xref: /openbmc/linux/kernel/irq/manage.c (revision 64933513)
1 /*
2  * linux/kernel/irq/manage.c
3  *
4  * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
5  * Copyright (C) 2005-2006 Thomas Gleixner
6  *
7  * This file contains driver APIs to the irq subsystem.
8  */
9 
10 #define pr_fmt(fmt) "genirq: " fmt
11 
12 #include <linux/irq.h>
13 #include <linux/kthread.h>
14 #include <linux/module.h>
15 #include <linux/random.h>
16 #include <linux/interrupt.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/sched/rt.h>
20 #include <linux/task_work.h>
21 
22 #include "internals.h"
23 
24 #ifdef CONFIG_IRQ_FORCED_THREADING
25 __read_mostly bool force_irqthreads;
26 
27 static int __init setup_forced_irqthreads(char *arg)
28 {
29 	force_irqthreads = true;
30 	return 0;
31 }
32 early_param("threadirqs", setup_forced_irqthreads);
33 #endif
34 
35 static void __synchronize_hardirq(struct irq_desc *desc)
36 {
37 	bool inprogress;
38 
39 	do {
40 		unsigned long flags;
41 
42 		/*
43 		 * Wait until we're out of the critical section.  This might
44 		 * give the wrong answer due to the lack of memory barriers.
45 		 */
46 		while (irqd_irq_inprogress(&desc->irq_data))
47 			cpu_relax();
48 
49 		/* Ok, that indicated we're done: double-check carefully. */
50 		raw_spin_lock_irqsave(&desc->lock, flags);
51 		inprogress = irqd_irq_inprogress(&desc->irq_data);
52 		raw_spin_unlock_irqrestore(&desc->lock, flags);
53 
54 		/* Oops, that failed? */
55 	} while (inprogress);
56 }
57 
58 /**
59  *	synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
60  *	@irq: interrupt number to wait for
61  *
62  *	This function waits for any pending hard IRQ handlers for this
63  *	interrupt to complete before returning. If you use this
64  *	function while holding a resource the IRQ handler may need you
65  *	will deadlock. It does not take associated threaded handlers
66  *	into account.
67  *
68  *	Do not use this for shutdown scenarios where you must be sure
69  *	that all parts (hardirq and threaded handler) have completed.
70  *
71  *	Returns: false if a threaded handler is active.
72  *
73  *	This function may be called - with care - from IRQ context.
74  */
75 bool synchronize_hardirq(unsigned int irq)
76 {
77 	struct irq_desc *desc = irq_to_desc(irq);
78 
79 	if (desc) {
80 		__synchronize_hardirq(desc);
81 		return !atomic_read(&desc->threads_active);
82 	}
83 
84 	return true;
85 }
86 EXPORT_SYMBOL(synchronize_hardirq);
87 
88 /**
89  *	synchronize_irq - wait for pending IRQ handlers (on other CPUs)
90  *	@irq: interrupt number to wait for
91  *
92  *	This function waits for any pending IRQ handlers for this interrupt
93  *	to complete before returning. If you use this function while
94  *	holding a resource the IRQ handler may need you will deadlock.
95  *
96  *	This function may be called - with care - from IRQ context.
97  */
98 void synchronize_irq(unsigned int irq)
99 {
100 	struct irq_desc *desc = irq_to_desc(irq);
101 
102 	if (desc) {
103 		__synchronize_hardirq(desc);
104 		/*
105 		 * We made sure that no hardirq handler is
106 		 * running. Now verify that no threaded handlers are
107 		 * active.
108 		 */
109 		wait_event(desc->wait_for_threads,
110 			   !atomic_read(&desc->threads_active));
111 	}
112 }
113 EXPORT_SYMBOL(synchronize_irq);
114 
115 #ifdef CONFIG_SMP
116 cpumask_var_t irq_default_affinity;
117 
118 static bool __irq_can_set_affinity(struct irq_desc *desc)
119 {
120 	if (!desc || !irqd_can_balance(&desc->irq_data) ||
121 	    !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
122 		return false;
123 	return true;
124 }
125 
126 /**
127  *	irq_can_set_affinity - Check if the affinity of a given irq can be set
128  *	@irq:		Interrupt to check
129  *
130  */
131 int irq_can_set_affinity(unsigned int irq)
132 {
133 	return __irq_can_set_affinity(irq_to_desc(irq));
134 }
135 
136 /**
137  * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
138  * @irq:	Interrupt to check
139  *
140  * Like irq_can_set_affinity() above, but additionally checks for the
141  * AFFINITY_MANAGED flag.
142  */
143 bool irq_can_set_affinity_usr(unsigned int irq)
144 {
145 	struct irq_desc *desc = irq_to_desc(irq);
146 
147 	return __irq_can_set_affinity(desc) &&
148 		!irqd_affinity_is_managed(&desc->irq_data);
149 }
150 
151 /**
152  *	irq_set_thread_affinity - Notify irq threads to adjust affinity
153  *	@desc:		irq descriptor which has affitnity changed
154  *
155  *	We just set IRQTF_AFFINITY and delegate the affinity setting
156  *	to the interrupt thread itself. We can not call
157  *	set_cpus_allowed_ptr() here as we hold desc->lock and this
158  *	code can be called from hard interrupt context.
159  */
160 void irq_set_thread_affinity(struct irq_desc *desc)
161 {
162 	struct irqaction *action;
163 
164 	for_each_action_of_desc(desc, action)
165 		if (action->thread)
166 			set_bit(IRQTF_AFFINITY, &action->thread_flags);
167 }
168 
169 #ifdef CONFIG_GENERIC_PENDING_IRQ
170 static inline bool irq_can_move_pcntxt(struct irq_data *data)
171 {
172 	return irqd_can_move_in_process_context(data);
173 }
174 static inline bool irq_move_pending(struct irq_data *data)
175 {
176 	return irqd_is_setaffinity_pending(data);
177 }
178 static inline void
179 irq_copy_pending(struct irq_desc *desc, const struct cpumask *mask)
180 {
181 	cpumask_copy(desc->pending_mask, mask);
182 }
183 static inline void
184 irq_get_pending(struct cpumask *mask, struct irq_desc *desc)
185 {
186 	cpumask_copy(mask, desc->pending_mask);
187 }
188 #else
189 static inline bool irq_can_move_pcntxt(struct irq_data *data) { return true; }
190 static inline bool irq_move_pending(struct irq_data *data) { return false; }
191 static inline void
192 irq_copy_pending(struct irq_desc *desc, const struct cpumask *mask) { }
193 static inline void
194 irq_get_pending(struct cpumask *mask, struct irq_desc *desc) { }
195 #endif
196 
197 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
198 			bool force)
199 {
200 	struct irq_desc *desc = irq_data_to_desc(data);
201 	struct irq_chip *chip = irq_data_get_irq_chip(data);
202 	int ret;
203 
204 	ret = chip->irq_set_affinity(data, mask, force);
205 	switch (ret) {
206 	case IRQ_SET_MASK_OK:
207 	case IRQ_SET_MASK_OK_DONE:
208 		cpumask_copy(desc->irq_common_data.affinity, mask);
209 	case IRQ_SET_MASK_OK_NOCOPY:
210 		irq_set_thread_affinity(desc);
211 		ret = 0;
212 	}
213 
214 	return ret;
215 }
216 
217 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
218 			    bool force)
219 {
220 	struct irq_chip *chip = irq_data_get_irq_chip(data);
221 	struct irq_desc *desc = irq_data_to_desc(data);
222 	int ret = 0;
223 
224 	if (!chip || !chip->irq_set_affinity)
225 		return -EINVAL;
226 
227 	if (irq_can_move_pcntxt(data)) {
228 		ret = irq_do_set_affinity(data, mask, force);
229 	} else {
230 		irqd_set_move_pending(data);
231 		irq_copy_pending(desc, mask);
232 	}
233 
234 	if (desc->affinity_notify) {
235 		kref_get(&desc->affinity_notify->kref);
236 		schedule_work(&desc->affinity_notify->work);
237 	}
238 	irqd_set(data, IRQD_AFFINITY_SET);
239 
240 	return ret;
241 }
242 
243 int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force)
244 {
245 	struct irq_desc *desc = irq_to_desc(irq);
246 	unsigned long flags;
247 	int ret;
248 
249 	if (!desc)
250 		return -EINVAL;
251 
252 	raw_spin_lock_irqsave(&desc->lock, flags);
253 	ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
254 	raw_spin_unlock_irqrestore(&desc->lock, flags);
255 	return ret;
256 }
257 
258 int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m)
259 {
260 	unsigned long flags;
261 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
262 
263 	if (!desc)
264 		return -EINVAL;
265 	desc->affinity_hint = m;
266 	irq_put_desc_unlock(desc, flags);
267 	/* set the initial affinity to prevent every interrupt being on CPU0 */
268 	if (m)
269 		__irq_set_affinity(irq, m, false);
270 	return 0;
271 }
272 EXPORT_SYMBOL_GPL(irq_set_affinity_hint);
273 
274 static void irq_affinity_notify(struct work_struct *work)
275 {
276 	struct irq_affinity_notify *notify =
277 		container_of(work, struct irq_affinity_notify, work);
278 	struct irq_desc *desc = irq_to_desc(notify->irq);
279 	cpumask_var_t cpumask;
280 	unsigned long flags;
281 
282 	if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
283 		goto out;
284 
285 	raw_spin_lock_irqsave(&desc->lock, flags);
286 	if (irq_move_pending(&desc->irq_data))
287 		irq_get_pending(cpumask, desc);
288 	else
289 		cpumask_copy(cpumask, desc->irq_common_data.affinity);
290 	raw_spin_unlock_irqrestore(&desc->lock, flags);
291 
292 	notify->notify(notify, cpumask);
293 
294 	free_cpumask_var(cpumask);
295 out:
296 	kref_put(&notify->kref, notify->release);
297 }
298 
299 /**
300  *	irq_set_affinity_notifier - control notification of IRQ affinity changes
301  *	@irq:		Interrupt for which to enable/disable notification
302  *	@notify:	Context for notification, or %NULL to disable
303  *			notification.  Function pointers must be initialised;
304  *			the other fields will be initialised by this function.
