xref: /openbmc/linux/kernel/irq/manage.c (revision 61c67bfa)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
4  * Copyright (C) 2005-2006 Thomas Gleixner
5  *
6  * This file contains driver APIs to the irq subsystem.
7  */
8 
9 #define pr_fmt(fmt) "genirq: " fmt
10 
11 #include <linux/irq.h>
12 #include <linux/kthread.h>
13 #include <linux/module.h>
14 #include <linux/random.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/sched.h>
18 #include <linux/sched/rt.h>
19 #include <linux/sched/task.h>
20 #include <uapi/linux/sched/types.h>
21 #include <linux/task_work.h>
22 
23 #include "internals.h"
24 
25 #ifdef CONFIG_IRQ_FORCED_THREADING
26 __read_mostly bool force_irqthreads;
27 EXPORT_SYMBOL_GPL(force_irqthreads);
28 
29 static int __init setup_forced_irqthreads(char *arg)
30 {
31 	force_irqthreads = true;
32 	return 0;
33 }
34 early_param("threadirqs", setup_forced_irqthreads);
35 #endif
36 
37 static void __synchronize_hardirq(struct irq_desc *desc)
38 {
39 	bool inprogress;
40 
41 	do {
42 		unsigned long flags;
43 
44 		/*
45 		 * Wait until we're out of the critical section.  This might
46 		 * give the wrong answer due to the lack of memory barriers.
47 		 */
48 		while (irqd_irq_inprogress(&desc->irq_data))
49 			cpu_relax();
50 
51 		/* Ok, that indicated we're done: double-check carefully. */
52 		raw_spin_lock_irqsave(&desc->lock, flags);
53 		inprogress = irqd_irq_inprogress(&desc->irq_data);
54 		raw_spin_unlock_irqrestore(&desc->lock, flags);
55 
56 		/* Oops, that failed? */
57 	} while (inprogress);
58 }
59 
60 /**
61  *	synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
62  *	@irq: interrupt number to wait for
63  *
64  *	This function waits for any pending hard IRQ handlers for this
65  *	interrupt to complete before returning. If you use this
66  *	function while holding a resource the IRQ handler may need you
67  *	will deadlock. It does not take associated threaded handlers
68  *	into account.
69  *
70  *	Do not use this for shutdown scenarios where you must be sure
71  *	that all parts (hardirq and threaded handler) have completed.
72  *
73  *	Returns: false if a threaded handler is active.
74  *
75  *	This function may be called - with care - from IRQ context.
76  */
77 bool synchronize_hardirq(unsigned int irq)
78 {
79 	struct irq_desc *desc = irq_to_desc(irq);
80 
81 	if (desc) {
82 		__synchronize_hardirq(desc);
83 		return !atomic_read(&desc->threads_active);
84 	}
85 
86 	return true;
87 }
88 EXPORT_SYMBOL(synchronize_hardirq);
89 
90 /**
91  *	synchronize_irq - wait for pending IRQ handlers (on other CPUs)
92  *	@irq: interrupt number to wait for
93  *
94  *	This function waits for any pending IRQ handlers for this interrupt
95  *	to complete before returning. If you use this function while
96  *	holding a resource the IRQ handler may need you will deadlock.
97  *
98  *	This function may be called - with care - from IRQ context.
99  */
100 void synchronize_irq(unsigned int irq)
101 {
102 	struct irq_desc *desc = irq_to_desc(irq);
103 
104 	if (desc) {
105 		__synchronize_hardirq(desc);
106 		/*
107 		 * We made sure that no hardirq handler is
108 		 * running. Now verify that no threaded handlers are
109 		 * active.
110 		 */
111 		wait_event(desc->wait_for_threads,
112 			   !atomic_read(&desc->threads_active));
113 	}
114 }
115 EXPORT_SYMBOL(synchronize_irq);
116 
117 #ifdef CONFIG_SMP
118 cpumask_var_t irq_default_affinity;
119 
120 static bool __irq_can_set_affinity(struct irq_desc *desc)
121 {
122 	if (!desc || !irqd_can_balance(&desc->irq_data) ||
123 	    !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
124 		return false;
125 	return true;
126 }
127 
128 /**
129  *	irq_can_set_affinity - Check if the affinity of a given irq can be set
130  *	@irq:		Interrupt to check
131  *
132  */
133 int irq_can_set_affinity(unsigned int irq)
134 {
135 	return __irq_can_set_affinity(irq_to_desc(irq));
136 }
137 
138 /**
139  * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
140  * @irq:	Interrupt to check
141  *
142  * Like irq_can_set_affinity() above, but additionally checks for the
143  * AFFINITY_MANAGED flag.
144  */
145 bool irq_can_set_affinity_usr(unsigned int irq)
146 {
147 	struct irq_desc *desc = irq_to_desc(irq);
148 
149 	return __irq_can_set_affinity(desc) &&
150 		!irqd_affinity_is_managed(&desc->irq_data);
151 }
152 
153 /**
154  *	irq_set_thread_affinity - Notify irq threads to adjust affinity
155  *	@desc:		irq descriptor which has affitnity changed
156  *
157  *	We just set IRQTF_AFFINITY and delegate the affinity setting
158  *	to the interrupt thread itself. We can not call
159  *	set_cpus_allowed_ptr() here as we hold desc->lock and this
160  *	code can be called from hard interrupt context.
161  */
162 void irq_set_thread_affinity(struct irq_desc *desc)
163 {
164 	struct irqaction *action;
165 
166 	for_each_action_of_desc(desc, action)
167 		if (action->thread)
168 			set_bit(IRQTF_AFFINITY, &action->thread_flags);
169 }
170 
171 static void irq_validate_effective_affinity(struct irq_data *data)
172 {
173 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
174 	const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
175 	struct irq_chip *chip = irq_data_get_irq_chip(data);
176 
177 	if (!cpumask_empty(m))
178 		return;
179 	pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
180 		     chip->name, data->irq);
181 #endif
182 }
183 
184 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
185 			bool force)
186 {
187 	struct irq_desc *desc = irq_data_to_desc(data);
188 	struct irq_chip *chip = irq_data_get_irq_chip(data);
189 	int ret;
190 
191 	if (!chip || !chip->irq_set_affinity)
192 		return -EINVAL;
193 
194 	ret = chip->irq_set_affinity(data, mask, force);
195 	switch (ret) {
196 	case IRQ_SET_MASK_OK:
197 	case IRQ_SET_MASK_OK_DONE:
198 		cpumask_copy(desc->irq_common_data.affinity, mask);
199 	case IRQ_SET_MASK_OK_NOCOPY:
200 		irq_validate_effective_affinity(data);
201 		irq_set_thread_affinity(desc);
202 		ret = 0;
203 	}
204 
205 	return ret;
206 }
207 
208 #ifdef CONFIG_GENERIC_PENDING_IRQ
209 static inline int irq_set_affinity_pending(struct irq_data *data,
210 					   const struct cpumask *dest)
211 {
212 	struct irq_desc *desc = irq_data_to_desc(data);
213 
214 	irqd_set_move_pending(data);
215 	irq_copy_pending(desc, dest);
216 	return 0;
217 }
218 #else
219 static inline int irq_set_affinity_pending(struct irq_data *data,
220 					   const struct cpumask *dest)
221 {
222 	return -EBUSY;
223 }
224 #endif
225 
226 static int irq_try_set_affinity(struct irq_data *data,
227 				const struct cpumask *dest, bool force)
228 {
229 	int ret = irq_do_set_affinity(data, dest, force);
230 
231 	/*
232 	 * In case that the underlying vector management is busy and the
233 	 * architecture supports the generic pending mechanism then utilize
234 	 * this to avoid returning an error to user space.
235 	 */
236 	if (ret == -EBUSY && !force)
237 		ret = irq_set_affinity_pending(data, dest);
238 	return ret;
239 }
240 
241 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
242 			    bool force)
243 {
244 	struct irq_chip *chip = irq_data_get_irq_chip(data);
245 	struct irq_desc *desc = irq_data_to_desc(data);
246 	int ret = 0;
247 
248 	if (!chip || !chip->irq_set_affinity)
249 		return -EINVAL;
250 
251 	if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) {
252 		ret = irq_try_set_affinity(data, mask, force);
253 	} else {
254 		irqd_set_move_pending(data);
255 		irq_copy_pending(desc, mask);
256 	}
257 
258 	if (desc->affinity_notify) {
259 		kref_get(&desc->affinity_notify->kref);
260 		schedule_work(&desc->affinity_notify->work);
261 	}
262 	irqd_set(data, IRQD_AFFINITY_SET);
263 
264 	return ret;
265 }
266 
267 int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force)
268 {
269 	struct irq_desc *desc = irq_to_desc(irq);
270 	unsigned long flags;
271 	int ret;
272 
273 	if (!desc)
274 		return -EINVAL;
275 
276 	raw_spin_lock_irqsave(&desc->lock, flags);
277 	ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
278 	raw_spin_unlock_irqrestore(&desc->lock, flags);
279 	return ret;
280 }
281 
282 int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m)
283 {
284 	unsigned long flags;
285 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
286 
287 	if (!desc)
288 		return -EINVAL;
289 	desc->affinity_hint = m;
290 	irq_put_desc_unlock(desc, flags);
291 	/* set the initial affinity to prevent every interrupt being on CPU0 */
292 	if (m)
293 		__irq_set_affinity(irq, m, false);
294 	return 0;
295 }
296 EXPORT_SYMBOL_GPL(irq_set_affinity_hint);
297 
298 static void irq_affinity_notify(struct work_struct *work)
299 {
300 	struct irq_affinity_notify *notify =
301 		container_of(work, struct irq_affinity_notify, work);
302 	struct irq_desc *desc = irq_to_desc(notify->irq);
303 	cpumask_var_t cpumask;
304 	unsigned long flags;
305 
306 	if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
307 		goto out;
308 
309 	raw_spin_lock_irqsave(&desc->lock, flags);
310 	if (irq_move_pending(&desc->irq_data))
311 		irq_get_pending(cpumask, desc);
312 	else
313 		cpumask_copy(cpumask, desc->irq_common_data.affinity);
314 	raw_spin_unlock_irqrestore(&desc->lock, flags);
315 
316 	notify->notify(notify, cpumask);
317 
318 	free_cpumask_var(cpumask);
319 out:
320 	kref_put(&notify->kref, notify->release);
321 }
322 
323 /**
324  *	irq_set_affinity_notifier - control notification of IRQ affinity changes
325  *	@irq:		Interrupt for which to enable/disable notification
326  *	@notify:	Context for notification, or %NULL to disable
327  *			notification.  Function pointers must be initialised;
328  *			the other fields will be initialised by this function.
329  *
330  *	Must be called in process context.  Notification may only be enabled
331  *	after the IRQ is allocated and must be disabled before the IRQ is
332  *	freed using free_irq().
