1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar 4 * Copyright (C) 2005-2006 Thomas Gleixner 5 * 6 * This file contains driver APIs to the irq subsystem. 7 */ 8 9 #define pr_fmt(fmt) "genirq: " fmt 10 11 #include <linux/irq.h> 12 #include <linux/kthread.h> 13 #include <linux/module.h> 14 #include <linux/random.h> 15 #include <linux/interrupt.h> 16 #include <linux/irqdomain.h> 17 #include <linux/slab.h> 18 #include <linux/sched.h> 19 #include <linux/sched/rt.h> 20 #include <linux/sched/task.h> 21 #include <linux/sched/isolation.h> 22 #include <uapi/linux/sched/types.h> 23 #include <linux/task_work.h> 24 25 #include "internals.h" 26 27 #if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT) 28 __read_mostly bool force_irqthreads; 29 EXPORT_SYMBOL_GPL(force_irqthreads); 30 31 static int __init setup_forced_irqthreads(char *arg) 32 { 33 force_irqthreads = true; 34 return 0; 35 } 36 early_param("threadirqs", setup_forced_irqthreads); 37 #endif 38 39 static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip) 40 { 41 struct irq_data *irqd = irq_desc_get_irq_data(desc); 42 bool inprogress; 43 44 do { 45 unsigned long flags; 46 47 /* 48 * Wait until we're out of the critical section. This might 49 * give the wrong answer due to the lack of memory barriers. 50 */ 51 while (irqd_irq_inprogress(&desc->irq_data)) 52 cpu_relax(); 53 54 /* Ok, that indicated we're done: double-check carefully. */ 55 raw_spin_lock_irqsave(&desc->lock, flags); 56 inprogress = irqd_irq_inprogress(&desc->irq_data); 57 58 /* 59 * If requested and supported, check at the chip whether it 60 * is in flight at the hardware level, i.e. already pending 61 * in a CPU and waiting for service and acknowledge. 62 */ 63 if (!inprogress && sync_chip) { 64 /* 65 * Ignore the return code. inprogress is only updated 66 * when the chip supports it. 67 */ 68 __irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE, 69 &inprogress); 70 } 71 raw_spin_unlock_irqrestore(&desc->lock, flags); 72 73 /* Oops, that failed? */ 74 } while (inprogress); 75 } 76 77 /** 78 * synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs) 79 * @irq: interrupt number to wait for 80 * 81 * This function waits for any pending hard IRQ handlers for this 82 * interrupt to complete before returning. If you use this 83 * function while holding a resource the IRQ handler may need you 84 * will deadlock. It does not take associated threaded handlers 85 * into account. 86 * 87 * Do not use this for shutdown scenarios where you must be sure 88 * that all parts (hardirq and threaded handler) have completed. 89 * 90 * Returns: false if a threaded handler is active. 91 * 92 * This function may be called - with care - from IRQ context. 93 * 94 * It does not check whether there is an interrupt in flight at the 95 * hardware level, but not serviced yet, as this might deadlock when 96 * called with interrupts disabled and the target CPU of the interrupt 97 * is the current CPU. 98 */ 99 bool synchronize_hardirq(unsigned int irq) 100 { 101 struct irq_desc *desc = irq_to_desc(irq); 102 103 if (desc) { 104 __synchronize_hardirq(desc, false); 105 return !atomic_read(&desc->threads_active); 106 } 107 108 return true; 109 } 110 EXPORT_SYMBOL(synchronize_hardirq); 111 112 /** 113 * synchronize_irq - wait for pending IRQ handlers (on other CPUs) 114 * @irq: interrupt number to wait for 115 * 116 * This function waits for any pending IRQ handlers for this interrupt 117 * to complete before returning. If you use this function while 118 * holding a resource the IRQ handler may need you will deadlock. 119 * 120 * Can only be called from preemptible code as it might sleep when 121 * an interrupt thread is associated to @irq. 122 * 123 * It optionally makes sure (when the irq chip supports that method) 124 * that the interrupt is not pending in any CPU and waiting for 125 * service. 126 */ 127 void synchronize_irq(unsigned int irq) 128 { 129 struct irq_desc *desc = irq_to_desc(irq); 130 131 if (desc) { 132 __synchronize_hardirq(desc, true); 133 /* 134 * We made sure that no hardirq handler is 135 * running. Now verify that no threaded handlers are 136 * active. 137 */ 138 wait_event(desc->wait_for_threads, 139 !atomic_read(&desc->threads_active)); 140 } 141 } 142 EXPORT_SYMBOL(synchronize_irq); 143 144 #ifdef CONFIG_SMP 145 cpumask_var_t irq_default_affinity; 146 147 static bool __irq_can_set_affinity(struct irq_desc *desc) 148 { 149 if (!desc || !irqd_can_balance(&desc->irq_data) || 150 !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity) 151 return false; 152 return true; 153 } 154 155 /** 156 * irq_can_set_affinity - Check if the affinity of a given irq can be set 157 * @irq: Interrupt to check 158 * 159 */ 160 int irq_can_set_affinity(unsigned int irq) 161 { 162 return __irq_can_set_affinity(irq_to_desc(irq)); 163 } 164 165 /** 166 * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space 167 * @irq: Interrupt to check 168 * 169 * Like irq_can_set_affinity() above, but additionally checks for the 170 * AFFINITY_MANAGED flag. 171 */ 172 bool irq_can_set_affinity_usr(unsigned int irq) 173 { 174 struct irq_desc *desc = irq_to_desc(irq); 175 176 return __irq_can_set_affinity(desc) && 177 !irqd_affinity_is_managed(&desc->irq_data); 178 } 179 180 /** 181 * irq_set_thread_affinity - Notify irq threads to adjust affinity 182 * @desc: irq descriptor which has affitnity changed 183 * 184 * We just set IRQTF_AFFINITY and delegate the affinity setting 185 * to the interrupt thread itself. We can not call 186 * set_cpus_allowed_ptr() here as we hold desc->lock and this 187 * code can be called from hard interrupt context. 188 */ 189 void irq_set_thread_affinity(struct irq_desc *desc) 190 { 191 struct irqaction *action; 192 193 for_each_action_of_desc(desc, action) 194 if (action->thread) 195 set_bit(IRQTF_AFFINITY, &action->thread_flags); 196 } 197 198 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK 199 static void irq_validate_effective_affinity(struct irq_data *data) 200 { 201 const struct cpumask *m = irq_data_get_effective_affinity_mask(data); 202 struct irq_chip *chip = irq_data_get_irq_chip(data); 203 204 if (!cpumask_empty(m)) 205 return; 206 pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n", 207 chip->name, data->irq); 208 } 209 210 static inline void irq_init_effective_affinity(struct irq_data *data, 211 const struct cpumask *mask) 212 { 213 cpumask_copy(irq_data_get_effective_affinity_mask(data), mask); 214 } 215 #else 216 static inline void irq_validate_effective_affinity(struct irq_data *data) { } 217 static inline void irq_init_effective_affinity(struct irq_data *data, 218 const struct cpumask *mask) { } 219 #endif 220 221 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask, 222 bool force) 223 { 224 struct irq_desc *desc = irq_data_to_desc(data); 225 struct irq_chip *chip = irq_data_get_irq_chip(data); 226 int ret; 227 228 if (!chip || !chip->irq_set_affinity) 229 return -EINVAL; 230 231 /* 232 * If this is a managed interrupt and housekeeping is enabled on 233 * it check whether the requested affinity mask intersects with 234 * a housekeeping CPU. If so, then remove the isolated CPUs from 235 * the mask and just keep the housekeeping CPU(s). This prevents 236 * the affinity setter from routing the interrupt to an isolated 237 * CPU to avoid that I/O submitted from a housekeeping CPU causes 238 * interrupts on an isolated one. 239 * 240 * If the masks do not intersect or include online CPU(s) then 241 * keep the requested mask. The isolated target CPUs are only 242 * receiving interrupts when the I/O operation was submitted 243 * directly from them. 244 * 245 * If all housekeeping CPUs in the affinity mask are offline, the 246 * interrupt will be migrated by the CPU hotplug code once a 247 * housekeeping CPU which belongs to the affinity mask comes 248 * online. 249 */ 250 if (irqd_affinity_is_managed(data) && 251 housekeeping_enabled(HK_FLAG_MANAGED_IRQ)) { 252 const struct cpumask *hk_mask, *prog_mask; 253 254 static DEFINE_RAW_SPINLOCK(tmp_mask_lock); 255 static struct cpumask tmp_mask; 256 257 hk_mask = housekeeping_cpumask(HK_FLAG_MANAGED_IRQ); 258 259 raw_spin_lock(&tmp_mask_lock); 260 cpumask_and(&tmp_mask, mask, hk_mask); 261 if (!cpumask_intersects(&tmp_mask, cpu_online_mask)) 262 prog_mask = mask; 263 else 264 prog_mask = &tmp_mask; 265 ret = chip->irq_set_affinity(data, prog_mask, force); 266 raw_spin_unlock(&tmp_mask_lock); 267 } else { 268 ret = chip->irq_set_affinity(data, mask, force); 269 } 270 switch (ret) { 271 case IRQ_SET_MASK_OK: 272 case IRQ_SET_MASK_OK_DONE: 273 cpumask_copy(desc->irq_common_data.affinity, mask); 274 fallthrough; 275 case IRQ_SET_MASK_OK_NOCOPY: 276 irq_validate_effective_affinity(data); 277 irq_set_thread_affinity(desc); 278 ret = 0; 279 } 280 281 return ret; 282 } 283 284 #ifdef CONFIG_GENERIC_PENDING_IRQ 285 static inline int irq_set_affinity_pending(struct irq_data *data, 286 const struct cpumask *dest) 287 { 288 struct irq_desc *desc = irq_data_to_desc(data); 289 290 irqd_set_move_pending(data); 291 irq_copy_pending(desc, dest); 292 return 0; 293 } 294 #else 295 static inline int irq_set_affinity_pending(struct irq_data *data, 296 const struct cpumask *dest) 297 { 298 return -EBUSY; 299 } 300 #endif 301 302 static int irq_try_set_affinity(struct irq_data *data, 303 const struct cpumask *dest, bool force) 304 { 305 int ret = irq_do_set_affinity(data, dest, force); 306 307 /* 308 * In case that the underlying vector management is busy and the 309 * architecture supports the generic pending mechanism then utilize 310 * this to avoid returning an error to user space. 311 */ 312 if (ret == -EBUSY && !force) 313 ret = irq_set_affinity_pending(data, dest); 314 return ret; 315 } 316 317 static bool irq_set_affinity_deactivated(struct irq_data *data, 318 const struct cpumask *mask, bool force) 319 { 320 struct irq_desc *desc = irq_data_to_desc(data); 321 322 /* 323 * Handle irq chips which can handle affinity only in activated 324 * state correctly 325 * 326 * If the interrupt is not yet activated, just store the affinity 327 * mask and do not call the chip driver at all. On activation the 328 * driver has to make sure anyway that the interrupt is in a 329 * useable state so startup works. 