305  *
306  *	Must be called in process context.  Notification may only be enabled
307  *	after the IRQ is allocated and must be disabled before the IRQ is
308  *	freed using free_irq().
309  */
310 int
311 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
312 {
313 	struct irq_desc *desc = irq_to_desc(irq);
314 	struct irq_affinity_notify *old_notify;
315 	unsigned long flags;
316 
317 	/* The release function is promised process context */
318 	might_sleep();
319 
320 	if (!desc)
321 		return -EINVAL;
322 
323 	/* Complete initialisation of *notify */
324 	if (notify) {
325 		notify->irq = irq;
326 		kref_init(&notify->kref);
327 		INIT_WORK(&notify->work, irq_affinity_notify);
328 	}
329 
330 	raw_spin_lock_irqsave(&desc->lock, flags);
331 	old_notify = desc->affinity_notify;
332 	desc->affinity_notify = notify;
333 	raw_spin_unlock_irqrestore(&desc->lock, flags);
334 
335 	if (old_notify)
336 		kref_put(&old_notify->kref, old_notify->release);
337 
338 	return 0;
339 }
340 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
341 
342 #ifndef CONFIG_AUTO_IRQ_AFFINITY
343 /*
344  * Generic version of the affinity autoselector.
345  */
346 static int setup_affinity(struct irq_desc *desc, struct cpumask *mask)
347 {
348 	struct cpumask *set = irq_default_affinity;
349 	int node = irq_desc_get_node(desc);
350 
351 	/* Excludes PER_CPU and NO_BALANCE interrupts */
352 	if (!__irq_can_set_affinity(desc))
353 		return 0;
354 
355 	/*
356 	 * Preserve the managed affinity setting and an userspace affinity
357 	 * setup, but make sure that one of the targets is online.
358 	 */
359 	if (irqd_affinity_is_managed(&desc->irq_data) ||
360 	    irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
361 		if (cpumask_intersects(desc->irq_common_data.affinity,
362 				       cpu_online_mask))
363 			set = desc->irq_common_data.affinity;
364 		else
365 			irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
366 	}
367 
368 	cpumask_and(mask, cpu_online_mask, set);
369 	if (node != NUMA_NO_NODE) {
370 		const struct cpumask *nodemask = cpumask_of_node(node);
371 
372 		/* make sure at least one of the cpus in nodemask is online */
373 		if (cpumask_intersects(mask, nodemask))
374 			cpumask_and(mask, mask, nodemask);
375 	}
376 	irq_do_set_affinity(&desc->irq_data, mask, false);
377 	return 0;
378 }
379 #else
380 /* Wrapper for ALPHA specific affinity selector magic */
381 static inline int setup_affinity(struct irq_desc *d, struct cpumask *mask)
382 {
383 	return irq_select_affinity(irq_desc_get_irq(d));
384 }
385 #endif
386 
387 /*
388  * Called when affinity is set via /proc/irq
389  */
390 int irq_select_affinity_usr(unsigned int irq, struct cpumask *mask)
391 {
392 	struct irq_desc *desc = irq_to_desc(irq);
393 	unsigned long flags;
394 	int ret;
395 
396 	raw_spin_lock_irqsave(&desc->lock, flags);
397 	ret = setup_affinity(desc, mask);
398 	raw_spin_unlock_irqrestore(&desc->lock, flags);
399 	return ret;
400 }
401 
402 #else
403 static inline int
404 setup_affinity(struct irq_desc *desc, struct cpumask *mask)
405 {
406 	return 0;
407 }
408 #endif
409 
410 /**
411  *	irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
412  *	@irq: interrupt number to set affinity
413  *	@vcpu_info: vCPU specific data
414  *
415  *	This function uses the vCPU specific data to set the vCPU
416  *	affinity for an irq. The vCPU specific data is passed from
417  *	outside, such as KVM. One example code path is as below:
418  *	KVM -> IOMMU -> irq_set_vcpu_affinity().
419  */
420 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
421 {
422 	unsigned long flags;
423 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
424 	struct irq_data *data;
425 	struct irq_chip *chip;
426 	int ret = -ENOSYS;
427 
428 	if (!desc)
429 		return -EINVAL;
430 
431 	data = irq_desc_get_irq_data(desc);
432 	chip = irq_data_get_irq_chip(data);
433 	if (chip && chip->irq_set_vcpu_affinity)
434 		ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
435 	irq_put_desc_unlock(desc, flags);
436 
437 	return ret;
438 }
439 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
440 
441 void __disable_irq(struct irq_desc *desc)
442 {
443 	if (!desc->depth++)
444 		irq_disable(desc);
445 }
446 
447 static int __disable_irq_nosync(unsigned int irq)
448 {
449 	unsigned long flags;
450 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
451 
452 	if (!desc)
453 		return -EINVAL;
454 	__disable_irq(desc);
455 	irq_put_desc_busunlock(desc, flags);
456 	return 0;
457 }
458 
459 /**
460  *	disable_irq_nosync - disable an irq without waiting
461  *	@irq: Interrupt to disable
462  *
463  *	Disable the selected interrupt line.  Disables and Enables are
464  *	nested.
465  *	Unlike disable_irq(), this function does not ensure existing
466  *	instances of the IRQ handler have completed before returning.
467  *
468  *	This function may be called from IRQ context.
469  */
470 void disable_irq_nosync(unsigned int irq)
471 {
472 	__disable_irq_nosync(irq);
473 }
474 EXPORT_SYMBOL(disable_irq_nosync);
475 
476 /**
477  *	disable_irq - disable an irq and wait for completion
478  *	@irq: Interrupt to disable
479  *
480  *	Disable the selected interrupt line.  Enables and Disables are
481  *	nested.
482  *	This function waits for any pending IRQ handlers for this interrupt
483  *	to complete before returning. If you use this function while
484  *	holding a resource the IRQ handler may need you will deadlock.
485  *
486  *	This function may be called - with care - from IRQ context.
487  */
488 void disable_irq(unsigned int irq)
489 {
490 	if (!__disable_irq_nosync(irq))
491 		synchronize_irq(irq);
492 }
493 EXPORT_SYMBOL(disable_irq);
494 
495 /**
496  *	disable_hardirq - disables an irq and waits for hardirq completion
497  *	@irq: Interrupt to disable
498  *
499  *	Disable the selected interrupt line.  Enables and Disables are
500  *	nested.
501  *	This function waits for any pending hard IRQ handlers for this
502  *	interrupt to complete before returning. If you use this function while
503  *	holding a resource the hard IRQ handler may need you will deadlock.
504  *
505  *	When used to optimistically disable an interrupt from atomic context
506  *	the return value must be checked.
507  *
508  *	Returns: false if a threaded handler is active.
509  *
510  *	This function may be called - with care - from IRQ context.
511  */
512 bool disable_hardirq(unsigned int irq)
513 {
514 	if (!__disable_irq_nosync(irq))
515 		return synchronize_hardirq(irq);
516 
517 	return false;
518 }
519 EXPORT_SYMBOL_GPL(disable_hardirq);
520 
521 void __enable_irq(struct irq_desc *desc)
522 {
523 	switch (desc->depth) {
524 	case 0:
525  err_out:
526 		WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
527 		     irq_desc_get_irq(desc));
528 		break;
529 	case 1: {
530 		if (desc->istate & IRQS_SUSPENDED)
531 			goto err_out;
532 		/* Prevent probing on this irq: */
533 		irq_settings_set_noprobe(desc);
534 		irq_enable(desc);
535 		check_irq_resend(desc);
536 		/* fall-through */
537 	}
538 	default:
539 		desc->depth--;
540 	}
541 }
542 
543 /**
544  *	enable_irq - enable handling of an irq
545  *	@irq: Interrupt to enable
546  *
547  *	Undoes the effect of one call to disable_irq().  If this
548  *	matches the last disable, processing of interrupts on this
549  *	IRQ line is re-enabled.