333  */
334 int
335 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
336 {
337 	struct irq_desc *desc = irq_to_desc(irq);
338 	struct irq_affinity_notify *old_notify;
339 	unsigned long flags;
340 
341 	/* The release function is promised process context */
342 	might_sleep();
343 
344 	if (!desc || desc->istate & IRQS_NMI)
345 		return -EINVAL;
346 
347 	/* Complete initialisation of *notify */
348 	if (notify) {
349 		notify->irq = irq;
350 		kref_init(&notify->kref);
351 		INIT_WORK(&notify->work, irq_affinity_notify);
352 	}
353 
354 	raw_spin_lock_irqsave(&desc->lock, flags);
355 	old_notify = desc->affinity_notify;
356 	desc->affinity_notify = notify;
357 	raw_spin_unlock_irqrestore(&desc->lock, flags);
358 
359 	if (old_notify)
360 		kref_put(&old_notify->kref, old_notify->release);
361 
362 	return 0;
363 }
364 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
365 
366 #ifndef CONFIG_AUTO_IRQ_AFFINITY
367 /*
368  * Generic version of the affinity autoselector.
369  */
370 int irq_setup_affinity(struct irq_desc *desc)
371 {
372 	struct cpumask *set = irq_default_affinity;
373 	int ret, node = irq_desc_get_node(desc);
374 	static DEFINE_RAW_SPINLOCK(mask_lock);
375 	static struct cpumask mask;
376 
377 	/* Excludes PER_CPU and NO_BALANCE interrupts */
378 	if (!__irq_can_set_affinity(desc))
379 		return 0;
380 
381 	raw_spin_lock(&mask_lock);
382 	/*
383 	 * Preserve the managed affinity setting and a userspace affinity
384 	 * setup, but make sure that one of the targets is online.
385 	 */
386 	if (irqd_affinity_is_managed(&desc->irq_data) ||
387 	    irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
388 		if (cpumask_intersects(desc->irq_common_data.affinity,
389 				       cpu_online_mask))
390 			set = desc->irq_common_data.affinity;
391 		else
392 			irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
393 	}
394 
395 	cpumask_and(&mask, cpu_online_mask, set);
396 	if (cpumask_empty(&mask))
397 		cpumask_copy(&mask, cpu_online_mask);
398 
399 	if (node != NUMA_NO_NODE) {
400 		const struct cpumask *nodemask = cpumask_of_node(node);
401 
402 		/* make sure at least one of the cpus in nodemask is online */
403 		if (cpumask_intersects(&mask, nodemask))
404 			cpumask_and(&mask, &mask, nodemask);
405 	}
406 	ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
407 	raw_spin_unlock(&mask_lock);
408 	return ret;
409 }
410 #else
411 /* Wrapper for ALPHA specific affinity selector magic */
412 int irq_setup_affinity(struct irq_desc *desc)
413 {
414 	return irq_select_affinity(irq_desc_get_irq(desc));
415 }
416 #endif
417 
418 /*
419  * Called when a bogus affinity is set via /proc/irq
420  */
421 int irq_select_affinity_usr(unsigned int irq)
422 {
423 	struct irq_desc *desc = irq_to_desc(irq);
424 	unsigned long flags;
425 	int ret;
426 
427 	raw_spin_lock_irqsave(&desc->lock, flags);
428 	ret = irq_setup_affinity(desc);
429 	raw_spin_unlock_irqrestore(&desc->lock, flags);
430 	return ret;
431 }
432 #endif
433 
434 /**
435  *	irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
436  *	@irq: interrupt number to set affinity
437  *	@vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
438  *	            specific data for percpu_devid interrupts
439  *
440  *	This function uses the vCPU specific data to set the vCPU
441  *	affinity for an irq. The vCPU specific data is passed from
442  *	outside, such as KVM. One example code path is as below:
443  *	KVM -> IOMMU -> irq_set_vcpu_affinity().
444  */
445 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
446 {
447 	unsigned long flags;
448 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
449 	struct irq_data *data;
450 	struct irq_chip *chip;
451 	int ret = -ENOSYS;
452 
453 	if (!desc)
454 		return -EINVAL;
455 
456 	data = irq_desc_get_irq_data(desc);
457 	do {
458 		chip = irq_data_get_irq_chip(data);
459 		if (chip && chip->irq_set_vcpu_affinity)
460 			break;
461 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
462 		data = data->parent_data;
463 #else
464 		data = NULL;
465 #endif
466 	} while (data);
467 
468 	if (data)
469 		ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
470 	irq_put_desc_unlock(desc, flags);
471 
472 	return ret;
473 }
474 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
475 
476 void __disable_irq(struct irq_desc *desc)
477 {
478 	if (!desc->depth++)
479 		irq_disable(desc);
480 }
481 
482 static int __disable_irq_nosync(unsigned int irq)
483 {
484 	unsigned long flags;
485 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
486 
487 	if (!desc)
488 		return -EINVAL;
489 	__disable_irq(desc);
490 	irq_put_desc_busunlock(desc, flags);
491 	return 0;
492 }
493 
494 /**
495  *	disable_irq_nosync - disable an irq without waiting
496  *	@irq: Interrupt to disable
497  *
498  *	Disable the selected interrupt line.  Disables and Enables are
499  *	nested.
500  *	Unlike disable_irq(), this function does not ensure existing
501  *	instances of the IRQ handler have completed before returning.
502  *
503  *	This function may be called from IRQ context.
504  */
505 void disable_irq_nosync(unsigned int irq)
506 {
507 	__disable_irq_nosync(irq);
508 }
509 EXPORT_SYMBOL(disable_irq_nosync);
510 
511 /**
512  *	disable_irq - disable an irq and wait for completion
513  *	@irq: Interrupt to disable
514  *
515  *	Disable the selected interrupt line.  Enables and Disables are
516  *	nested.
517  *	This function waits for any pending IRQ handlers for this interrupt
518  *	to complete before returning. If you use this function while
519  *	holding a resource the IRQ handler may need you will deadlock.
520  *
521  *	This function may be called - with care - from IRQ context.
522  */
523 void disable_irq(unsigned int irq)
524 {
525 	if (!__disable_irq_nosync(irq))
526 		synchronize_irq(irq);
527 }
528 EXPORT_SYMBOL(disable_irq);
529 
530 /**
531  *	disable_hardirq - disables an irq and waits for hardirq completion
532  *	@irq: Interrupt to disable
533  *
534  *	Disable the selected interrupt line.  Enables and Disables are
535  *	nested.
536  *	This function waits for any pending hard IRQ handlers for this
537  *	interrupt to complete before returning. If you use this function while
538  *	holding a resource the hard IRQ handler may need you will deadlock.
539  *
540  *	When used to optimistically disable an interrupt from atomic context
541  *	the return value must be checked.
542  *
543  *	Returns: false if a threaded handler is active.
544  *
545  *	This function may be called - with care - from IRQ context.
546  */
547 bool disable_hardirq(unsigned int irq)
548 {
549 	if (!__disable_irq_nosync(irq))
550 		return synchronize_hardirq(irq);
551 
552 	return false;
553 }
554 EXPORT_SYMBOL_GPL(disable_hardirq);
555 
556 /**
557  *	disable_nmi_nosync - disable an nmi without waiting
558  *	@irq: Interrupt to disable
559  *
560  *	Disable the selected interrupt line. Disables and enables are
561  *	nested.
562  *	The interrupt to disable must have been requested through request_nmi.
563  *	Unlike disable_nmi(), this function does not ensure existing
564  *	instances of the IRQ handler have completed before returning.
565  */
566 void disable_nmi_nosync(unsigned int irq)
567 {
568 	disable_irq_nosync(irq);
569 }
570 
571 void __enable_irq(struct irq_desc *desc)
572 {
573 	switch (desc->depth) {
574 	case 0:
575  err_out:
576 		WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
577 		     irq_desc_get_irq(desc));
578 		break;
579 	case 1: {
580 		if (desc->istate & IRQS_SUSPENDED)
581 			goto err_out;
582 		/* Prevent probing on this irq: */
583 		irq_settings_set_noprobe(desc);
584 		/*
585 		 * Call irq_startup() not irq_enable() here because the
586 		 * interrupt might be marked NOAUTOEN. So irq_startup()
587 		 * needs to be invoked when it gets enabled the first
588 		 * time. If it was already started up, then irq_startup()
589 		 * will invoke irq_enable() under the hood.
590 		 */
591 		irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
592 		break;
593 	}
594 	default:
595 		desc->depth--;
596 	}
597 }
598 
599 /**
600  *	enable_irq - enable handling of an irq
601  *	@irq: Interrupt to enable
602  *
603  *	Undoes the effect of one call to disable_irq().  If this
604  *	matches the last disable, processing of interrupts on this
605  *	IRQ line is re-enabled.
606  *
607  *	This function may be called from IRQ context only when
608  *	desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
609  */
610 void enable_irq(unsigned int irq)
611 {
612 	unsigned long flags;
613 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
614 
615 	if (!desc)
616 		return;
617 	if (WARN(!desc->irq_data.chip,
618 		 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
619 		goto out;
620 
621 	__enable_irq(desc);
622 out:
623 	irq_put_desc_busunlock(desc, flags);
624 }
625 EXPORT_SYMBOL(enable_irq);
626 
627 /**
628  *	enable_nmi - enable handling of an nmi
629  *	@irq: Interrupt to enable
630  *
631  *	The interrupt to enable must have been requested through request_nmi.
632  *	Undoes the effect of one call to disable_nmi(). If this
633  *	matches the last disable, processing of interrupts on this
634  *	IRQ line is re-enabled.
635  */
636 void enable_nmi(unsigned int irq)
637 {
638 	enable_irq(irq);
639 }
640 
641 static int set_irq_wake_real(unsigned int irq, unsigned int on)
642 {
643 	struct irq_desc *desc = irq_to_desc(irq);
644 	int ret = -ENXIO;
645 
646 	if (irq_desc_get_chip(desc)->flags &  IRQCHIP_SKIP_SET_WAKE)
647 		return 0;
648 
649 	if (desc->irq_data.chip->irq_set_wake)
650 		ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
651 
652 	return ret;
653 }
654 
655 /**
656  *	irq_set_irq_wake - control irq power management wakeup
657  *	@irq:	interrupt to control
658  *	@on:	enable/disable power management wakeup
659  *
660  *	Enable/disable power management wakeup mode, which is
661  *	disabled by default.  Enables and disables must match,
662  *	just as they match for non-wakeup mode support.
663  *
664  *	Wakeup mode lets this IRQ wake the system from sleep
665  *	states like "suspend to RAM".
666  */
667 int irq_set_irq_wake(unsigned int irq, unsigned int on)
668 {
669 	unsigned long flags;
670 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
671 	int ret = 0;
672 
673 	if (!desc)
674 		return -EINVAL;
675 
676 	/* Don't use NMIs as wake up interrupts please */
677 	if (desc->istate & IRQS_NMI) {
678 		ret = -EINVAL;
679 		goto out_unlock;
680 	}
681 
682 	/* wakeup-capable irqs can be shared between drivers that
683 	 * don't need to have the same sleep mode behaviors.
684 	 */
685 	if (on) {
686 		if (desc->wake_depth++ == 0) {
687 			ret = set_irq_wake_real(irq, on);
688 			if (ret)
689 				desc->wake_depth = 0;
690 			else
691 				irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
692 		}
693 	} else {
694 		if (desc->wake_depth == 0) {
695 			WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
696 		} else if (--desc->wake_depth == 0) {
697 			ret = set_irq_wake_real(irq, on);
698 			if (ret)
699 				desc->wake_depth = 1;
700 			else
701 				irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
702 		}
703 	}
704 
705 out_unlock:
706 	irq_put_desc_busunlock(desc, flags);
707 	return ret;
708 }
709 EXPORT_SYMBOL(irq_set_irq_wake);
710 
711 /*
712  * Internal function that tells the architecture code whether a
713  * particular irq has been exclusively allocated or is available
714  * for driver use.
