check_affinity(desc, action);
949 
950 		action_ret = handler_fn(desc, action);
951 		if (action_ret == IRQ_HANDLED)
952 			atomic_inc(&desc->threads_handled);
953 		if (action_ret == IRQ_WAKE_THREAD)
954 			irq_wake_secondary(desc, action);
955 
956 		wake_threads_waitq(desc);
957 	}
958 
959 	/*
960 	 * This is the regular exit path. __free_irq() is stopping the
961 	 * thread via kthread_stop() after calling
962 	 * synchronize_irq(). So neither IRQTF_RUNTHREAD nor the
963 	 * oneshot mask bit can be set. We cannot verify that as we
964 	 * cannot touch the oneshot mask at this point anymore as
965 	 * __setup_irq() might have given out currents thread_mask
966 	 * again.
967 	 */
968 	task_work_cancel(current, irq_thread_dtor);
969 	return 0;
970 }
971 
972 /**
973  *	irq_wake_thread - wake the irq thread for the action identified by dev_id
974  *	@irq:		Interrupt line
975  *	@dev_id:	Device identity for which the thread should be woken
976  *
977  */
978 void irq_wake_thread(unsigned int irq, void *dev_id)
979 {
980 	struct irq_desc *desc = irq_to_desc(irq);
981 	struct irqaction *action;
982 	unsigned long flags;
983 
984 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
985 		return;
986 
987 	raw_spin_lock_irqsave(&desc->lock, flags);
988 	for_each_action_of_desc(desc, action) {
989 		if (action->dev_id == dev_id) {
990 			if (action->thread)
991 				__irq_wake_thread(desc, action);
992 			break;
993 		}
994 	}
995 	raw_spin_unlock_irqrestore(&desc->lock, flags);
996 }
997 EXPORT_SYMBOL_GPL(irq_wake_thread);
998 
999 static int irq_setup_forced_threading(struct irqaction *new)
1000 {
1001 	if (!force_irqthreads)
1002 		return 0;
1003 	if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1004 		return 0;
1005 
1006 	new->flags |= IRQF_ONESHOT;
1007 
1008 	/*
1009 	 * Handle the case where we have a real primary handler and a
1010 	 * thread handler. We force thread them as well by creating a
1011 	 * secondary action.
1012 	 */
1013 	if (new->handler != irq_default_primary_handler && new->thread_fn) {
1014 		/* Allocate the secondary action */
1015 		new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1016 		if (!new->secondary)
1017 			return -ENOMEM;
1018 		new->secondary->handler = irq_forced_secondary_handler;
1019 		new->secondary->thread_fn = new->thread_fn;
1020 		new->secondary->dev_id = new->dev_id;
1021 		new->secondary->irq = new->irq;
1022 		new->secondary->name = new->name;
1023 	}
1024 	/* Deal with the primary handler */
1025 	set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1026 	new->thread_fn = new->handler;
1027 	new->handler = irq_default_primary_handler;
1028 	return 0;
1029 }
1030 
1031 static int irq_request_resources(struct irq_desc *desc)
1032 {
1033 	struct irq_data *d = &desc->irq_data;
1034 	struct irq_chip *c = d->chip;
1035 
1036 	return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1037 }
1038 
1039 static void irq_release_resources(struct irq_desc *desc)
1040 {
1041 	struct irq_data *d = &desc->irq_data;
1042 	struct irq_chip *c = d->chip;
1043 
1044 	if (c->irq_release_resources)
1045 		c->irq_release_resources(d);
1046 }
1047 
1048 static int
1049 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1050 {
1051 	struct task_struct *t;
1052 	struct sched_param param = {
1053 		.sched_priority = MAX_USER_RT_PRIO/2,
1054 	};
1055 
1056 	if (!secondary) {
1057 		t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1058 				   new->name);
1059 	} else {
1060 		t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1061 				   new->name);
1062 		param.sched_priority -= 1;
1063 	}
1064 
1065 	if (IS_ERR(t))
1066 		return PTR_ERR(t);
1067 
1068 	sched_setscheduler_nocheck(t, SCHED_FIFO, &param);
1069 
1070 	/*
1071 	 * We keep the reference to the task struct even if
1072 	 * the thread dies to avoid that the interrupt code
1073 	 * references an already freed task_struct.
1074 	 */
1075 	get_task_struct(t);
1076 	new->thread = t;
1077 	/*
1078 	 * Tell the thread to set its affinity. This is
1079 	 * important for shared interrupt handlers as we do
1080 	 * not invoke setup_affinity() for the secondary
1081 	 * handlers as everything is already set up. Even for
1082 	 * interrupts marked with IRQF_NO_BALANCE this is
1083 	 * correct as we want the thread to move to the cpu(s)
1084 	 * on which the requesting code placed the interrupt.
1085 	 */
1086 	set_bit(IRQTF_AFFINITY, &new->thread_flags);
1087 	return 0;
1088 }
1089 
1090 /*
1091  * Internal function to register an irqaction - typically used to
1092  * allocate special interrupts that are part of the architecture.
1093  *
1094  * Locking rules:
1095  *
1096  * desc->request_mutex	Provides serialization against a concurrent free_irq()
1097  *   chip_bus_lock	Provides serialization for slow bus operations
1098  *     desc->lock	Provides serialization against hard interrupts
1099  *
1100  * chip_bus_lock and desc->lock are sufficient for all other management and
1101  * interrupt related functions. desc->request_mutex solely serializes
1102  * request/free_irq().