550  *
551  *	This function may be called from IRQ context only when
552  *	desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
553  */
554 void enable_irq(unsigned int irq)
555 {
556 	unsigned long flags;
557 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
558 
559 	if (!desc)
560 		return;
561 	if (WARN(!desc->irq_data.chip,
562 		 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
563 		goto out;
564 
565 	__enable_irq(desc);
566 out:
567 	irq_put_desc_busunlock(desc, flags);
568 }
569 EXPORT_SYMBOL(enable_irq);
570 
571 static int set_irq_wake_real(unsigned int irq, unsigned int on)
572 {
573 	struct irq_desc *desc = irq_to_desc(irq);
574 	int ret = -ENXIO;
575 
576 	if (irq_desc_get_chip(desc)->flags &  IRQCHIP_SKIP_SET_WAKE)
577 		return 0;
578 
579 	if (desc->irq_data.chip->irq_set_wake)
580 		ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
581 
582 	return ret;
583 }
584 
585 /**
586  *	irq_set_irq_wake - control irq power management wakeup
587  *	@irq:	interrupt to control
588  *	@on:	enable/disable power management wakeup
589  *
590  *	Enable/disable power management wakeup mode, which is
591  *	disabled by default.  Enables and disables must match,
592  *	just as they match for non-wakeup mode support.
593  *
594  *	Wakeup mode lets this IRQ wake the system from sleep
595  *	states like "suspend to RAM".
596  */
597 int irq_set_irq_wake(unsigned int irq, unsigned int on)
598 {
599 	unsigned long flags;
600 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
601 	int ret = 0;
602 
603 	if (!desc)
604 		return -EINVAL;
605 
606 	/* wakeup-capable irqs can be shared between drivers that
607 	 * don't need to have the same sleep mode behaviors.
608 	 */
609 	if (on) {
610 		if (desc->wake_depth++ == 0) {
611 			ret = set_irq_wake_real(irq, on);
612 			if (ret)
613 				desc->wake_depth = 0;
614 			else
615 				irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
616 		}
617 	} else {
618 		if (desc->wake_depth == 0) {
619 			WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
620 		} else if (--desc->wake_depth == 0) {
621 			ret = set_irq_wake_real(irq, on);
622 			if (ret)
623 				desc->wake_depth = 1;
624 			else
625 				irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
626 		}
627 	}
628 	irq_put_desc_busunlock(desc, flags);
629 	return ret;
630 }
631 EXPORT_SYMBOL(irq_set_irq_wake);
632 
633 /*
634  * Internal function that tells the architecture code whether a
635  * particular irq has been exclusively allocated or is available
636  * for driver use.
637  */
638 int can_request_irq(unsigned int irq, unsigned long irqflags)
639 {
640 	unsigned long flags;
641 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
642 	int canrequest = 0;
643 
644 	if (!desc)
645 		return 0;
646 
647 	if (irq_settings_can_request(desc)) {
648 		if (!desc->action ||
649 		    irqflags & desc->action->flags & IRQF_SHARED)
650 			canrequest = 1;
651 	}
652 	irq_put_desc_unlock(desc, flags);
653 	return canrequest;
654 }
655 
656 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
657 {
658 	struct irq_chip *chip = desc->irq_data.chip;
659 	int ret, unmask = 0;
660 
661 	if (!chip || !chip->irq_set_type) {
662 		/*
663 		 * IRQF_TRIGGER_* but the PIC does not support multiple
664 		 * flow-types?
665 		 */
666 		pr_debug("No set_type function for IRQ %d (%s)\n",
667 			 irq_desc_get_irq(desc),
668 			 chip ? (chip->name ? : "unknown") : "unknown");
669 		return 0;
670 	}
671 
672 	if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
673 		if (!irqd_irq_masked(&desc->irq_data))
674 			mask_irq(desc);
675 		if (!irqd_irq_disabled(&desc->irq_data))
676 			unmask = 1;
677 	}
678 
679 	/* Mask all flags except trigger mode */
680 	flags &= IRQ_TYPE_SENSE_MASK;
681 	ret = chip->irq_set_type(&desc->irq_data, flags);
682 
683 	switch (ret) {
684 	case IRQ_SET_MASK_OK:
685 	case IRQ_SET_MASK_OK_DONE:
686 		irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
687 		irqd_set(&desc->irq_data, flags);
688 
689 	case IRQ_SET_MASK_OK_NOCOPY:
690 		flags = irqd_get_trigger_type(&desc->irq_data);
691 		irq_settings_set_trigger_mask(desc, flags);
692 		irqd_clear(&desc->irq_data, IRQD_LEVEL);
693 		irq_settings_clr_level(desc);
694 		if (flags & IRQ_TYPE_LEVEL_MASK) {
695 			irq_settings_set_level(desc);
696 			irqd_set(&desc->irq_data, IRQD_LEVEL);
697 		}
698 
699 		ret = 0;
700 		break;
701 	default:
702 		pr_err("Setting trigger mode %lu for irq %u failed (%pF)\n",
703 		       flags, irq_desc_get_irq(desc), chip->irq_set_type);
704 	}
705 	if (unmask)
706 		unmask_irq(desc);
707 	return ret;
708 }
709 
710 #ifdef CONFIG_HARDIRQS_SW_RESEND
711 int irq_set_parent(int irq, int parent_irq)
712 {
713 	unsigned long flags;
714 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
715 
716 	if (!desc)
717 		return -EINVAL;
718 
719 	desc->parent_irq = parent_irq;
720 
721 	irq_put_desc_unlock(desc, flags);
722 	return 0;
723 }
724 #endif
725 
726 /*
727  * Default primary interrupt handler for threaded interrupts. Is
728  * assigned as primary handler when request_threaded_irq is called
729  * with handler == NULL. Useful for oneshot interrupts.
730  */
731 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
732 {
733 	return IRQ_WAKE_THREAD;
734 }
735 
736 /*
737  * Primary handler for nested threaded interrupts. Should never be
738  * called.
739  */
740 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
741 {
742 	WARN(1, "Primary handler called for nested irq %d\n", irq);
743 	return IRQ_NONE;
744 }
745 
746 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
747 {
748 	WARN(1, "Secondary action handler called for irq %d\n", irq);
749 	return IRQ_NONE;
750 }
751 
752 static int irq_wait_for_interrupt(struct irqaction *action)
753 {
754 	set_current_state(TASK_INTERRUPTIBLE);
755 
756 	while (!kthread_should_stop()) {
757 
758 		if (test_and_clear_bit(IRQTF_RUNTHREAD,
759 				       &action->thread_flags)) {
760 			__set_current_state(TASK_RUNNING);
761 			return 0;
762 		}
763 		schedule();
764 		set_current_state(TASK_INTERRUPTIBLE);
765 	}
766 	__set_current_state(TASK_RUNNING);
767 	return -1;
768 }
769 
770 /*
771  * Oneshot interrupts keep the irq line masked until the threaded
772  * handler finished. unmask if the interrupt has not been disabled and
773  * is marked MASKED.
774  */
775 static void irq_finalize_oneshot(struct irq_desc *desc,
776 				 struct irqaction *action)
777 {
778 	if (!(desc->istate & IRQS_ONESHOT) ||
779 	    action->handler == irq_forced_secondary_handler)
780 		return;
781 again:
782 	chip_bus_lock(desc);
783 	raw_spin_lock_irq(&desc->lock);
784 
785 	/*
786 	 * Implausible though it may be we need to protect us against
787 	 * the following scenario:
788 	 *
789 	 * The thread is faster done than the hard interrupt handler
790 	 * on the other CPU. If we unmask the irq line then the
791 	 * interrupt can come in again and masks the line, leaves due
792 	 * to IRQS_INPROGRESS and the irq line is masked forever.
793 	 *
794 	 * This also serializes the state of shared oneshot handlers
795 	 * versus "desc->threads_onehsot |= action->thread_mask;" in
796 	 * irq_wake_thread(). See the comment there which explains the
797 	 * serialization.
798 	 */
799 	if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
800 		raw_spin_unlock_irq(&desc->lock);
801 		chip_bus_sync_unlock(desc);
802 		cpu_relax();
803 		goto again;
804 	}
805 
806 	/*
807 	 * Now check again, whether the thread should run. Otherwise
808 	 * we would clear the threads_oneshot bit of this thread which
809 	 * was just set.