330 */ 331 if (!IS_ENABLED(CONFIG_IRQ_DOMAIN_HIERARCHY) || 332 irqd_is_activated(data) || !irqd_affinity_on_activate(data)) 333 return false; 334 335 cpumask_copy(desc->irq_common_data.affinity, mask); 336 irq_init_effective_affinity(data, mask); 337 irqd_set(data, IRQD_AFFINITY_SET); 338 return true; 339 } 340 341 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask, 342 bool force) 343 { 344 struct irq_chip *chip = irq_data_get_irq_chip(data); 345 struct irq_desc *desc = irq_data_to_desc(data); 346 int ret = 0; 347 348 if (!chip || !chip->irq_set_affinity) 349 return -EINVAL; 350 351 if (irq_set_affinity_deactivated(data, mask, force)) 352 return 0; 353 354 if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) { 355 ret = irq_try_set_affinity(data, mask, force); 356 } else { 357 irqd_set_move_pending(data); 358 irq_copy_pending(desc, mask); 359 } 360 361 if (desc->affinity_notify) { 362 kref_get(&desc->affinity_notify->kref); 363 if (!schedule_work(&desc->affinity_notify->work)) { 364 /* Work was already scheduled, drop our extra ref */ 365 kref_put(&desc->affinity_notify->kref, 366 desc->affinity_notify->release); 367 } 368 } 369 irqd_set(data, IRQD_AFFINITY_SET); 370 371 return ret; 372 } 373 374 /** 375 * irq_update_affinity_desc - Update affinity management for an interrupt 376 * @irq: The interrupt number to update 377 * @affinity: Pointer to the affinity descriptor 378 * 379 * This interface can be used to configure the affinity management of 380 * interrupts which have been allocated already. 381 * 382 * There are certain limitations on when it may be used - attempts to use it 383 * for when the kernel is configured for generic IRQ reservation mode (in 384 * config GENERIC_IRQ_RESERVATION_MODE) will fail, as it may conflict with 385 * managed/non-managed interrupt accounting. In addition, attempts to use it on 386 * an interrupt which is already started or which has already been configured 387 * as managed will also fail, as these mean invalid init state or double init. 388 */ 389 int irq_update_affinity_desc(unsigned int irq, 390 struct irq_affinity_desc *affinity) 391 { 392 struct irq_desc *desc; 393 unsigned long flags; 394 bool activated; 395 int ret = 0; 396 397 /* 398 * Supporting this with the reservation scheme used by x86 needs 399 * some more thought. Fail it for now. 400 */ 401 if (IS_ENABLED(CONFIG_GENERIC_IRQ_RESERVATION_MODE)) 402 return -EOPNOTSUPP; 403 404 desc = irq_get_desc_buslock(irq, &flags, 0); 405 if (!desc) 406 return -EINVAL; 407 408 /* Requires the interrupt to be shut down */ 409 if (irqd_is_started(&desc->irq_data)) { 410 ret = -EBUSY; 411 goto out_unlock; 412 } 413 414 /* Interrupts which are already managed cannot be modified */ 415 if (irqd_affinity_is_managed(&desc->irq_data)) { 416 ret = -EBUSY; 417 goto out_unlock; 418 } 419 420 /* 421 * Deactivate the interrupt. That's required to undo 422 * anything an earlier activation has established. 423 */ 424 activated = irqd_is_activated(&desc->irq_data); 425 if (activated) 426 irq_domain_deactivate_irq(&desc->irq_data); 427 428 if (affinity->is_managed) { 429 irqd_set(&desc->irq_data, IRQD_AFFINITY_MANAGED); 430 irqd_set(&desc->irq_data, IRQD_MANAGED_SHUTDOWN); 431 } 432 433 cpumask_copy(desc->irq_common_data.affinity, &affinity->mask); 434 435 /* Restore the activation state */ 436 if (activated) 437 irq_domain_activate_irq(&desc->irq_data, false); 438 439 out_unlock: 440 irq_put_desc_busunlock(desc, flags); 441 return ret; 442 } 443 444 int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force) 445 { 446 struct irq_desc *desc = irq_to_desc(irq); 447 unsigned long flags; 448 int ret; 449 450 if (!desc) 451 return -EINVAL; 452 453 raw_spin_lock_irqsave(&desc->lock, flags); 454 ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force); 455 raw_spin_unlock_irqrestore(&desc->lock, flags); 456 return ret; 457 } 458 459 int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m) 460 { 461 unsigned long flags; 462 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 463 464 if (!desc) 465 return -EINVAL; 466 desc->affinity_hint = m; 467 irq_put_desc_unlock(desc, flags); 468 /* set the initial affinity to prevent every interrupt being on CPU0 */ 469 if (m) 470 __irq_set_affinity(irq, m, false); 471 return 0; 472 } 473 EXPORT_SYMBOL_GPL(irq_set_affinity_hint); 474 475 static void irq_affinity_notify(struct work_struct *work) 476 { 477 struct irq_affinity_notify *notify = 478 container_of(work, struct irq_affinity_notify, work); 479 struct irq_desc *desc = irq_to_desc(notify->irq); 480 cpumask_var_t cpumask; 481 unsigned long flags; 482 483 if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL)) 484 goto out; 485 486 raw_spin_lock_irqsave(&desc->lock, flags); 487 if (irq_move_pending(&desc->irq_data)) 488 irq_get_pending(cpumask, desc); 489 else 490 cpumask_copy(cpumask, desc->irq_common_data.affinity); 491 raw_spin_unlock_irqrestore(&desc->lock, flags); 492 493 notify->notify(notify, cpumask); 494 495 free_cpumask_var(cpumask); 496 out: 497 kref_put(¬ify->kref, notify->release); 498 } 499 500 /** 501 * irq_set_affinity_notifier - control notification of IRQ affinity changes 502 * @irq: Interrupt for which to enable/disable notification 503 * @notify: Context for notification, or %NULL to disable 504 * notification. Function pointers must be initialised; 505 * the other fields will be initialised by this function. 506 * 507 * Must be called in process context. Notification may only be enabled 508 * after the IRQ is allocated and must be disabled before the IRQ is 509 * freed using free_irq(). 510 */ 511 int 512 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify) 513 { 514 struct irq_desc *desc = irq_to_desc(irq); 515 struct irq_affinity_notify *old_notify; 516 unsigned long flags; 517 518 /* The release function is promised process context */ 519 might_sleep(); 520 521 if (!desc || desc->istate & IRQS_NMI) 522 return -EINVAL; 523 524 /* Complete initialisation of *notify */ 525 if (notify) { 526 notify->irq = irq; 527 kref_init(¬ify->kref); 528 INIT_WORK(¬ify->work, irq_affinity_notify); 529 } 530 531 raw_spin_lock_irqsave(&desc->lock, flags); 532 old_notify = desc->affinity_notify; 533 desc->affinity_notify = notify; 534 raw_spin_unlock_irqrestore(&desc->lock, flags); 535 536 if (old_notify) { 537 if (cancel_work_sync(&old_notify->work)) { 538 /* Pending work had a ref, put that one too */ 539 kref_put(&old_notify->kref, old_notify->release); 540 } 541 kref_put(&old_notify->kref, old_notify->release); 542 } 543 544 return 0; 545 } 546 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier); 547 548 #ifndef CONFIG_AUTO_IRQ_AFFINITY 549 /* 550 * Generic version of the affinity autoselector. 551 */ 552 int irq_setup_affinity(struct irq_desc *desc) 553 { 554 struct cpumask *set = irq_default_affinity; 555 int ret, node = irq_desc_get_node(desc); 556 static DEFINE_RAW_SPINLOCK(mask_lock); 557 static struct cpumask mask; 558 559 /* Excludes PER_CPU and NO_BALANCE interrupts */ 560 if (!__irq_can_set_affinity(desc)) 561 return 0; 562 563 raw_spin_lock(&mask_lock); 564 /* 565 * Preserve the managed affinity setting and a userspace affinity 566 * setup, but make sure that one of the targets is online. 567 */ 568 if (irqd_affinity_is_managed(&desc->irq_data) || 569 irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) { 570 if (cpumask_intersects(desc->irq_common_data.affinity, 571 cpu_online_mask)) 572 set = desc->irq_common_data.affinity; 573 else 574 irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET); 575 } 576 577 cpumask_and(&mask, cpu_online_mask, set); 578 if (cpumask_empty(&mask)) 579 cpumask_copy(&mask, cpu_online_mask); 580 581 if (node != NUMA_NO_NODE) { 582 const struct cpumask *nodemask = cpumask_of_node(node); 583 584 /* make sure at least one of the cpus in nodemask is online */ 585 if (cpumask_intersects(&mask, nodemask)) 586 cpumask_and(&mask, &mask, nodemask); 587 } 588 ret = irq_do_set_affinity(&desc->irq_data, &mask, false); 589 raw_spin_unlock(&mask_lock); 590 return ret; 591 } 592 #else 593 /* Wrapper for ALPHA specific affinity selector magic */ 594 int irq_setup_affinity(struct irq_desc *desc) 595 { 596 return irq_select_affinity(irq_desc_get_irq(desc)); 597 } 598 #endif /* CONFIG_AUTO_IRQ_AFFINITY */ 599 #endif /* CONFIG_SMP */ 600 601 602 /** 603 * irq_set_vcpu_affinity - Set vcpu affinity for the interrupt 604 * @irq: interrupt number to set affinity 605 * @vcpu_info: vCPU specific data or pointer to a percpu array of vCPU 606 * specific data for percpu_devid interrupts 607 * 608 * This function uses the vCPU specific data to set the vCPU 609 * affinity for an irq. The vCPU specific data is passed from 610 * outside, such as KVM. One example code path is as below: 611 * KVM -> IOMMU -> irq_set_vcpu_affinity(). 612 */ 613 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info) 614 { 615 unsigned long flags; 616 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 617 struct irq_data *data; 618 struct irq_chip *chip; 619 int ret = -ENOSYS; 620 621 if (!desc) 622 return -EINVAL; 623 624 data = irq_desc_get_irq_data(desc); 625 do { 626 chip = irq_data_get_irq_chip(data); 627 if (chip && chip->irq_set_vcpu_affinity) 628 break; 629 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 630 data = data->parent_data; 631 #else 632 data = NULL; 633 #endif 634 } while (data); 635 636 if (data) 637 ret = chip->irq_set_vcpu_affinity(data, vcpu_info); 638 irq_put_desc_unlock(desc, flags); 639 640 return ret; 641 } 642 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity); 643 644 void __disable_irq(struct irq_desc *desc) 645 { 646 if (!desc->depth++) 647 irq_disable(desc); 648 } 649 650 static int __disable_irq_nosync(unsigned int irq) 651 { 652 unsigned long flags; 653 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 654 655 if (!desc) 656 return -EINVAL; 657 __disable_irq(desc); 658 irq_put_desc_busunlock(desc, flags); 659 return 0; 660 } 661 662 /** 663 * disable_irq_nosync - disable an irq without waiting 664 * @irq: Interrupt to disable 665 * 666 * Disable the selected interrupt line. Disables and Enables are 667 * nested. 668 * Unlike disable_irq(), this function does not ensure existing 669 * instances of the IRQ handler have completed before returning. 670 * 671 * This function may be called from IRQ context. 672 */ 673 void disable_irq_nosync(unsigned int irq) 674 { 675 __disable_irq_nosync(irq); 676 } 677 EXPORT_SYMBOL(disable_irq_nosync); 678 679 /** 680 * disable_irq - disable an irq and wait for completion 681 * @irq: Interrupt to disable 682 * 683 * Disable the selected interrupt line. Enables and Disables are 684 * nested. 685 * This function waits for any pending IRQ handlers for this interrupt 686 * to complete before returning. If you use this function while 687 * holding a resource the IRQ handler may need you will deadlock. 688 * 689 * This function may be called - with care - from IRQ context. 690 */ 691 void disable_irq(unsigned int irq) 692 { 693 if (!__disable_irq_nosync(irq)) 694 synchronize_irq(irq); 695 } 696 EXPORT_SYMBOL(disable_irq); 697 698 /** 699 * disable_hardirq - disables an irq and waits for hardirq completion 700 * @irq: Interrupt to disable 701 * 702 * Disable the selected interrupt line. Enables and Disables are 703 * nested. 