1103  */
1104 static int
1105 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1106 {
1107 	struct irqaction *old, **old_ptr;
1108 	unsigned long flags, thread_mask = 0;
1109 	int ret, nested, shared = 0;
1110 
1111 	if (!desc)
1112 		return -EINVAL;
1113 
1114 	if (desc->irq_data.chip == &no_irq_chip)
1115 		return -ENOSYS;
1116 	if (!try_module_get(desc->owner))
1117 		return -ENODEV;
1118 
1119 	new->irq = irq;
1120 
1121 	/*
1122 	 * If the trigger type is not specified by the caller,
1123 	 * then use the default for this interrupt.
1124 	 */
1125 	if (!(new->flags & IRQF_TRIGGER_MASK))
1126 		new->flags |= irqd_get_trigger_type(&desc->irq_data);
1127 
1128 	/*
1129 	 * Check whether the interrupt nests into another interrupt
1130 	 * thread.
1131 	 */
1132 	nested = irq_settings_is_nested_thread(desc);
1133 	if (nested) {
1134 		if (!new->thread_fn) {
1135 			ret = -EINVAL;
1136 			goto out_mput;
1137 		}
1138 		/*
1139 		 * Replace the primary handler which was provided from
1140 		 * the driver for non nested interrupt handling by the
1141 		 * dummy function which warns when called.
1142 		 */
1143 		new->handler = irq_nested_primary_handler;
1144 	} else {
1145 		if (irq_settings_can_thread(desc)) {
1146 			ret = irq_setup_forced_threading(new);
1147 			if (ret)
1148 				goto out_mput;
1149 		}
1150 	}
1151 
1152 	/*
1153 	 * Create a handler thread when a thread function is supplied
1154 	 * and the interrupt does not nest into another interrupt
1155 	 * thread.
1156 	 */
1157 	if (new->thread_fn && !nested) {
1158 		ret = setup_irq_thread(new, irq, false);
1159 		if (ret)
1160 			goto out_mput;
1161 		if (new->secondary) {
1162 			ret = setup_irq_thread(new->secondary, irq, true);
1163 			if (ret)
1164 				goto out_thread;
1165 		}
1166 	}
1167 
1168 	/*
1169 	 * Drivers are often written to work w/o knowledge about the
1170 	 * underlying irq chip implementation, so a request for a
1171 	 * threaded irq without a primary hard irq context handler
1172 	 * requires the ONESHOT flag to be set. Some irq chips like
1173 	 * MSI based interrupts are per se one shot safe. Check the
1174 	 * chip flags, so we can avoid the unmask dance at the end of
1175 	 * the threaded handler for those.
1176 	 */
1177 	if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1178 		new->flags &= ~IRQF_ONESHOT;
1179 
1180 	/*
1181 	 * Protects against a concurrent __free_irq() call which might wait
1182 	 * for synchronize_irq() to complete without holding the optional
1183 	 * chip bus lock and desc->lock.
1184 	 */
1185 	mutex_lock(&desc->request_mutex);
1186 
1187 	/*
1188 	 * Acquire bus lock as the irq_request_resources() callback below
1189 	 * might rely on the serialization or the magic power management
1190 	 * functions which are abusing the irq_bus_lock() callback,
1191 	 */
1192 	chip_bus_lock(desc);
1193 
1194 	/* First installed action requests resources. */
1195 	if (!desc->action) {
1196 		ret = irq_request_resources(desc);
1197 		if (ret) {
1198 			pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1199 			       new->name, irq, desc->irq_data.chip->name);
1200 			goto out_bus_unlock;
1201 		}
1202 	}
1203 
1204 	/*
1205 	 * The following block of code has to be executed atomically
1206 	 * protected against a concurrent interrupt and any of the other
1207 	 * management calls which are not serialized via
1208 	 * desc->request_mutex or the optional bus lock.
1209 	 */
1210 	raw_spin_lock_irqsave(&desc->lock, flags);
1211 	old_ptr = &desc->action;
1212 	old = *old_ptr;
1213 	if (old) {
1214 		/*
1215 		 * Can't share interrupts unless both agree to and are
1216 		 * the same type (level, edge, polarity). So both flag
1217 		 * fields must have IRQF_SHARED set and the bits which
1218 		 * set the trigger type must match. Also all must
1219 		 * agree on ONESHOT.
1220 		 */
1221 		unsigned int oldtype = irqd_get_trigger_type(&desc->irq_data);
1222 
1223 		if (!((old->flags & new->flags) & IRQF_SHARED) ||
1224 		    (oldtype != (new->flags & IRQF_TRIGGER_MASK)) ||
1225 		    ((old->flags ^ new->flags) & IRQF_ONESHOT))
1226 			goto mismatch;
1227 
1228 		/* All handlers must agree on per-cpuness */
1229 		if ((old->flags & IRQF_PERCPU) !=
1230 		    (new->flags & IRQF_PERCPU))
1231 			goto mismatch;
1232 
1233 		/* add new interrupt at end of irq queue */
1234 		do {
1235 			/*
1236 			 * Or all existing action->thread_mask bits,
1237 			 * so we can find the next zero bit for this
1238 			 * new action.