810 	 */
811 	if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
812 		goto out_unlock;
813 
814 	desc->threads_oneshot &= ~action->thread_mask;
815 
816 	if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
817 	    irqd_irq_masked(&desc->irq_data))
818 		unmask_threaded_irq(desc);
819 
820 out_unlock:
821 	raw_spin_unlock_irq(&desc->lock);
822 	chip_bus_sync_unlock(desc);
823 }
824 
825 #ifdef CONFIG_SMP
826 /*
827  * Check whether we need to change the affinity of the interrupt thread.
828  */
829 static void
830 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
831 {
832 	cpumask_var_t mask;
833 	bool valid = true;
834 
835 	if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
836 		return;
837 
838 	/*
839 	 * In case we are out of memory we set IRQTF_AFFINITY again and
840 	 * try again next time
841 	 */
842 	if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
843 		set_bit(IRQTF_AFFINITY, &action->thread_flags);
844 		return;
845 	}
846 
847 	raw_spin_lock_irq(&desc->lock);
848 	/*
849 	 * This code is triggered unconditionally. Check the affinity
850 	 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
851 	 */
852 	if (desc->irq_common_data.affinity)
853 		cpumask_copy(mask, desc->irq_common_data.affinity);
854 	else
855 		valid = false;
856 	raw_spin_unlock_irq(&desc->lock);
857 
858 	if (valid)
859 		set_cpus_allowed_ptr(current, mask);
860 	free_cpumask_var(mask);
861 }
862 #else
863 static inline void
864 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
865 #endif
866 
867 /*
868  * Interrupts which are not explicitely requested as threaded
869  * interrupts rely on the implicit bh/preempt disable of the hard irq
870  * context. So we need to disable bh here to avoid deadlocks and other
871  * side effects.
872  */
873 static irqreturn_t
874 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
875 {
876 	irqreturn_t ret;
877 
878 	local_bh_disable();
879 	ret = action->thread_fn(action->irq, action->dev_id);
880 	irq_finalize_oneshot(desc, action);
881 	local_bh_enable();
882 	return ret;
883 }
884 
885 /*
886  * Interrupts explicitly requested as threaded interrupts want to be
887  * preemtible - many of them need to sleep and wait for slow busses to
888  * complete.
889  */
890 static irqreturn_t irq_thread_fn(struct irq_desc *desc,
891 		struct irqaction *action)
892 {
893 	irqreturn_t ret;
894 
895 	ret = action->thread_fn(action->irq, action->dev_id);
896 	irq_finalize_oneshot(desc, action);
897 	return ret;
898 }
899 
900 static void wake_threads_waitq(struct irq_desc *desc)
901 {
902 	if (atomic_dec_and_test(&desc->threads_active))
903 		wake_up(&desc->wait_for_threads);
904 }
905 
906 static void irq_thread_dtor(struct callback_head *unused)
907 {
908 	struct task_struct *tsk = current;
909 	struct irq_desc *desc;
910 	struct irqaction *action;
911 
912 	if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
913 		return;
914 
915 	action = kthread_data(tsk);
916 
917 	pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
918 	       tsk->comm, tsk->pid, action->irq);
919 
920 
921 	desc = irq_to_desc(action->irq);
922 	/*
923 	 * If IRQTF_RUNTHREAD is set, we need to decrement
924 	 * desc->threads_active and wake possible waiters.
925 	 */
926 	if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
927 		wake_threads_waitq(desc);
928 
929 	/* Prevent a stale desc->threads_oneshot */
930 	irq_finalize_oneshot(desc, action);
931 }
932 
933 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
934 {
935 	struct irqaction *secondary = action->secondary;
936 
937 	if (WARN_ON_ONCE(!secondary))
938 		return;
939 
940 	raw_spin_lock_irq(&desc->lock);
941 	__irq_wake_thread(desc, secondary);
942 	raw_spin_unlock_irq(&desc->lock);
943 }
944 
945 /*
946  * Interrupt handler thread
947  */
948 static int irq_thread(void *data)
949 {
950 	struct callback_head on_exit_work;
951 	struct irqaction *action = data;
952 	struct irq_desc *desc = irq_to_desc(action->irq);
953 	irqreturn_t (*handler_fn)(struct irq_desc *desc,
954 			struct irqaction *action);
955 
956 	if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD,
957 					&action->thread_flags))
958 		handler_fn = irq_forced_thread_fn;
959 	else
960 		handler_fn = irq_thread_fn;
961 
962 	init_task_work(&on_exit_work, irq_thread_dtor);
963 	task_work_add(current, &on_exit_work, false);
964 
965 	irq_thread_check_affinity(desc, action);
966 
967 	while (!irq_wait_for_interrupt(action)) {
968 		irqreturn_t action_ret;
969 
970 		irq_thread_check_affinity(desc, action);
971 
972 		action_ret = handler_fn(desc, action);
973 		if (action_ret == IRQ_HANDLED)
974 			atomic_inc(&desc->threads_handled);
975 		if (action_ret == IRQ_WAKE_THREAD)
976 			irq_wake_secondary(desc, action);
977 
978 		wake_threads_waitq(desc);
979 	}
980 
981 	/*
982 	 * This is the regular exit path. __free_irq() is stopping the
983 	 * thread via kthread_stop() after calling
984 	 * synchronize_irq(). So neither IRQTF_RUNTHREAD nor the
985 	 * oneshot mask bit can be set. We cannot verify that as we
986 	 * cannot touch the oneshot mask at this point anymore as
987 	 * __setup_irq() might have given out currents thread_mask
988 	 * again.
989 	 */
990 	task_work_cancel(current, irq_thread_dtor);
991 	return 0;
992 }
993 
994 /**
995  *	irq_wake_thread - wake the irq thread for the action identified by dev_id
996  *	@irq:		Interrupt line
997  *	@dev_id:	Device identity for which the thread should be woken
998  *
999  */
1000 void irq_wake_thread(unsigned int irq, void *dev_id)
1001 {
1002 	struct irq_desc *desc = irq_to_desc(irq);
1003 	struct irqaction *action;
1004 	unsigned long flags;
1005 
1006 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1007 		return;
1008 
1009 	raw_spin_lock_irqsave(&desc->lock, flags);
1010 	for_each_action_of_desc(desc, action) {
1011 		if (action->dev_id == dev_id) {
1012 			if (action->thread)
1013 				__irq_wake_thread(desc, action);
1014 			break;
1015 		}
1016 	}
1017 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1018 }
1019 EXPORT_SYMBOL_GPL(irq_wake_thread);
1020 
1021 static int irq_setup_forced_threading(struct irqaction *new)
1022 {
1023 	if (!force_irqthreads)
1024 		return 0;
1025 	if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1026 		return 0;
1027 
1028 	new->flags |= IRQF_ONESHOT;
1029 
1030 	/*
1031 	 * Handle the case where we have a real primary handler and a
1032 	 * thread handler. We force thread them as well by creating a
1033 	 * secondary action.
1034 	 */
1035 	if (new->handler != irq_default_primary_handler && new->thread_fn) {
1036 		/* Allocate the secondary action */
1037 		new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1038 		if (!new->secondary)
1039 			return -ENOMEM;
1040 		new->secondary->handler = irq_forced_secondary_handler;
1041 		new->secondary->thread_fn = new->thread_fn;
1042 		new->secondary->dev_id = new->dev_id;
1043 		new->secondary->irq = new->irq;
1044 		new->secondary->name = new->name;
1045 	}
1046 	/* Deal with the primary handler */
1047 	set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1048 	new->thread_fn = new->handler;
1049 	new->handler = irq_default_primary_handler;
1050 	return 0;
1051 }
1052 
1053 static int irq_request_resources(struct irq_desc *desc)
1054 {
1055 	struct irq_data *d = &desc->irq_data;
1056 	struct irq_chip *c = d->chip;
1057 
1058 	return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1059 }
1060 
1061 static void irq_release_resources(struct irq_desc *desc)
1062 {
1063 	struct irq_data *d = &desc->irq_data;
1064 	struct irq_chip *c = d->chip;
1065 
1066 	if (c->irq_release_resources)
1067 		c->irq_release_resources(d);
1068 }
1069 
1070 static int
1071 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1072 {
1073 	struct task_struct *t;
1074 	struct sched_param param = {
1075 		.sched_priority = MAX_USER_RT_PRIO/2,
1076 	};
1077 
1078 	if (!secondary) {
1079 		t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1080 				   new->name);
1081 	} else {
1082 		t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1083 				   new->name);
1084 		param.sched_priority -= 1;
1085 	}
1086 
1087 	if (IS_ERR(t))
1088 		return PTR_ERR(t);
1089 
1090 	sched_setscheduler_nocheck(t, SCHED_FIFO, &param);
1091 
1092 	/*
1093 	 * We keep the reference to the task struct even if
1094 	 * the thread dies to avoid that the interrupt code
1095 	 * references an already freed task_struct.