715  */
716 int can_request_irq(unsigned int irq, unsigned long irqflags)
717 {
718 	unsigned long flags;
719 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
720 	int canrequest = 0;
721 
722 	if (!desc)
723 		return 0;
724 
725 	if (irq_settings_can_request(desc)) {
726 		if (!desc->action ||
727 		    irqflags & desc->action->flags & IRQF_SHARED)
728 			canrequest = 1;
729 	}
730 	irq_put_desc_unlock(desc, flags);
731 	return canrequest;
732 }
733 
734 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
735 {
736 	struct irq_chip *chip = desc->irq_data.chip;
737 	int ret, unmask = 0;
738 
739 	if (!chip || !chip->irq_set_type) {
740 		/*
741 		 * IRQF_TRIGGER_* but the PIC does not support multiple
742 		 * flow-types?
743 		 */
744 		pr_debug("No set_type function for IRQ %d (%s)\n",
745 			 irq_desc_get_irq(desc),
746 			 chip ? (chip->name ? : "unknown") : "unknown");
747 		return 0;
748 	}
749 
750 	if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
751 		if (!irqd_irq_masked(&desc->irq_data))
752 			mask_irq(desc);
753 		if (!irqd_irq_disabled(&desc->irq_data))
754 			unmask = 1;
755 	}
756 
757 	/* Mask all flags except trigger mode */
758 	flags &= IRQ_TYPE_SENSE_MASK;
759 	ret = chip->irq_set_type(&desc->irq_data, flags);
760 
761 	switch (ret) {
762 	case IRQ_SET_MASK_OK:
763 	case IRQ_SET_MASK_OK_DONE:
764 		irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
765 		irqd_set(&desc->irq_data, flags);
766 		/* fall through */
767 
768 	case IRQ_SET_MASK_OK_NOCOPY:
769 		flags = irqd_get_trigger_type(&desc->irq_data);
770 		irq_settings_set_trigger_mask(desc, flags);
771 		irqd_clear(&desc->irq_data, IRQD_LEVEL);
772 		irq_settings_clr_level(desc);
773 		if (flags & IRQ_TYPE_LEVEL_MASK) {
774 			irq_settings_set_level(desc);
775 			irqd_set(&desc->irq_data, IRQD_LEVEL);
776 		}
777 
778 		ret = 0;
779 		break;
780 	default:
781 		pr_err("Setting trigger mode %lu for irq %u failed (%pF)\n",
782 		       flags, irq_desc_get_irq(desc), chip->irq_set_type);
783 	}
784 	if (unmask)
785 		unmask_irq(desc);
786 	return ret;
787 }
788 
789 #ifdef CONFIG_HARDIRQS_SW_RESEND
790 int irq_set_parent(int irq, int parent_irq)
791 {
792 	unsigned long flags;
793 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
794 
795 	if (!desc)
796 		return -EINVAL;
797 
798 	desc->parent_irq = parent_irq;
799 
800 	irq_put_desc_unlock(desc, flags);
801 	return 0;
802 }
803 EXPORT_SYMBOL_GPL(irq_set_parent);
804 #endif
805 
806 /*
807  * Default primary interrupt handler for threaded interrupts. Is
808  * assigned as primary handler when request_threaded_irq is called
809  * with handler == NULL. Useful for oneshot interrupts.
810  */
811 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
812 {
813 	return IRQ_WAKE_THREAD;
814 }
815 
816 /*
817  * Primary handler for nested threaded interrupts. Should never be
818  * called.
819  */
820 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
821 {
822 	WARN(1, "Primary handler called for nested irq %d\n", irq);
823 	return IRQ_NONE;
824 }
825 
826 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
827 {
828 	WARN(1, "Secondary action handler called for irq %d\n", irq);
829 	return IRQ_NONE;
830 }
831 
832 static int irq_wait_for_interrupt(struct irqaction *action)
833 {
834 	for (;;) {
835 		set_current_state(TASK_INTERRUPTIBLE);
836 
837 		if (kthread_should_stop()) {
838 			/* may need to run one last time */
839 			if (test_and_clear_bit(IRQTF_RUNTHREAD,
840 					       &action->thread_flags)) {
841 				__set_current_state(TASK_RUNNING);
842 				return 0;
843 			}
844 			__set_current_state(TASK_RUNNING);
845 			return -1;
846 		}
847 
848 		if (test_and_clear_bit(IRQTF_RUNTHREAD,
849 				       &action->thread_flags)) {
850 			__set_current_state(TASK_RUNNING);
851 			return 0;
852 		}
853 		schedule();
854 	}
855 }
856 
857 /*
858  * Oneshot interrupts keep the irq line masked until the threaded
859  * handler finished. unmask if the interrupt has not been disabled and
860  * is marked MASKED.
861  */
862 static void irq_finalize_oneshot(struct irq_desc *desc,
863 				 struct irqaction *action)
864 {
865 	if (!(desc->istate & IRQS_ONESHOT) ||
866 	    action->handler == irq_forced_secondary_handler)
867 		return;
868 again:
869 	chip_bus_lock(desc);
870 	raw_spin_lock_irq(&desc->lock);
871 
872 	/*
873 	 * Implausible though it may be we need to protect us against
874 	 * the following scenario:
875 	 *
876 	 * The thread is faster done than the hard interrupt handler
877 	 * on the other CPU. If we unmask the irq line then the
878 	 * interrupt can come in again and masks the line, leaves due
879 	 * to IRQS_INPROGRESS and the irq line is masked forever.
880 	 *
881 	 * This also serializes the state of shared oneshot handlers
882 	 * versus "desc->threads_onehsot |= action->thread_mask;" in
883 	 * irq_wake_thread(). See the comment there which explains the
884 	 * serialization.
885 	 */
886 	if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
887 		raw_spin_unlock_irq(&desc->lock);
888 		chip_bus_sync_unlock(desc);
889 		cpu_relax();
890 		goto again;
891 	}
892 
893 	/*
894 	 * Now check again, whether the thread should run. Otherwise
895 	 * we would clear the threads_oneshot bit of this thread which
896 	 * was just set.
897 	 */
898 	if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
899 		goto out_unlock;
900 
901 	desc->threads_oneshot &= ~action->thread_mask;
902 
903 	if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
904 	    irqd_irq_masked(&desc->irq_data))
905 		unmask_threaded_irq(desc);
906 
907 out_unlock:
908 	raw_spin_unlock_irq(&desc->lock);
909 	chip_bus_sync_unlock(desc);
910 }
911 
912 #ifdef CONFIG_SMP
913 /*
914  * Check whether we need to change the affinity of the interrupt thread.
915  */
916 static void
917 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
918 {
919 	cpumask_var_t mask;
920 	bool valid = true;
921 
922 	if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
923 		return;
924 
925 	/*
926 	 * In case we are out of memory we set IRQTF_AFFINITY again and
927 	 * try again next time
928 	 */
929 	if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
930 		set_bit(IRQTF_AFFINITY, &action->thread_flags);
931 		return;
932 	}
933 
934 	raw_spin_lock_irq(&desc->lock);
935 	/*
936 	 * This code is triggered unconditionally. Check the affinity
937 	 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
938 	 */
939 	if (cpumask_available(desc->irq_common_data.affinity)) {
940 		const struct cpumask *m;
941 
942 		m = irq_data_get_effective_affinity_mask(&desc->irq_data);
943 		cpumask_copy(mask, m);
944 	} else {
945 		valid = false;
946 	}
947 	raw_spin_unlock_irq(&desc->lock);
948 
949 	if (valid)
950 		set_cpus_allowed_ptr(current, mask);
951 	free_cpumask_var(mask);
952 }
953 #else
954 static inline void
955 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
956 #endif
957 
958 /*
959  * Interrupts which are not explicitly requested as threaded
960  * interrupts rely on the implicit bh/preempt disable of the hard irq
961  * context. So we need to disable bh here to avoid deadlocks and other
962  * side effects.
963  */
964 static irqreturn_t
965 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
966 {
967 	irqreturn_t ret;
968 
969 	local_bh_disable();
970 	ret = action->thread_fn(action->irq, action->dev_id);
971 	if (ret == IRQ_HANDLED)
972 		atomic_inc(&desc->threads_handled);
973 
974 	irq_finalize_oneshot(desc, action);
975 	local_bh_enable();
976 	return ret;
977 }
978 
979 /*
980  * Interrupts explicitly requested as threaded interrupts want to be
981  * preemtible - many of them need to sleep and wait for slow busses to
982  * complete.
983  */
984 static irqreturn_t irq_thread_fn(struct irq_desc *desc,
985 		struct irqaction *action)
986 {
987 	irqreturn_t ret;
988 
989 	ret = action->thread_fn(action->irq, action->dev_id);
990 	if (ret == IRQ_HANDLED)
991 		atomic_inc(&desc->threads_handled);
992 
993 	irq_finalize_oneshot(desc, action);
994 	return ret;
995 }
996 
997 static void wake_threads_waitq(struct irq_desc *desc)
998 {
999 	if (atomic_dec_and_test(&desc->threads_active))
1000 		wake_up(&desc->wait_for_threads);
1001 }
1002 
1003 static void irq_thread_dtor(struct callback_head *unused)
1004 {
1005 	struct task_struct *tsk = current;
1006 	struct irq_desc *desc;
1007 	struct irqaction *action;
1008 
1009 	if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
1010 		return;
1011 
1012 	action = kthread_data(tsk);
1013 
1014 	pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
1015 	       tsk->comm, tsk->pid, action->irq);
1016 
1017 
1018 	desc = irq_to_desc(action->irq);
1019 	/*
1020 	 * If IRQTF_RUNTHREAD is set, we need to decrement
1021 	 * desc->threads_active and wake possible waiters.
1022 	 */
1023 	if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1024 		wake_threads_waitq(desc);
1025 
1026 	/* Prevent a stale desc->threads_oneshot */
1027 	irq_finalize_oneshot(desc, action);
1028 }
1029 
1030 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
1031 {
1032 	struct irqaction *secondary = action->secondary;
1033 
1034 	if (WARN_ON_ONCE(!secondary))
1035 		return;
1036 
1037 	raw_spin_lock_irq(&desc->lock);
1038 	__irq_wake_thread(desc, secondary);
1039 	raw_spin_unlock_irq(&desc->lock);
1040 }
1041 
1042 /*
1043  * Interrupt handler thread
1044  */
1045 static int irq_thread(void *data)
1046 {
1047 	struct callback_head on_exit_work;
1048 	struct irqaction *action = data;
1049 	struct irq_desc *desc = irq_to_desc(action->irq);
1050 	irqreturn_t (*handler_fn)(struct irq_desc *desc,
1051 			struct irqaction *action);
1052 
1053 	if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD,
1054 					&action->thread_flags))
1055 		handler_fn = irq_forced_thread_fn;
1056 	else
1057 		handler_fn = irq_thread_fn;
1058 
1059 	init_task_work(&on_exit_work, irq_thread_dtor);
1060 	task_work_add(current, &on_exit_work, false);
1061 
1062 	irq_thread_check_affinity(desc, action);
1063 
1064 	while (!irq_wait_for_interrupt(action)) {
1065 		irqreturn_t action_ret;
1066 
1067 		irq_thread_check_affinity(desc, action);
1068 
1069 		action_ret = handler_fn(desc, action);
1070 		if (action_ret == IRQ_WAKE_THREAD)
1071 			irq_wake_secondary(desc, action);
1072 
1073 		wake_threads_waitq(desc);
1074 	}
1075 
1076 	/*
1077 	 * This is the regular exit path. __free_irq() is stopping the
1078 	 * thread via kthread_stop() after calling
1079 	 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the
1080 	 * oneshot mask bit can be set.