1239 			 */
1240 			thread_mask |= old->thread_mask;
1241 			old_ptr = &old->next;
1242 			old = *old_ptr;
1243 		} while (old);
1244 		shared = 1;
1245 	}
1246 
1247 	/*
1248 	 * Setup the thread mask for this irqaction for ONESHOT. For
1249 	 * !ONESHOT irqs the thread mask is 0 so we can avoid a
1250 	 * conditional in irq_wake_thread().
1251 	 */
1252 	if (new->flags & IRQF_ONESHOT) {
1253 		/*
1254 		 * Unlikely to have 32 resp 64 irqs sharing one line,
1255 		 * but who knows.
1256 		 */
1257 		if (thread_mask == ~0UL) {
1258 			ret = -EBUSY;
1259 			goto out_unlock;
1260 		}
1261 		/*
1262 		 * The thread_mask for the action is or'ed to
1263 		 * desc->thread_active to indicate that the
1264 		 * IRQF_ONESHOT thread handler has been woken, but not
1265 		 * yet finished. The bit is cleared when a thread
1266 		 * completes. When all threads of a shared interrupt
1267 		 * line have completed desc->threads_active becomes
1268 		 * zero and the interrupt line is unmasked. See
1269 		 * handle.c:irq_wake_thread() for further information.
1270 		 *
1271 		 * If no thread is woken by primary (hard irq context)
1272 		 * interrupt handlers, then desc->threads_active is
1273 		 * also checked for zero to unmask the irq line in the
1274 		 * affected hard irq flow handlers
1275 		 * (handle_[fasteoi|level]_irq).
1276 		 *
1277 		 * The new action gets the first zero bit of
1278 		 * thread_mask assigned. See the loop above which or's
1279 		 * all existing action->thread_mask bits.
1280 		 */
1281 		new->thread_mask = 1 << ffz(thread_mask);
1282 
1283 	} else if (new->handler == irq_default_primary_handler &&
1284 		   !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1285 		/*
1286 		 * The interrupt was requested with handler = NULL, so
1287 		 * we use the default primary handler for it. But it
1288 		 * does not have the oneshot flag set. In combination
1289 		 * with level interrupts this is deadly, because the
1290 		 * default primary handler just wakes the thread, then
1291 		 * the irq lines is reenabled, but the device still
1292 		 * has the level irq asserted. Rinse and repeat....
1293 		 *
1294 		 * While this works for edge type interrupts, we play
1295 		 * it safe and reject unconditionally because we can't
1296 		 * say for sure which type this interrupt really
1297 		 * has. The type flags are unreliable as the
1298 		 * underlying chip implementation can override them.
1299 		 */
1300 		pr_err("Threaded irq requested with handler=NULL and !ONESHOT for irq %d\n",
1301 		       irq);
1302 		ret = -EINVAL;
1303 		goto out_unlock;
1304 	}
1305 
1306 	if (!shared) {
1307 		init_waitqueue_head(&desc->wait_for_threads);
1308 
1309 		/* Setup the type (level, edge polarity) if configured: */
1310 		if (new->flags & IRQF_TRIGGER_MASK) {
1311 			ret = __irq_set_trigger(desc,
1312 						new->flags & IRQF_TRIGGER_MASK);
1313 
1314 			if (ret)
1315 				goto out_unlock;
1316 		}
1317 
1318 		desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1319 				  IRQS_ONESHOT | IRQS_WAITING);
1320 		irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1321 
1322 		if (new->flags & IRQF_PERCPU) {
1323 			irqd_set(&desc->irq_data, IRQD_PER_CPU);
1324 			irq_settings_set_per_cpu(desc);
1325 		}
1326 
1327 		if (new->flags & IRQF_ONESHOT)
1328 			desc->istate |= IRQS_ONESHOT;
1329 
1330 		/* Exclude IRQ from balancing if requested */
1331 		if (new->flags & IRQF_NOBALANCING) {
1332 			irq_settings_set_no_balancing(desc);
1333 			irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1334 		}
1335 
1336 		if (irq_settings_can_autoenable(desc)) {
1337 			irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1338 		} else {
1339 			/*
1340 			 * Shared interrupts do not go well with disabling
1341 			 * auto enable. The sharing interrupt might request
1342 			 * it while it's still disabled and then wait for
1343 			 * interrupts forever.
1344 			 */
1345 			WARN_ON_ONCE(new->flags & IRQF_SHARED);
1346 			/* Undo nested disables: */
1347 			desc->depth = 1;
1348 		}
1349 
1350 	} else if (new->flags & IRQF_TRIGGER_MASK) {
1351 		unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1352 		unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1353 
1354 		if (nmsk != omsk)
1355 			/* hope the handler works with current  trigger mode */
1356 			pr_warn("irq %d uses trigger mode %u; requested %u\n",
1357 				irq, omsk, nmsk);
1358 	}
1359 
1360 	*old_ptr = new;
1361 
1362 	irq_pm_install_action(desc, new);
1363 
1364 	/* Reset broken irq detection when installing new handler */
1365 	desc->irq_count = 0;
1366 	desc->irqs_unhandled = 0;
1367 
1368 	/*
1369 	 * Check whether we disabled the irq via the spurious handler
1370 	 * before. Reenable it and give it another chance.