1096 	 */
1097 	get_task_struct(t);
1098 	new->thread = t;
1099 	/*
1100 	 * Tell the thread to set its affinity. This is
1101 	 * important for shared interrupt handlers as we do
1102 	 * not invoke setup_affinity() for the secondary
1103 	 * handlers as everything is already set up. Even for
1104 	 * interrupts marked with IRQF_NO_BALANCE this is
1105 	 * correct as we want the thread to move to the cpu(s)
1106 	 * on which the requesting code placed the interrupt.
1107 	 */
1108 	set_bit(IRQTF_AFFINITY, &new->thread_flags);
1109 	return 0;
1110 }
1111 
1112 /*
1113  * Internal function to register an irqaction - typically used to
1114  * allocate special interrupts that are part of the architecture.
1115  */
1116 static int
1117 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1118 {
1119 	struct irqaction *old, **old_ptr;
1120 	unsigned long flags, thread_mask = 0;
1121 	int ret, nested, shared = 0;
1122 	cpumask_var_t mask;
1123 
1124 	if (!desc)
1125 		return -EINVAL;
1126 
1127 	if (desc->irq_data.chip == &no_irq_chip)
1128 		return -ENOSYS;
1129 	if (!try_module_get(desc->owner))
1130 		return -ENODEV;
1131 
1132 	new->irq = irq;
1133 
1134 	/*
1135 	 * If the trigger type is not specified by the caller,
1136 	 * then use the default for this interrupt.
1137 	 */
1138 	if (!(new->flags & IRQF_TRIGGER_MASK))
1139 		new->flags |= irqd_get_trigger_type(&desc->irq_data);
1140 
1141 	/*
1142 	 * Check whether the interrupt nests into another interrupt
1143 	 * thread.
1144 	 */
1145 	nested = irq_settings_is_nested_thread(desc);
1146 	if (nested) {
1147 		if (!new->thread_fn) {
1148 			ret = -EINVAL;
1149 			goto out_mput;
1150 		}
1151 		/*
1152 		 * Replace the primary handler which was provided from
1153 		 * the driver for non nested interrupt handling by the
1154 		 * dummy function which warns when called.
1155 		 */
1156 		new->handler = irq_nested_primary_handler;
1157 	} else {
1158 		if (irq_settings_can_thread(desc)) {
1159 			ret = irq_setup_forced_threading(new);
1160 			if (ret)
1161 				goto out_mput;
1162 		}
1163 	}
1164 
1165 	/*
1166 	 * Create a handler thread when a thread function is supplied
1167 	 * and the interrupt does not nest into another interrupt
1168 	 * thread.
1169 	 */
1170 	if (new->thread_fn && !nested) {
1171 		ret = setup_irq_thread(new, irq, false);
1172 		if (ret)
1173 			goto out_mput;
1174 		if (new->secondary) {
1175 			ret = setup_irq_thread(new->secondary, irq, true);
1176 			if (ret)
1177 				goto out_thread;
1178 		}
1179 	}
1180 
1181 	if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
1182 		ret = -ENOMEM;
1183 		goto out_thread;
1184 	}
1185 
1186 	/*
1187 	 * Drivers are often written to work w/o knowledge about the
1188 	 * underlying irq chip implementation, so a request for a
1189 	 * threaded irq without a primary hard irq context handler
1190 	 * requires the ONESHOT flag to be set. Some irq chips like
1191 	 * MSI based interrupts are per se one shot safe. Check the
1192 	 * chip flags, so we can avoid the unmask dance at the end of
1193 	 * the threaded handler for those.
1194 	 */
1195 	if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1196 		new->flags &= ~IRQF_ONESHOT;
1197 
1198 	/*
1199 	 * The following block of code has to be executed atomically
1200 	 */
1201 	raw_spin_lock_irqsave(&desc->lock, flags);
1202 	old_ptr = &desc->action;
1203 	old = *old_ptr;
1204 	if (old) {
1205 		/*
1206 		 * Can't share interrupts unless both agree to and are
1207 		 * the same type (level, edge, polarity). So both flag
1208 		 * fields must have IRQF_SHARED set and the bits which
1209 		 * set the trigger type must match. Also all must
1210 		 * agree on ONESHOT.
1211 		 */
1212 		if (!((old->flags & new->flags) & IRQF_SHARED) ||
1213 		    ((old->flags ^ new->flags) & IRQF_TRIGGER_MASK) ||
1214 		    ((old->flags ^ new->flags) & IRQF_ONESHOT))
1215 			goto mismatch;
1216 
1217 		/* All handlers must agree on per-cpuness */
1218 		if ((old->flags & IRQF_PERCPU) !=
1219 		    (new->flags & IRQF_PERCPU))
1220 			goto mismatch;
1221 
1222 		/* add new interrupt at end of irq queue */
1223 		do {
1224 			/*
1225 			 * Or all existing action->thread_mask bits,
1226 			 * so we can find the next zero bit for this
1227 			 * new action.
1228 			 */
1229 			thread_mask |= old->thread_mask;
1230 			old_ptr = &old->next;
1231 			old = *old_ptr;
1232 		} while (old);
1233 		shared = 1;
1234 	}
1235 
1236 	/*
1237 	 * Setup the thread mask for this irqaction for ONESHOT. For
1238 	 * !ONESHOT irqs the thread mask is 0 so we can avoid a
1239 	 * conditional in irq_wake_thread().
1240 	 */
1241 	if (new->flags & IRQF_ONESHOT) {
1242 		/*
1243 		 * Unlikely to have 32 resp 64 irqs sharing one line,
1244 		 * but who knows.
1245 		 */
1246 		if (thread_mask == ~0UL) {
1247 			ret = -EBUSY;
1248 			goto out_mask;
1249 		}
1250 		/*
1251 		 * The thread_mask for the action is or'ed to
1252 		 * desc->thread_active to indicate that the
1253 		 * IRQF_ONESHOT thread handler has been woken, but not
1254 		 * yet finished. The bit is cleared when a thread
1255 		 * completes. When all threads of a shared interrupt
1256 		 * line have completed desc->threads_active becomes
1257 		 * zero and the interrupt line is unmasked. See
1258 		 * handle.c:irq_wake_thread() for further information.
1259 		 *
1260 		 * If no thread is woken by primary (hard irq context)
1261 		 * interrupt handlers, then desc->threads_active is
1262 		 * also checked for zero to unmask the irq line in the
1263 		 * affected hard irq flow handlers
1264 		 * (handle_[fasteoi|level]_irq).
1265 		 *
1266 		 * The new action gets the first zero bit of
1267 		 * thread_mask assigned. See the loop above which or's
1268 		 * all existing action->thread_mask bits.
1269 		 */
1270 		new->thread_mask = 1 << ffz(thread_mask);
1271 
1272 	} else if (new->handler == irq_default_primary_handler &&
1273 		   !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1274 		/*
1275 		 * The interrupt was requested with handler = NULL, so
1276 		 * we use the default primary handler for it. But it
1277 		 * does not have the oneshot flag set. In combination
1278 		 * with level interrupts this is deadly, because the
1279 		 * default primary handler just wakes the thread, then
1280 		 * the irq lines is reenabled, but the device still
1281 		 * has the level irq asserted. Rinse and repeat....
1282 		 *
1283 		 * While this works for edge type interrupts, we play
1284 		 * it safe and reject unconditionally because we can't
1285 		 * say for sure which type this interrupt really
1286 		 * has. The type flags are unreliable as the
1287 		 * underlying chip implementation can override them.
