xref: /openbmc/linux/kernel/irq/manage.c (revision 60772e48)
1 /*
2  * linux/kernel/irq/manage.c
3  *
4  * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
5  * Copyright (C) 2005-2006 Thomas Gleixner
6  *
7  * This file contains driver APIs to the irq subsystem.
8  */
9 
10 #define pr_fmt(fmt) "genirq: " fmt
11 
12 #include <linux/irq.h>
13 #include <linux/kthread.h>
14 #include <linux/module.h>
15 #include <linux/random.h>
16 #include <linux/interrupt.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/sched/rt.h>
20 #include <linux/sched/task.h>
21 #include <uapi/linux/sched/types.h>
22 #include <linux/task_work.h>
23 
24 #include "internals.h"
25 
26 #ifdef CONFIG_IRQ_FORCED_THREADING
27 __read_mostly bool force_irqthreads;
28 
29 static int __init setup_forced_irqthreads(char *arg)
30 {
31 	force_irqthreads = true;
32 	return 0;
33 }
34 early_param("threadirqs", setup_forced_irqthreads);
35 #endif
36 
37 static void __synchronize_hardirq(struct irq_desc *desc)
38 {
39 	bool inprogress;
40 
41 	do {
42 		unsigned long flags;
43 
44 		/*
45 		 * Wait until we're out of the critical section.  This might
46 		 * give the wrong answer due to the lack of memory barriers.
47 		 */
48 		while (irqd_irq_inprogress(&desc->irq_data))
49 			cpu_relax();
50 
51 		/* Ok, that indicated we're done: double-check carefully. */
52 		raw_spin_lock_irqsave(&desc->lock, flags);
53 		inprogress = irqd_irq_inprogress(&desc->irq_data);
54 		raw_spin_unlock_irqrestore(&desc->lock, flags);
55 
56 		/* Oops, that failed? */
57 	} while (inprogress);
58 }
59 
60 /**
61  *	synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
62  *	@irq: interrupt number to wait for
63  *
64  *	This function waits for any pending hard IRQ handlers for this
65  *	interrupt to complete before returning. If you use this
66  *	function while holding a resource the IRQ handler may need you
67  *	will deadlock. It does not take associated threaded handlers
68  *	into account.
69  *
70  *	Do not use this for shutdown scenarios where you must be sure
71  *	that all parts (hardirq and threaded handler) have completed.
72  *
73  *	Returns: false if a threaded handler is active.
74  *
75  *	This function may be called - with care - from IRQ context.
76  */
77 bool synchronize_hardirq(unsigned int irq)
78 {
79 	struct irq_desc *desc = irq_to_desc(irq);
80 
81 	if (desc) {
82 		__synchronize_hardirq(desc);
83 		return !atomic_read(&desc->threads_active);
84 	}
85 
86 	return true;
87 }
88 EXPORT_SYMBOL(synchronize_hardirq);
89 
90 /**
91  *	synchronize_irq - wait for pending IRQ handlers (on other CPUs)
92  *	@irq: interrupt number to wait for
93  *
94  *	This function waits for any pending IRQ handlers for this interrupt
95  *	to complete before returning. If you use this function while
96  *	holding a resource the IRQ handler may need you will deadlock.
97  *
98  *	This function may be called - with care - from IRQ context.
99  */
100 void synchronize_irq(unsigned int irq)
101 {
102 	struct irq_desc *desc = irq_to_desc(irq);
103 
104 	if (desc) {
105 		__synchronize_hardirq(desc);
106 		/*
107 		 * We made sure that no hardirq handler is
108 		 * running. Now verify that no threaded handlers are
109 		 * active.
110 		 */
111 		wait_event(desc->wait_for_threads,
112 			   !atomic_read(&desc->threads_active));
113 	}
114 }
115 EXPORT_SYMBOL(synchronize_irq);
116 
117 #ifdef CONFIG_SMP
118 cpumask_var_t irq_default_affinity;
119 
120 static bool __irq_can_set_affinity(struct irq_desc *desc)
121 {
122 	if (!desc || !irqd_can_balance(&desc->irq_data) ||
123 	    !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
124 		return false;
125 	return true;
126 }
127 
128 /**
129  *	irq_can_set_affinity - Check if the affinity of a given irq can be set
130  *	@irq:		Interrupt to check
131  *
132  */
133 int irq_can_set_affinity(unsigned int irq)
134 {
135 	return __irq_can_set_affinity(irq_to_desc(irq));
136 }
137 
138 /**
139  * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
140  * @irq:	Interrupt to check
141  *
142  * Like irq_can_set_affinity() above, but additionally checks for the
143  * AFFINITY_MANAGED flag.
144  */
145 bool irq_can_set_affinity_usr(unsigned int irq)
146 {
147 	struct irq_desc *desc = irq_to_desc(irq);
148 
149 	return __irq_can_set_affinity(desc) &&
150 		!irqd_affinity_is_managed(&desc->irq_data);
151 }
152 
153 /**
154  *	irq_set_thread_affinity - Notify irq threads to adjust affinity
155  *	@desc:		irq descriptor which has affitnity changed
156  *
157  *	We just set IRQTF_AFFINITY and delegate the affinity setting
158  *	to the interrupt thread itself. We can not call
159  *	set_cpus_allowed_ptr() here as we hold desc->lock and this
160  *	code can be called from hard interrupt context.