1371 	 */
1372 	if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1373 		desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1374 		__enable_irq(desc);
1375 	}
1376 
1377 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1378 	chip_bus_sync_unlock(desc);
1379 	mutex_unlock(&desc->request_mutex);
1380 
1381 	irq_setup_timings(desc, new);
1382 
1383 	/*
1384 	 * Strictly no need to wake it up, but hung_task complains
1385 	 * when no hard interrupt wakes the thread up.
1386 	 */
1387 	if (new->thread)
1388 		wake_up_process(new->thread);
1389 	if (new->secondary)
1390 		wake_up_process(new->secondary->thread);
1391 
1392 	register_irq_proc(irq, desc);
1393 	irq_add_debugfs_entry(irq, desc);
1394 	new->dir = NULL;
1395 	register_handler_proc(irq, new);
1396 	return 0;
1397 
1398 mismatch:
1399 	if (!(new->flags & IRQF_PROBE_SHARED)) {
1400 		pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1401 		       irq, new->flags, new->name, old->flags, old->name);
1402 #ifdef CONFIG_DEBUG_SHIRQ
1403 		dump_stack();
1404 #endif
1405 	}
1406 	ret = -EBUSY;
1407 
1408 out_unlock:
1409 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1410 
1411 	if (!desc->action)
1412 		irq_release_resources(desc);
1413 out_bus_unlock:
1414 	chip_bus_sync_unlock(desc);
1415 	mutex_unlock(&desc->request_mutex);
1416 
1417 out_thread:
1418 	if (new->thread) {
1419 		struct task_struct *t = new->thread;
1420 
1421 		new->thread = NULL;
1422 		kthread_stop(t);
1423 		put_task_struct(t);
1424 	}
1425 	if (new->secondary && new->secondary->thread) {
1426 		struct task_struct *t = new->secondary->thread;
1427 
1428 		new->secondary->thread = NULL;
1429 		kthread_stop(t);
1430 		put_task_struct(t);
1431 	}
1432 out_mput:
1433 	module_put(desc->owner);
1434 	return ret;
1435 }
1436 
1437 /**
1438  *	setup_irq - setup an interrupt
1439  *	@irq: Interrupt line to setup
1440  *	@act: irqaction for the interrupt
1441  *
1442  * Used to statically setup interrupts in the early boot process.
1443  */
1444 int setup_irq(unsigned int irq, struct irqaction *act)
1445 {
1446 	int retval;
1447 	struct irq_desc *desc = irq_to_desc(irq);
1448 
1449 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1450 		return -EINVAL;
1451 
1452 	retval = irq_chip_pm_get(&desc->irq_data);
1453 	if (retval < 0)
1454 		return retval;
1455 
1456 	retval = __setup_irq(irq, desc, act);
1457 
1458 	if (retval)
1459 		irq_chip_pm_put(&desc->irq_data);
1460 
1461 	return retval;
1462 }
1463 EXPORT_SYMBOL_GPL(setup_irq);
1464 
1465 /*
1466  * Internal function to unregister an irqaction - used to free
1467  * regular and special interrupts that are part of the architecture.
1468  */
1469 static struct irqaction *__free_irq(unsigned int irq, void *dev_id)
1470 {
1471 	struct irq_desc *desc = irq_to_desc(irq);
1472 	struct irqaction *action, **action_ptr;
1473 	unsigned long flags;
1474 
1475 	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1476 
1477 	if (!desc)
1478 		return NULL;
1479 
1480 	mutex_lock(&desc->request_mutex);
1481 	chip_bus_lock(desc);
1482 	raw_spin_lock_irqsave(&desc->lock, flags);
1483 
1484 	/*
1485 	 * There can be multiple actions per IRQ descriptor, find the right
1486 	 * one based on the dev_id:
1487 	 */
1488 	action_ptr = &desc->action;
1489 	for (;;) {
1490 		action = *action_ptr;
1491 
1492 		if (!action) {
1493 			WARN(1, "Trying to free already-free IRQ %d\n", irq);
1494 			raw_spin_unlock_irqrestore(&desc->lock, flags);
1495 			chip_bus_sync_unlock(desc);
1496 			mutex_unlock(&desc->request_mutex);
1497 			return NULL;
1498 		}
1499 
1500 		if (action->dev_id == dev_id)
1501 			break;
1502 		action_ptr = &action->next;
1503 	}
1504 
1505 	/* Found it - now remove it from the list of entries: */
1506 	*action_ptr = action->next;
1507 
1508 	irq_pm_remove_action(desc, action);
1509 
1510 	/* If this was the last handler, shut down the IRQ line: */
1511 	if (!desc->action) {
1512 		irq_settings_clr_disable_unlazy(desc);
1513 		irq_shutdown(desc);
1514 	}
1515 
1516 #ifdef CONFIG_SMP
1517 	/* make sure affinity_hint is cleaned up */
1518 	if (WARN_ON_ONCE(desc->affinity_hint))
1519 		desc->affinity_hint = NULL;
1520 #endif
1521 
1522 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1523 	/*
1524 	 * Drop bus_lock here so the changes which were done in the chip
1525 	 * callbacks above are synced out to the irq chips which hang
1526 	 * behind a slow bus (I2C, SPI) before calling synchronize_irq().
1527 	 *
1528 	 * Aside of that the bus_lock can also be taken from the threaded
1529 	 * handler in irq_finalize_oneshot() which results in a deadlock
1530 	 * because synchronize_irq() would wait forever for the thread to
1531 	 * complete, which is blocked on the bus lock.