704 * This function waits for any pending hard IRQ handlers for this 705 * interrupt to complete before returning. If you use this function while 706 * holding a resource the hard IRQ handler may need you will deadlock. 707 * 708 * When used to optimistically disable an interrupt from atomic context 709 * the return value must be checked. 710 * 711 * Returns: false if a threaded handler is active. 712 * 713 * This function may be called - with care - from IRQ context. 714 */ 715 bool disable_hardirq(unsigned int irq) 716 { 717 if (!__disable_irq_nosync(irq)) 718 return synchronize_hardirq(irq); 719 720 return false; 721 } 722 EXPORT_SYMBOL_GPL(disable_hardirq); 723 724 /** 725 * disable_nmi_nosync - disable an nmi without waiting 726 * @irq: Interrupt to disable 727 * 728 * Disable the selected interrupt line. Disables and enables are 729 * nested. 730 * The interrupt to disable must have been requested through request_nmi. 731 * Unlike disable_nmi(), this function does not ensure existing 732 * instances of the IRQ handler have completed before returning. 733 */ 734 void disable_nmi_nosync(unsigned int irq) 735 { 736 disable_irq_nosync(irq); 737 } 738 739 void __enable_irq(struct irq_desc *desc) 740 { 741 switch (desc->depth) { 742 case 0: 743 err_out: 744 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n", 745 irq_desc_get_irq(desc)); 746 break; 747 case 1: { 748 if (desc->istate & IRQS_SUSPENDED) 749 goto err_out; 750 /* Prevent probing on this irq: */ 751 irq_settings_set_noprobe(desc); 752 /* 753 * Call irq_startup() not irq_enable() here because the 754 * interrupt might be marked NOAUTOEN. So irq_startup() 755 * needs to be invoked when it gets enabled the first 756 * time. If it was already started up, then irq_startup() 757 * will invoke irq_enable() under the hood. 758 */ 759 irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE); 760 break; 761 } 762 default: 763 desc->depth--; 764 } 765 } 766 767 /** 768 * enable_irq - enable handling of an irq 769 * @irq: Interrupt to enable 770 * 771 * Undoes the effect of one call to disable_irq(). If this 772 * matches the last disable, processing of interrupts on this 773 * IRQ line is re-enabled. 774 * 775 * This function may be called from IRQ context only when 776 * desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL ! 777 */ 778 void enable_irq(unsigned int irq) 779 { 780 unsigned long flags; 781 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 782 783 if (!desc) 784 return; 785 if (WARN(!desc->irq_data.chip, 786 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq)) 787 goto out; 788 789 __enable_irq(desc); 790 out: 791 irq_put_desc_busunlock(desc, flags); 792 } 793 EXPORT_SYMBOL(enable_irq); 794 795 /** 796 * enable_nmi - enable handling of an nmi 797 * @irq: Interrupt to enable 798 * 799 * The interrupt to enable must have been requested through request_nmi. 800 * Undoes the effect of one call to disable_nmi(). If this 801 * matches the last disable, processing of interrupts on this 802 * IRQ line is re-enabled. 803 */ 804 void enable_nmi(unsigned int irq) 805 { 806 enable_irq(irq); 807 } 808 809 static int set_irq_wake_real(unsigned int irq, unsigned int on) 810 { 811 struct irq_desc *desc = irq_to_desc(irq); 812 int ret = -ENXIO; 813 814 if (irq_desc_get_chip(desc)->flags & IRQCHIP_SKIP_SET_WAKE) 815 return 0; 816 817 if (desc->irq_data.chip->irq_set_wake) 818 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on); 819 820 return ret; 821 } 822 823 /** 824 * irq_set_irq_wake - control irq power management wakeup 825 * @irq: interrupt to control 826 * @on: enable/disable power management wakeup 827 * 828 * Enable/disable power management wakeup mode, which is 829 * disabled by default. Enables and disables must match, 830 * just as they match for non-wakeup mode support. 831 * 832 * Wakeup mode lets this IRQ wake the system from sleep 833 * states like "suspend to RAM". 834 * 835 * Note: irq enable/disable state is completely orthogonal 836 * to the enable/disable state of irq wake. An irq can be 837 * disabled with disable_irq() and still wake the system as 838 * long as the irq has wake enabled. If this does not hold, 839 * then the underlying irq chip and the related driver need 840 * to be investigated. 841 */ 842 int irq_set_irq_wake(unsigned int irq, unsigned int on) 843 { 844 unsigned long flags; 845 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 846 int ret = 0; 847 848 if (!desc) 849 return -EINVAL; 850 851 /* Don't use NMIs as wake up interrupts please */ 852 if (desc->istate & IRQS_NMI) { 853 ret = -EINVAL; 854 goto out_unlock; 855 } 856 857 /* wakeup-capable irqs can be shared between drivers that 858 * don't need to have the same sleep mode behaviors. 859 */ 860 if (on) { 861 if (desc->wake_depth++ == 0) { 862 ret = set_irq_wake_real(irq, on); 863 if (ret) 864 desc->wake_depth = 0; 865 else 866 irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE); 867 } 868 } else { 869 if (desc->wake_depth == 0) { 870 WARN(1, "Unbalanced IRQ %d wake disable\n", irq); 871 } else if (--desc->wake_depth == 0) { 872 ret = set_irq_wake_real(irq, on); 873 if (ret) 874 desc->wake_depth = 1; 875 else 876 irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE); 877 } 878 } 879 880 out_unlock: 881 irq_put_desc_busunlock(desc, flags); 882 return ret; 883 } 884 EXPORT_SYMBOL(irq_set_irq_wake); 885 886 /* 887 * Internal function that tells the architecture code whether a 888 * particular irq has been exclusively allocated or is available 889 * for driver use. 890 */ 891 int can_request_irq(unsigned int irq, unsigned long irqflags) 892 { 893 unsigned long flags; 894 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 895 int canrequest = 0; 896 897 if (!desc) 898 return 0; 899 900 if (irq_settings_can_request(desc)) { 901 if (!desc->action || 902 irqflags & desc->action->flags & IRQF_SHARED) 903 canrequest = 1; 904 } 905 irq_put_desc_unlock(desc, flags); 906 return canrequest; 907 } 908 909 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags) 910 { 911 struct irq_chip *chip = desc->irq_data.chip; 912 int ret, unmask = 0; 913 914 if (!chip || !chip->irq_set_type) { 915 /* 916 * IRQF_TRIGGER_* but the PIC does not support multiple 917 * flow-types? 918 */ 919 pr_debug("No set_type function for IRQ %d (%s)\n", 920 irq_desc_get_irq(desc), 921 chip ? (chip->name ? : "unknown") : "unknown"); 922 return 0; 923 } 924 925 if (chip->flags & IRQCHIP_SET_TYPE_MASKED) { 926 if (!irqd_irq_masked(&desc->irq_data)) 927 mask_irq(desc); 928 if (!irqd_irq_disabled(&desc->irq_data)) 929 unmask = 1; 930 } 931 932 /* Mask all flags except trigger mode */ 933 flags &= IRQ_TYPE_SENSE_MASK; 934 ret = chip->irq_set_type(&desc->irq_data, flags); 935 936 switch (ret) { 937 case IRQ_SET_MASK_OK: 938 case IRQ_SET_MASK_OK_DONE: 939 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK); 940 irqd_set(&desc->irq_data, flags); 941 fallthrough; 942 943 case IRQ_SET_MASK_OK_NOCOPY: 944 flags = irqd_get_trigger_type(&desc->irq_data); 945 irq_settings_set_trigger_mask(desc, flags); 946 irqd_clear(&desc->irq_data, IRQD_LEVEL); 947 irq_settings_clr_level(desc); 948 if (flags & IRQ_TYPE_LEVEL_MASK) { 949 irq_settings_set_level(desc); 950 irqd_set(&desc->irq_data, IRQD_LEVEL); 951 } 952 953 ret = 0; 954 break; 955 default: 956 pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n", 957 flags, irq_desc_get_irq(desc), chip->irq_set_type); 958 } 959 if (unmask) 960 unmask_irq(desc); 961 return ret; 962 } 963 964 #ifdef CONFIG_HARDIRQS_SW_RESEND 965 int irq_set_parent(int irq, int parent_irq) 966 { 967 unsigned long flags; 968 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 969 970 if (!desc) 971 return -EINVAL; 972 973 desc->parent_irq = parent_irq; 974 975 irq_put_desc_unlock(desc, flags); 976 return 0; 977 } 978 EXPORT_SYMBOL_GPL(irq_set_parent); 979 #endif 980 981 /* 982 * Default primary interrupt handler for threaded interrupts. Is 983 * assigned as primary handler when request_threaded_irq is called 984 * with handler == NULL. Useful for oneshot interrupts. 985 */ 986 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id) 987 { 988 return IRQ_WAKE_THREAD; 989 } 990 991 /* 992 * Primary handler for nested threaded interrupts. Should never be 993 * called. 994 */ 995 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id) 996 { 997 WARN(1, "Primary handler called for nested irq %d\n", irq); 998 return IRQ_NONE; 999 } 1000 1001 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id) 1002 { 1003 WARN(1, "Secondary action handler called for irq %d\n", irq); 1004 return IRQ_NONE; 1005 } 1006 1007 static int irq_wait_for_interrupt(struct irqaction *action) 1008 { 1009 for (;;) { 1010 set_current_state(TASK_INTERRUPTIBLE); 1011 1012 if (kthread_should_stop()) { 1013 /* may need to run one last time */ 1014 if (test_and_clear_bit(IRQTF_RUNTHREAD, 1015 &action->thread_flags)) { 1016 __set_current_state(TASK_RUNNING); 1017 return 0; 1018 } 1019 __set_current_state(TASK_RUNNING); 1020 return -1; 1021 } 1022 1023 if (test_and_clear_bit(IRQTF_RUNTHREAD, 1024 &action->thread_flags)) { 1025 __set_current_state(TASK_RUNNING); 1026 return 0; 1027 } 1028 schedule(); 1029 } 1030 } 1031 1032 /* 1033 * Oneshot interrupts keep the irq line masked until the threaded 1034 * handler finished. unmask if the interrupt has not been disabled and 1035 * is marked MASKED. 1036 */ 1037 static void irq_finalize_oneshot(struct irq_desc *desc, 1038 struct irqaction *action) 1039 { 1040 if (!(desc->istate & IRQS_ONESHOT) || 1041 action->handler == irq_forced_secondary_handler) 1042 return; 1043 again: 1044 chip_bus_lock(desc); 1045 raw_spin_lock_irq(&desc->lock); 1046 1047 /* 1048 * Implausible though it may be we need to protect us against 1049 * the following scenario: 1050 * 1051 * The thread is faster done than the hard interrupt handler 1052 * on the other CPU. If we unmask the irq line then the 1053 * interrupt can come in again and masks the line, leaves due 1054 * to IRQS_INPROGRESS and the irq line is masked forever. 1055 * 1056 * This also serializes the state of shared oneshot handlers 1057 * versus "desc->threads_onehsot |= action->thread_mask;" in 1058 * irq_wake_thread(). See the comment there which explains the 1059 * serialization. 1060 */ 1061 if (unlikely(irqd_irq_inprogress(&desc->irq_data))) { 1062 raw_spin_unlock_irq(&desc->lock); 1063 chip_bus_sync_unlock(desc); 1064 cpu_relax(); 1065 goto again; 1066 } 1067 1068 /* 1069 * Now check again, whether the thread should run. Otherwise 1070 * we would clear the threads_oneshot bit of this thread which 1071 * was just set. 1072 */ 1073 if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags)) 1074 goto out_unlock; 1075 1076 desc->threads_oneshot &= ~action->thread_mask; 1077 1078 if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) && 1079 irqd_irq_masked(&desc->irq_data)) 1080 unmask_threaded_irq(desc); 1081 1082 out_unlock: 1083 raw_spin_unlock_irq(&desc->lock); 1084 chip_bus_sync_unlock(desc); 1085 } 1086 1087 #ifdef CONFIG_SMP 1088 /* 1089 * Check whether we need to change the affinity of the interrupt thread. 