161  */
162 void irq_set_thread_affinity(struct irq_desc *desc)
163 {
164 	struct irqaction *action;
165 
166 	for_each_action_of_desc(desc, action)
167 		if (action->thread)
168 			set_bit(IRQTF_AFFINITY, &action->thread_flags);
169 }
170 
171 static void irq_validate_effective_affinity(struct irq_data *data)
172 {
173 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
174 	const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
175 	struct irq_chip *chip = irq_data_get_irq_chip(data);
176 
177 	if (!cpumask_empty(m))
178 		return;
179 	pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
180 		     chip->name, data->irq);
181 #endif
182 }
183 
184 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
185 			bool force)
186 {
187 	struct irq_desc *desc = irq_data_to_desc(data);
188 	struct irq_chip *chip = irq_data_get_irq_chip(data);
189 	int ret;
190 
191 	if (!chip || !chip->irq_set_affinity)
192 		return -EINVAL;
193 
194 	ret = chip->irq_set_affinity(data, mask, force);
195 	switch (ret) {
196 	case IRQ_SET_MASK_OK:
197 	case IRQ_SET_MASK_OK_DONE:
198 		cpumask_copy(desc->irq_common_data.affinity, mask);
199 	case IRQ_SET_MASK_OK_NOCOPY:
200 		irq_validate_effective_affinity(data);
201 		irq_set_thread_affinity(desc);
202 		ret = 0;
203 	}
204 
205 	return ret;
206 }
207 
208 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
209 			    bool force)
210 {
211 	struct irq_chip *chip = irq_data_get_irq_chip(data);
212 	struct irq_desc *desc = irq_data_to_desc(data);
213 	int ret = 0;
214 
215 	if (!chip || !chip->irq_set_affinity)
216 		return -EINVAL;
217 
218 	if (irq_can_move_pcntxt(data)) {
219 		ret = irq_do_set_affinity(data, mask, force);
220 	} else {
221 		irqd_set_move_pending(data);
222 		irq_copy_pending(desc, mask);
223 	}
224 
225 	if (desc->affinity_notify) {
226 		kref_get(&desc->affinity_notify->kref);
227 		schedule_work(&desc->affinity_notify->work);
228 	}
229 	irqd_set(data, IRQD_AFFINITY_SET);
230 
231 	return ret;
232 }
233 
234 int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force)
235 {
236 	struct irq_desc *desc = irq_to_desc(irq);
237 	unsigned long flags;
238 	int ret;
239 
240 	if (!desc)
241 		return -EINVAL;
242 
243 	raw_spin_lock_irqsave(&desc->lock, flags);
244 	ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
245 	raw_spin_unlock_irqrestore(&desc->lock, flags);
246 	return ret;
247 }
248 
249 int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m)
250 {
251 	unsigned long flags;
252 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
253 
254 	if (!desc)
255 		return -EINVAL;
256 	desc->affinity_hint = m;
257 	irq_put_desc_unlock(desc, flags);
258 	/* set the initial affinity to prevent every interrupt being on CPU0 */
259 	if (m)
260 		__irq_set_affinity(irq, m, false);
261 	return 0;
262 }
263 EXPORT_SYMBOL_GPL(irq_set_affinity_hint);
264 
265 static void irq_affinity_notify(struct work_struct *work)
266 {
267 	struct irq_affinity_notify *notify =
268 		container_of(work, struct irq_affinity_notify, work);
269 	struct irq_desc *desc = irq_to_desc(notify->irq);
270 	cpumask_var_t cpumask;
271 	unsigned long flags;
272 
273 	if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
274 		goto out;
275 
276 	raw_spin_lock_irqsave(&desc->lock, flags);
277 	if (irq_move_pending(&desc->irq_data))
278 		irq_get_pending(cpumask, desc);
279 	else
280 		cpumask_copy(cpumask, desc->irq_common_data.affinity);
281 	raw_spin_unlock_irqrestore(&desc->lock, flags);
282 
283 	notify->notify(notify, cpumask);
284 
285 	free_cpumask_var(cpumask);
286 out:
287 	kref_put(&notify->kref, notify->release);
288 }
289 
290 /**
291  *	irq_set_affinity_notifier - control notification of IRQ affinity changes
292  *	@irq:		Interrupt for which to enable/disable notification
293  *	@notify:	Context for notification, or %NULL to disable
294  *			notification.  Function pointers must be initialised;
295  *			the other fields will be initialised by this function.
296  *
297  *	Must be called in process context.  Notification may only be enabled
298  *	after the IRQ is allocated and must be disabled before the IRQ is
299  *	freed using free_irq().
300  */
301 int
302 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
303 {
304 	struct irq_desc *desc = irq_to_desc(irq);
305 	struct irq_affinity_notify *old_notify;
306 	unsigned long flags;
307 
308 	/* The release function is promised process context */
309 	might_sleep();
310 
311 	if (!desc)
312 		return -EINVAL;
313 
314 	/* Complete initialisation of *notify */
315 	if (notify) {
316 		notify->irq = irq;
317 		kref_init(&notify->kref);
318 		INIT_WORK(&notify->work, irq_affinity_notify);
319 	}
320 
321 	raw_spin_lock_irqsave(&desc->lock, flags);
322 	old_notify = desc->affinity_notify;
323 	desc->affinity_notify = notify;
324 	raw_spin_unlock_irqrestore(&desc->lock, flags);
325 
326 	if (old_notify)
327 		kref_put(&old_notify->kref, old_notify->release);
328 
329 	return 0;
330 }
331 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
332 
333 #ifndef CONFIG_AUTO_IRQ_AFFINITY
334 /*
335  * Generic version of the affinity autoselector.
336  */
337 int irq_setup_affinity(struct irq_desc *desc)
338 {
339 	struct cpumask *set = irq_default_affinity;
340 	int ret, node = irq_desc_get_node(desc);
341 	static DEFINE_RAW_SPINLOCK(mask_lock);
342 	static struct cpumask mask;
343 
344 	/* Excludes PER_CPU and NO_BALANCE interrupts */
345 	if (!__irq_can_set_affinity(desc))
346 		return 0;
347 
348 	raw_spin_lock(&mask_lock);
349 	/*
350 	 * Preserve the managed affinity setting and a userspace affinity
351 	 * setup, but make sure that one of the targets is online.