1532 	 *
1533 	 * The still held desc->request_mutex() protects against a
1534 	 * concurrent request_irq() of this irq so the release of resources
1535 	 * and timing data is properly serialized.
1536 	 */
1537 	chip_bus_sync_unlock(desc);
1538 
1539 	unregister_handler_proc(irq, action);
1540 
1541 	/* Make sure it's not being used on another CPU: */
1542 	synchronize_irq(irq);
1543 
1544 #ifdef CONFIG_DEBUG_SHIRQ
1545 	/*
1546 	 * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1547 	 * event to happen even now it's being freed, so let's make sure that
1548 	 * is so by doing an extra call to the handler ....
1549 	 *
1550 	 * ( We do this after actually deregistering it, to make sure that a
1551 	 *   'real' IRQ doesn't run in * parallel with our fake. )
1552 	 */
1553 	if (action->flags & IRQF_SHARED) {
1554 		local_irq_save(flags);
1555 		action->handler(irq, dev_id);
1556 		local_irq_restore(flags);
1557 	}
1558 #endif
1559 
1560 	if (action->thread) {
1561 		kthread_stop(action->thread);
1562 		put_task_struct(action->thread);
1563 		if (action->secondary && action->secondary->thread) {
1564 			kthread_stop(action->secondary->thread);
1565 			put_task_struct(action->secondary->thread);
1566 		}
1567 	}
1568 
1569 	/* Last action releases resources */
1570 	if (!desc->action) {
1571 		/*
1572 		 * Reaquire bus lock as irq_release_resources() might
1573 		 * require it to deallocate resources over the slow bus.
1574 		 */
1575 		chip_bus_lock(desc);
1576 		irq_release_resources(desc);
1577 		chip_bus_sync_unlock(desc);
1578 		irq_remove_timings(desc);
1579 	}
1580 
1581 	mutex_unlock(&desc->request_mutex);
1582 
1583 	irq_chip_pm_put(&desc->irq_data);
1584 	module_put(desc->owner);
1585 	kfree(action->secondary);
1586 	return action;
1587 }
1588 
1589 /**
1590  *	remove_irq - free an interrupt
1591  *	@irq: Interrupt line to free
1592  *	@act: irqaction for the interrupt
1593  *
1594  * Used to remove interrupts statically setup by the early boot process.
1595  */
1596 void remove_irq(unsigned int irq, struct irqaction *act)
1597 {
1598 	struct irq_desc *desc = irq_to_desc(irq);
1599 
1600 	if (desc && !WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1601 		__free_irq(irq, act->dev_id);
1602 }
1603 EXPORT_SYMBOL_GPL(remove_irq);
1604 
1605 /**
1606  *	free_irq - free an interrupt allocated with request_irq
1607  *	@irq: Interrupt line to free
1608  *	@dev_id: Device identity to free
1609  *
1610  *	Remove an interrupt handler. The handler is removed and if the
1611  *	interrupt line is no longer in use by any driver it is disabled.
1612  *	On a shared IRQ the caller must ensure the interrupt is disabled
1613  *	on the card it drives before calling this function. The function
1614  *	does not return until any executing interrupts for this IRQ
1615  *	have completed.
1616  *
1617  *	This function must not be called from interrupt context.
1618  *
1619  *	Returns the devname argument passed to request_irq.
1620  */
1621 const void *free_irq(unsigned int irq, void *dev_id)
1622 {
1623 	struct irq_desc *desc = irq_to_desc(irq);
1624 	struct irqaction *action;
1625 	const char *devname;
1626 
1627 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1628 		return NULL;
1629 
1630 #ifdef CONFIG_SMP
1631 	if (WARN_ON(desc->affinity_notify))
1632 		desc->affinity_notify = NULL;
1633 #endif
1634 
1635 	action = __free_irq(irq, dev_id);
1636 	devname = action->name;
1637 	kfree(action);
1638 	return devname;
1639 }
1640 EXPORT_SYMBOL(free_irq);
1641 
1642 /**
1643  *	request_threaded_irq - allocate an interrupt line
1644  *	@irq: Interrupt line to allocate
1645  *	@handler: Function to be called when the IRQ occurs.
1646  *		  Primary handler for threaded interrupts
1647  *		  If NULL and thread_fn != NULL the default
1648  *		  primary handler is installed
1649  *	@thread_fn: Function called from the irq handler thread
1650  *		    If NULL, no irq thread is created
1651  *	@irqflags: Interrupt type flags
1652  *	@devname: An ascii name for the claiming device
1653  *	@dev_id: A cookie passed back to the handler function
1654  *
1655  *	This call allocates interrupt resources and enables the
1656  *	interrupt line and IRQ handling. From the point this
1657  *	call is made your handler function may be invoked. Since
1658  *	your handler function must clear any interrupt the board
1659  *	raises, you must take care both to initialise your hardware
1660  *	and to set up the interrupt handler in the right order.
1661  *
1662  *	If you want to set up a threaded irq handler for your device
1663  *	then you need to supply @handler and @thread_fn. @handler is
1664  *	still called in hard interrupt context and has to check
1665  *	whether the interrupt originates from the device. If yes it
1666  *	needs to disable the interrupt on the device and return
1667  *	IRQ_WAKE_THREAD which will wake up the handler thread and run
1668  *	@thread_fn. This split handler design is necessary to support
1669  *	shared interrupts.