1081 	 */
1082 	task_work_cancel(current, irq_thread_dtor);
1083 	return 0;
1084 }
1085 
1086 /**
1087  *	irq_wake_thread - wake the irq thread for the action identified by dev_id
1088  *	@irq:		Interrupt line
1089  *	@dev_id:	Device identity for which the thread should be woken
1090  *
1091  */
1092 void irq_wake_thread(unsigned int irq, void *dev_id)
1093 {
1094 	struct irq_desc *desc = irq_to_desc(irq);
1095 	struct irqaction *action;
1096 	unsigned long flags;
1097 
1098 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1099 		return;
1100 
1101 	raw_spin_lock_irqsave(&desc->lock, flags);
1102 	for_each_action_of_desc(desc, action) {
1103 		if (action->dev_id == dev_id) {
1104 			if (action->thread)
1105 				__irq_wake_thread(desc, action);
1106 			break;
1107 		}
1108 	}
1109 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1110 }
1111 EXPORT_SYMBOL_GPL(irq_wake_thread);
1112 
1113 static int irq_setup_forced_threading(struct irqaction *new)
1114 {
1115 	if (!force_irqthreads)
1116 		return 0;
1117 	if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1118 		return 0;
1119 
1120 	/*
1121 	 * No further action required for interrupts which are requested as
1122 	 * threaded interrupts already
1123 	 */
1124 	if (new->handler == irq_default_primary_handler)
1125 		return 0;
1126 
1127 	new->flags |= IRQF_ONESHOT;
1128 
1129 	/*
1130 	 * Handle the case where we have a real primary handler and a
1131 	 * thread handler. We force thread them as well by creating a
1132 	 * secondary action.
1133 	 */
1134 	if (new->handler && new->thread_fn) {
1135 		/* Allocate the secondary action */
1136 		new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1137 		if (!new->secondary)
1138 			return -ENOMEM;
1139 		new->secondary->handler = irq_forced_secondary_handler;
1140 		new->secondary->thread_fn = new->thread_fn;
1141 		new->secondary->dev_id = new->dev_id;
1142 		new->secondary->irq = new->irq;
1143 		new->secondary->name = new->name;
1144 	}
1145 	/* Deal with the primary handler */
1146 	set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1147 	new->thread_fn = new->handler;
1148 	new->handler = irq_default_primary_handler;
1149 	return 0;
1150 }
1151 
1152 static int irq_request_resources(struct irq_desc *desc)
1153 {
1154 	struct irq_data *d = &desc->irq_data;
1155 	struct irq_chip *c = d->chip;
1156 
1157 	return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1158 }
1159 
1160 static void irq_release_resources(struct irq_desc *desc)
1161 {
1162 	struct irq_data *d = &desc->irq_data;
1163 	struct irq_chip *c = d->chip;
1164 
1165 	if (c->irq_release_resources)
1166 		c->irq_release_resources(d);
1167 }
1168 
1169 static bool irq_supports_nmi(struct irq_desc *desc)
1170 {
1171 	struct irq_data *d = irq_desc_get_irq_data(desc);
1172 
1173 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
1174 	/* Only IRQs directly managed by the root irqchip can be set as NMI */
1175 	if (d->parent_data)
1176 		return false;
1177 #endif
1178 	/* Don't support NMIs for chips behind a slow bus */
1179 	if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock)
1180 		return false;
1181 
1182 	return d->chip->flags & IRQCHIP_SUPPORTS_NMI;
1183 }
1184 
1185 static int irq_nmi_setup(struct irq_desc *desc)
1186 {
1187 	struct irq_data *d = irq_desc_get_irq_data(desc);
1188 	struct irq_chip *c = d->chip;
1189 
1190 	return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL;
1191 }
1192 
1193 static void irq_nmi_teardown(struct irq_desc *desc)
1194 {
1195 	struct irq_data *d = irq_desc_get_irq_data(desc);
1196 	struct irq_chip *c = d->chip;
1197 
1198 	if (c->irq_nmi_teardown)
1199 		c->irq_nmi_teardown(d);
1200 }
1201 
1202 static int
1203 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1204 {
1205 	struct task_struct *t;
1206 	struct sched_param param = {
1207 		.sched_priority = MAX_USER_RT_PRIO/2,
1208 	};
1209 
1210 	if (!secondary) {
1211 		t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1212 				   new->name);
1213 	} else {
1214 		t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1215 				   new->name);
1216 		param.sched_priority -= 1;
1217 	}
1218 
1219 	if (IS_ERR(t))
1220 		return PTR_ERR(t);
1221 
1222 	sched_setscheduler_nocheck(t, SCHED_FIFO, &param);
1223 
1224 	/*
1225 	 * We keep the reference to the task struct even if
1226 	 * the thread dies to avoid that the interrupt code
1227 	 * references an already freed task_struct.
1228 	 */
1229 	get_task_struct(t);
1230 	new->thread = t;
1231 	/*
1232 	 * Tell the thread to set its affinity. This is
1233 	 * important for shared interrupt handlers as we do
1234 	 * not invoke setup_affinity() for the secondary
1235 	 * handlers as everything is already set up. Even for
1236 	 * interrupts marked with IRQF_NO_BALANCE this is
1237 	 * correct as we want the thread to move to the cpu(s)
1238 	 * on which the requesting code placed the interrupt.
1239 	 */
1240 	set_bit(IRQTF_AFFINITY, &new->thread_flags);
1241 	return 0;
1242 }
1243 
1244 /*
1245  * Internal function to register an irqaction - typically used to
1246  * allocate special interrupts that are part of the architecture.
1247  *
1248  * Locking rules:
1249  *
1250  * desc->request_mutex	Provides serialization against a concurrent free_irq()
1251  *   chip_bus_lock	Provides serialization for slow bus operations
1252  *     desc->lock	Provides serialization against hard interrupts
1253  *
1254  * chip_bus_lock and desc->lock are sufficient for all other management and
1255  * interrupt related functions. desc->request_mutex solely serializes
1256  * request/free_irq().
1257  */
1258 static int
1259 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1260 {
1261 	struct irqaction *old, **old_ptr;
1262 	unsigned long flags, thread_mask = 0;
1263 	int ret, nested, shared = 0;
1264 
1265 	if (!desc)
1266 		return -EINVAL;
1267 
1268 	if (desc->irq_data.chip == &no_irq_chip)
1269 		return -ENOSYS;
1270 	if (!try_module_get(desc->owner))
1271 		return -ENODEV;
1272 
1273 	new->irq = irq;
1274 
1275 	/*
1276 	 * If the trigger type is not specified by the caller,
1277 	 * then use the default for this interrupt.
1278 	 */
1279 	if (!(new->flags & IRQF_TRIGGER_MASK))
1280 		new->flags |= irqd_get_trigger_type(&desc->irq_data);
1281 
1282 	/*
1283 	 * Check whether the interrupt nests into another interrupt
1284 	 * thread.
1285 	 */
1286 	nested = irq_settings_is_nested_thread(desc);
1287 	if (nested) {
1288 		if (!new->thread_fn) {
1289 			ret = -EINVAL;
1290 			goto out_mput;
1291 		}
1292 		/*
1293 		 * Replace the primary handler which was provided from
1294 		 * the driver for non nested interrupt handling by the
1295 		 * dummy function which warns when called.
1296 		 */
1297 		new->handler = irq_nested_primary_handler;
1298 	} else {
1299 		if (irq_settings_can_thread(desc)) {
1300 			ret = irq_setup_forced_threading(new);
1301 			if (ret)
1302 				goto out_mput;
1303 		}
1304 	}
1305 
1306 	/*
1307 	 * Create a handler thread when a thread function is supplied
1308 	 * and the interrupt does not nest into another interrupt
1309 	 * thread.
1310 	 */
1311 	if (new->thread_fn && !nested) {
1312 		ret = setup_irq_thread(new, irq, false);
1313 		if (ret)
1314 			goto out_mput;
1315 		if (new->secondary) {
1316 			ret = setup_irq_thread(new->secondary, irq, true);
1317 			if (ret)
1318 				goto out_thread;
1319 		}
1320 	}
1321 
1322 	/*
1323 	 * Drivers are often written to work w/o knowledge about the
1324 	 * underlying irq chip implementation, so a request for a
1325 	 * threaded irq without a primary hard irq context handler
1326 	 * requires the ONESHOT flag to be set. Some irq chips like
1327 	 * MSI based interrupts are per se one shot safe. Check the
1328 	 * chip flags, so we can avoid the unmask dance at the end of
1329 	 * the threaded handler for those.
1330 	 */
1331 	if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1332 		new->flags &= ~IRQF_ONESHOT;
1333 
1334 	/*
1335 	 * Protects against a concurrent __free_irq() call which might wait
1336 	 * for synchronize_hardirq() to complete without holding the optional
1337 	 * chip bus lock and desc->lock. Also protects against handing out
1338 	 * a recycled oneshot thread_mask bit while it's still in use by
1339 	 * its previous owner.
1340 	 */
1341 	mutex_lock(&desc->request_mutex);
1342 
1343 	/*
1344 	 * Acquire bus lock as the irq_request_resources() callback below
1345 	 * might rely on the serialization or the magic power management
1346 	 * functions which are abusing the irq_bus_lock() callback,
1347 	 */
1348 	chip_bus_lock(desc);
1349 
1350 	/* First installed action requests resources. */
1351 	if (!desc->action) {
1352 		ret = irq_request_resources(desc);
1353 		if (ret) {
1354 			pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1355 			       new->name, irq, desc->irq_data.chip->name);
1356 			goto out_bus_unlock;
1357 		}
1358 	}
1359 
1360 	/*
1361 	 * The following block of code has to be executed atomically
1362 	 * protected against a concurrent interrupt and any of the other
1363 	 * management calls which are not serialized via
1364 	 * desc->request_mutex or the optional bus lock.
1365 	 */
1366 	raw_spin_lock_irqsave(&desc->lock, flags);
1367 	old_ptr = &desc->action;
1368 	old = *old_ptr;
1369 	if (old) {
1370 		/*
1371 		 * Can't share interrupts unless both agree to and are
1372 		 * the same type (level, edge, polarity). So both flag
1373 		 * fields must have IRQF_SHARED set and the bits which
1374 		 * set the trigger type must match. Also all must
1375 		 * agree on ONESHOT.
1376 		 * Interrupt lines used for NMIs cannot be shared.