352 	 */
353 	if (irqd_affinity_is_managed(&desc->irq_data) ||
354 	    irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
355 		if (cpumask_intersects(desc->irq_common_data.affinity,
356 				       cpu_online_mask))
357 			set = desc->irq_common_data.affinity;
358 		else
359 			irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
360 	}
361 
362 	cpumask_and(&mask, cpu_online_mask, set);
363 	if (node != NUMA_NO_NODE) {
364 		const struct cpumask *nodemask = cpumask_of_node(node);
365 
366 		/* make sure at least one of the cpus in nodemask is online */
367 		if (cpumask_intersects(&mask, nodemask))
368 			cpumask_and(&mask, &mask, nodemask);
369 	}
370 	ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
371 	raw_spin_unlock(&mask_lock);
372 	return ret;
373 }
374 #else
375 /* Wrapper for ALPHA specific affinity selector magic */
376 int irq_setup_affinity(struct irq_desc *desc)
377 {
378 	return irq_select_affinity(irq_desc_get_irq(desc));
379 }
380 #endif
381 
382 /*
383  * Called when a bogus affinity is set via /proc/irq
384  */
385 int irq_select_affinity_usr(unsigned int irq)
386 {
387 	struct irq_desc *desc = irq_to_desc(irq);
388 	unsigned long flags;
389 	int ret;
390 
391 	raw_spin_lock_irqsave(&desc->lock, flags);
392 	ret = irq_setup_affinity(desc);
393 	raw_spin_unlock_irqrestore(&desc->lock, flags);
394 	return ret;
395 }
396 #endif
397 
398 /**
399  *	irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
400  *	@irq: interrupt number to set affinity
401  *	@vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
402  *	            specific data for percpu_devid interrupts
403  *
404  *	This function uses the vCPU specific data to set the vCPU
405  *	affinity for an irq. The vCPU specific data is passed from
406  *	outside, such as KVM. One example code path is as below:
407  *	KVM -> IOMMU -> irq_set_vcpu_affinity().
408  */
409 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
410 {
411 	unsigned long flags;
412 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
413 	struct irq_data *data;
414 	struct irq_chip *chip;
415 	int ret = -ENOSYS;
416 
417 	if (!desc)
418 		return -EINVAL;
419 
420 	data = irq_desc_get_irq_data(desc);
421 	do {
422 		chip = irq_data_get_irq_chip(data);
423 		if (chip && chip->irq_set_vcpu_affinity)
424 			break;
425 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
426 		data = data->parent_data;
427 #else
428 		data = NULL;
429 #endif
430 	} while (data);
431 
432 	if (data)
433 		ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
434 	irq_put_desc_unlock(desc, flags);
435 
436 	return ret;
437 }
438 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
439 
440 void __disable_irq(struct irq_desc *desc)
441 {
442 	if (!desc->depth++)
443 		irq_disable(desc);
444 }
445 
446 static int __disable_irq_nosync(unsigned int irq)
447 {
448 	unsigned long flags;
449 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
450 
451 	if (!desc)
452 		return -EINVAL;
453 	__disable_irq(desc);
454 	irq_put_desc_busunlock(desc, flags);
455 	return 0;
456 }
457 
458 /**
459  *	disable_irq_nosync - disable an irq without waiting
460  *	@irq: Interrupt to disable
461  *
462  *	Disable the selected interrupt line.  Disables and Enables are
463  *	nested.
464  *	Unlike disable_irq(), this function does not ensure existing
465  *	instances of the IRQ handler have completed before returning.
466  *
467  *	This function may be called from IRQ context.
468  */
469 void disable_irq_nosync(unsigned int irq)
470 {
471 	__disable_irq_nosync(irq);
472 }
473 EXPORT_SYMBOL(disable_irq_nosync);
474 
475 /**
476  *	disable_irq - disable an irq and wait for completion
477  *	@irq: Interrupt to disable
478  *
479  *	Disable the selected interrupt line.  Enables and Disables are
480  *	nested.
481  *	This function waits for any pending IRQ handlers for this interrupt
482  *	to complete before returning. If you use this function while
483  *	holding a resource the IRQ handler may need you will deadlock.
484  *
485  *	This function may be called - with care - from IRQ context.
486  */
487 void disable_irq(unsigned int irq)
488 {
489 	if (!__disable_irq_nosync(irq))
490 		synchronize_irq(irq);
491 }
492 EXPORT_SYMBOL(disable_irq);
493 
494 /**
495  *	disable_hardirq - disables an irq and waits for hardirq completion
496  *	@irq: Interrupt to disable
497  *
498  *	Disable the selected interrupt line.  Enables and Disables are
499  *	nested.
500  *	This function waits for any pending hard IRQ handlers for this
501  *	interrupt to complete before returning. If you use this function while
502  *	holding a resource the hard IRQ handler may need you will deadlock.
503  *
504  *	When used to optimistically disable an interrupt from atomic context
505  *	the return value must be checked.
506  *
507  *	Returns: false if a threaded handler is active.
508  *
509  *	This function may be called - with care - from IRQ context.
510  */
511 bool disable_hardirq(unsigned int irq)
512 {
513 	if (!__disable_irq_nosync(irq))
514 		return synchronize_hardirq(irq);
515 
516 	return false;
517 }
518 EXPORT_SYMBOL_GPL(disable_hardirq);
519 
520 void __enable_irq(struct irq_desc *desc)
521 {
522 	switch (desc->depth) {
523 	case 0:
524  err_out:
525 		WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
526 		     irq_desc_get_irq(desc));
527 		break;
528 	case 1: {
529 		if (desc->istate & IRQS_SUSPENDED)
530 			goto err_out;
531 		/* Prevent probing on this irq: */
532 		irq_settings_set_noprobe(desc);
533 		/*
534 		 * Call irq_startup() not irq_enable() here because the
535 		 * interrupt might be marked NOAUTOEN. So irq_startup()
536 		 * needs to be invoked when it gets enabled the first
537 		 * time. If it was already started up, then irq_startup()
538 		 * will invoke irq_enable() under the hood.
539 		 */
540 		irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
541 		break;
542 	}
543 	default:
544 		desc->depth--;
545 	}
546 }
547 
548 /**
549  *	enable_irq - enable handling of an irq
550  *	@irq: Interrupt to enable
551  *
552  *	Undoes the effect of one call to disable_irq().  If this
553  *	matches the last disable, processing of interrupts on this
554  *	IRQ line is re-enabled.