1090 */ 1091 static void 1092 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) 1093 { 1094 cpumask_var_t mask; 1095 bool valid = true; 1096 1097 if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags)) 1098 return; 1099 1100 /* 1101 * In case we are out of memory we set IRQTF_AFFINITY again and 1102 * try again next time 1103 */ 1104 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) { 1105 set_bit(IRQTF_AFFINITY, &action->thread_flags); 1106 return; 1107 } 1108 1109 raw_spin_lock_irq(&desc->lock); 1110 /* 1111 * This code is triggered unconditionally. Check the affinity 1112 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out. 1113 */ 1114 if (cpumask_available(desc->irq_common_data.affinity)) { 1115 const struct cpumask *m; 1116 1117 m = irq_data_get_effective_affinity_mask(&desc->irq_data); 1118 cpumask_copy(mask, m); 1119 } else { 1120 valid = false; 1121 } 1122 raw_spin_unlock_irq(&desc->lock); 1123 1124 if (valid) 1125 set_cpus_allowed_ptr(current, mask); 1126 free_cpumask_var(mask); 1127 } 1128 #else 1129 static inline void 1130 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { } 1131 #endif 1132 1133 /* 1134 * Interrupts which are not explicitly requested as threaded 1135 * interrupts rely on the implicit bh/preempt disable of the hard irq 1136 * context. So we need to disable bh here to avoid deadlocks and other 1137 * side effects. 1138 */ 1139 static irqreturn_t 1140 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action) 1141 { 1142 irqreturn_t ret; 1143 1144 local_bh_disable(); 1145 ret = action->thread_fn(action->irq, action->dev_id); 1146 if (ret == IRQ_HANDLED) 1147 atomic_inc(&desc->threads_handled); 1148 1149 irq_finalize_oneshot(desc, action); 1150 local_bh_enable(); 1151 return ret; 1152 } 1153 1154 /* 1155 * Interrupts explicitly requested as threaded interrupts want to be 1156 * preemtible - many of them need to sleep and wait for slow busses to 1157 * complete. 1158 */ 1159 static irqreturn_t irq_thread_fn(struct irq_desc *desc, 1160 struct irqaction *action) 1161 { 1162 irqreturn_t ret; 1163 1164 ret = action->thread_fn(action->irq, action->dev_id); 1165 if (ret == IRQ_HANDLED) 1166 atomic_inc(&desc->threads_handled); 1167 1168 irq_finalize_oneshot(desc, action); 1169 return ret; 1170 } 1171 1172 static void wake_threads_waitq(struct irq_desc *desc) 1173 { 1174 if (atomic_dec_and_test(&desc->threads_active)) 1175 wake_up(&desc->wait_for_threads); 1176 } 1177 1178 static void irq_thread_dtor(struct callback_head *unused) 1179 { 1180 struct task_struct *tsk = current; 1181 struct irq_desc *desc; 1182 struct irqaction *action; 1183 1184 if (WARN_ON_ONCE(!(current->flags & PF_EXITING))) 1185 return; 1186 1187 action = kthread_data(tsk); 1188 1189 pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n", 1190 tsk->comm, tsk->pid, action->irq); 1191 1192 1193 desc = irq_to_desc(action->irq); 1194 /* 1195 * If IRQTF_RUNTHREAD is set, we need to decrement 1196 * desc->threads_active and wake possible waiters. 1197 */ 1198 if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags)) 1199 wake_threads_waitq(desc); 1200 1201 /* Prevent a stale desc->threads_oneshot */ 1202 irq_finalize_oneshot(desc, action); 1203 } 1204 1205 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action) 1206 { 1207 struct irqaction *secondary = action->secondary; 1208 1209 if (WARN_ON_ONCE(!secondary)) 1210 return; 1211 1212 raw_spin_lock_irq(&desc->lock); 1213 __irq_wake_thread(desc, secondary); 1214 raw_spin_unlock_irq(&desc->lock); 1215 } 1216 1217 /* 1218 * Interrupt handler thread 1219 */ 1220 static int irq_thread(void *data) 1221 { 1222 struct callback_head on_exit_work; 1223 struct irqaction *action = data; 1224 struct irq_desc *desc = irq_to_desc(action->irq); 1225 irqreturn_t (*handler_fn)(struct irq_desc *desc, 1226 struct irqaction *action); 1227 1228 if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD, 1229 &action->thread_flags)) 1230 handler_fn = irq_forced_thread_fn; 1231 else 1232 handler_fn = irq_thread_fn; 1233 1234 init_task_work(&on_exit_work, irq_thread_dtor); 1235 task_work_add(current, &on_exit_work, TWA_NONE); 1236 1237 irq_thread_check_affinity(desc, action); 1238 1239 while (!irq_wait_for_interrupt(action)) { 1240 irqreturn_t action_ret; 1241 1242 irq_thread_check_affinity(desc, action); 1243 1244 action_ret = handler_fn(desc, action); 1245 if (action_ret == IRQ_WAKE_THREAD) 1246 irq_wake_secondary(desc, action); 1247 1248 wake_threads_waitq(desc); 1249 } 1250 1251 /* 1252 * This is the regular exit path. __free_irq() is stopping the 1253 * thread via kthread_stop() after calling 1254 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the 1255 * oneshot mask bit can be set. 1256 */ 1257 task_work_cancel(current, irq_thread_dtor); 1258 return 0; 1259 } 1260 1261 /** 1262 * irq_wake_thread - wake the irq thread for the action identified by dev_id 1263 * @irq: Interrupt line 1264 * @dev_id: Device identity for which the thread should be woken 1265 * 1266 */ 1267 void irq_wake_thread(unsigned int irq, void *dev_id) 1268 { 1269 struct irq_desc *desc = irq_to_desc(irq); 1270 struct irqaction *action; 1271 unsigned long flags; 1272 1273 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1274 return; 1275 1276 raw_spin_lock_irqsave(&desc->lock, flags); 1277 for_each_action_of_desc(desc, action) { 1278 if (action->dev_id == dev_id) { 1279 if (action->thread) 1280 __irq_wake_thread(desc, action); 1281 break; 1282 } 1283 } 1284 raw_spin_unlock_irqrestore(&desc->lock, flags); 1285 } 1286 EXPORT_SYMBOL_GPL(irq_wake_thread); 1287 1288 static int irq_setup_forced_threading(struct irqaction *new) 1289 { 1290 if (!force_irqthreads) 1291 return 0; 1292 if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT)) 1293 return 0; 1294 1295 /* 1296 * No further action required for interrupts which are requested as 1297 * threaded interrupts already 1298 */ 1299 if (new->handler == irq_default_primary_handler) 1300 return 0; 1301 1302 new->flags |= IRQF_ONESHOT; 1303 1304 /* 1305 * Handle the case where we have a real primary handler and a 1306 * thread handler. We force thread them as well by creating a 1307 * secondary action. 1308 */ 1309 if (new->handler && new->thread_fn) { 1310 /* Allocate the secondary action */ 1311 new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 1312 if (!new->secondary) 1313 return -ENOMEM; 1314 new->secondary->handler = irq_forced_secondary_handler; 1315 new->secondary->thread_fn = new->thread_fn; 1316 new->secondary->dev_id = new->dev_id; 1317 new->secondary->irq = new->irq; 1318 new->secondary->name = new->name; 1319 } 1320 /* Deal with the primary handler */ 1321 set_bit(IRQTF_FORCED_THREAD, &new->thread_flags); 1322 new->thread_fn = new->handler; 1323 new->handler = irq_default_primary_handler; 1324 return 0; 1325 } 1326 1327 static int irq_request_resources(struct irq_desc *desc) 1328 { 1329 struct irq_data *d = &desc->irq_data; 1330 struct irq_chip *c = d->chip; 1331 1332 return c->irq_request_resources ? c->irq_request_resources(d) : 0; 1333 } 1334 1335 static void irq_release_resources(struct irq_desc *desc) 1336 { 1337 struct irq_data *d = &desc->irq_data; 1338 struct irq_chip *c = d->chip; 1339 1340 if (c->irq_release_resources) 1341 c->irq_release_resources(d); 1342 } 1343 1344 static bool irq_supports_nmi(struct irq_desc *desc) 1345 { 1346 struct irq_data *d = irq_desc_get_irq_data(desc); 1347 1348 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 1349 /* Only IRQs directly managed by the root irqchip can be set as NMI */ 1350 if (d->parent_data) 1351 return false; 1352 #endif 1353 /* Don't support NMIs for chips behind a slow bus */ 1354 if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock) 1355 return false; 1356 1357 return d->chip->flags & IRQCHIP_SUPPORTS_NMI; 1358 } 1359 1360 static int irq_nmi_setup(struct irq_desc *desc) 1361 { 1362 struct irq_data *d = irq_desc_get_irq_data(desc); 1363 struct irq_chip *c = d->chip; 1364 1365 return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL; 1366 } 1367 1368 static void irq_nmi_teardown(struct irq_desc *desc) 1369 { 1370 struct irq_data *d = irq_desc_get_irq_data(desc); 1371 struct irq_chip *c = d->chip; 1372 1373 if (c->irq_nmi_teardown) 1374 c->irq_nmi_teardown(d); 1375 } 1376 1377 static int 1378 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary) 1379 { 1380 struct task_struct *t; 1381 1382 if (!secondary) { 1383 t = kthread_create(irq_thread, new, "irq/%d-%s", irq, 1384 new->name); 1385 } else { 1386 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq, 1387 new->name); 1388 } 1389 1390 if (IS_ERR(t)) 1391 return PTR_ERR(t); 1392 1393 sched_set_fifo(t); 1394 1395 /* 1396 * We keep the reference to the task struct even if 1397 * the thread dies to avoid that the interrupt code 1398 * references an already freed task_struct. 1399 */ 1400 new->thread = get_task_struct(t); 1401 /* 1402 * Tell the thread to set its affinity. This is 1403 * important for shared interrupt handlers as we do 1404 * not invoke setup_affinity() for the secondary 1405 * handlers as everything is already set up. Even for 1406 * interrupts marked with IRQF_NO_BALANCE this is 1407 * correct as we want the thread to move to the cpu(s) 1408 * on which the requesting code placed the interrupt. 1409 */ 1410 set_bit(IRQTF_AFFINITY, &new->thread_flags); 1411 return 0; 1412 } 1413 1414 /* 1415 * Internal function to register an irqaction - typically used to 1416 * allocate special interrupts that are part of the architecture. 1417 * 1418 * Locking rules: 1419 * 1420 * desc->request_mutex Provides serialization against a concurrent free_irq() 1421 * chip_bus_lock Provides serialization for slow bus operations 1422 * desc->lock Provides serialization against hard interrupts 1423 * 1424 * chip_bus_lock and desc->lock are sufficient for all other management and 1425 * interrupt related functions. desc->request_mutex solely serializes 1426 * request/free_irq(). 1427 */ 1428 static int 1429 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new) 1430 { 1431 struct irqaction *old, **old_ptr; 1432 unsigned long flags, thread_mask = 0; 1433 int ret, nested, shared = 0; 1434 1435 if (!desc) 1436 return -EINVAL; 1437 1438 if (desc->irq_data.chip == &no_irq_chip) 1439 return -ENOSYS; 1440 if (!try_module_get(desc->owner)) 1441 return -ENODEV; 1442 1443 new->irq = irq; 1444 1445 /* 1446 * If the trigger type is not specified by the caller, 1447 * then use the default for this interrupt. 