1377 		 */
1378 		unsigned int oldtype;
1379 
1380 		if (desc->istate & IRQS_NMI) {
1381 			pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n",
1382 				new->name, irq, desc->irq_data.chip->name);
1383 			ret = -EINVAL;
1384 			goto out_unlock;
1385 		}
1386 
1387 		/*
1388 		 * If nobody did set the configuration before, inherit
1389 		 * the one provided by the requester.
1390 		 */
1391 		if (irqd_trigger_type_was_set(&desc->irq_data)) {
1392 			oldtype = irqd_get_trigger_type(&desc->irq_data);
1393 		} else {
1394 			oldtype = new->flags & IRQF_TRIGGER_MASK;
1395 			irqd_set_trigger_type(&desc->irq_data, oldtype);
1396 		}
1397 
1398 		if (!((old->flags & new->flags) & IRQF_SHARED) ||
1399 		    (oldtype != (new->flags & IRQF_TRIGGER_MASK)) ||
1400 		    ((old->flags ^ new->flags) & IRQF_ONESHOT))
1401 			goto mismatch;
1402 
1403 		/* All handlers must agree on per-cpuness */
1404 		if ((old->flags & IRQF_PERCPU) !=
1405 		    (new->flags & IRQF_PERCPU))
1406 			goto mismatch;
1407 
1408 		/* add new interrupt at end of irq queue */
1409 		do {
1410 			/*
1411 			 * Or all existing action->thread_mask bits,
1412 			 * so we can find the next zero bit for this
1413 			 * new action.
1414 			 */
1415 			thread_mask |= old->thread_mask;
1416 			old_ptr = &old->next;
1417 			old = *old_ptr;
1418 		} while (old);
1419 		shared = 1;
1420 	}
1421 
1422 	/*
1423 	 * Setup the thread mask for this irqaction for ONESHOT. For
1424 	 * !ONESHOT irqs the thread mask is 0 so we can avoid a
1425 	 * conditional in irq_wake_thread().
1426 	 */
1427 	if (new->flags & IRQF_ONESHOT) {
1428 		/*
1429 		 * Unlikely to have 32 resp 64 irqs sharing one line,
1430 		 * but who knows.
1431 		 */
1432 		if (thread_mask == ~0UL) {
1433 			ret = -EBUSY;
1434 			goto out_unlock;
1435 		}
1436 		/*
1437 		 * The thread_mask for the action is or'ed to
1438 		 * desc->thread_active to indicate that the
1439 		 * IRQF_ONESHOT thread handler has been woken, but not
1440 		 * yet finished. The bit is cleared when a thread
1441 		 * completes. When all threads of a shared interrupt
1442 		 * line have completed desc->threads_active becomes
1443 		 * zero and the interrupt line is unmasked. See
1444 		 * handle.c:irq_wake_thread() for further information.
1445 		 *
1446 		 * If no thread is woken by primary (hard irq context)
1447 		 * interrupt handlers, then desc->threads_active is
1448 		 * also checked for zero to unmask the irq line in the
1449 		 * affected hard irq flow handlers
1450 		 * (handle_[fasteoi|level]_irq).
1451 		 *
1452 		 * The new action gets the first zero bit of
1453 		 * thread_mask assigned. See the loop above which or's
1454 		 * all existing action->thread_mask bits.
1455 		 */
1456 		new->thread_mask = 1UL << ffz(thread_mask);
1457 
1458 	} else if (new->handler == irq_default_primary_handler &&
1459 		   !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1460 		/*
1461 		 * The interrupt was requested with handler = NULL, so
1462 		 * we use the default primary handler for it. But it
1463 		 * does not have the oneshot flag set. In combination
1464 		 * with level interrupts this is deadly, because the
1465 		 * default primary handler just wakes the thread, then
1466 		 * the irq lines is reenabled, but the device still
1467 		 * has the level irq asserted. Rinse and repeat....
1468 		 *
1469 		 * While this works for edge type interrupts, we play
1470 		 * it safe and reject unconditionally because we can't
1471 		 * say for sure which type this interrupt really
1472 		 * has. The type flags are unreliable as the
1473 		 * underlying chip implementation can override them.
1474 		 */
1475 		pr_err("Threaded irq requested with handler=NULL and !ONESHOT for irq %d\n",
1476 		       irq);
1477 		ret = -EINVAL;
1478 		goto out_unlock;
1479 	}
1480 
1481 	if (!shared) {
1482 		init_waitqueue_head(&desc->wait_for_threads);
1483 
1484 		/* Setup the type (level, edge polarity) if configured: */
1485 		if (new->flags & IRQF_TRIGGER_MASK) {
1486 			ret = __irq_set_trigger(desc,
1487 						new->flags & IRQF_TRIGGER_MASK);
1488 
1489 			if (ret)
1490 				goto out_unlock;
1491 		}
1492 
1493 		/*
1494 		 * Activate the interrupt. That activation must happen
1495 		 * independently of IRQ_NOAUTOEN. request_irq() can fail
1496 		 * and the callers are supposed to handle
1497 		 * that. enable_irq() of an interrupt requested with
1498 		 * IRQ_NOAUTOEN is not supposed to fail. The activation
1499 		 * keeps it in shutdown mode, it merily associates
1500 		 * resources if necessary and if that's not possible it
1501 		 * fails. Interrupts which are in managed shutdown mode
1502 		 * will simply ignore that activation request.
1503 		 */
1504 		ret = irq_activate(desc);
1505 		if (ret)
1506 			goto out_unlock;
1507 
1508 		desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1509 				  IRQS_ONESHOT | IRQS_WAITING);
1510 		irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1511 
1512 		if (new->flags & IRQF_PERCPU) {
1513 			irqd_set(&desc->irq_data, IRQD_PER_CPU);
1514 			irq_settings_set_per_cpu(desc);
1515 		}
1516 
1517 		if (new->flags & IRQF_ONESHOT)
1518 			desc->istate |= IRQS_ONESHOT;
1519 
1520 		/* Exclude IRQ from balancing if requested */
1521 		if (new->flags & IRQF_NOBALANCING) {
1522 			irq_settings_set_no_balancing(desc);
1523 			irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1524 		}
1525 
1526 		if (irq_settings_can_autoenable(desc)) {
1527 			irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1528 		} else {
1529 			/*
1530 			 * Shared interrupts do not go well with disabling
1531 			 * auto enable. The sharing interrupt might request
1532 			 * it while it's still disabled and then wait for
1533 			 * interrupts forever.
1534 			 */
1535 			WARN_ON_ONCE(new->flags & IRQF_SHARED);
1536 			/* Undo nested disables: */
1537 			desc->depth = 1;
1538 		}
1539 
1540 	} else if (new->flags & IRQF_TRIGGER_MASK) {
1541 		unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1542 		unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1543 
1544 		if (nmsk != omsk)
1545 			/* hope the handler works with current  trigger mode */
1546 			pr_warn("irq %d uses trigger mode %u; requested %u\n",
1547 				irq, omsk, nmsk);
1548 	}
1549 
1550 	*old_ptr = new;
1551 
1552 	irq_pm_install_action(desc, new);
1553 
1554 	/* Reset broken irq detection when installing new handler */
1555 	desc->irq_count = 0;
1556 	desc->irqs_unhandled = 0;
1557 
1558 	/*
1559 	 * Check whether we disabled the irq via the spurious handler
1560 	 * before. Reenable it and give it another chance.
1561 	 */
1562 	if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1563 		desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1564 		__enable_irq(desc);
1565 	}
1566 
1567 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1568 	chip_bus_sync_unlock(desc);
1569 	mutex_unlock(&desc->request_mutex);
1570 
1571 	irq_setup_timings(desc, new);
1572 
1573 	/*
1574 	 * Strictly no need to wake it up, but hung_task complains
1575 	 * when no hard interrupt wakes the thread up.
1576 	 */
1577 	if (new->thread)
1578 		wake_up_process(new->thread);
1579 	if (new->secondary)
1580 		wake_up_process(new->secondary->thread);
1581 
1582 	register_irq_proc(irq, desc);
1583 	new->dir = NULL;
1584 	register_handler_proc(irq, new);
1585 	return 0;
1586 
1587 mismatch:
1588 	if (!(new->flags & IRQF_PROBE_SHARED)) {
1589 		pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1590 		       irq, new->flags, new->name, old->flags, old->name);
1591 #ifdef CONFIG_DEBUG_SHIRQ
1592 		dump_stack();
1593 #endif
1594 	}
1595 	ret = -EBUSY;
1596 
1597 out_unlock:
1598 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1599 
1600 	if (!desc->action)
1601 		irq_release_resources(desc);
1602 out_bus_unlock:
1603 	chip_bus_sync_unlock(desc);
1604 	mutex_unlock(&desc->request_mutex);
1605 
1606 out_thread:
1607 	if (new->thread) {
1608 		struct task_struct *t = new->thread;
1609 
1610 		new->thread = NULL;
1611 		kthread_stop(t);
1612 		put_task_struct(t);
1613 	}
1614 	if (new->secondary && new->secondary->thread) {
1615 		struct task_struct *t = new->secondary->thread;
1616 
1617 		new->secondary->thread = NULL;
1618 		kthread_stop(t);
1619 		put_task_struct(t);
1620 	}
1621 out_mput:
1622 	module_put(desc->owner);
1623 	return ret;
1624 }
1625 
1626 /**
1627  *	setup_irq - setup an interrupt
1628  *	@irq: Interrupt line to setup
1629  *	@act: irqaction for the interrupt
1630  *
1631  * Used to statically setup interrupts in the early boot process.
1632  */
1633 int setup_irq(unsigned int irq, struct irqaction *act)
1634 {
1635 	int retval;
1636 	struct irq_desc *desc = irq_to_desc(irq);
1637 
1638 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1639 		return -EINVAL;
1640 
1641 	retval = irq_chip_pm_get(&desc->irq_data);
1642 	if (retval < 0)
1643 		return retval;
1644 
1645 	retval = __setup_irq(irq, desc, act);
1646 
1647 	if (retval)
1648 		irq_chip_pm_put(&desc->irq_data);
1649 
1650 	return retval;
1651 }
1652 EXPORT_SYMBOL_GPL(setup_irq);
1653 
1654 /*
1655  * Internal function to unregister an irqaction - used to free
1656  * regular and special interrupts that are part of the architecture.
1657  */
1658 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1659 {
1660 	unsigned irq = desc->irq_data.irq;
1661 	struct irqaction *action, **action_ptr;
1662 	unsigned long flags;
1663 
1664 	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1665 
1666 	mutex_lock(&desc->request_mutex);
1667 	chip_bus_lock(desc);
1668 	raw_spin_lock_irqsave(&desc->lock, flags);
1669 
1670 	/*
1671 	 * There can be multiple actions per IRQ descriptor, find the right
1672 	 * one based on the dev_id:
1673 	 */
1674 	action_ptr = &desc->action;
1675 	for (;;) {
1676 		action = *action_ptr;
1677 
1678 		if (!action) {
1679 			WARN(1, "Trying to free already-free IRQ %d\n", irq);
1680 			raw_spin_unlock_irqrestore(&desc->lock, flags);
1681 			chip_bus_sync_unlock(desc);
1682 			mutex_unlock(&desc->request_mutex);
1683 			return NULL;
1684 		}
1685 
1686 		if (action->dev_id == dev_id)
1687 			break;
1688 		action_ptr = &action->next;
1689 	}
1690 
1691 	/* Found it - now remove it from the list of entries: */
1692 	*action_ptr = action->next;
1693 
1694 	irq_pm_remove_action(desc, action);
1695 
1696 	/* If this was the last handler, shut down the IRQ line: */
1697 	if (!desc->action) {
1698 		irq_settings_clr_disable_unlazy(desc);
1699 		irq_shutdown(desc);
1700 	}
1701 
1702 #ifdef CONFIG_SMP
1703 	/* make sure affinity_hint is cleaned up */
1704 	if (WARN_ON_ONCE(desc->affinity_hint))
1705 		desc->affinity_hint = NULL;
1706 #endif
1707 
1708 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1709 	/*
1710 	 * Drop bus_lock here so the changes which were done in the chip
1711 	 * callbacks above are synced out to the irq chips which hang
1712 	 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq().