555  *
556  *	This function may be called from IRQ context only when
557  *	desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
558  */
559 void enable_irq(unsigned int irq)
560 {
561 	unsigned long flags;
562 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
563 
564 	if (!desc)
565 		return;
566 	if (WARN(!desc->irq_data.chip,
567 		 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
568 		goto out;
569 
570 	__enable_irq(desc);
571 out:
572 	irq_put_desc_busunlock(desc, flags);
573 }
574 EXPORT_SYMBOL(enable_irq);
575 
576 static int set_irq_wake_real(unsigned int irq, unsigned int on)
577 {
578 	struct irq_desc *desc = irq_to_desc(irq);
579 	int ret = -ENXIO;
580 
581 	if (irq_desc_get_chip(desc)->flags &  IRQCHIP_SKIP_SET_WAKE)
582 		return 0;
583 
584 	if (desc->irq_data.chip->irq_set_wake)
585 		ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
586 
587 	return ret;
588 }
589 
590 /**
591  *	irq_set_irq_wake - control irq power management wakeup
592  *	@irq:	interrupt to control
593  *	@on:	enable/disable power management wakeup
594  *
595  *	Enable/disable power management wakeup mode, which is
596  *	disabled by default.  Enables and disables must match,
597  *	just as they match for non-wakeup mode support.
598  *
599  *	Wakeup mode lets this IRQ wake the system from sleep
600  *	states like "suspend to RAM".
601  */
602 int irq_set_irq_wake(unsigned int irq, unsigned int on)
603 {
604 	unsigned long flags;
605 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
606 	int ret = 0;
607 
608 	if (!desc)
609 		return -EINVAL;
610 
611 	/* wakeup-capable irqs can be shared between drivers that
612 	 * don't need to have the same sleep mode behaviors.
613 	 */
614 	if (on) {
615 		if (desc->wake_depth++ == 0) {
616 			ret = set_irq_wake_real(irq, on);
617 			if (ret)
618 				desc->wake_depth = 0;
619 			else
620 				irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
621 		}
622 	} else {
623 		if (desc->wake_depth == 0) {
624 			WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
625 		} else if (--desc->wake_depth == 0) {
626 			ret = set_irq_wake_real(irq, on);
627 			if (ret)
628 				desc->wake_depth = 1;
629 			else
630 				irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
631 		}
632 	}
633 	irq_put_desc_busunlock(desc, flags);
634 	return ret;
635 }
636 EXPORT_SYMBOL(irq_set_irq_wake);
637 
638 /*
639  * Internal function that tells the architecture code whether a
640  * particular irq has been exclusively allocated or is available
641  * for driver use.
642  */
643 int can_request_irq(unsigned int irq, unsigned long irqflags)
644 {
645 	unsigned long flags;
646 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
647 	int canrequest = 0;
648 
649 	if (!desc)
650 		return 0;
651 
652 	if (irq_settings_can_request(desc)) {
653 		if (!desc->action ||
654 		    irqflags & desc->action->flags & IRQF_SHARED)
655 			canrequest = 1;
656 	}
657 	irq_put_desc_unlock(desc, flags);
658 	return canrequest;
659 }
660 
661 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
662 {
663 	struct irq_chip *chip = desc->irq_data.chip;
664 	int ret, unmask = 0;
665 
666 	if (!chip || !chip->irq_set_type) {
667 		/*
668 		 * IRQF_TRIGGER_* but the PIC does not support multiple
669 		 * flow-types?
670 		 */
671 		pr_debug("No set_type function for IRQ %d (%s)\n",
672 			 irq_desc_get_irq(desc),
673 			 chip ? (chip->name ? : "unknown") : "unknown");
674 		return 0;
675 	}
676 
677 	if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
678 		if (!irqd_irq_masked(&desc->irq_data))
679 			mask_irq(desc);
680 		if (!irqd_irq_disabled(&desc->irq_data))
681 			unmask = 1;
682 	}
683 
684 	/* Mask all flags except trigger mode */
685 	flags &= IRQ_TYPE_SENSE_MASK;
686 	ret = chip->irq_set_type(&desc->irq_data, flags);
687 
688 	switch (ret) {
689 	case IRQ_SET_MASK_OK:
690 	case IRQ_SET_MASK_OK_DONE:
691 		irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
692 		irqd_set(&desc->irq_data, flags);
693 
694 	case IRQ_SET_MASK_OK_NOCOPY:
695 		flags = irqd_get_trigger_type(&desc->irq_data);
696 		irq_settings_set_trigger_mask(desc, flags);
697 		irqd_clear(&desc->irq_data, IRQD_LEVEL);
698 		irq_settings_clr_level(desc);
699 		if (flags & IRQ_TYPE_LEVEL_MASK) {
700 			irq_settings_set_level(desc);
701 			irqd_set(&desc->irq_data, IRQD_LEVEL);
702 		}
703 
704 		ret = 0;
705 		break;
706 	default:
707 		pr_err("Setting trigger mode %lu for irq %u failed (%pF)\n",
708 		       flags, irq_desc_get_irq(desc), chip->irq_set_type);
709 	}
710 	if (unmask)
711 		unmask_irq(desc);
712 	return ret;
713 }
714 
715 #ifdef CONFIG_HARDIRQS_SW_RESEND
716 int irq_set_parent(int irq, int parent_irq)
717 {
718 	unsigned long flags;
719 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
720 
721 	if (!desc)
722 		return -EINVAL;
723 
724 	desc->parent_irq = parent_irq;
725 
726 	irq_put_desc_unlock(desc, flags);
727 	return 0;
728 }
729 EXPORT_SYMBOL_GPL(irq_set_parent);
730 #endif
731 
732 /*
733  * Default primary interrupt handler for threaded interrupts. Is
734  * assigned as primary handler when request_threaded_irq is called
735  * with handler == NULL. Useful for oneshot interrupts.
736  */
737 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
738 {
739 	return IRQ_WAKE_THREAD;
740 }
741 
742 /*
743  * Primary handler for nested threaded interrupts. Should never be
744  * called.