1448 */ 1449 if (!(new->flags & IRQF_TRIGGER_MASK)) 1450 new->flags |= irqd_get_trigger_type(&desc->irq_data); 1451 1452 /* 1453 * Check whether the interrupt nests into another interrupt 1454 * thread. 1455 */ 1456 nested = irq_settings_is_nested_thread(desc); 1457 if (nested) { 1458 if (!new->thread_fn) { 1459 ret = -EINVAL; 1460 goto out_mput; 1461 } 1462 /* 1463 * Replace the primary handler which was provided from 1464 * the driver for non nested interrupt handling by the 1465 * dummy function which warns when called. 1466 */ 1467 new->handler = irq_nested_primary_handler; 1468 } else { 1469 if (irq_settings_can_thread(desc)) { 1470 ret = irq_setup_forced_threading(new); 1471 if (ret) 1472 goto out_mput; 1473 } 1474 } 1475 1476 /* 1477 * Create a handler thread when a thread function is supplied 1478 * and the interrupt does not nest into another interrupt 1479 * thread. 1480 */ 1481 if (new->thread_fn && !nested) { 1482 ret = setup_irq_thread(new, irq, false); 1483 if (ret) 1484 goto out_mput; 1485 if (new->secondary) { 1486 ret = setup_irq_thread(new->secondary, irq, true); 1487 if (ret) 1488 goto out_thread; 1489 } 1490 } 1491 1492 /* 1493 * Drivers are often written to work w/o knowledge about the 1494 * underlying irq chip implementation, so a request for a 1495 * threaded irq without a primary hard irq context handler 1496 * requires the ONESHOT flag to be set. Some irq chips like 1497 * MSI based interrupts are per se one shot safe. Check the 1498 * chip flags, so we can avoid the unmask dance at the end of 1499 * the threaded handler for those. 1500 */ 1501 if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE) 1502 new->flags &= ~IRQF_ONESHOT; 1503 1504 /* 1505 * Protects against a concurrent __free_irq() call which might wait 1506 * for synchronize_hardirq() to complete without holding the optional 1507 * chip bus lock and desc->lock. Also protects against handing out 1508 * a recycled oneshot thread_mask bit while it's still in use by 1509 * its previous owner. 1510 */ 1511 mutex_lock(&desc->request_mutex); 1512 1513 /* 1514 * Acquire bus lock as the irq_request_resources() callback below 1515 * might rely on the serialization or the magic power management 1516 * functions which are abusing the irq_bus_lock() callback, 1517 */ 1518 chip_bus_lock(desc); 1519 1520 /* First installed action requests resources. */ 1521 if (!desc->action) { 1522 ret = irq_request_resources(desc); 1523 if (ret) { 1524 pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n", 1525 new->name, irq, desc->irq_data.chip->name); 1526 goto out_bus_unlock; 1527 } 1528 } 1529 1530 /* 1531 * The following block of code has to be executed atomically 1532 * protected against a concurrent interrupt and any of the other 1533 * management calls which are not serialized via 1534 * desc->request_mutex or the optional bus lock. 1535 */ 1536 raw_spin_lock_irqsave(&desc->lock, flags); 1537 old_ptr = &desc->action; 1538 old = *old_ptr; 1539 if (old) { 1540 /* 1541 * Can't share interrupts unless both agree to and are 1542 * the same type (level, edge, polarity). So both flag 1543 * fields must have IRQF_SHARED set and the bits which 1544 * set the trigger type must match. Also all must 1545 * agree on ONESHOT. 1546 * Interrupt lines used for NMIs cannot be shared. 1547 */ 1548 unsigned int oldtype; 1549 1550 if (desc->istate & IRQS_NMI) { 1551 pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n", 1552 new->name, irq, desc->irq_data.chip->name); 1553 ret = -EINVAL; 1554 goto out_unlock; 1555 } 1556 1557 /* 1558 * If nobody did set the configuration before, inherit 1559 * the one provided by the requester. 1560 */ 1561 if (irqd_trigger_type_was_set(&desc->irq_data)) { 1562 oldtype = irqd_get_trigger_type(&desc->irq_data); 1563 } else { 1564 oldtype = new->flags & IRQF_TRIGGER_MASK; 1565 irqd_set_trigger_type(&desc->irq_data, oldtype); 1566 } 1567 1568 if (!((old->flags & new->flags) & IRQF_SHARED) || 1569 (oldtype != (new->flags & IRQF_TRIGGER_MASK)) || 1570 ((old->flags ^ new->flags) & IRQF_ONESHOT)) 1571 goto mismatch; 1572 1573 /* All handlers must agree on per-cpuness */ 1574 if ((old->flags & IRQF_PERCPU) != 1575 (new->flags & IRQF_PERCPU)) 1576 goto mismatch; 1577 1578 /* add new interrupt at end of irq queue */ 1579 do { 1580 /* 1581 * Or all existing action->thread_mask bits, 1582 * so we can find the next zero bit for this 1583 * new action. 1584 */ 1585 thread_mask |= old->thread_mask; 1586 old_ptr = &old->next; 1587 old = *old_ptr; 1588 } while (old); 1589 shared = 1; 1590 } 1591 1592 /* 1593 * Setup the thread mask for this irqaction for ONESHOT. For 1594 * !ONESHOT irqs the thread mask is 0 so we can avoid a 1595 * conditional in irq_wake_thread(). 1596 */ 1597 if (new->flags & IRQF_ONESHOT) { 1598 /* 1599 * Unlikely to have 32 resp 64 irqs sharing one line, 1600 * but who knows. 1601 */ 1602 if (thread_mask == ~0UL) { 1603 ret = -EBUSY; 1604 goto out_unlock; 1605 } 1606 /* 1607 * The thread_mask for the action is or'ed to 1608 * desc->thread_active to indicate that the 1609 * IRQF_ONESHOT thread handler has been woken, but not 1610 * yet finished. The bit is cleared when a thread 1611 * completes. When all threads of a shared interrupt 1612 * line have completed desc->threads_active becomes 1613 * zero and the interrupt line is unmasked. See 1614 * handle.c:irq_wake_thread() for further information. 1615 * 1616 * If no thread is woken by primary (hard irq context) 1617 * interrupt handlers, then desc->threads_active is 1618 * also checked for zero to unmask the irq line in the 1619 * affected hard irq flow handlers 1620 * (handle_[fasteoi|level]_irq). 1621 * 1622 * The new action gets the first zero bit of 1623 * thread_mask assigned. See the loop above which or's 1624 * all existing action->thread_mask bits. 1625 */ 1626 new->thread_mask = 1UL << ffz(thread_mask); 1627 1628 } else if (new->handler == irq_default_primary_handler && 1629 !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) { 1630 /* 1631 * The interrupt was requested with handler = NULL, so 1632 * we use the default primary handler for it. But it 1633 * does not have the oneshot flag set. In combination 1634 * with level interrupts this is deadly, because the 1635 * default primary handler just wakes the thread, then 1636 * the irq lines is reenabled, but the device still 1637 * has the level irq asserted. Rinse and repeat.... 1638 * 1639 * While this works for edge type interrupts, we play 1640 * it safe and reject unconditionally because we can't 1641 * say for sure which type this interrupt really 1642 * has. The type flags are unreliable as the 1643 * underlying chip implementation can override them. 1644 */ 1645 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for %s (irq %d)\n", 1646 new->name, irq); 1647 ret = -EINVAL; 1648 goto out_unlock; 1649 } 1650 1651 if (!shared) { 1652 init_waitqueue_head(&desc->wait_for_threads); 1653 1654 /* Setup the type (level, edge polarity) if configured: */ 1655 if (new->flags & IRQF_TRIGGER_MASK) { 1656 ret = __irq_set_trigger(desc, 1657 new->flags & IRQF_TRIGGER_MASK); 1658 1659 if (ret) 1660 goto out_unlock; 1661 } 1662 1663 /* 1664 * Activate the interrupt. That activation must happen 1665 * independently of IRQ_NOAUTOEN. request_irq() can fail 1666 * and the callers are supposed to handle 1667 * that. enable_irq() of an interrupt requested with 1668 * IRQ_NOAUTOEN is not supposed to fail. The activation 1669 * keeps it in shutdown mode, it merily associates 1670 * resources if necessary and if that's not possible it 1671 * fails. Interrupts which are in managed shutdown mode 1672 * will simply ignore that activation request. 1673 */ 1674 ret = irq_activate(desc); 1675 if (ret) 1676 goto out_unlock; 1677 1678 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \ 1679 IRQS_ONESHOT | IRQS_WAITING); 1680 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS); 1681 1682 if (new->flags & IRQF_PERCPU) { 1683 irqd_set(&desc->irq_data, IRQD_PER_CPU); 1684 irq_settings_set_per_cpu(desc); 1685 } 1686 1687 if (new->flags & IRQF_ONESHOT) 1688 desc->istate |= IRQS_ONESHOT; 1689 1690 /* Exclude IRQ from balancing if requested */ 1691 if (new->flags & IRQF_NOBALANCING) { 1692 irq_settings_set_no_balancing(desc); 1693 irqd_set(&desc->irq_data, IRQD_NO_BALANCING); 1694 } 1695 1696 if (!(new->flags & IRQF_NO_AUTOEN) && 1697 irq_settings_can_autoenable(desc)) { 1698 irq_startup(desc, IRQ_RESEND, IRQ_START_COND); 1699 } else { 1700 /* 1701 * Shared interrupts do not go well with disabling 1702 * auto enable. The sharing interrupt might request 1703 * it while it's still disabled and then wait for 1704 * interrupts forever. 1705 */ 1706 WARN_ON_ONCE(new->flags & IRQF_SHARED); 1707 /* Undo nested disables: */ 1708 desc->depth = 1; 1709 } 1710 1711 } else if (new->flags & IRQF_TRIGGER_MASK) { 1712 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK; 1713 unsigned int omsk = irqd_get_trigger_type(&desc->irq_data); 1714 1715 if (nmsk != omsk) 1716 /* hope the handler works with current trigger mode */ 1717 pr_warn("irq %d uses trigger mode %u; requested %u\n", 1718 irq, omsk, nmsk); 1719 } 1720 1721 *old_ptr = new; 1722 1723 irq_pm_install_action(desc, new); 1724 1725 /* Reset broken irq detection when installing new handler */ 1726 desc->irq_count = 0; 1727 desc->irqs_unhandled = 0; 1728 1729 /* 1730 * Check whether we disabled the irq via the spurious handler 1731 * before. Reenable it and give it another chance. 1732 */ 1733 if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) { 1734 desc->istate &= ~IRQS_SPURIOUS_DISABLED; 1735 __enable_irq(desc); 1736 } 1737 1738 raw_spin_unlock_irqrestore(&desc->lock, flags); 1739 chip_bus_sync_unlock(desc); 1740 mutex_unlock(&desc->request_mutex); 1741 1742 irq_setup_timings(desc, new); 1743 1744 /* 1745 * Strictly no need to wake it up, but hung_task complains 1746 * when no hard interrupt wakes the thread up. 1747 */ 1748 if (new->thread) 1749 wake_up_process(new->thread); 1750 if (new->secondary) 1751 wake_up_process(new->secondary->thread); 1752 1753 register_irq_proc(irq, desc); 1754 new->dir = NULL; 1755 register_handler_proc(irq, new); 1756 return 0; 1757 1758 mismatch: 1759 if (!