1670  *
1671  *	Dev_id must be globally unique. Normally the address of the
1672  *	device data structure is used as the cookie. Since the handler
1673  *	receives this value it makes sense to use it.
1674  *
1675  *	If your interrupt is shared you must pass a non NULL dev_id
1676  *	as this is required when freeing the interrupt.
1677  *
1678  *	Flags:
1679  *
1680  *	IRQF_SHARED		Interrupt is shared
1681  *	IRQF_TRIGGER_*		Specify active edge(s) or level
1682  *
1683  */
1684 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
1685 			 irq_handler_t thread_fn, unsigned long irqflags,
1686 			 const char *devname, void *dev_id)
1687 {
1688 	struct irqaction *action;
1689 	struct irq_desc *desc;
1690 	int retval;
1691 
1692 	if (irq == IRQ_NOTCONNECTED)
1693 		return -ENOTCONN;
1694 
1695 	/*
1696 	 * Sanity-check: shared interrupts must pass in a real dev-ID,
1697 	 * otherwise we'll have trouble later trying to figure out
1698 	 * which interrupt is which (messes up the interrupt freeing
1699 	 * logic etc).
1700 	 *
1701 	 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
1702 	 * it cannot be set along with IRQF_NO_SUSPEND.
1703 	 */
1704 	if (((irqflags & IRQF_SHARED) && !dev_id) ||
1705 	    (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
1706 	    ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
1707 		return -EINVAL;
1708 
1709 	desc = irq_to_desc(irq);
1710 	if (!desc)
1711 		return -EINVAL;
1712 
1713 	if (!irq_settings_can_request(desc) ||
1714 	    WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1715 		return -EINVAL;
1716 
1717 	if (!handler) {
1718 		if (!thread_fn)
1719 			return -EINVAL;
1720 		handler = irq_default_primary_handler;
1721 	}
1722 
1723 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1724 	if (!action)
1725 		return -ENOMEM;
1726 
1727 	action->handler = handler;
1728 	action->thread_fn = thread_fn;
1729 	action->flags = irqflags;
1730 	action->name = devname;
1731 	action->dev_id = dev_id;
1732 
1733 	retval = irq_chip_pm_get(&desc->irq_data);
1734 	if (retval < 0) {
1735 		kfree(action);
1736 		return retval;
1737 	}
1738 
1739 	retval = __setup_irq(irq, desc, action);
1740 
1741 	if (retval) {
1742 		irq_chip_pm_put(&desc->irq_data);
1743 		kfree(action->secondary);
1744 		kfree(action);
1745 	}
1746 
1747 #ifdef CONFIG_DEBUG_SHIRQ_FIXME
1748 	if (!retval && (irqflags & IRQF_SHARED)) {
1749 		/*
1750 		 * It's a shared IRQ -- the driver ought to be prepared for it
1751 		 * to happen immediately, so let's make sure....
1752 		 * We disable the irq to make sure that a 'real' IRQ doesn't
1753 		 * run in parallel with our fake.
1754 		 */
1755 		unsigned long flags;
1756 
1757 		disable_irq(irq);
1758 		local_irq_save(flags);
1759 
1760 		handler(irq, dev_id);
1761 
1762 		local_irq_restore(flags);
1763 		enable_irq(irq);
1764 	}
1765 #endif
1766 	return retval;
1767 }
1768 EXPORT_SYMBOL(request_threaded_irq);
1769 
1770 /**
1771  *	request_any_context_irq - allocate an interrupt line
1772  *	@irq: Interrupt line to allocate
1773  *	@handler: Function to be called when the IRQ occurs.
1774  *		  Threaded handler for threaded interrupts.
1775  *	@flags: Interrupt type flags
1776  *	@name: An ascii name for the claiming device
1777  *	@dev_id: A cookie passed back to the handler function
1778  *
1779  *	This call allocates interrupt resources and enables the
1780  *	interrupt line and IRQ handling. It selects either a
1781  *	hardirq or threaded handling method depending on the
1782  *	context.
1783  *
1784  *	On failure, it returns a negative value. On success,
1785  *	it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
1786  */
1787 int request_any_context_irq(unsigned int irq, irq_handler_t handler,
1788 			    unsigned long flags, const char *name, void *dev_id)
1789 {
1790 	struct irq_desc *desc;
1791 	int ret;
1792 
1793 	if (irq == IRQ_NOTCONNECTED)
1794 		return -ENOTCONN;
1795 
1796 	desc = irq_to_desc(irq);
1797 	if (!desc)
1798 		return -EINVAL;
1799 
1800 	if (irq_settings_is_nested_thread(desc)) {
1801 		ret = request_threaded_irq(irq, NULL, handler,
1802 					   flags, name, dev_id);
1803 		return !ret ? IRQC_IS_NESTED : ret;
1804 	}
1805 
1806 	ret = request_irq(irq, handler, flags, name, dev_id);
1807 	return !ret ? IRQC_IS_HARDIRQ : ret;
1808 }
1809 EXPORT_SYMBOL_GPL(request_any_context_irq);
1810 
1811 void enable_percpu_irq(unsigned int irq, unsigned int type)
1812 {
1813 	unsigned int cpu = smp_processor_id();
1814 	unsigned long flags;
1815 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1816 
1817 	if (!desc)
1818 		return;
1819 
1820 	/*
1821 	 * If the trigger type is not specified by the caller, then
1822 	 * use the default for this interrupt.