745  */
746 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
747 {
748 	WARN(1, "Primary handler called for nested irq %d\n", irq);
749 	return IRQ_NONE;
750 }
751 
752 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
753 {
754 	WARN(1, "Secondary action handler called for irq %d\n", irq);
755 	return IRQ_NONE;
756 }
757 
758 static int irq_wait_for_interrupt(struct irqaction *action)
759 {
760 	set_current_state(TASK_INTERRUPTIBLE);
761 
762 	while (!kthread_should_stop()) {
763 
764 		if (test_and_clear_bit(IRQTF_RUNTHREAD,
765 				       &action->thread_flags)) {
766 			__set_current_state(TASK_RUNNING);
767 			return 0;
768 		}
769 		schedule();
770 		set_current_state(TASK_INTERRUPTIBLE);
771 	}
772 	__set_current_state(TASK_RUNNING);
773 	return -1;
774 }
775 
776 /*
777  * Oneshot interrupts keep the irq line masked until the threaded
778  * handler finished. unmask if the interrupt has not been disabled and
779  * is marked MASKED.
780  */
781 static void irq_finalize_oneshot(struct irq_desc *desc,
782 				 struct irqaction *action)
783 {
784 	if (!(desc->istate & IRQS_ONESHOT) ||
785 	    action->handler == irq_forced_secondary_handler)
786 		return;
787 again:
788 	chip_bus_lock(desc);
789 	raw_spin_lock_irq(&desc->lock);
790 
791 	/*
792 	 * Implausible though it may be we need to protect us against
793 	 * the following scenario:
794 	 *
795 	 * The thread is faster done than the hard interrupt handler
796 	 * on the other CPU. If we unmask the irq line then the
797 	 * interrupt can come in again and masks the line, leaves due
798 	 * to IRQS_INPROGRESS and the irq line is masked forever.
799 	 *
800 	 * This also serializes the state of shared oneshot handlers
801 	 * versus "desc->threads_onehsot |= action->thread_mask;" in
802 	 * irq_wake_thread(). See the comment there which explains the
803 	 * serialization.
804 	 */
805 	if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
806 		raw_spin_unlock_irq(&desc->lock);
807 		chip_bus_sync_unlock(desc);
808 		cpu_relax();
809 		goto again;
810 	}
811 
812 	/*
813 	 * Now check again, whether the thread should run. Otherwise
814 	 * we would clear the threads_oneshot bit of this thread which
815 	 * was just set.
816 	 */
817 	if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
818 		goto out_unlock;
819 
820 	desc->threads_oneshot &= ~action->thread_mask;
821 
822 	if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
823 	    irqd_irq_masked(&desc->irq_data))
824 		unmask_threaded_irq(desc);
825 
826 out_unlock:
827 	raw_spin_unlock_irq(&desc->lock);
828 	chip_bus_sync_unlock(desc);
829 }
830 
831 #ifdef CONFIG_SMP
832 /*
833  * Check whether we need to change the affinity of the interrupt thread.
834  */
835 static void
836 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
837 {
838 	cpumask_var_t mask;
839 	bool valid = true;
840 
841 	if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
842 		return;
843 
844 	/*
845 	 * In case we are out of memory we set IRQTF_AFFINITY again and
846 	 * try again next time
847 	 */
848 	if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
849 		set_bit(IRQTF_AFFINITY, &action->thread_flags);
850 		return;
851 	}
852 
853 	raw_spin_lock_irq(&desc->lock);
854 	/*
855 	 * This code is triggered unconditionally. Check the affinity
856 	 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
857 	 */
858 	if (cpumask_available(desc->irq_common_data.affinity))
859 		cpumask_copy(mask, desc->irq_common_data.affinity);
860 	else
861 		valid = false;
862 	raw_spin_unlock_irq(&desc->lock);
863 
864 	if (valid)
865 		set_cpus_allowed_ptr(current, mask);
866 	free_cpumask_var(mask);
867 }
868 #else
869 static inline void
870 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
871 #endif
872 
873 /*
874  * Interrupts which are not explicitely requested as threaded
875  * interrupts rely on the implicit bh/preempt disable of the hard irq
876  * context. So we need to disable bh here to avoid deadlocks and other
877  * side effects.
878  */
879 static irqreturn_t
880 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
881 {
882 	irqreturn_t ret;
883 
884 	local_bh_disable();
885 	ret = action->thread_fn(action->irq, action->dev_id);
886 	irq_finalize_oneshot(desc, action);
887 	local_bh_enable();
888 	return ret;
889 }
890 
891 /*
892  * Interrupts explicitly requested as threaded interrupts want to be
893  * preemtible - many of them need to sleep and wait for slow busses to
894  * complete.
895  */
896 static irqreturn_t irq_thread_fn(struct irq_desc *desc,
897 		struct irqaction *action)
898 {
899 	irqreturn_t ret;
900 
901 	ret = action->thread_fn(action->irq, action->dev_id);
902 	irq_finalize_oneshot(desc, action);
903 	return ret;
904 }
905 
906 static void wake_threads_waitq(struct irq_desc *desc)
907 {
908 	if (atomic_dec_and_test(&desc->threads_active))
909 		wake_up(&desc->wait_for_threads);
910 }
911 
912 static void irq_thread_dtor(struct callback_head *unused)
913 {
914 	struct task_struct *tsk = current;
915 	struct irq_desc *desc;
916 	struct irqaction *action;
917 
918 	if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
919 		return;
920 
921 	action = kthread_data(tsk);
922 
923 	pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
924 	       tsk->comm, tsk->pid, action->irq);
925 
926 
927 	desc = irq_to_desc(action->irq);
928 	/*
929 	 * If IRQTF_RUNTHREAD is set, we need to decrement
930 	 * desc->threads_active and wake possible waiters.