(new->flags & IRQF_PROBE_SHARED)) { 1760 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n", 1761 irq, new->flags, new->name, old->flags, old->name); 1762 #ifdef CONFIG_DEBUG_SHIRQ 1763 dump_stack(); 1764 #endif 1765 } 1766 ret = -EBUSY; 1767 1768 out_unlock: 1769 raw_spin_unlock_irqrestore(&desc->lock, flags); 1770 1771 if (!desc->action) 1772 irq_release_resources(desc); 1773 out_bus_unlock: 1774 chip_bus_sync_unlock(desc); 1775 mutex_unlock(&desc->request_mutex); 1776 1777 out_thread: 1778 if (new->thread) { 1779 struct task_struct *t = new->thread; 1780 1781 new->thread = NULL; 1782 kthread_stop(t); 1783 put_task_struct(t); 1784 } 1785 if (new->secondary && new->secondary->thread) { 1786 struct task_struct *t = new->secondary->thread; 1787 1788 new->secondary->thread = NULL; 1789 kthread_stop(t); 1790 put_task_struct(t); 1791 } 1792 out_mput: 1793 module_put(desc->owner); 1794 return ret; 1795 } 1796 1797 /* 1798 * Internal function to unregister an irqaction - used to free 1799 * regular and special interrupts that are part of the architecture. 1800 */ 1801 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id) 1802 { 1803 unsigned irq = desc->irq_data.irq; 1804 struct irqaction *action, **action_ptr; 1805 unsigned long flags; 1806 1807 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq); 1808 1809 mutex_lock(&desc->request_mutex); 1810 chip_bus_lock(desc); 1811 raw_spin_lock_irqsave(&desc->lock, flags); 1812 1813 /* 1814 * There can be multiple actions per IRQ descriptor, find the right 1815 * one based on the dev_id: 1816 */ 1817 action_ptr = &desc->action; 1818 for (;;) { 1819 action = *action_ptr; 1820 1821 if (!action) { 1822 WARN(1, "Trying to free already-free IRQ %d\n", irq); 1823 raw_spin_unlock_irqrestore(&desc->lock, flags); 1824 chip_bus_sync_unlock(desc); 1825 mutex_unlock(&desc->request_mutex); 1826 return NULL; 1827 } 1828 1829 if (action->dev_id == dev_id) 1830 break; 1831 action_ptr = &action->next; 1832 } 1833 1834 /* Found it - now remove it from the list of entries: */ 1835 *action_ptr = action->next; 1836 1837 irq_pm_remove_action(desc, action); 1838 1839 /* If this was the last handler, shut down the IRQ line: */ 1840 if (!desc->action) { 1841 irq_settings_clr_disable_unlazy(desc); 1842 /* Only shutdown. Deactivate after synchronize_hardirq() */ 1843 irq_shutdown(desc); 1844 } 1845 1846 #ifdef CONFIG_SMP 1847 /* make sure affinity_hint is cleaned up */ 1848 if (WARN_ON_ONCE(desc->affinity_hint)) 1849 desc->affinity_hint = NULL; 1850 #endif 1851 1852 raw_spin_unlock_irqrestore(&desc->lock, flags); 1853 /* 1854 * Drop bus_lock here so the changes which were done in the chip 1855 * callbacks above are synced out to the irq chips which hang 1856 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq(). 1857 * 1858 * Aside of that the bus_lock can also be taken from the threaded 1859 * handler in irq_finalize_oneshot() which results in a deadlock 1860 * because kthread_stop() would wait forever for the thread to 1861 * complete, which is blocked on the bus lock. 1862 * 1863 * The still held desc->request_mutex() protects against a 1864 * concurrent request_irq() of this irq so the release of resources 1865 * and timing data is properly serialized. 1866 */ 1867 chip_bus_sync_unlock(desc); 1868 1869 unregister_handler_proc(irq, action); 1870 1871 /* 1872 * Make sure it's not being used on another CPU and if the chip 1873 * supports it also make sure that there is no (not yet serviced) 1874 * interrupt in flight at the hardware level. 1875 */ 1876 __synchronize_hardirq(desc, true); 1877 1878 #ifdef CONFIG_DEBUG_SHIRQ 1879 /* 1880 * It's a shared IRQ -- the driver ought to be prepared for an IRQ 1881 * event to happen even now it's being freed, so let's make sure that 1882 * is so by doing an extra call to the handler .... 1883 * 1884 * ( We do this after actually deregistering it, to make sure that a 1885 * 'real' IRQ doesn't run in parallel with our fake. ) 1886 */ 1887 if (action->flags & IRQF_SHARED) { 1888 local_irq_save(flags); 1889 action->handler(irq, dev_id); 1890 local_irq_restore(flags); 1891 } 1892 #endif 1893 1894 /* 1895 * The action has already been removed above, but the thread writes 1896 * its oneshot mask bit when it completes. Though request_mutex is 1897 * held across this which prevents __setup_irq() from handing out 1898 * the same bit to a newly requested action. 1899 */ 1900 if (action->thread) { 1901 kthread_stop(action->thread); 1902 put_task_struct(action->thread); 1903 if (action->secondary && action->secondary->thread) { 1904 kthread_stop(action->secondary->thread); 1905 put_task_struct(action->secondary->thread); 1906 } 1907 } 1908 1909 /* Last action releases resources */ 1910 if (!desc->action) { 1911 /* 1912 * Reaquire bus lock as irq_release_resources() might 1913 * require it to deallocate resources over the slow bus. 1914 */ 1915 chip_bus_lock(desc); 1916 /* 1917 * There is no interrupt on the fly anymore. Deactivate it 1918 * completely. 1919 */ 1920 raw_spin_lock_irqsave(&desc->lock, flags); 1921 irq_domain_deactivate_irq(&desc->irq_data); 1922 raw_spin_unlock_irqrestore(&desc->lock, flags); 1923 1924 irq_release_resources(desc); 1925 chip_bus_sync_unlock(desc); 1926 irq_remove_timings(desc); 1927 } 1928 1929 mutex_unlock(&desc->request_mutex); 1930 1931 irq_chip_pm_put(&desc->irq_data); 1932 module_put(desc->owner); 1933 kfree(action->secondary); 1934 return action; 1935 } 1936 1937 /** 1938 * free_irq - free an interrupt allocated with request_irq 1939 * @irq: Interrupt line to free 1940 * @dev_id: Device identity to free 1941 * 1942 * Remove an interrupt handler. The handler is removed and if the 1943 * interrupt line is no longer in use by any driver it is disabled. 1944 * On a shared IRQ the caller must ensure the interrupt is disabled 1945 * on the card it drives before calling this function. The function 1946 * does not return until any executing interrupts for this IRQ 1947 * have completed. 1948 * 1949 * This function must not be called from interrupt context. 1950 * 1951 * Returns the devname argument passed to request_irq. 1952 */ 1953 const void *free_irq(unsigned int irq, void *dev_id) 1954 { 1955 struct irq_desc *desc = irq_to_desc(irq); 1956 struct irqaction *action; 1957 const char *devname; 1958 1959 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1960 return NULL; 1961 1962 #ifdef CONFIG_SMP 1963 if (WARN_ON(desc->affinity_notify)) 1964 desc->affinity_notify = NULL; 1965 #endif 1966 1967 action = __free_irq(desc, dev_id); 1968 1969 if (!action) 1970 return NULL; 1971 1972 devname = action->name; 1973 kfree(action); 1974 return devname; 1975 } 1976 EXPORT_SYMBOL(free_irq); 1977 1978 /* This function must be called with desc->lock held */ 1979 static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc) 1980 { 1981 const char *devname = NULL; 1982 1983 desc->istate &= ~IRQS_NMI; 1984 1985 if (!WARN_ON(desc->action == NULL)) { 1986 irq_pm_remove_action(desc, desc->action); 1987 devname = desc->action->name; 1988 unregister_handler_proc(irq, desc->action); 1989 1990 kfree(desc->action); 1991 desc->action = NULL; 1992 } 1993 1994 irq_settings_clr_disable_unlazy(desc); 1995 irq_shutdown_and_deactivate(desc); 1996 1997 irq_release_resources(desc); 1998 1999 irq_chip_pm_put(&desc->irq_data); 2000 module_put(desc->owner); 2001 2002 return devname; 2003 } 2004 2005 const void *free_nmi(unsigned int irq, void *dev_id) 2006 { 2007 struct irq_desc *desc = irq_to_desc(irq); 2008 unsigned long flags; 2009 const void *devname; 2010 2011 if (!desc || WARN_ON(!(desc->istate & IRQS_NMI))) 2012 return NULL; 2013 2014 if (WARN_ON(irq_settings_is_per_cpu_devid(desc))) 2015 return NULL; 2016 2017 /* NMI still enabled */ 2018 if (WARN_ON(desc->depth == 0)) 2019 disable_nmi_nosync(irq); 2020 2021 raw_spin_lock_irqsave(&desc->lock, flags); 2022 2023 irq_nmi_teardown(desc); 2024 devname = __cleanup_nmi(irq, desc); 2025 2026 raw_spin_unlock_irqrestore(&desc->lock, flags); 2027 2028 return devname; 2029 } 2030 2031 /** 2032 * request_threaded_irq - allocate an interrupt line 2033 * @irq: Interrupt line to allocate 2034 * @handler: Function to be called when the IRQ occurs. 2035 * Primary handler for threaded interrupts 2036 * If NULL and thread_fn != NULL the default 2037 * primary handler is installed 2038 * @thread_fn: Function called from the irq handler thread 2039 * If NULL, no irq thread is created 2040 * @irqflags: Interrupt type flags 2041 * @devname: An ascii name for the claiming device 2042 * @dev_id: A cookie passed back to the handler function 2043 * 2044 * This call allocates interrupt resources and enables the 2045 * interrupt line and IRQ handling. From the point this 2046 * call is made your handler function may be invoked. Since 2047 * your handler function must clear any interrupt the board 2048 * raises, you must take care both to initialise your hardware 2049 * and to set up the interrupt handler in the right order. 2050 * 2051 * If you want to set up a threaded irq handler for your device 2052 * then you need to supply @handler and @thread_fn. @handler is 2053 * still called in hard interrupt context and has to check 2054 * whether the interrupt originates from the device. If yes it 2055 * needs to disable the interrupt on the device and return 2056 * IRQ_WAKE_THREAD which will wake up the handler thread and run 2057 * @thread_fn. This split handler design is necessary to support 2058 * shared interrupts. 2059 * 2060 * Dev_id must be globally unique. Normally the address of the 2061 * device data structure is used as the cookie. Since the handler 2062 * receives this value it makes sense to use it. 2063 * 2064 * If your interrupt is shared you must pass a non NULL dev_id 2065 * as this is required when freeing the interrupt. 2066 * 2067 * Flags: 2068 * 2069 * IRQF_SHARED Interrupt is shared 2070 * IRQF_TRIGGER_* Specify active edge(s) or level 2071 * 2072 */ 2073 int request_threaded_irq(unsigned int irq, irq_handler_t handler, 2074 irq_handler_t thread_fn, unsigned long irqflags, 2075 const char *devname, void *dev_id) 2076 { 2077 struct irqaction *action; 2078 struct irq_desc *desc; 2079 int retval; 2080 2081 if (irq == IRQ_NOTCONNECTED) 2082 return -ENOTCONN; 2083 2084 /* 2085 * Sanity-check: shared interrupts must pass in a real dev-ID, 2086 * otherwise we'll have trouble later trying to figure out 2087 * which interrupt is which (messes up the interrupt freeing 2088 * logic etc). 2089 * 2090 * Also shared interrupts do not go well with disabling auto enable. 2091 * The sharing interrupt might request it while it's still disabled 2092 * and then wait for interrupts forever. 2093 * 2094 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and 2095 * it cannot be set along with IRQF_NO_SUSPEND. 