1823 	 */
1824 	type &= IRQ_TYPE_SENSE_MASK;
1825 	if (type == IRQ_TYPE_NONE)
1826 		type = irqd_get_trigger_type(&desc->irq_data);
1827 
1828 	if (type != IRQ_TYPE_NONE) {
1829 		int ret;
1830 
1831 		ret = __irq_set_trigger(desc, type);
1832 
1833 		if (ret) {
1834 			WARN(1, "failed to set type for IRQ%d\n", irq);
1835 			goto out;
1836 		}
1837 	}
1838 
1839 	irq_percpu_enable(desc, cpu);
1840 out:
1841 	irq_put_desc_unlock(desc, flags);
1842 }
1843 EXPORT_SYMBOL_GPL(enable_percpu_irq);
1844 
1845 /**
1846  * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
1847  * @irq:	Linux irq number to check for
1848  *
1849  * Must be called from a non migratable context. Returns the enable
1850  * state of a per cpu interrupt on the current cpu.
1851  */
1852 bool irq_percpu_is_enabled(unsigned int irq)
1853 {
1854 	unsigned int cpu = smp_processor_id();
1855 	struct irq_desc *desc;
1856 	unsigned long flags;
1857 	bool is_enabled;
1858 
1859 	desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1860 	if (!desc)
1861 		return false;
1862 
1863 	is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
1864 	irq_put_desc_unlock(desc, flags);
1865 
1866 	return is_enabled;
1867 }
1868 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
1869 
1870 void disable_percpu_irq(unsigned int irq)
1871 {
1872 	unsigned int cpu = smp_processor_id();
1873 	unsigned long flags;
1874 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1875 
1876 	if (!desc)
1877 		return;
1878 
1879 	irq_percpu_disable(desc, cpu);
1880 	irq_put_desc_unlock(desc, flags);
1881 }
1882 EXPORT_SYMBOL_GPL(disable_percpu_irq);
1883 
1884 /*
1885  * Internal function to unregister a percpu irqaction.
1886  */
1887 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
1888 {
1889 	struct irq_desc *desc = irq_to_desc(irq);
1890 	struct irqaction *action;
1891 	unsigned long flags;
1892 
1893 	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1894 
1895 	if (!desc)
1896 		return NULL;
1897 
1898 	raw_spin_lock_irqsave(&desc->lock, flags);
1899 
1900 	action = desc->action;
1901 	if (!action || action->percpu_dev_id != dev_id) {
1902 		WARN(1, "Trying to free already-free IRQ %d\n", irq);
1903 		goto bad;
1904 	}
1905 
1906 	if (!cpumask_empty(desc->percpu_enabled)) {
1907 		WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
1908 		     irq, cpumask_first(desc->percpu_enabled));
1909 		goto bad;
1910 	}
1911 
1912 	/* Found it - now remove it from the list of entries: */
1913 	desc->action = NULL;
1914 
1915 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1916 
1917 	unregister_handler_proc(irq, action);
1918 
1919 	irq_chip_pm_put(&desc->irq_data);
1920 	module_put(desc->owner);
1921 	return action;
1922 
1923 bad:
1924 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1925 	return NULL;
1926 }
1927 
1928 /**
1929  *	remove_percpu_irq - free a per-cpu interrupt
1930  *	@irq: Interrupt line to free
1931  *	@act: irqaction for the interrupt
1932  *
1933  * Used to remove interrupts statically setup by the early boot process.
1934  */
1935 void remove_percpu_irq(unsigned int irq, struct irqaction *act)
1936 {
1937 	struct irq_desc *desc = irq_to_desc(irq);
1938 
1939 	if (desc && irq_settings_is_per_cpu_devid(desc))
1940 	    __free_percpu_irq(irq, act->percpu_dev_id);
1941 }
1942 
1943 /**
1944  *	free_percpu_irq - free an interrupt allocated with request_percpu_irq
1945  *	@irq: Interrupt line to free
1946  *	@dev_id: Device identity to free
1947  *
1948  *	Remove a percpu interrupt handler. The handler is removed, but
1949  *	the interrupt line is not disabled. This must be done on each
1950  *	CPU before calling this function. The function does not return
1951  *	until any executing interrupts for this IRQ have completed.
1952  *
1953  *	This function must not be called from interrupt context.
1954  */
1955 void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
1956 {
1957 	struct irq_desc *desc = irq_to_desc(irq);
1958 
1959 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
1960 		return;
1961 
1962 	chip_bus_lock(desc);
1963 	kfree(__free_percpu_irq(irq, dev_id));
1964 	chip_bus_sync_unlock(desc);
1965 }
1966 EXPORT_SYMBOL_GPL(free_percpu_irq);
1967 
1968 /**
1969  *	setup_percpu_irq - setup a per-cpu interrupt
1970  *	@irq: Interrupt line to setup
1971  *	@act: irqaction for the interrupt
1972  *
1973  * Used to statically setup per-cpu interrupts in the early boot process.
1974  */
1975 int setup_percpu_irq(unsigned int irq, struct irqaction *act)
1976 {
1977 	struct irq_desc *desc = irq_to_desc(irq);
1978 	int retval;
1979 
1980 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
1981 		return -EINVAL;
1982 
1983 	retval = irq_chip_pm_get(&desc->irq_data);
1984 	if (retval < 0)
1985 		return retval;
1986 
1987 	retval = __setup_irq(irq, desc, act);
1988 
1989 	if (retval)
1990 		irq_chip_pm_put(&desc->irq_data);
1991 
1992 	return retval;
1993 }
1994 
1995 /**
1996  *	__request_percpu_irq - allocate a percpu interrupt line
1997  *	@irq: Interrupt line to allocate
1998  *	@handler: Function to be called when the IRQ occurs.