1713 	 *
1714 	 * Aside of that the bus_lock can also be taken from the threaded
1715 	 * handler in irq_finalize_oneshot() which results in a deadlock
1716 	 * because kthread_stop() would wait forever for the thread to
1717 	 * complete, which is blocked on the bus lock.
1718 	 *
1719 	 * The still held desc->request_mutex() protects against a
1720 	 * concurrent request_irq() of this irq so the release of resources
1721 	 * and timing data is properly serialized.
1722 	 */
1723 	chip_bus_sync_unlock(desc);
1724 
1725 	unregister_handler_proc(irq, action);
1726 
1727 	/* Make sure it's not being used on another CPU: */
1728 	synchronize_hardirq(irq);
1729 
1730 #ifdef CONFIG_DEBUG_SHIRQ
1731 	/*
1732 	 * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1733 	 * event to happen even now it's being freed, so let's make sure that
1734 	 * is so by doing an extra call to the handler ....
1735 	 *
1736 	 * ( We do this after actually deregistering it, to make sure that a
1737 	 *   'real' IRQ doesn't run in parallel with our fake. )
1738 	 */
1739 	if (action->flags & IRQF_SHARED) {
1740 		local_irq_save(flags);
1741 		action->handler(irq, dev_id);
1742 		local_irq_restore(flags);
1743 	}
1744 #endif
1745 
1746 	/*
1747 	 * The action has already been removed above, but the thread writes
1748 	 * its oneshot mask bit when it completes. Though request_mutex is
1749 	 * held across this which prevents __setup_irq() from handing out
1750 	 * the same bit to a newly requested action.
1751 	 */
1752 	if (action->thread) {
1753 		kthread_stop(action->thread);
1754 		put_task_struct(action->thread);
1755 		if (action->secondary && action->secondary->thread) {
1756 			kthread_stop(action->secondary->thread);
1757 			put_task_struct(action->secondary->thread);
1758 		}
1759 	}
1760 
1761 	/* Last action releases resources */
1762 	if (!desc->action) {
1763 		/*
1764 		 * Reaquire bus lock as irq_release_resources() might
1765 		 * require it to deallocate resources over the slow bus.
1766 		 */
1767 		chip_bus_lock(desc);
1768 		irq_release_resources(desc);
1769 		chip_bus_sync_unlock(desc);
1770 		irq_remove_timings(desc);
1771 	}
1772 
1773 	mutex_unlock(&desc->request_mutex);
1774 
1775 	irq_chip_pm_put(&desc->irq_data);
1776 	module_put(desc->owner);
1777 	kfree(action->secondary);
1778 	return action;
1779 }
1780 
1781 /**
1782  *	remove_irq - free an interrupt
1783  *	@irq: Interrupt line to free
1784  *	@act: irqaction for the interrupt
1785  *
1786  * Used to remove interrupts statically setup by the early boot process.
1787  */
1788 void remove_irq(unsigned int irq, struct irqaction *act)
1789 {
1790 	struct irq_desc *desc = irq_to_desc(irq);
1791 
1792 	if (desc && !WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1793 		__free_irq(desc, act->dev_id);
1794 }
1795 EXPORT_SYMBOL_GPL(remove_irq);
1796 
1797 /**
1798  *	free_irq - free an interrupt allocated with request_irq
1799  *	@irq: Interrupt line to free
1800  *	@dev_id: Device identity to free
1801  *
1802  *	Remove an interrupt handler. The handler is removed and if the
1803  *	interrupt line is no longer in use by any driver it is disabled.
1804  *	On a shared IRQ the caller must ensure the interrupt is disabled
1805  *	on the card it drives before calling this function. The function
1806  *	does not return until any executing interrupts for this IRQ
1807  *	have completed.
1808  *
1809  *	This function must not be called from interrupt context.
1810  *
1811  *	Returns the devname argument passed to request_irq.
1812  */
1813 const void *free_irq(unsigned int irq, void *dev_id)
1814 {
1815 	struct irq_desc *desc = irq_to_desc(irq);
1816 	struct irqaction *action;
1817 	const char *devname;
1818 
1819 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1820 		return NULL;
1821 
1822 #ifdef CONFIG_SMP
1823 	if (WARN_ON(desc->affinity_notify))
1824 		desc->affinity_notify = NULL;
1825 #endif
1826 
1827 	action = __free_irq(desc, dev_id);
1828 
1829 	if (!action)
1830 		return NULL;
1831 
1832 	devname = action->name;
1833 	kfree(action);
1834 	return devname;
1835 }
1836 EXPORT_SYMBOL(free_irq);
1837 
1838 /* This function must be called with desc->lock held */
1839 static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc)
1840 {
1841 	const char *devname = NULL;
1842 
1843 	desc->istate &= ~IRQS_NMI;
1844 
1845 	if (!WARN_ON(desc->action == NULL)) {
1846 		irq_pm_remove_action(desc, desc->action);
1847 		devname = desc->action->name;
1848 		unregister_handler_proc(irq, desc->action);
1849 
1850 		kfree(desc->action);
1851 		desc->action = NULL;
1852 	}
1853 
1854 	irq_settings_clr_disable_unlazy(desc);
1855 	irq_shutdown(desc);
1856 
1857 	irq_release_resources(desc);
1858 
1859 	irq_chip_pm_put(&desc->irq_data);
1860 	module_put(desc->owner);
1861 
1862 	return devname;
1863 }
1864 
1865 const void *free_nmi(unsigned int irq, void *dev_id)
1866 {
1867 	struct irq_desc *desc = irq_to_desc(irq);
1868 	unsigned long flags;
1869 	const void *devname;
1870 
1871 	if (!desc || WARN_ON(!(desc->istate & IRQS_NMI)))
1872 		return NULL;
1873 
1874 	if (WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1875 		return NULL;
1876 
1877 	/* NMI still enabled */
1878 	if (WARN_ON(desc->depth == 0))
1879 		disable_nmi_nosync(irq);
1880 
1881 	raw_spin_lock_irqsave(&desc->lock, flags);
1882 
1883 	irq_nmi_teardown(desc);
1884 	devname = __cleanup_nmi(irq, desc);
1885 
1886 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1887 
1888 	return devname;
1889 }
1890 
1891 /**
1892  *	request_threaded_irq - allocate an interrupt line
1893  *	@irq: Interrupt line to allocate
1894  *	@handler: Function to be called when the IRQ occurs.
1895  *		  Primary handler for threaded interrupts
1896  *		  If NULL and thread_fn != NULL the default
1897  *		  primary handler is installed
1898  *	@thread_fn: Function called from the irq handler thread
1899  *		    If NULL, no irq thread is created
1900  *	@irqflags: Interrupt type flags
1901  *	@devname: An ascii name for the claiming device
1902  *	@dev_id: A cookie passed back to the handler function
1903  *
1904  *	This call allocates interrupt resources and enables the
1905  *	interrupt line and IRQ handling. From the point this
1906  *	call is made your handler function may be invoked. Since
1907  *	your handler function must clear any interrupt the board
1908  *	raises, you must take care both to initialise your hardware
1909  *	and to set up the interrupt handler in the right order.
1910  *
1911  *	If you want to set up a threaded irq handler for your device
1912  *	then you need to supply @handler and @thread_fn. @handler is
1913  *	still called in hard interrupt context and has to check
1914  *	whether the interrupt originates from the device. If yes it
1915  *	needs to disable the interrupt on the device and return
1916  *	IRQ_WAKE_THREAD which will wake up the handler thread and run
1917  *	@thread_fn. This split handler design is necessary to support
1918  *	shared interrupts.
1919  *
1920  *	Dev_id must be globally unique. Normally the address of the
1921  *	device data structure is used as the cookie. Since the handler
1922  *	receives this value it makes sense to use it.
1923  *
1924  *	If your interrupt is shared you must pass a non NULL dev_id
1925  *	as this is required when freeing the interrupt.
1926  *
1927  *	Flags:
1928  *
1929  *	IRQF_SHARED		Interrupt is shared
1930  *	IRQF_TRIGGER_*		Specify active edge(s) or level
1931  *
1932  */
1933 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
1934 			 irq_handler_t thread_fn, unsigned long irqflags,
1935 			 const char *devname, void *dev_id)
1936 {
1937 	struct irqaction *action;
1938 	struct irq_desc *desc;
1939 	int retval;
1940 
1941 	if (irq == IRQ_NOTCONNECTED)
1942 		return -ENOTCONN;
1943 
1944 	/*
1945 	 * Sanity-check: shared interrupts must pass in a real dev-ID,
1946 	 * otherwise we'll have trouble later trying to figure out
1947 	 * which interrupt is which (messes up the interrupt freeing
1948 	 * logic etc).
1949 	 *
1950 	 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
1951 	 * it cannot be set along with IRQF_NO_SUSPEND.
1952 	 */
1953 	if (((irqflags & IRQF_SHARED) && !dev_id) ||
1954 	    (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
1955 	    ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
1956 		return -EINVAL;
1957 
1958 	desc = irq_to_desc(irq);
1959 	if (!desc)
1960 		return -EINVAL;
1961 
1962 	if (!irq_settings_can_request(desc) ||
1963 	    WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1964 		return -EINVAL;
1965 
1966 	if (!handler) {
1967 		if (!thread_fn)
1968 			return -EINVAL;
1969 		handler = irq_default_primary_handler;
1970 	}
1971 
1972 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1973 	if (!action)
1974 		return -ENOMEM;
1975 
1976 	action->handler = handler;
1977 	action->thread_fn = thread_fn;
1978 	action->flags = irqflags;
1979 	action->name = devname;
1980 	action->dev_id = dev_id;
1981 
1982 	retval = irq_chip_pm_get(&desc->irq_data);
1983 	if (retval < 0) {
1984 		kfree(action);
1985 		return retval;
1986 	}
1987 
1988 	retval = __setup_irq(irq, desc, action);
1989 
1990 	if (retval) {
1991 		irq_chip_pm_put(&desc->irq_data);
1992 		kfree(action->secondary);
1993 		kfree(action);
1994 	}
1995 
1996 #ifdef CONFIG_DEBUG_SHIRQ_FIXME
1997 	if (!retval && (irqflags & IRQF_SHARED)) {
1998 		/*
1999 		 * It's a shared IRQ -- the driver ought to be prepared for it
2000 		 * to happen immediately, so let's make sure....