2096 */ 2097 if (((irqflags & IRQF_SHARED) && !dev_id) || 2098 ((irqflags & IRQF_SHARED) && (irqflags & IRQF_NO_AUTOEN)) || 2099 (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) || 2100 ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND))) 2101 return -EINVAL; 2102 2103 desc = irq_to_desc(irq); 2104 if (!desc) 2105 return -EINVAL; 2106 2107 if (!irq_settings_can_request(desc) || 2108 WARN_ON(irq_settings_is_per_cpu_devid(desc))) 2109 return -EINVAL; 2110 2111 if (!handler) { 2112 if (!thread_fn) 2113 return -EINVAL; 2114 handler = irq_default_primary_handler; 2115 } 2116 2117 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2118 if (!action) 2119 return -ENOMEM; 2120 2121 action->handler = handler; 2122 action->thread_fn = thread_fn; 2123 action->flags = irqflags; 2124 action->name = devname; 2125 action->dev_id = dev_id; 2126 2127 retval = irq_chip_pm_get(&desc->irq_data); 2128 if (retval < 0) { 2129 kfree(action); 2130 return retval; 2131 } 2132 2133 retval = __setup_irq(irq, desc, action); 2134 2135 if (retval) { 2136 irq_chip_pm_put(&desc->irq_data); 2137 kfree(action->secondary); 2138 kfree(action); 2139 } 2140 2141 #ifdef CONFIG_DEBUG_SHIRQ_FIXME 2142 if (!retval && (irqflags & IRQF_SHARED)) { 2143 /* 2144 * It's a shared IRQ -- the driver ought to be prepared for it 2145 * to happen immediately, so let's make sure.... 2146 * We disable the irq to make sure that a 'real' IRQ doesn't 2147 * run in parallel with our fake. 2148 */ 2149 unsigned long flags; 2150 2151 disable_irq(irq); 2152 local_irq_save(flags); 2153 2154 handler(irq, dev_id); 2155 2156 local_irq_restore(flags); 2157 enable_irq(irq); 2158 } 2159 #endif 2160 return retval; 2161 } 2162 EXPORT_SYMBOL(request_threaded_irq); 2163 2164 /** 2165 * request_any_context_irq - allocate an interrupt line 2166 * @irq: Interrupt line to allocate 2167 * @handler: Function to be called when the IRQ occurs. 2168 * Threaded handler for threaded interrupts. 2169 * @flags: Interrupt type flags 2170 * @name: An ascii name for the claiming device 2171 * @dev_id: A cookie passed back to the handler function 2172 * 2173 * This call allocates interrupt resources and enables the 2174 * interrupt line and IRQ handling. It selects either a 2175 * hardirq or threaded handling method depending on the 2176 * context. 2177 * 2178 * On failure, it returns a negative value. On success, 2179 * it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED. 2180 */ 2181 int request_any_context_irq(unsigned int irq, irq_handler_t handler, 2182 unsigned long flags, const char *name, void *dev_id) 2183 { 2184 struct irq_desc *desc; 2185 int ret; 2186 2187 if (irq == IRQ_NOTCONNECTED) 2188 return -ENOTCONN; 2189 2190 desc = irq_to_desc(irq); 2191 if (!desc) 2192 return -EINVAL; 2193 2194 if (irq_settings_is_nested_thread(desc)) { 2195 ret = request_threaded_irq(irq, NULL, handler, 2196 flags, name, dev_id); 2197 return !ret ? IRQC_IS_NESTED : ret; 2198 } 2199 2200 ret = request_irq(irq, handler, flags, name, dev_id); 2201 return !ret ? IRQC_IS_HARDIRQ : ret; 2202 } 2203 EXPORT_SYMBOL_GPL(request_any_context_irq); 2204 2205 /** 2206 * request_nmi - allocate an interrupt line for NMI delivery 2207 * @irq: Interrupt line to allocate 2208 * @handler: Function to be called when the IRQ occurs. 2209 * Threaded handler for threaded interrupts. 2210 * @irqflags: Interrupt type flags 2211 * @name: An ascii name for the claiming device 2212 * @dev_id: A cookie passed back to the handler function 2213 * 2214 * This call allocates interrupt resources and enables the 2215 * interrupt line and IRQ handling. It sets up the IRQ line 2216 * to be handled as an NMI. 2217 * 2218 * An interrupt line delivering NMIs cannot be shared and IRQ handling 2219 * cannot be threaded. 2220 * 2221 * Interrupt lines requested for NMI delivering must produce per cpu 2222 * interrupts and have auto enabling setting disabled. 2223 * 2224 * Dev_id must be globally unique. Normally the address of the 2225 * device data structure is used as the cookie. Since the handler 2226 * receives this value it makes sense to use it. 2227 * 2228 * If the interrupt line cannot be used to deliver NMIs, function 2229 * will fail and return a negative value. 2230 */ 2231 int request_nmi(unsigned int irq, irq_handler_t handler, 2232 unsigned long irqflags, const char *name, void *dev_id) 2233 { 2234 struct irqaction *action; 2235 struct irq_desc *desc; 2236 unsigned long flags; 2237 int retval; 2238 2239 if (irq == IRQ_NOTCONNECTED) 2240 return -ENOTCONN; 2241 2242 /* NMI cannot be shared, used for Polling */ 2243 if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL)) 2244 return -EINVAL; 2245 2246 if (!(irqflags & IRQF_PERCPU)) 2247 return -EINVAL; 2248 2249 if (!handler) 2250 return -EINVAL; 2251 2252 desc = irq_to_desc(irq); 2253 2254 if (!desc || (irq_settings_can_autoenable(desc) && 2255 !(irqflags & IRQF_NO_AUTOEN)) || 2256 !irq_settings_can_request(desc) || 2257 WARN_ON(irq_settings_is_per_cpu_devid(desc)) || 2258 !irq_supports_nmi(desc)) 2259 return -EINVAL; 2260 2261 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2262 if (!action) 2263 return -ENOMEM; 2264 2265 action->handler = handler; 2266 action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING; 2267 action->name = name; 2268 action->dev_id = dev_id; 2269 2270 retval = irq_chip_pm_get(&desc->irq_data); 2271 if (retval < 0) 2272 goto err_out; 2273 2274 retval = __setup_irq(irq, desc, action); 2275 if (retval) 2276 goto err_irq_setup; 2277 2278 raw_spin_lock_irqsave(&desc->lock, flags); 2279 2280 /* Setup NMI state */ 2281 desc->istate |= IRQS_NMI; 2282 retval = irq_nmi_setup(desc); 2283 if (retval) { 2284 __cleanup_nmi(irq, desc); 2285 raw_spin_unlock_irqrestore(&desc->lock, flags); 2286 return -EINVAL; 2287 } 2288 2289 raw_spin_unlock_irqrestore(&desc->lock, flags); 2290 2291 return 0; 2292 2293 err_irq_setup: 2294 irq_chip_pm_put(&desc->irq_data); 2295 err_out: 2296 kfree(action); 2297 2298 return retval; 2299 } 2300 2301 void enable_percpu_irq(unsigned int irq, unsigned int type) 2302 { 2303 unsigned int cpu = smp_processor_id(); 2304 unsigned long flags; 2305 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 2306 2307 if (!desc) 2308 return; 2309 2310 /* 2311 * If the trigger type is not specified by the caller, then 2312 * use the default for this interrupt. 2313 */ 2314 type &= IRQ_TYPE_SENSE_MASK; 2315 if (type == IRQ_TYPE_NONE) 2316 type = irqd_get_trigger_type(&desc->irq_data); 2317 2318 if (type != IRQ_TYPE_NONE) { 2319 int ret; 2320 2321 ret = __irq_set_trigger(desc, type); 2322 2323 if (ret) { 2324 WARN(1, "failed to set type for IRQ%d\n", irq); 2325 goto out; 2326 } 2327 } 2328 2329 irq_percpu_enable(desc, cpu); 2330 out: 2331 irq_put_desc_unlock(desc, flags); 2332 } 2333 EXPORT_SYMBOL_GPL(enable_percpu_irq); 2334 2335 void enable_percpu_nmi(unsigned int irq, unsigned int type) 2336 { 2337 enable_percpu_irq(irq, type); 2338 } 2339 2340 /** 2341 * irq_percpu_is_enabled - Check whether the per cpu irq is enabled 2342 * @irq: Linux irq number to check for 2343 * 2344 * Must be called from a non migratable context. Returns the enable 2345 * state of a per cpu interrupt on the current cpu. 2346 */ 2347 bool irq_percpu_is_enabled(unsigned int irq) 2348 { 2349 unsigned int cpu = smp_processor_id(); 2350 struct irq_desc *desc; 2351 unsigned long flags; 2352 bool is_enabled; 2353 2354 desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 2355 if (!desc) 2356 return false; 2357 2358 is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled); 2359 irq_put_desc_unlock(desc, flags); 2360 2361 return is_enabled; 2362 } 2363 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled); 2364 2365 void disable_percpu_irq(unsigned int irq) 2366 { 2367 unsigned int cpu = smp_processor_id(); 2368 unsigned long flags; 2369 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 2370 2371 if (!desc) 2372 return; 2373 2374 irq_percpu_disable(desc, cpu); 2375 irq_put_desc_unlock(desc, flags); 2376 } 2377 EXPORT_SYMBOL_GPL(disable_percpu_irq); 2378 2379 void disable_percpu_nmi(unsigned int irq) 2380 { 2381 disable_percpu_irq(irq); 2382 } 2383 2384 /* 2385 * Internal function to unregister a percpu irqaction. 2386 */ 2387 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id) 2388 { 2389 struct irq_desc *desc = irq_to_desc(irq); 2390 struct irqaction *action; 2391 unsigned long flags; 2392 2393 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq); 2394 2395 if (!desc) 2396 return NULL; 2397 2398 raw_spin_lock_irqsave(&desc->lock, flags); 2399 2400 action = desc->action; 2401 if (!action || action->percpu_dev_id != dev_id) { 2402 WARN(1, "Trying to free already-free IRQ %d\n", irq); 2403 goto bad; 2404 } 2405 2406 if (!cpumask_empty(desc->percpu_enabled)) { 2407 WARN(1, "percpu IRQ %d still enabled on CPU%d!\n", 2408 irq, cpumask_first(desc->percpu_enabled)); 2409 goto bad; 2410 } 2411 2412 /* Found it - now remove it from the list of entries: */ 2413 desc->action = NULL; 2414 2415 desc->istate &= ~IRQS_NMI; 2416 2417 raw_spin_unlock_irqrestore(&desc->lock, flags); 2418 2419 unregister_handler_proc(irq, action); 2420 2421 irq_chip_pm_put(&desc->irq_data); 2422 module_put(desc->owner); 2423 return action; 2424 2425 bad: 2426 raw_spin_unlock_irqrestore(&desc->lock, flags); 2427 return NULL; 2428 } 2429 2430 /** 2431 * remove_percpu_irq - free a per-cpu interrupt 2432 * @irq: Interrupt line to free 2433 * @act: irqaction for the interrupt 2434 * 2435 * Used to remove interrupts statically setup by the early boot process. 2436 */ 2437 void remove_percpu_irq(unsigned int irq, struct irqaction *act) 2438 { 2439 struct irq_desc *desc = irq_to_desc(irq); 2440 2441 if (desc && irq_settings_is_per_cpu_devid(desc)) 2442 __free_percpu_irq(irq, act->percpu_dev_id); 2443 } 2444 2445 /** 2446 * free_percpu_irq - free an interrupt allocated with request_percpu_irq 2447 * @irq: Interrupt line to free 2448 * @dev_id: Device identity to free 2449 * 2450 * Remove a percpu interrupt handler. The handler is removed, but 2451 * the interrupt line is not disabled. This must be done on each 2452 * CPU before calling this function. The function does not return 2453 * until any executing interrupts for this IRQ have completed. 2454 * 2455 * This function must not be called from interrupt context. 2456 */ 2457 void free_percpu_irq(unsigned int irq, void __percpu *dev_id) 2458 { 2459 struct irq_desc *desc = irq_to_desc(irq); 2460 2461 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2462 return; 2463 2464 chip_bus_lock(desc); 2465 kfree(__free_percpu_irq(irq, dev_id)); 2466 chip_bus_sync_unlock(desc); 2467 } 2468 EXPORT_SYMBOL_GPL(free_percpu_irq); 2469 2470 void free_percpu_nmi(unsigned int irq, void __percpu *dev_id) 2471 { 2472 struct irq_desc *desc = irq_to_desc(irq); 2473 2474 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2475 return; 2476 2477 if (WARN_ON(!(desc->istate & IRQS_NMI))) 2478 return; 2479 2480 kfree(__free_percpu_irq(irq, dev_id)); 2481 } 2482 2483 /** 2484 * setup_percpu_irq - setup a per-cpu interrupt 2485 * @irq: Interrupt line to setup 2486 * @act: irqaction for the interrupt 2487 * 2488 * Used to statically setup per-cpu interrupts in the early boot process. 