1999  *	@flags: Interrupt type flags (IRQF_TIMER only)
2000  *	@devname: An ascii name for the claiming device
2001  *	@dev_id: A percpu cookie passed back to the handler function
2002  *
2003  *	This call allocates interrupt resources and enables the
2004  *	interrupt on the local CPU. If the interrupt is supposed to be
2005  *	enabled on other CPUs, it has to be done on each CPU using
2006  *	enable_percpu_irq().
2007  *
2008  *	Dev_id must be globally unique. It is a per-cpu variable, and
2009  *	the handler gets called with the interrupted CPU's instance of
2010  *	that variable.
2011  */
2012 int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2013 			 unsigned long flags, const char *devname,
2014 			 void __percpu *dev_id)
2015 {
2016 	struct irqaction *action;
2017 	struct irq_desc *desc;
2018 	int retval;
2019 
2020 	if (!dev_id)
2021 		return -EINVAL;
2022 
2023 	desc = irq_to_desc(irq);
2024 	if (!desc || !irq_settings_can_request(desc) ||
2025 	    !irq_settings_is_per_cpu_devid(desc))
2026 		return -EINVAL;
2027 
2028 	if (flags && flags != IRQF_TIMER)
2029 		return -EINVAL;
2030 
2031 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2032 	if (!action)
2033 		return -ENOMEM;
2034 
2035 	action->handler = handler;
2036 	action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2037 	action->name = devname;
2038 	action->percpu_dev_id = dev_id;
2039 
2040 	retval = irq_chip_pm_get(&desc->irq_data);
2041 	if (retval < 0) {
2042 		kfree(action);
2043 		return retval;
2044 	}
2045 
2046 	retval = __setup_irq(irq, desc, action);
2047 
2048 	if (retval) {
2049 		irq_chip_pm_put(&desc->irq_data);
2050 		kfree(action);
2051 	}
2052 
2053 	return retval;
2054 }
2055 EXPORT_SYMBOL_GPL(__request_percpu_irq);
2056 
2057 /**
2058  *	irq_get_irqchip_state - returns the irqchip state of a interrupt.
2059  *	@irq: Interrupt line that is forwarded to a VM
2060  *	@which: One of IRQCHIP_STATE_* the caller wants to know about
2061  *	@state: a pointer to a boolean where the state is to be storeed
2062  *
2063  *	This call snapshots the internal irqchip state of an
2064  *	interrupt, returning into @state the bit corresponding to
2065  *	stage @which
2066  *
2067  *	This function should be called with preemption disabled if the
2068  *	interrupt controller has per-cpu registers.
2069  */
2070 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2071 			  bool *state)
2072 {
2073 	struct irq_desc *desc;
2074 	struct irq_data *data;
2075 	struct irq_chip *chip;
2076 	unsigned long flags;
2077 	int err = -EINVAL;
2078 
2079 	desc = irq_get_desc_buslock(irq, &flags, 0);
2080 	if (!desc)
2081 		return err;
2082 
2083 	data = irq_desc_get_irq_data(desc);
2084 
2085 	do {
2086 		chip = irq_data_get_irq_chip(data);
2087 		if (chip->irq_get_irqchip_state)
2088 			break;
2089 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2090 		data = data->parent_data;
2091 #else
2092 		data = NULL;
2093 #endif
2094 	} while (data);
2095 
2096 	if (data)
2097 		err = chip->irq_get_irqchip_state(data, which, state);
2098 
2099 	irq_put_desc_busunlock(desc, flags);
2100 	return err;
2101 }
2102 EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2103 
2104 /**
2105  *	irq_set_irqchip_state - set the state of a forwarded interrupt.
2106  *	@irq: Interrupt line that is forwarded to a VM
2107  *	@which: State to be restored (one of IRQCHIP_STATE_*)
2108  *	@val: Value corresponding to @which
2109  *
2110  *	This call sets the internal irqchip state of an interrupt,
2111  *	depending on the value of @which.
2112  *
2113  *	This function should be called with preemption disabled if the
2114  *	interrupt controller has per-cpu registers.
2115  */
2116 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2117 			  bool val)
2118 {
2119 	struct irq_desc *desc;
2120 	struct irq_data *data;
2121 	struct irq_chip *chip;
2122 	unsigned long flags;
2123 	int err = -EINVAL;
2124 
2125 	desc = irq_get_desc_buslock(irq, &flags, 0);
2126 	if (!desc)
2127 		return err;
2128 
2129 	data = irq_desc_get_irq_data(desc);
2130 
2131 	do {
2132 		chip = irq_data_get_irq_chip(data);
2133 		if (chip->irq_set_irqchip_state)
2134 			break;
2135 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2136 		data = data->parent_data;
2137 #else
2138 		data = NULL;
2139 #endif
2140 	} while (data);
2141 
2142 	if (data)
2143 		err = chip->irq_set_irqchip_state(data, which, val);
2144 
2145 	irq_put_desc_busunlock(desc, flags);
2146 	return err;
2147 }
2148 EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
2149