2001 		 * We disable the irq to make sure that a 'real' IRQ doesn't
2002 		 * run in parallel with our fake.
2003 		 */
2004 		unsigned long flags;
2005 
2006 		disable_irq(irq);
2007 		local_irq_save(flags);
2008 
2009 		handler(irq, dev_id);
2010 
2011 		local_irq_restore(flags);
2012 		enable_irq(irq);
2013 	}
2014 #endif
2015 	return retval;
2016 }
2017 EXPORT_SYMBOL(request_threaded_irq);
2018 
2019 /**
2020  *	request_any_context_irq - allocate an interrupt line
2021  *	@irq: Interrupt line to allocate
2022  *	@handler: Function to be called when the IRQ occurs.
2023  *		  Threaded handler for threaded interrupts.
2024  *	@flags: Interrupt type flags
2025  *	@name: An ascii name for the claiming device
2026  *	@dev_id: A cookie passed back to the handler function
2027  *
2028  *	This call allocates interrupt resources and enables the
2029  *	interrupt line and IRQ handling. It selects either a
2030  *	hardirq or threaded handling method depending on the
2031  *	context.
2032  *
2033  *	On failure, it returns a negative value. On success,
2034  *	it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
2035  */
2036 int request_any_context_irq(unsigned int irq, irq_handler_t handler,
2037 			    unsigned long flags, const char *name, void *dev_id)
2038 {
2039 	struct irq_desc *desc;
2040 	int ret;
2041 
2042 	if (irq == IRQ_NOTCONNECTED)
2043 		return -ENOTCONN;
2044 
2045 	desc = irq_to_desc(irq);
2046 	if (!desc)
2047 		return -EINVAL;
2048 
2049 	if (irq_settings_is_nested_thread(desc)) {
2050 		ret = request_threaded_irq(irq, NULL, handler,
2051 					   flags, name, dev_id);
2052 		return !ret ? IRQC_IS_NESTED : ret;
2053 	}
2054 
2055 	ret = request_irq(irq, handler, flags, name, dev_id);
2056 	return !ret ? IRQC_IS_HARDIRQ : ret;
2057 }
2058 EXPORT_SYMBOL_GPL(request_any_context_irq);
2059 
2060 /**
2061  *	request_nmi - allocate an interrupt line for NMI delivery
2062  *	@irq: Interrupt line to allocate
2063  *	@handler: Function to be called when the IRQ occurs.
2064  *		  Threaded handler for threaded interrupts.
2065  *	@irqflags: Interrupt type flags
2066  *	@name: An ascii name for the claiming device
2067  *	@dev_id: A cookie passed back to the handler function
2068  *
2069  *	This call allocates interrupt resources and enables the
2070  *	interrupt line and IRQ handling. It sets up the IRQ line
2071  *	to be handled as an NMI.
2072  *
2073  *	An interrupt line delivering NMIs cannot be shared and IRQ handling
2074  *	cannot be threaded.
2075  *
2076  *	Interrupt lines requested for NMI delivering must produce per cpu
2077  *	interrupts and have auto enabling setting disabled.
2078  *
2079  *	Dev_id must be globally unique. Normally the address of the
2080  *	device data structure is used as the cookie. Since the handler
2081  *	receives this value it makes sense to use it.
2082  *
2083  *	If the interrupt line cannot be used to deliver NMIs, function
2084  *	will fail and return a negative value.
2085  */
2086 int request_nmi(unsigned int irq, irq_handler_t handler,
2087 		unsigned long irqflags, const char *name, void *dev_id)
2088 {
2089 	struct irqaction *action;
2090 	struct irq_desc *desc;
2091 	unsigned long flags;
2092 	int retval;
2093 
2094 	if (irq == IRQ_NOTCONNECTED)
2095 		return -ENOTCONN;
2096 
2097 	/* NMI cannot be shared, used for Polling */
2098 	if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL))
2099 		return -EINVAL;
2100 
2101 	if (!(irqflags & IRQF_PERCPU))
2102 		return -EINVAL;
2103 
2104 	if (!handler)
2105 		return -EINVAL;
2106 
2107 	desc = irq_to_desc(irq);
2108 
2109 	if (!desc || irq_settings_can_autoenable(desc) ||
2110 	    !irq_settings_can_request(desc) ||
2111 	    WARN_ON(irq_settings_is_per_cpu_devid(desc)) ||
2112 	    !irq_supports_nmi(desc))
2113 		return -EINVAL;
2114 
2115 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2116 	if (!action)
2117 		return -ENOMEM;
2118 
2119 	action->handler = handler;
2120 	action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING;
2121 	action->name = name;
2122 	action->dev_id = dev_id;
2123 
2124 	retval = irq_chip_pm_get(&desc->irq_data);
2125 	if (retval < 0)
2126 		goto err_out;
2127 
2128 	retval = __setup_irq(irq, desc, action);
2129 	if (retval)
2130 		goto err_irq_setup;
2131 
2132 	raw_spin_lock_irqsave(&desc->lock, flags);
2133 
2134 	/* Setup NMI state */
2135 	desc->istate |= IRQS_NMI;
2136 	retval = irq_nmi_setup(desc);
2137 	if (retval) {
2138 		__cleanup_nmi(irq, desc);
2139 		raw_spin_unlock_irqrestore(&desc->lock, flags);
2140 		return -EINVAL;
2141 	}
2142 
2143 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2144 
2145 	return 0;
2146 
2147 err_irq_setup:
2148 	irq_chip_pm_put(&desc->irq_data);
2149 err_out:
2150 	kfree(action);
2151 
2152 	return retval;
2153 }
2154 
2155 void enable_percpu_irq(unsigned int irq, unsigned int type)
2156 {
2157 	unsigned int cpu = smp_processor_id();
2158 	unsigned long flags;
2159 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2160 
2161 	if (!desc)
2162 		return;
2163 
2164 	/*
2165 	 * If the trigger type is not specified by the caller, then
2166 	 * use the default for this interrupt.
2167 	 */
2168 	type &= IRQ_TYPE_SENSE_MASK;
2169 	if (type == IRQ_TYPE_NONE)
2170 		type = irqd_get_trigger_type(&desc->irq_data);
2171 
2172 	if (type != IRQ_TYPE_NONE) {
2173 		int ret;
2174 
2175 		ret = __irq_set_trigger(desc, type);
2176 
2177 		if (ret) {
2178 			WARN(1, "failed to set type for IRQ%d\n", irq);
2179 			goto out;
2180 		}
2181 	}
2182 
2183 	irq_percpu_enable(desc, cpu);
2184 out:
2185 	irq_put_desc_unlock(desc, flags);
2186 }
2187 EXPORT_SYMBOL_GPL(enable_percpu_irq);
2188 
2189 void enable_percpu_nmi(unsigned int irq, unsigned int type)
2190 {
2191 	enable_percpu_irq(irq, type);
2192 }
2193 
2194 /**
2195  * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
2196  * @irq:	Linux irq number to check for
2197  *
2198  * Must be called from a non migratable context. Returns the enable
2199  * state of a per cpu interrupt on the current cpu.
2200  */
2201 bool irq_percpu_is_enabled(unsigned int irq)
2202 {
2203 	unsigned int cpu = smp_processor_id();
2204 	struct irq_desc *desc;
2205 	unsigned long flags;
2206 	bool is_enabled;
2207 
2208 	desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2209 	if (!desc)
2210 		return false;
2211 
2212 	is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
2213 	irq_put_desc_unlock(desc, flags);
2214 
2215 	return is_enabled;
2216 }
2217 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
2218 
2219 void disable_percpu_irq(unsigned int irq)
2220 {
2221 	unsigned int cpu = smp_processor_id();
2222 	unsigned long flags;
2223 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2224 
2225 	if (!desc)
2226 		return;
2227 
2228 	irq_percpu_disable(desc, cpu);
2229 	irq_put_desc_unlock(desc, flags);
2230 }
2231 EXPORT_SYMBOL_GPL(disable_percpu_irq);
2232 
2233 void disable_percpu_nmi(unsigned int irq)
2234 {
2235 	disable_percpu_irq(irq);
2236 }
2237 
2238 /*
2239  * Internal function to unregister a percpu irqaction.
2240  */
2241 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2242 {
2243 	struct irq_desc *desc = irq_to_desc(irq);
2244 	struct irqaction *action;
2245 	unsigned long flags;
2246 
2247 	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
2248 
2249 	if (!desc)
2250 		return NULL;
2251 
2252 	raw_spin_lock_irqsave(&desc->lock, flags);
2253 
2254 	action = desc->action;
2255 	if (!action || action->percpu_dev_id != dev_id) {
2256 		WARN(1, "Trying to free already-free IRQ %d\n", irq);
2257 		goto bad;
2258 	}
2259 
2260 	if (!cpumask_empty(desc->percpu_enabled)) {
2261 		WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
2262 		     irq, cpumask_first(desc->percpu_enabled));
2263 		goto bad;
2264 	}
2265 
2266 	/* Found it - now remove it from the list of entries: */
2267 	desc->action = NULL;
2268 
2269 	desc->istate &= ~IRQS_NMI;
2270 
2271 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2272 
2273 	unregister_handler_proc(irq, action);
2274 
2275 	irq_chip_pm_put(&desc->irq_data);
2276 	module_put(desc->owner);
2277 	return action;
2278 
2279 bad:
2280 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2281 	return NULL;
2282 }
2283 
2284 /**
2285  *	remove_percpu_irq - free a per-cpu interrupt
2286  *	@irq: Interrupt line to free
2287  *	@act: irqaction for the interrupt
2288  *
2289  * Used to remove interrupts statically setup by the early boot process.
2290  */
2291 void remove_percpu_irq(unsigned int irq, struct irqaction *act)
2292 {
2293 	struct irq_desc *desc = irq_to_desc(irq);
2294 
2295 	if (desc && irq_settings_is_per_cpu_devid(desc))
2296 	    __free_percpu_irq(irq, act->percpu_dev_id);
2297 }
2298 
2299 /**
2300  *	free_percpu_irq - free an interrupt allocated with request_percpu_irq
2301  *	@irq: Interrupt line to free
2302  *	@dev_id: Device identity to free
2303  *
2304  *	Remove a percpu interrupt handler. The handler is removed, but
2305  *	the interrupt line is not disabled. This must be done on each
2306  *	CPU before calling this function. The function does not return
2307  *	until any executing interrupts for this IRQ have completed.
2308  *
2309  *	This function must not be called from interrupt context.
2310  */
2311 void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2312 {
2313 	struct irq_desc *desc = irq_to_desc(irq);
2314 
2315 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2316 		return;
2317 
2318 	chip_bus_lock(desc);
2319 	kfree(__free_percpu_irq(irq, dev_id));
2320 	chip_bus_sync_unlock(desc);
2321 }
2322 EXPORT_SYMBOL_GPL(free_percpu_irq);
2323 
2324 void free_percpu_nmi(unsigned int irq, void __percpu *dev_id)
2325 {
2326 	struct irq_desc *desc = irq_to_desc(irq);
2327 
2328 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2329 		return;
2330 
2331 	if (WARN_ON(!(desc->istate & IRQS_NMI)))
2332 		return;
2333 
2334 	kfree(__free_percpu_irq(irq, dev_id));
2335 }
2336 
2337 /**
2338  *	setup_percpu_irq - setup a per-cpu interrupt
2339  *	@irq: Interrupt line to setup
2340  *	@act: irqaction for the interrupt
2341  *
2342  * Used to statically setup per-cpu interrupts in the early boot process.