931 	 */
932 	if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
933 		wake_threads_waitq(desc);
934 
935 	/* Prevent a stale desc->threads_oneshot */
936 	irq_finalize_oneshot(desc, action);
937 }
938 
939 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
940 {
941 	struct irqaction *secondary = action->secondary;
942 
943 	if (WARN_ON_ONCE(!secondary))
944 		return;
945 
946 	raw_spin_lock_irq(&desc->lock);
947 	__irq_wake_thread(desc, secondary);
948 	raw_spin_unlock_irq(&desc->lock);
949 }
950 
951 /*
952  * Interrupt handler thread
953  */
954 static int irq_thread(void *data)
955 {
956 	struct callback_head on_exit_work;
957 	struct irqaction *action = data;
958 	struct irq_desc *desc = irq_to_desc(action->irq);
959 	irqreturn_t (*handler_fn)(struct irq_desc *desc,
960 			struct irqaction *action);
961 
962 	if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD,
963 					&action->thread_flags))
964 		handler_fn = irq_forced_thread_fn;
965 	else
966 		handler_fn = irq_thread_fn;
967 
968 	init_task_work(&on_exit_work, irq_thread_dtor);
969 	task_work_add(current, &on_exit_work, false);
970 
971 	irq_thread_check_affinity(desc, action);
972 
973 	while (!irq_wait_for_interrupt(action)) {
974 		irqreturn_t action_ret;
975 
976 		irq_thread_check_affinity(desc, action);
977 
978 		action_ret = handler_fn(desc, action);
979 		if (action_ret == IRQ_HANDLED)
980 			atomic_inc(&desc->threads_handled);
981 		if (action_ret == IRQ_WAKE_THREAD)
982 			irq_wake_secondary(desc, action);
983 
984 		wake_threads_waitq(desc);
985 	}
986 
987 	/*
988 	 * This is the regular exit path. __free_irq() is stopping the
989 	 * thread via kthread_stop() after calling
990 	 * synchronize_irq(). So neither IRQTF_RUNTHREAD nor the
991 	 * oneshot mask bit can be set. We cannot verify that as we
992 	 * cannot touch the oneshot mask at this point anymore as
993 	 * __setup_irq() might have given out currents thread_mask
994 	 * again.
995 	 */
996 	task_work_cancel(current, irq_thread_dtor);
997 	return 0;
998 }
999 
1000 /**
1001  *	irq_wake_thread - wake the irq thread for the action identified by dev_id
1002  *	@irq:		Interrupt line
1003  *	@dev_id:	Device identity for which the thread should be woken
1004  *
1005  */
1006 void irq_wake_thread(unsigned int irq, void *dev_id)
1007 {
1008 	struct irq_desc *desc = irq_to_desc(irq);
1009 	struct irqaction *action;
1010 	unsigned long flags;
1011 
1012 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1013 		return;
1014 
1015 	raw_spin_lock_irqsave(&desc->lock, flags);
1016 	for_each_action_of_desc(desc, action) {
1017 		if (action->dev_id == dev_id) {
1018 			if (action->thread)
1019 				__irq_wake_thread(desc, action);
1020 			break;
1021 		}
1022 	}
1023 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1024 }
1025 EXPORT_SYMBOL_GPL(irq_wake_thread);
1026 
1027 static int irq_setup_forced_threading(struct irqaction *new)
1028 {
1029 	if (!force_irqthreads)
1030 		return 0;
1031 	if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1032 		return 0;
1033 
1034 	new->flags |= IRQF_ONESHOT;
1035 
1036 	/*
1037 	 * Handle the case where we have a real primary handler and a
1038 	 * thread handler. We force thread them as well by creating a
1039 	 * secondary action.
1040 	 */
1041 	if (new->handler != irq_default_primary_handler && new->thread_fn) {
1042 		/* Allocate the secondary action */
1043 		new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1044 		if (!new->secondary)
1045 			return -ENOMEM;
1046 		new->secondary->handler = irq_forced_secondary_handler;
1047 		new->secondary->thread_fn = new->thread_fn;
1048 		new->secondary->dev_id = new->dev_id;
1049 		new->secondary->irq = new->irq;
1050 		new->secondary->name = new->name;
1051 	}
1052 	/* Deal with the primary handler */
1053 	set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1054 	new->thread_fn = new->handler;
1055 	new->handler = irq_default_primary_handler;
1056 	return 0;
1057 }
1058 
1059 static int irq_request_resources(struct irq_desc *desc)
1060 {
1061 	struct irq_data *d = &desc->irq_data;
1062 	struct irq_chip *c = d->chip;
1063 
1064 	return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1065 }
1066 
1067 static void irq_release_resources(struct irq_desc *desc)
1068 {
1069 	struct irq_data *d = &desc->irq_data;
1070 	struct irq_chip *c = d->chip;
1071 
1072 	if (c->irq_release_resources)
1073 		c->irq_release_resources(d);
1074 }
1075 
1076 static int
1077 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1078 {
1079 	struct task_struct *t;
1080 	struct sched_param param = {
1081 		.sched_priority = MAX_USER_RT_PRIO/2,
1082 	};
1083 
1084 	if (!secondary) {
1085 		t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1086 				   new->name);
1087 	} else {
1088 		t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1089 				   new->name);
1090 		param.sched_priority -= 1;
1091 	}
1092 
1093 	if (IS_ERR(t))
1094 		return PTR_ERR(t);
1095 
1096 	sched_setscheduler_nocheck(t, SCHED_FIFO, &param);
1097 
1098 	/*
1099 	 * We keep the reference to the task struct even if
1100 	 * the thread dies to avoid that the interrupt code
1101 	 * references an already freed task_struct.
1102 	 */
1103 	get_task_struct(t);
1104 	new->thread = t;
1105 	/*
1106 	 * Tell the thread to set its affinity. This is
1107 	 * important for shared interrupt handlers as we do
1108 	 * not invoke setup_affinity() for the secondary
1109 	 * handlers as everything is already set up. Even for
1110 	 * interrupts marked with IRQF_NO_BALANCE this is
1111 	 * correct as we want the thread to move to the cpu(s)
1112 	 * on which the requesting code placed the interrupt.
1113 	 */
1114 	set_bit(IRQTF_AFFINITY, &new->thread_flags);
1115 	return 0;
1116 }
1117 
1118 /*
1119  * Internal function to register an irqaction - typically used to
1120  * allocate special interrupts that are part of the architecture.