1288 		 */
1289 		pr_err("Threaded irq requested with handler=NULL and !ONESHOT for irq %d\n",
1290 		       irq);
1291 		ret = -EINVAL;
1292 		goto out_mask;
1293 	}
1294 
1295 	if (!shared) {
1296 		ret = irq_request_resources(desc);
1297 		if (ret) {
1298 			pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1299 			       new->name, irq, desc->irq_data.chip->name);
1300 			goto out_mask;
1301 		}
1302 
1303 		init_waitqueue_head(&desc->wait_for_threads);
1304 
1305 		/* Setup the type (level, edge polarity) if configured: */
1306 		if (new->flags & IRQF_TRIGGER_MASK) {
1307 			ret = __irq_set_trigger(desc,
1308 						new->flags & IRQF_TRIGGER_MASK);
1309 
1310 			if (ret)
1311 				goto out_mask;
1312 		}
1313 
1314 		desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1315 				  IRQS_ONESHOT | IRQS_WAITING);
1316 		irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1317 
1318 		if (new->flags & IRQF_PERCPU) {
1319 			irqd_set(&desc->irq_data, IRQD_PER_CPU);
1320 			irq_settings_set_per_cpu(desc);
1321 		}
1322 
1323 		if (new->flags & IRQF_ONESHOT)
1324 			desc->istate |= IRQS_ONESHOT;
1325 
1326 		if (irq_settings_can_autoenable(desc))
1327 			irq_startup(desc, true);
1328 		else
1329 			/* Undo nested disables: */
1330 			desc->depth = 1;
1331 
1332 		/* Exclude IRQ from balancing if requested */
1333 		if (new->flags & IRQF_NOBALANCING) {
1334 			irq_settings_set_no_balancing(desc);
1335 			irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1336 		}
1337 
1338 		/* Set default affinity mask once everything is setup */
1339 		setup_affinity(desc, mask);
1340 
1341 	} else if (new->flags & IRQF_TRIGGER_MASK) {
1342 		unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1343 		unsigned int omsk = irq_settings_get_trigger_mask(desc);
1344 
1345 		if (nmsk != omsk)
1346 			/* hope the handler works with current  trigger mode */
1347 			pr_warn("irq %d uses trigger mode %u; requested %u\n",
1348 				irq, nmsk, omsk);
1349 	}
1350 
1351 	*old_ptr = new;
1352 
1353 	irq_pm_install_action(desc, new);
1354 
1355 	/* Reset broken irq detection when installing new handler */
1356 	desc->irq_count = 0;
1357 	desc->irqs_unhandled = 0;
1358 
1359 	/*
1360 	 * Check whether we disabled the irq via the spurious handler
1361 	 * before. Reenable it and give it another chance.
1362 	 */
1363 	if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1364 		desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1365 		__enable_irq(desc);
1366 	}
1367 
1368 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1369 
1370 	/*
1371 	 * Strictly no need to wake it up, but hung_task complains
1372 	 * when no hard interrupt wakes the thread up.
1373 	 */
1374 	if (new->thread)
1375 		wake_up_process(new->thread);
1376 	if (new->secondary)
1377 		wake_up_process(new->secondary->thread);
1378 
1379 	register_irq_proc(irq, desc);
1380 	new->dir = NULL;
1381 	register_handler_proc(irq, new);
1382 	free_cpumask_var(mask);
1383 
1384 	return 0;
1385 
1386 mismatch:
1387 	if (!(new->flags & IRQF_PROBE_SHARED)) {
1388 		pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1389 		       irq, new->flags, new->name, old->flags, old->name);
1390 #ifdef CONFIG_DEBUG_SHIRQ
1391 		dump_stack();
1392 #endif
1393 	}
1394 	ret = -EBUSY;
1395 
1396 out_mask:
1397 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1398 	free_cpumask_var(mask);
1399 
1400 out_thread:
1401 	if (new->thread) {
1402 		struct task_struct *t = new->thread;
1403 
1404 		new->thread = NULL;
1405 		kthread_stop(t);
1406 		put_task_struct(t);
1407 	}
1408 	if (new->secondary && new->secondary->thread) {
1409 		struct task_struct *t = new->secondary->thread;
1410 
1411 		new->secondary->thread = NULL;
1412 		kthread_stop(t);
1413 		put_task_struct(t);
1414 	}
1415 out_mput:
1416 	module_put(desc->owner);
1417 	return ret;
1418 }
1419 
1420 /**
1421  *	setup_irq - setup an interrupt
1422  *	@irq: Interrupt line to setup
1423  *	@act: irqaction for the interrupt
1424  *
1425  * Used to statically setup interrupts in the early boot process.
1426  */
1427 int setup_irq(unsigned int irq, struct irqaction *act)
1428 {
1429 	int retval;
1430 	struct irq_desc *desc = irq_to_desc(irq);
1431 
1432 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1433 		return -EINVAL;
1434 
1435 	retval = irq_chip_pm_get(&desc->irq_data);
1436 	if (retval < 0)
1437 		return retval;
1438 
1439 	chip_bus_lock(desc);
1440 	retval = __setup_irq(irq, desc, act);
1441 	chip_bus_sync_unlock(desc);
1442 
1443 	if (retval)
1444 		irq_chip_pm_put(&desc->irq_data);
1445 
1446 	return retval;
1447 }
1448 EXPORT_SYMBOL_GPL(setup_irq);
1449 
1450 /*
1451  * Internal function to unregister an irqaction - used to free
1452  * regular and special interrupts that are part of the architecture.
1453  */
1454 static struct irqaction *__free_irq(unsigned int irq, void *dev_id)
1455 {
1456 	struct irq_desc *desc = irq_to_desc(irq);
1457 	struct irqaction *action, **action_ptr;
1458 	unsigned long flags;
1459 
1460 	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1461 
1462 	if (!desc)
1463 		return NULL;
1464 
1465 	chip_bus_lock(desc);
1466 	raw_spin_lock_irqsave(&desc->lock, flags);
1467 
1468 	/*
1469 	 * There can be multiple actions per IRQ descriptor, find the right
1470 	 * one based on the dev_id:
1471 	 */
1472 	action_ptr = &desc->action;
1473 	for (;;) {
1474 		action = *action_ptr;
1475 
1476 		if (!action) {
1477 			WARN(1, "Trying to free already-free IRQ %d\n", irq);
1478 			raw_spin_unlock_irqrestore(&desc->lock, flags);
1479 			chip_bus_sync_unlock(desc);
1480 			return NULL;
1481 		}
1482 
1483 		if (action->dev_id == dev_id)
1484 			break;
1485 		action_ptr = &action->next;
1486 	}
1487 
1488 	/* Found it - now remove it from the list of entries: */
1489 	*action_ptr = action->next;
1490 
1491 	irq_pm_remove_action(desc, action);
1492 
1493 	/* If this was the last handler, shut down the IRQ line: */
1494 	if (!desc->action) {
1495 		irq_settings_clr_disable_unlazy(desc);
1496 		irq_shutdown(desc);
1497 		irq_release_resources(desc);
1498 	}
1499 
1500 #ifdef CONFIG_SMP
1501 	/* make sure affinity_hint is cleaned up */
1502 	if (WARN_ON_ONCE(desc->affinity_hint))
1503 		desc->affinity_hint = NULL;
1504 #endif
1505 
1506 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1507 	chip_bus_sync_unlock(desc);
1508 
1509 	unregister_handler_proc(irq, action);
1510 
1511 	/* Make sure it's not being used on another CPU: */
1512 	synchronize_irq(irq);
1513 
1514 #ifdef CONFIG_DEBUG_SHIRQ
1515 	/*
1516 	 * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1517 	 * event to happen even now it's being freed, so let's make sure that
1518 	 * is so by doing an extra call to the handler ....
1519 	 *
1520 	 * ( We do this after actually deregistering it, to make sure that a
1521 	 *   'real' IRQ doesn't run in * parallel with our fake. )
1522 	 */
1523 	if (action->flags & IRQF_SHARED) {
1524 		local_irq_save(flags);
1525 		action->handler(irq, dev_id);
1526 		local_irq_restore(flags);
1527 	}
1528 #endif
1529 
1530 	if (action->thread) {
1531 		kthread_stop(action->thread);
1532 		put_task_struct(action->thread);
1533 		if (action->secondary && action->secondary->thread) {
1534 			kthread_stop(action->secondary->thread);
1535 			put_task_struct(action->secondary->thread);
1536 		}
1537 	}
1538 
1539 	irq_chip_pm_put(&desc->irq_data);
1540 	module_put(desc->owner);
1541 	kfree(action->secondary);
1542 	return action;
1543 }
1544 
1545 /**
1546  *	remove_irq - free an interrupt
1547  *	@irq: Interrupt line to free
1548  *	@act: irqaction for the interrupt
1549  *
1550  * Used to remove interrupts statically setup by the early boot process.
1551  */
1552 void remove_irq(unsigned int irq, struct irqaction *act)
1553 {
1554 	struct irq_desc *desc = irq_to_desc(irq);
1555 
1556 	if (desc && !WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1557 	    __free_irq(irq, act->dev_id);
1558 }
1559 EXPORT_SYMBOL_GPL(remove_irq);
1560 
1561 /**
1562  *	free_irq - free an interrupt allocated with request_irq
1563  *	@irq: Interrupt line to free
1564  *	@dev_id: Device identity to free
1565  *
1566  *	Remove an interrupt handler. The handler is removed and if the
1567  *	interrupt line is no longer in use by any driver it is disabled.
1568  *	On a shared IRQ the caller must ensure the interrupt is disabled
1569  *	on the card it drives before calling this function. The function
1570  *	does not return until any executing interrupts for this IRQ
1571  *	have completed.
1572  *
1573  *	This function must not be called from interrupt context.
1574  */
1575 void free_irq(unsigned int irq, void *dev_id)
1576 {
1577 	struct irq_desc *desc = irq_to_desc(irq);
1578 
1579 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1580 		return;
1581 
1582 #ifdef CONFIG_SMP
1583 	if (WARN_ON(desc->affinity_notify))
1584 		desc->affinity_notify = NULL;
1585 #endif
1586 
1587 	kfree(__free_irq(irq, dev_id));
1588 }
1589 EXPORT_SYMBOL(free_irq);
1590 
1591 /**
1592  *	request_threaded_irq - allocate an interrupt line
1593  *	@irq: Interrupt line to allocate
1594  *	@handler: Function to be called when the IRQ occurs.