2343  */
2344 int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2345 {
2346 	struct irq_desc *desc = irq_to_desc(irq);
2347 	int retval;
2348 
2349 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2350 		return -EINVAL;
2351 
2352 	retval = irq_chip_pm_get(&desc->irq_data);
2353 	if (retval < 0)
2354 		return retval;
2355 
2356 	retval = __setup_irq(irq, desc, act);
2357 
2358 	if (retval)
2359 		irq_chip_pm_put(&desc->irq_data);
2360 
2361 	return retval;
2362 }
2363 
2364 /**
2365  *	__request_percpu_irq - allocate a percpu interrupt line
2366  *	@irq: Interrupt line to allocate
2367  *	@handler: Function to be called when the IRQ occurs.
2368  *	@flags: Interrupt type flags (IRQF_TIMER only)
2369  *	@devname: An ascii name for the claiming device
2370  *	@dev_id: A percpu cookie passed back to the handler function
2371  *
2372  *	This call allocates interrupt resources and enables the
2373  *	interrupt on the local CPU. If the interrupt is supposed to be
2374  *	enabled on other CPUs, it has to be done on each CPU using
2375  *	enable_percpu_irq().
2376  *
2377  *	Dev_id must be globally unique. It is a per-cpu variable, and
2378  *	the handler gets called with the interrupted CPU's instance of
2379  *	that variable.
2380  */
2381 int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2382 			 unsigned long flags, const char *devname,
2383 			 void __percpu *dev_id)
2384 {
2385 	struct irqaction *action;
2386 	struct irq_desc *desc;
2387 	int retval;
2388 
2389 	if (!dev_id)
2390 		return -EINVAL;
2391 
2392 	desc = irq_to_desc(irq);
2393 	if (!desc || !irq_settings_can_request(desc) ||
2394 	    !irq_settings_is_per_cpu_devid(desc))
2395 		return -EINVAL;
2396 
2397 	if (flags && flags != IRQF_TIMER)
2398 		return -EINVAL;
2399 
2400 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2401 	if (!action)
2402 		return -ENOMEM;
2403 
2404 	action->handler = handler;
2405 	action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2406 	action->name = devname;
2407 	action->percpu_dev_id = dev_id;
2408 
2409 	retval = irq_chip_pm_get(&desc->irq_data);
2410 	if (retval < 0) {
2411 		kfree(action);
2412 		return retval;
2413 	}
2414 
2415 	retval = __setup_irq(irq, desc, action);
2416 
2417 	if (retval) {
2418 		irq_chip_pm_put(&desc->irq_data);
2419 		kfree(action);
2420 	}
2421 
2422 	return retval;
2423 }
2424 EXPORT_SYMBOL_GPL(__request_percpu_irq);
2425 
2426 /**
2427  *	request_percpu_nmi - allocate a percpu interrupt line for NMI delivery
2428  *	@irq: Interrupt line to allocate
2429  *	@handler: Function to be called when the IRQ occurs.
2430  *	@name: An ascii name for the claiming device
2431  *	@dev_id: A percpu cookie passed back to the handler function
2432  *
2433  *	This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs
2434  *	have to be setup on each CPU by calling prepare_percpu_nmi() before
2435  *	being enabled on the same CPU by using enable_percpu_nmi().
2436  *
2437  *	Dev_id must be globally unique. It is a per-cpu variable, and
2438  *	the handler gets called with the interrupted CPU's instance of
2439  *	that variable.
2440  *
2441  *	Interrupt lines requested for NMI delivering should have auto enabling
2442  *	setting disabled.
2443  *
2444  *	If the interrupt line cannot be used to deliver NMIs, function
2445  *	will fail returning a negative value.
2446  */
2447 int request_percpu_nmi(unsigned int irq, irq_handler_t handler,
2448 		       const char *name, void __percpu *dev_id)
2449 {
2450 	struct irqaction *action;
2451 	struct irq_desc *desc;
2452 	unsigned long flags;
2453 	int retval;
2454 
2455 	if (!handler)
2456 		return -EINVAL;
2457 
2458 	desc = irq_to_desc(irq);
2459 
2460 	if (!desc || !irq_settings_can_request(desc) ||
2461 	    !irq_settings_is_per_cpu_devid(desc) ||
2462 	    irq_settings_can_autoenable(desc) ||
2463 	    !irq_supports_nmi(desc))
2464 		return -EINVAL;
2465 
2466 	/* The line cannot already be NMI */
2467 	if (desc->istate & IRQS_NMI)
2468 		return -EINVAL;
2469 
2470 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2471 	if (!action)
2472 		return -ENOMEM;
2473 
2474 	action->handler = handler;
2475 	action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD
2476 		| IRQF_NOBALANCING;
2477 	action->name = name;
2478 	action->percpu_dev_id = dev_id;
2479 
2480 	retval = irq_chip_pm_get(&desc->irq_data);
2481 	if (retval < 0)
2482 		goto err_out;
2483 
2484 	retval = __setup_irq(irq, desc, action);
2485 	if (retval)
2486 		goto err_irq_setup;
2487 
2488 	raw_spin_lock_irqsave(&desc->lock, flags);
2489 	desc->istate |= IRQS_NMI;
2490 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2491 
2492 	return 0;
2493 
2494 err_irq_setup:
2495 	irq_chip_pm_put(&desc->irq_data);
2496 err_out:
2497 	kfree(action);
2498 
2499 	return retval;
2500 }
2501 
2502 /**
2503  *	prepare_percpu_nmi - performs CPU local setup for NMI delivery
2504  *	@irq: Interrupt line to prepare for NMI delivery
2505  *
2506  *	This call prepares an interrupt line to deliver NMI on the current CPU,
2507  *	before that interrupt line gets enabled with enable_percpu_nmi().
2508  *
2509  *	As a CPU local operation, this should be called from non-preemptible
2510  *	context.
2511  *
2512  *	If the interrupt line cannot be used to deliver NMIs, function
2513  *	will fail returning a negative value.
2514  */
2515 int prepare_percpu_nmi(unsigned int irq)
2516 {
2517 	unsigned long flags;
2518 	struct irq_desc *desc;
2519 	int ret = 0;
2520 
2521 	WARN_ON(preemptible());
2522 
2523 	desc = irq_get_desc_lock(irq, &flags,
2524 				 IRQ_GET_DESC_CHECK_PERCPU);
2525 	if (!desc)
2526 		return -EINVAL;
2527 
2528 	if (WARN(!(desc->istate & IRQS_NMI),
2529 		 KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n",
2530 		 irq)) {
2531 		ret = -EINVAL;
2532 		goto out;
2533 	}
2534 
2535 	ret = irq_nmi_setup(desc);
2536 	if (ret) {
2537 		pr_err("Failed to setup NMI delivery: irq %u\n", irq);
2538 		goto out;
2539 	}
2540 
2541 out:
2542 	irq_put_desc_unlock(desc, flags);
2543 	return ret;
2544 }
2545 
2546 /**
2547  *	teardown_percpu_nmi - undoes NMI setup of IRQ line
2548  *	@irq: Interrupt line from which CPU local NMI configuration should be
2549  *	      removed
2550  *
2551  *	This call undoes the setup done by prepare_percpu_nmi().
2552  *
2553  *	IRQ line should not be enabled for the current CPU.
2554  *
2555  *	As a CPU local operation, this should be called from non-preemptible
2556  *	context.
2557  */
2558 void teardown_percpu_nmi(unsigned int irq)
2559 {
2560 	unsigned long flags;
2561 	struct irq_desc *desc;
2562 
2563 	WARN_ON(preemptible());
2564 
2565 	desc = irq_get_desc_lock(irq, &flags,
2566 				 IRQ_GET_DESC_CHECK_PERCPU);
2567 	if (!desc)
2568 		return;
2569 
2570 	if (WARN_ON(!(desc->istate & IRQS_NMI)))
2571 		goto out;
2572 
2573 	irq_nmi_teardown(desc);
2574 out:
2575 	irq_put_desc_unlock(desc, flags);
2576 }
2577 
2578 /**
2579  *	irq_get_irqchip_state - returns the irqchip state of a interrupt.
2580  *	@irq: Interrupt line that is forwarded to a VM
2581  *	@which: One of IRQCHIP_STATE_* the caller wants to know about
2582  *	@state: a pointer to a boolean where the state is to be storeed
2583  *
2584  *	This call snapshots the internal irqchip state of an
2585  *	interrupt, returning into @state the bit corresponding to
2586  *	stage @which
2587  *
2588  *	This function should be called with preemption disabled if the
2589  *	interrupt controller has per-cpu registers.
2590  */
2591 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2592 			  bool *state)
2593 {
2594 	struct irq_desc *desc;
2595 	struct irq_data *data;
2596 	struct irq_chip *chip;
2597 	unsigned long flags;
2598 	int err = -EINVAL;
2599 
2600 	desc = irq_get_desc_buslock(irq, &flags, 0);
2601 	if (!desc)
2602 		return err;
2603 
2604 	data = irq_desc_get_irq_data(desc);
2605 
2606 	do {
2607 		chip = irq_data_get_irq_chip(data);
2608 		if (chip->irq_get_irqchip_state)
2609 			break;
2610 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2611 		data = data->parent_data;
2612 #else
2613 		data = NULL;
2614 #endif
2615 	} while (data);
2616 
2617 	if (data)
2618 		err = chip->irq_get_irqchip_state(data, which, state);
2619 
2620 	irq_put_desc_busunlock(desc, flags);
2621 	return err;
2622 }
2623 EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2624 
2625 /**
2626  *	irq_set_irqchip_state - set the state of a forwarded interrupt.
2627  *	@irq: Interrupt line that is forwarded to a VM
2628  *	@which: State to be restored (one of IRQCHIP_STATE_*)
2629  *	@val: Value corresponding to @which
2630  *
2631  *	This call sets the internal irqchip state of an interrupt,
2632  *	depending on the value of @which.
2633  *
2634  *	This function should be called with preemption disabled if the
2635  *	interrupt controller has per-cpu registers.
2636  */
2637 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2638 			  bool val)
2639 {
2640 	struct irq_desc *desc;
2641 	struct irq_data *data;
2642 	struct irq_chip *chip;
2643 	unsigned long flags;
2644 	int err = -EINVAL;
2645 
2646 	desc = irq_get_desc_buslock(irq, &flags, 0);
2647 	if (!desc)
2648 		return err;
2649 
2650 	data = irq_desc_get_irq_data(desc);
2651 
2652 	do {
2653 		chip = irq_data_get_irq_chip(data);
2654 		if (chip->irq_set_irqchip_state)
2655 			break;
2656 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2657 		data = data->parent_data;
2658 #else
2659 		data = NULL;
2660 #endif
2661 	} while (data);
2662 
2663 	if (data)
2664 		err = chip->irq_set_irqchip_state(data, which, val);
2665 
2666 	irq_put_desc_busunlock(desc, flags);
2667 	return err;
2668 }
2669 EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
2670