1121  *
1122  * Locking rules:
1123  *
1124  * desc->request_mutex	Provides serialization against a concurrent free_irq()
1125  *   chip_bus_lock	Provides serialization for slow bus operations
1126  *     desc->lock	Provides serialization against hard interrupts
1127  *
1128  * chip_bus_lock and desc->lock are sufficient for all other management and
1129  * interrupt related functions. desc->request_mutex solely serializes
1130  * request/free_irq().
1131  */
1132 static int
1133 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1134 {
1135 	struct irqaction *old, **old_ptr;
1136 	unsigned long flags, thread_mask = 0;
1137 	int ret, nested, shared = 0;
1138 
1139 	if (!desc)
1140 		return -EINVAL;
1141 
1142 	if (desc->irq_data.chip == &no_irq_chip)
1143 		return -ENOSYS;
1144 	if (!try_module_get(desc->owner))
1145 		return -ENODEV;
1146 
1147 	new->irq = irq;
1148 
1149 	/*
1150 	 * If the trigger type is not specified by the caller,
1151 	 * then use the default for this interrupt.
1152 	 */
1153 	if (!(new->flags & IRQF_TRIGGER_MASK))
1154 		new->flags |= irqd_get_trigger_type(&desc->irq_data);
1155 
1156 	/*
1157 	 * Check whether the interrupt nests into another interrupt
1158 	 * thread.
1159 	 */
1160 	nested = irq_settings_is_nested_thread(desc);
1161 	if (nested) {
1162 		if (!new->thread_fn) {
1163 			ret = -EINVAL;
1164 			goto out_mput;
1165 		}
1166 		/*
1167 		 * Replace the primary handler which was provided from
1168 		 * the driver for non nested interrupt handling by the
1169 		 * dummy function which warns when called.
1170 		 */
1171 		new->handler = irq_nested_primary_handler;
1172 	} else {
1173 		if (irq_settings_can_thread(desc)) {
1174 			ret = irq_setup_forced_threading(new);
1175 			if (ret)
1176 				goto out_mput;
1177 		}
1178 	}
1179 
1180 	/*
1181 	 * Create a handler thread when a thread function is supplied
1182 	 * and the interrupt does not nest into another interrupt
1183 	 * thread.
1184 	 */
1185 	if (new->thread_fn && !nested) {
1186 		ret = setup_irq_thread(new, irq, false);
1187 		if (ret)
1188 			goto out_mput;
1189 		if (new->secondary) {
1190 			ret = setup_irq_thread(new->secondary, irq, true);
1191 			if (ret)
1192 				goto out_thread;
1193 		}
1194 	}
1195 
1196 	/*
1197 	 * Drivers are often written to work w/o knowledge about the
1198 	 * underlying irq chip implementation, so a request for a
1199 	 * threaded irq without a primary hard irq context handler
1200 	 * requires the ONESHOT flag to be set. Some irq chips like
1201 	 * MSI based interrupts are per se one shot safe. Check the
1202 	 * chip flags, so we can avoid the unmask dance at the end of
1203 	 * the threaded handler for those.
1204 	 */
1205 	if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1206 		new->flags &= ~IRQF_ONESHOT;
1207 
1208 	/*
1209 	 * Protects against a concurrent __free_irq() call which might wait
1210 	 * for synchronize_irq() to complete without holding the optional
1211 	 * chip bus lock and desc->lock.
1212 	 */
1213 	mutex_lock(&desc->request_mutex);
1214 
1215 	/*
1216 	 * Acquire bus lock as the irq_request_resources() callback below
1217 	 * might rely on the serialization or the magic power management
1218 	 * functions which are abusing the irq_bus_lock() callback,
1219 	 */
1220 	chip_bus_lock(desc);
1221 
1222 	/* First installed action requests resources. */
1223 	if (!desc->action) {
1224 		ret = irq_request_resources(desc);
1225 		if (ret) {
1226 			pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1227 			       new->name, irq, desc->irq_data.chip->name);
1228 			goto out_bus_unlock;
1229 		}
1230 	}
1231 
1232 	/*
1233 	 * The following block of code has to be executed atomically
1234 	 * protected against a concurrent interrupt and any of the other
1235 	 * management calls which are not serialized via
1236 	 * desc->request_mutex or the optional bus lock.
1237 	 */
1238 	raw_spin_lock_irqsave(&desc->lock, flags);
1239 	old_ptr = &desc->action;
1240 	old = *old_ptr;
1241 	if (old) {
1242 		/*
1243 		 * Can't share interrupts unless both agree to and are
1244 		 * the same type (level, edge, polarity). So both flag
1245 		 * fields must have IRQF_SHARED set and the bits which
1246 		 * set the trigger type must match. Also all must
1247 		 * agree on ONESHOT.
1248 		 */
1249 		unsigned int oldtype;
1250 
1251 		/*
1252 		 * If nobody did set the configuration before, inherit
1253 		 * the one provided by the requester.
1254 		 */
1255 		if (irqd_trigger_type_was_set(&desc->irq_data)) {
1256 			oldtype = irqd_get_trigger_type(&desc->irq_data);
1257 		} else {
1258 			oldtype = new->flags & IRQF_TRIGGER_MASK;
1259 			irqd_set_trigger_type(&desc->irq_data, oldtype);
1260 		}
1261 
1262 		if (!((old->flags & new->flags) & IRQF_SHARED) ||
1263 		    (oldtype != (new->flags & IRQF_TRIGGER_MASK)) ||
1264 		    ((old->flags ^ new->flags) & IRQF_ONESHOT))
1265 			goto mismatch;
1266 
1267 		/* All handlers must agree on per-cpuness */
1268 		if ((old->flags & IRQF_PERCPU) !=
1269 		    (new->flags & IRQF_PERCPU))
1270 			goto mismatch;
1271 
1272 		/* add new interrupt at end of irq queue */
1273 		do {
1274 			/*
1275 			 * Or all existing action->thread_mask bits,
1276 			 * so we can find the next zero bit for this
1277 			 * new action.