1595  *		  Primary handler for threaded interrupts
1596  *		  If NULL and thread_fn != NULL the default
1597  *		  primary handler is installed
1598  *	@thread_fn: Function called from the irq handler thread
1599  *		    If NULL, no irq thread is created
1600  *	@irqflags: Interrupt type flags
1601  *	@devname: An ascii name for the claiming device
1602  *	@dev_id: A cookie passed back to the handler function
1603  *
1604  *	This call allocates interrupt resources and enables the
1605  *	interrupt line and IRQ handling. From the point this
1606  *	call is made your handler function may be invoked. Since
1607  *	your handler function must clear any interrupt the board
1608  *	raises, you must take care both to initialise your hardware
1609  *	and to set up the interrupt handler in the right order.
1610  *
1611  *	If you want to set up a threaded irq handler for your device
1612  *	then you need to supply @handler and @thread_fn. @handler is
1613  *	still called in hard interrupt context and has to check
1614  *	whether the interrupt originates from the device. If yes it
1615  *	needs to disable the interrupt on the device and return
1616  *	IRQ_WAKE_THREAD which will wake up the handler thread and run
1617  *	@thread_fn. This split handler design is necessary to support
1618  *	shared interrupts.
1619  *
1620  *	Dev_id must be globally unique. Normally the address of the
1621  *	device data structure is used as the cookie. Since the handler
1622  *	receives this value it makes sense to use it.
1623  *
1624  *	If your interrupt is shared you must pass a non NULL dev_id
1625  *	as this is required when freeing the interrupt.
1626  *
1627  *	Flags:
1628  *
1629  *	IRQF_SHARED		Interrupt is shared
1630  *	IRQF_TRIGGER_*		Specify active edge(s) or level
1631  *
1632  */
1633 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
1634 			 irq_handler_t thread_fn, unsigned long irqflags,
1635 			 const char *devname, void *dev_id)
1636 {
1637 	struct irqaction *action;
1638 	struct irq_desc *desc;
1639 	int retval;
1640 
1641 	if (irq == IRQ_NOTCONNECTED)
1642 		return -ENOTCONN;
1643 
1644 	/*
1645 	 * Sanity-check: shared interrupts must pass in a real dev-ID,
1646 	 * otherwise we'll have trouble later trying to figure out
1647 	 * which interrupt is which (messes up the interrupt freeing
1648 	 * logic etc).
1649 	 *
1650 	 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
1651 	 * it cannot be set along with IRQF_NO_SUSPEND.
1652 	 */
1653 	if (((irqflags & IRQF_SHARED) && !dev_id) ||
1654 	    (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
1655 	    ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
1656 		return -EINVAL;
1657 
1658 	desc = irq_to_desc(irq);
1659 	if (!desc)
1660 		return -EINVAL;
1661 
1662 	if (!irq_settings_can_request(desc) ||
1663 	    WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1664 		return -EINVAL;
1665 
1666 	if (!handler) {
1667 		if (!thread_fn)
1668 			return -EINVAL;
1669 		handler = irq_default_primary_handler;
1670 	}
1671 
1672 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1673 	if (!action)
1674 		return -ENOMEM;
1675 
1676 	action->handler = handler;
1677 	action->thread_fn = thread_fn;
1678 	action->flags = irqflags;
1679 	action->name = devname;
1680 	action->dev_id = dev_id;
1681 
1682 	retval = irq_chip_pm_get(&desc->irq_data);
1683 	if (retval < 0) {
1684 		kfree(action);
1685 		return retval;
1686 	}
1687 
1688 	chip_bus_lock(desc);
1689 	retval = __setup_irq(irq, desc, action);
1690 	chip_bus_sync_unlock(desc);
1691 
1692 	if (retval) {
1693 		irq_chip_pm_put(&desc->irq_data);
1694 		kfree(action->secondary);
1695 		kfree(action);
1696 	}
1697 
1698 #ifdef CONFIG_DEBUG_SHIRQ_FIXME
1699 	if (!retval && (irqflags & IRQF_SHARED)) {
1700 		/*
1701 		 * It's a shared IRQ -- the driver ought to be prepared for it
1702 		 * to happen immediately, so let's make sure....
1703 		 * We disable the irq to make sure that a 'real' IRQ doesn't
1704 		 * run in parallel with our fake.
1705 		 */
1706 		unsigned long flags;
1707 
1708 		disable_irq(irq);
1709 		local_irq_save(flags);
1710 
1711 		handler(irq, dev_id);
1712 
1713 		local_irq_restore(flags);
1714 		enable_irq(irq);
1715 	}
1716 #endif
1717 	return retval;
1718 }
1719 EXPORT_SYMBOL(request_threaded_irq);
1720 
1721 /**
1722  *	request_any_context_irq - allocate an interrupt line
1723  *	@irq: Interrupt line to allocate
1724  *	@handler: Function to be called when the IRQ occurs.
1725  *		  Threaded handler for threaded interrupts.
1726  *	@flags: Interrupt type flags
1727  *	@name: An ascii name for the claiming device
1728  *	@dev_id: A cookie passed back to the handler function
1729  *
1730  *	This call allocates interrupt resources and enables the
1731  *	interrupt line and IRQ handling. It selects either a
1732  *	hardirq or threaded handling method depending on the
1733  *	context.
1734  *
1735  *	On failure, it returns a negative value. On success,
1736  *	it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
1737  */
1738 int request_any_context_irq(unsigned int irq, irq_handler_t handler,
1739 			    unsigned long flags, const char *name, void *dev_id)
1740 {
1741 	struct irq_desc *desc;
1742 	int ret;
1743 
1744 	if (irq == IRQ_NOTCONNECTED)
1745 		return -ENOTCONN;
1746 
1747 	desc = irq_to_desc(irq);
1748 	if (!desc)
1749 		return -EINVAL;
1750 
1751 	if (irq_settings_is_nested_thread(desc)) {
1752 		ret = request_threaded_irq(irq, NULL, handler,
1753 					   flags, name, dev_id);
1754 		return !ret ? IRQC_IS_NESTED : ret;
1755 	}
1756 
1757 	ret = request_irq(irq, handler, flags, name, dev_id);
1758 	return !ret ? IRQC_IS_HARDIRQ : ret;
1759 }
1760 EXPORT_SYMBOL_GPL(request_any_context_irq);
1761 
1762 void enable_percpu_irq(unsigned int irq, unsigned int type)
1763 {
1764 	unsigned int cpu = smp_processor_id();
1765 	unsigned long flags;
1766 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1767 
1768 	if (!desc)
1769 		return;
1770 
1771 	/*
1772 	 * If the trigger type is not specified by the caller, then
1773 	 * use the default for this interrupt.
1774 	 */
1775 	type &= IRQ_TYPE_SENSE_MASK;
1776 	if (type == IRQ_TYPE_NONE)
1777 		type = irqd_get_trigger_type(&desc->irq_data);
1778 
1779 	if (type != IRQ_TYPE_NONE) {
1780 		int ret;
1781 
1782 		ret = __irq_set_trigger(desc, type);
1783 
1784 		if (ret) {
1785 			WARN(1, "failed to set type for IRQ%d\n", irq);
1786 			goto out;
1787 		}
1788 	}
1789 
1790 	irq_percpu_enable(desc, cpu);
1791 out:
1792 	irq_put_desc_unlock(desc, flags);
1793 }
1794 EXPORT_SYMBOL_GPL(enable_percpu_irq);
1795 
1796 /**
1797  * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
1798  * @irq:	Linux irq number to check for
1799  *
1800  * Must be called from a non migratable context. Returns the enable
1801  * state of a per cpu interrupt on the current cpu.
1802  */
1803 bool irq_percpu_is_enabled(unsigned int irq)
1804 {
1805 	unsigned int cpu = smp_processor_id();
1806 	struct irq_desc *desc;
1807 	unsigned long flags;
1808 	bool is_enabled;
1809 
1810 	desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1811 	if (!desc)
1812 		return false;
1813 
1814 	is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
1815 	irq_put_desc_unlock(desc, flags);
1816 
1817 	return is_enabled;
1818 }
1819 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
1820 
1821 void disable_percpu_irq(unsigned int irq)
1822 {
1823 	unsigned int cpu = smp_processor_id();
1824 	unsigned long flags;
1825 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1826 
1827 	if (!desc)
1828 		return;
1829 
1830 	irq_percpu_disable(desc, cpu);
1831 	irq_put_desc_unlock(desc, flags);
1832 }
1833 EXPORT_SYMBOL_GPL(disable_percpu_irq);
1834 
1835 /*
1836  * Internal function to unregister a percpu irqaction.