2489 */ 2490 int setup_percpu_irq(unsigned int irq, struct irqaction *act) 2491 { 2492 struct irq_desc *desc = irq_to_desc(irq); 2493 int retval; 2494 2495 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2496 return -EINVAL; 2497 2498 retval = irq_chip_pm_get(&desc->irq_data); 2499 if (retval < 0) 2500 return retval; 2501 2502 retval = __setup_irq(irq, desc, act); 2503 2504 if (retval) 2505 irq_chip_pm_put(&desc->irq_data); 2506 2507 return retval; 2508 } 2509 2510 /** 2511 * __request_percpu_irq - allocate a percpu interrupt line 2512 * @irq: Interrupt line to allocate 2513 * @handler: Function to be called when the IRQ occurs. 2514 * @flags: Interrupt type flags (IRQF_TIMER only) 2515 * @devname: An ascii name for the claiming device 2516 * @dev_id: A percpu cookie passed back to the handler function 2517 * 2518 * This call allocates interrupt resources and enables the 2519 * interrupt on the local CPU. If the interrupt is supposed to be 2520 * enabled on other CPUs, it has to be done on each CPU using 2521 * enable_percpu_irq(). 2522 * 2523 * Dev_id must be globally unique. It is a per-cpu variable, and 2524 * the handler gets called with the interrupted CPU's instance of 2525 * that variable. 2526 */ 2527 int __request_percpu_irq(unsigned int irq, irq_handler_t handler, 2528 unsigned long flags, const char *devname, 2529 void __percpu *dev_id) 2530 { 2531 struct irqaction *action; 2532 struct irq_desc *desc; 2533 int retval; 2534 2535 if (!dev_id) 2536 return -EINVAL; 2537 2538 desc = irq_to_desc(irq); 2539 if (!desc || !irq_settings_can_request(desc) || 2540 !irq_settings_is_per_cpu_devid(desc)) 2541 return -EINVAL; 2542 2543 if (flags && flags != IRQF_TIMER) 2544 return -EINVAL; 2545 2546 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2547 if (!action) 2548 return -ENOMEM; 2549 2550 action->handler = handler; 2551 action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND; 2552 action->name = devname; 2553 action->percpu_dev_id = dev_id; 2554 2555 retval = irq_chip_pm_get(&desc->irq_data); 2556 if (retval < 0) { 2557 kfree(action); 2558 return retval; 2559 } 2560 2561 retval = __setup_irq(irq, desc, action); 2562 2563 if (retval) { 2564 irq_chip_pm_put(&desc->irq_data); 2565 kfree(action); 2566 } 2567 2568 return retval; 2569 } 2570 EXPORT_SYMBOL_GPL(__request_percpu_irq); 2571 2572 /** 2573 * request_percpu_nmi - allocate a percpu interrupt line for NMI delivery 2574 * @irq: Interrupt line to allocate 2575 * @handler: Function to be called when the IRQ occurs. 2576 * @name: An ascii name for the claiming device 2577 * @dev_id: A percpu cookie passed back to the handler function 2578 * 2579 * This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs 2580 * have to be setup on each CPU by calling prepare_percpu_nmi() before 2581 * being enabled on the same CPU by using enable_percpu_nmi(). 2582 * 2583 * Dev_id must be globally unique. It is a per-cpu variable, and 2584 * the handler gets called with the interrupted CPU's instance of 2585 * that variable. 2586 * 2587 * Interrupt lines requested for NMI delivering should have auto enabling 2588 * setting disabled. 2589 * 2590 * If the interrupt line cannot be used to deliver NMIs, function 2591 * will fail returning a negative value. 2592 */ 2593 int request_percpu_nmi(unsigned int irq, irq_handler_t handler, 2594 const char *name, void __percpu *dev_id) 2595 { 2596 struct irqaction *action; 2597 struct irq_desc *desc; 2598 unsigned long flags; 2599 int retval; 2600 2601 if (!handler) 2602 return -EINVAL; 2603 2604 desc = irq_to_desc(irq); 2605 2606 if (!desc || !irq_settings_can_request(desc) || 2607 !irq_settings_is_per_cpu_devid(desc) || 2608 irq_settings_can_autoenable(desc) || 2609 !irq_supports_nmi(desc)) 2610 return -EINVAL; 2611 2612 /* The line cannot already be NMI */ 2613 if (desc->istate & IRQS_NMI) 2614 return -EINVAL; 2615 2616 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2617 if (!action) 2618 return -ENOMEM; 2619 2620 action->handler = handler; 2621 action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD 2622 | IRQF_NOBALANCING; 2623 action->name = name; 2624 action->percpu_dev_id = dev_id; 2625 2626 retval = irq_chip_pm_get(&desc->irq_data); 2627 if (retval < 0) 2628 goto err_out; 2629 2630 retval = __setup_irq(irq, desc, action); 2631 if (retval) 2632 goto err_irq_setup; 2633 2634 raw_spin_lock_irqsave(&desc->lock, flags); 2635 desc->istate |= IRQS_NMI; 2636 raw_spin_unlock_irqrestore(&desc->lock, flags); 2637 2638 return 0; 2639 2640 err_irq_setup: 2641 irq_chip_pm_put(&desc->irq_data); 2642 err_out: 2643 kfree(action); 2644 2645 return retval; 2646 } 2647 2648 /** 2649 * prepare_percpu_nmi - performs CPU local setup for NMI delivery 2650 * @irq: Interrupt line to prepare for NMI delivery 2651 * 2652 * This call prepares an interrupt line to deliver NMI on the current CPU, 2653 * before that interrupt line gets enabled with enable_percpu_nmi(). 2654 * 2655 * As a CPU local operation, this should be called from non-preemptible 2656 * context. 2657 * 2658 * If the interrupt line cannot be used to deliver NMIs, function 2659 * will fail returning a negative value. 2660 */ 2661 int prepare_percpu_nmi(unsigned int irq) 2662 { 2663 unsigned long flags; 2664 struct irq_desc *desc; 2665 int ret = 0; 2666 2667 WARN_ON(preemptible()); 2668 2669 desc = irq_get_desc_lock(irq, &flags, 2670 IRQ_GET_DESC_CHECK_PERCPU); 2671 if (!desc) 2672 return -EINVAL; 2673 2674 if (WARN(!(desc->istate & IRQS_NMI), 2675 KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n", 2676 irq)) { 2677 ret = -EINVAL; 2678 goto out; 2679 } 2680 2681 ret = irq_nmi_setup(desc); 2682 if (ret) { 2683 pr_err("Failed to setup NMI delivery: irq %u\n", irq); 2684 goto out; 2685 } 2686 2687 out: 2688 irq_put_desc_unlock(desc, flags); 2689 return ret; 2690 } 2691 2692 /** 2693 * teardown_percpu_nmi - undoes NMI setup of IRQ line 2694 * @irq: Interrupt line from which CPU local NMI configuration should be 2695 * removed 2696 * 2697 * This call undoes the setup done by prepare_percpu_nmi(). 2698 * 2699 * IRQ line should not be enabled for the current CPU. 2700 * 2701 * As a CPU local operation, this should be called from non-preemptible 2702 * context. 2703 */ 2704 void teardown_percpu_nmi(unsigned int irq) 2705 { 2706 unsigned long flags; 2707 struct irq_desc *desc; 2708 2709 WARN_ON(preemptible()); 2710 2711 desc = irq_get_desc_lock(irq, &flags, 2712 IRQ_GET_DESC_CHECK_PERCPU); 2713 if (!desc) 2714 return; 2715 2716 if (WARN_ON(!(desc->istate & IRQS_NMI))) 2717 goto out; 2718 2719 irq_nmi_teardown(desc); 2720 out: 2721 irq_put_desc_unlock(desc, flags); 2722 } 2723 2724 int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which, 2725 bool *state) 2726 { 2727 struct irq_chip *chip; 2728 int err = -EINVAL; 2729 2730 do { 2731 chip = irq_data_get_irq_chip(data); 2732 if (WARN_ON_ONCE(!chip)) 2733 return -ENODEV; 2734 if (chip->irq_get_irqchip_state) 2735 break; 2736 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 2737 data = data->parent_data; 2738 #else 2739 data = NULL; 2740 #endif 2741 } while (data); 2742 2743 if (data) 2744 err = chip->irq_get_irqchip_state(data, which, state); 2745 return err; 2746 } 2747 2748 /** 2749 * irq_get_irqchip_state - returns the irqchip state of a interrupt. 2750 * @irq: Interrupt line that is forwarded to a VM 2751 * @which: One of IRQCHIP_STATE_* the caller wants to know about 2752 * @state: a pointer to a boolean where the state is to be storeed 2753 * 2754 * This call snapshots the internal irqchip state of an 2755 * interrupt, returning into @state the bit corresponding to 2756 * stage @which 2757 * 2758 * This function should be called with preemption disabled if the 2759 * interrupt controller has per-cpu registers. 2760 */ 2761 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which, 2762 bool *state) 2763 { 2764 struct irq_desc *desc; 2765 struct irq_data *data; 2766 unsigned long flags; 2767 int err = -EINVAL; 2768 2769 desc = irq_get_desc_buslock(irq, &flags, 0); 2770 if (!desc) 2771 return err; 2772 2773 data = irq_desc_get_irq_data(desc); 2774 2775 err = __irq_get_irqchip_state(data, which, state); 2776 2777 irq_put_desc_busunlock(desc, flags); 2778 return err; 2779 } 2780 EXPORT_SYMBOL_GPL(irq_get_irqchip_state); 2781 2782 /** 2783 * irq_set_irqchip_state - set the state of a forwarded interrupt. 2784 * @irq: Interrupt line that is forwarded to a VM 2785 * @which: State to be restored (one of IRQCHIP_STATE_*) 2786 * @val: Value corresponding to @which 2787 * 2788 * This call sets the internal irqchip state of an interrupt, 2789 * depending on the value of @which. 2790 * 2791 * This function should be called with preemption disabled if the 2792 * interrupt controller has per-cpu registers. 2793 */ 2794 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which, 2795 bool val) 2796 { 2797 struct irq_desc *desc; 2798 struct irq_data *data; 2799 struct irq_chip *chip; 2800 unsigned long flags; 2801 int err = -EINVAL; 2802 2803 desc = irq_get_desc_buslock(irq, &flags, 0); 2804 if (!desc) 2805 return err; 2806 2807 data = irq_desc_get_irq_data(desc); 2808 2809 do { 2810 chip = irq_data_get_irq_chip(data); 2811 if (WARN_ON_ONCE(!chip)) { 2812 err = -ENODEV; 2813 goto out_unlock; 2814 } 2815 if (chip->irq_set_irqchip_state) 2816 break; 2817 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 2818 data = data->parent_data; 2819 #else 2820 data = NULL; 2821 #endif 2822 } while (data); 2823 2824 if (data) 2825 err = chip->irq_set_irqchip_state(data, which, val); 2826 2827 out_unlock: 2828 irq_put_desc_busunlock(desc, flags); 2829 return err; 2830 } 2831 EXPORT_SYMBOL_GPL(irq_set_irqchip_state); 2832 2833 /** 2834 * irq_has_action - Check whether an interrupt is requested 2835 * @irq: The linux irq number 2836 * 2837 * Returns: A snapshot of the current state 2838 */ 2839 bool irq_has_action(unsigned int irq) 2840 { 2841 bool res; 2842 2843 rcu_read_lock(); 2844 res = irq_desc_has_action(irq_to_desc(irq)); 2845 rcu_read_unlock(); 2846 return res; 2847 } 2848 EXPORT_SYMBOL_GPL(irq_has_action); 2849 2850 /** 2851 * irq_check_status_bit - Check whether bits in the irq descriptor status are set 2852 * @irq: The linux irq number 2853 * @bitmask: The bitmask to evaluate 2854 * 2855 * Returns: True if one of the bits in @bitmask is set 2856 */ 2857 bool irq_check_status_bit(unsigned int irq, unsigned int bitmask) 2858 { 2859 struct irq_desc *desc; 2860 bool res = false; 2861 2862 rcu_read_lock(); 2863 desc = irq_to_desc(irq); 2864 if (desc) 2865 res = !!(desc->status_use_accessors & bitmask); 2866 rcu_read_unlock(); 2867 return res; 2868 } 2869 EXPORT_SYMBOL_GPL(irq_check_status_bit); 2870