1837  */
1838 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
1839 {
1840 	struct irq_desc *desc = irq_to_desc(irq);
1841 	struct irqaction *action;
1842 	unsigned long flags;
1843 
1844 	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1845 
1846 	if (!desc)
1847 		return NULL;
1848 
1849 	raw_spin_lock_irqsave(&desc->lock, flags);
1850 
1851 	action = desc->action;
1852 	if (!action || action->percpu_dev_id != dev_id) {
1853 		WARN(1, "Trying to free already-free IRQ %d\n", irq);
1854 		goto bad;
1855 	}
1856 
1857 	if (!cpumask_empty(desc->percpu_enabled)) {
1858 		WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
1859 		     irq, cpumask_first(desc->percpu_enabled));
1860 		goto bad;
1861 	}
1862 
1863 	/* Found it - now remove it from the list of entries: */
1864 	desc->action = NULL;
1865 
1866 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1867 
1868 	unregister_handler_proc(irq, action);
1869 
1870 	irq_chip_pm_put(&desc->irq_data);
1871 	module_put(desc->owner);
1872 	return action;
1873 
1874 bad:
1875 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1876 	return NULL;
1877 }
1878 
1879 /**
1880  *	remove_percpu_irq - free a per-cpu interrupt
1881  *	@irq: Interrupt line to free
1882  *	@act: irqaction for the interrupt
1883  *
1884  * Used to remove interrupts statically setup by the early boot process.
1885  */
1886 void remove_percpu_irq(unsigned int irq, struct irqaction *act)
1887 {
1888 	struct irq_desc *desc = irq_to_desc(irq);
1889 
1890 	if (desc && irq_settings_is_per_cpu_devid(desc))
1891 	    __free_percpu_irq(irq, act->percpu_dev_id);
1892 }
1893 
1894 /**
1895  *	free_percpu_irq - free an interrupt allocated with request_percpu_irq
1896  *	@irq: Interrupt line to free
1897  *	@dev_id: Device identity to free
1898  *
1899  *	Remove a percpu interrupt handler. The handler is removed, but
1900  *	the interrupt line is not disabled. This must be done on each
1901  *	CPU before calling this function. The function does not return
1902  *	until any executing interrupts for this IRQ have completed.
1903  *
1904  *	This function must not be called from interrupt context.
1905  */
1906 void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
1907 {
1908 	struct irq_desc *desc = irq_to_desc(irq);
1909 
1910 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
1911 		return;
1912 
1913 	chip_bus_lock(desc);
1914 	kfree(__free_percpu_irq(irq, dev_id));
1915 	chip_bus_sync_unlock(desc);
1916 }
1917 EXPORT_SYMBOL_GPL(free_percpu_irq);
1918 
1919 /**
1920  *	setup_percpu_irq - setup a per-cpu interrupt
1921  *	@irq: Interrupt line to setup
1922  *	@act: irqaction for the interrupt
1923  *
1924  * Used to statically setup per-cpu interrupts in the early boot process.
1925  */
1926 int setup_percpu_irq(unsigned int irq, struct irqaction *act)
1927 {
1928 	struct irq_desc *desc = irq_to_desc(irq);
1929 	int retval;
1930 
1931 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
1932 		return -EINVAL;
1933 
1934 	retval = irq_chip_pm_get(&desc->irq_data);
1935 	if (retval < 0)
1936 		return retval;
1937 
1938 	chip_bus_lock(desc);
1939 	retval = __setup_irq(irq, desc, act);
1940 	chip_bus_sync_unlock(desc);
1941 
1942 	if (retval)
1943 		irq_chip_pm_put(&desc->irq_data);
1944 
1945 	return retval;
1946 }
1947 
1948 /**
1949  *	request_percpu_irq - allocate a percpu interrupt line
1950  *	@irq: Interrupt line to allocate
1951  *	@handler: Function to be called when the IRQ occurs.
1952  *	@devname: An ascii name for the claiming device
1953  *	@dev_id: A percpu cookie passed back to the handler function
1954  *
1955  *	This call allocates interrupt resources and enables the
1956  *	interrupt on the local CPU. If the interrupt is supposed to be
1957  *	enabled on other CPUs, it has to be done on each CPU using
1958  *	enable_percpu_irq().
1959  *
1960  *	Dev_id must be globally unique. It is a per-cpu variable, and
1961  *	the handler gets called with the interrupted CPU's instance of
1962  *	that variable.
1963  */
1964 int request_percpu_irq(unsigned int irq, irq_handler_t handler,
1965 		       const char *devname, void __percpu *dev_id)
1966 {
1967 	struct irqaction *action;
1968 	struct irq_desc *desc;
1969 	int retval;
1970 
1971 	if (!dev_id)
1972 		return -EINVAL;
1973 
1974 	desc = irq_to_desc(irq);
1975 	if (!desc || !irq_settings_can_request(desc) ||
1976 	    !irq_settings_is_per_cpu_devid(desc))
1977 		return -EINVAL;
1978 
1979 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1980 	if (!action)
1981 		return -ENOMEM;
1982 
1983 	action->handler = handler;
1984 	action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND;
1985 	action->name = devname;
1986 	action->percpu_dev_id = dev_id;
1987 
1988 	retval = irq_chip_pm_get(&desc->irq_data);
1989 	if (retval < 0) {
1990 		kfree(action);
1991 		return retval;
1992 	}
1993 
1994 	chip_bus_lock(desc);
1995 	retval = __setup_irq(irq, desc, action);
1996 	chip_bus_sync_unlock(desc);
1997 
1998 	if (retval) {
1999 		irq_chip_pm_put(&desc->irq_data);
2000 		kfree(action);
2001 	}
2002 
2003 	return retval;
2004 }
2005 EXPORT_SYMBOL_GPL(request_percpu_irq);
2006 
2007 /**
2008  *	irq_get_irqchip_state - returns the irqchip state of a interrupt.
2009  *	@irq: Interrupt line that is forwarded to a VM
2010  *	@which: One of IRQCHIP_STATE_* the caller wants to know about
2011  *	@state: a pointer to a boolean where the state is to be storeed
2012  *
2013  *	This call snapshots the internal irqchip state of an
2014  *	interrupt, returning into @state the bit corresponding to
2015  *	stage @which
2016  *
2017  *	This function should be called with preemption disabled if the
2018  *	interrupt controller has per-cpu registers.
2019  */
2020 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2021 			  bool *state)
2022 {
2023 	struct irq_desc *desc;
2024 	struct irq_data *data;
2025 	struct irq_chip *chip;
2026 	unsigned long flags;
2027 	int err = -EINVAL;
2028 
2029 	desc = irq_get_desc_buslock(irq, &flags, 0);
2030 	if (!desc)
2031 		return err;
2032 
2033 	data = irq_desc_get_irq_data(desc);
2034 
2035 	do {
2036 		chip = irq_data_get_irq_chip(data);
2037 		if (chip->irq_get_irqchip_state)
2038 			break;
2039 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2040 		data = data->parent_data;
2041 #else
2042 		data = NULL;
2043 #endif
2044 	} while (data);
2045 
2046 	if (data)
2047 		err = chip->irq_get_irqchip_state(data, which, state);
2048 
2049 	irq_put_desc_busunlock(desc, flags);
2050 	return err;
2051 }
2052 EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2053 
2054 /**
2055  *	irq_set_irqchip_state - set the state of a forwarded interrupt.
2056  *	@irq: Interrupt line that is forwarded to a VM
2057  *	@which: State to be restored (one of IRQCHIP_STATE_*)
2058  *	@val: Value corresponding to @which
2059  *
2060  *	This call sets the internal irqchip state of an interrupt,
2061  *	depending on the value of @which.
2062  *
2063  *	This function should be called with preemption disabled if the
2064  *	interrupt controller has per-cpu registers.
2065  */
2066 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2067 			  bool val)
2068 {
2069 	struct irq_desc *desc;
2070 	struct irq_data *data;
2071 	struct irq_chip *chip;
2072 	unsigned long flags;
2073 	int err = -EINVAL;
2074 
2075 	desc = irq_get_desc_buslock(irq, &flags, 0);
2076 	if (!desc)
2077 		return err;
2078 
2079 	data = irq_desc_get_irq_data(desc);
2080 
2081 	do {
2082 		chip = irq_data_get_irq_chip(data);
2083 		if (chip->irq_set_irqchip_state)
2084 			break;
2085 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2086 		data = data->parent_data;
2087 #else
2088 		data = NULL;
2089 #endif
2090 	} while (data);
2091 
2092 	if (data)
2093 		err = chip->irq_set_irqchip_state(data, which, val);
2094 
2095 	irq_put_desc_busunlock(desc, flags);
2096 	return err;
2097 }
2098 EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
2099