1278 			 */
1279 			thread_mask |= old->thread_mask;
1280 			old_ptr = &old->next;
1281 			old = *old_ptr;
1282 		} while (old);
1283 		shared = 1;
1284 	}
1285 
1286 	/*
1287 	 * Setup the thread mask for this irqaction for ONESHOT. For
1288 	 * !ONESHOT irqs the thread mask is 0 so we can avoid a
1289 	 * conditional in irq_wake_thread().
1290 	 */
1291 	if (new->flags & IRQF_ONESHOT) {
1292 		/*
1293 		 * Unlikely to have 32 resp 64 irqs sharing one line,
1294 		 * but who knows.
1295 		 */
1296 		if (thread_mask == ~0UL) {
1297 			ret = -EBUSY;
1298 			goto out_unlock;
1299 		}
1300 		/*
1301 		 * The thread_mask for the action is or'ed to
1302 		 * desc->thread_active to indicate that the
1303 		 * IRQF_ONESHOT thread handler has been woken, but not
1304 		 * yet finished. The bit is cleared when a thread
1305 		 * completes. When all threads of a shared interrupt
1306 		 * line have completed desc->threads_active becomes
1307 		 * zero and the interrupt line is unmasked. See
1308 		 * handle.c:irq_wake_thread() for further information.
1309 		 *
1310 		 * If no thread is woken by primary (hard irq context)
1311 		 * interrupt handlers, then desc->threads_active is
1312 		 * also checked for zero to unmask the irq line in the
1313 		 * affected hard irq flow handlers
1314 		 * (handle_[fasteoi|level]_irq).
1315 		 *
1316 		 * The new action gets the first zero bit of
1317 		 * thread_mask assigned. See the loop above which or's
1318 		 * all existing action->thread_mask bits.
1319 		 */
1320 		new->thread_mask = 1UL << ffz(thread_mask);
1321 
1322 	} else if (new->handler == irq_default_primary_handler &&
1323 		   !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1324 		/*
1325 		 * The interrupt was requested with handler = NULL, so
1326 		 * we use the default primary handler for it. But it
1327 		 * does not have the oneshot flag set. In combination
1328 		 * with level interrupts this is deadly, because the
1329 		 * default primary handler just wakes the thread, then
1330 		 * the irq lines is reenabled, but the device still
1331 		 * has the level irq asserted. Rinse and repeat....
1332 		 *
1333 		 * While this works for edge type interrupts, we play
1334 		 * it safe and reject unconditionally because we can't
1335 		 * say for sure which type this interrupt really
1336 		 * has. The type flags are unreliable as the
1337 		 * underlying chip implementation can override them.
1338 		 */
1339 		pr_err("Threaded irq requested with handler=NULL and !ONESHOT for irq %d\n",
1340 		       irq);
1341 		ret = -EINVAL;
1342 		goto out_unlock;
1343 	}
1344 
1345 	if (!shared) {
1346 		init_waitqueue_head(&desc->wait_for_threads);
1347 
1348 		/* Setup the type (level, edge polarity) if configured: */
1349 		if (new->flags & IRQF_TRIGGER_MASK) {
1350 			ret = __irq_set_trigger(desc,
1351 						new->flags & IRQF_TRIGGER_MASK);
1352 
1353 			if (ret)
1354 				goto out_unlock;
1355 		}
1356 
1357 		/*
1358 		 * Activate the interrupt. That activation must happen
1359 		 * independently of IRQ_NOAUTOEN. request_irq() can fail
1360 		 * and the callers are supposed to handle
1361 		 * that. enable_irq() of an interrupt requested with
1362 		 * IRQ_NOAUTOEN is not supposed to fail. The activation
1363 		 * keeps it in shutdown mode, it merily associates
1364 		 * resources if necessary and if that's not possible it
1365 		 * fails. Interrupts which are in managed shutdown mode
1366 		 * will simply ignore that activation request.
1367 		 */
1368 		ret = irq_activate(desc);
1369 		if (ret)
1370 			goto out_unlock;
1371 
1372 		desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1373 				  IRQS_ONESHOT | IRQS_WAITING);
1374 		irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1375 
1376 		if (new->flags & IRQF_PERCPU) {
1377 			irqd_set(&desc->irq_data, IRQD_PER_CPU);
1378 			irq_settings_set_per_cpu(desc);
1379 		}
1380 
1381 		if (new->flags & IRQF_ONESHOT)
1382 			desc->istate |= IRQS_ONESHOT;
1383 
1384 		/* Exclude IRQ from balancing if requested */
1385 		if (new->flags & IRQF_NOBALANCING) {
1386 			irq_settings_set_no_balancing(desc);
1387 			irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1388 		}
1389 
1390 		if (irq_settings_can_autoenable(desc)) {
1391 			irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1392 		} else {
1393 			/*
1394 			 * Shared interrupts do not go well with disabling
1395 			 * auto enable. The sharing interrupt might request
1396 			 * it while it's still disabled and then wait for
1397 			 * interrupts forever.
1398 			 */
1399 			WARN_ON_ONCE(new->flags & IRQF_SHARED);
1400 			/* Undo nested disables: */
1401 			desc->depth = 1;
1402 		}
1403 
1404 	} else if (new->flags & IRQF_TRIGGER_MASK) {
1405 		unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1406 		unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1407 
1408 		if (nmsk != omsk)
1409 			/* hope the handler works with current  trigger mode */
1410 			pr_warn("irq %d uses trigger mode %u; requested %u\n",
1411 				irq, omsk, nmsk);
1412 	}
1413 
1414 	*old_ptr = new;
1415 
1416 	irq_pm_install_action(desc, new);
1417 
1418 	/* Reset broken irq detection when installing new handler */
1419 	desc->irq_count = 0;
1420 	desc->irqs_unhandled = 0;
1421 
1422 	/*
1423 	 * Check whether we disabled the irq via the spurious handler
1424 	 * before. Reenable it and give it another chance.
1425 	 */
1426 	if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1427 		desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1428 		__enable_irq(desc);
1429 	}
1430 
1431 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1432 	chip_bus_sync_unlock(desc);
1433 	mutex_unlock(&desc->request_mutex);
1434 
1435 	irq_setup_timings(desc, new);
1436 
1437 	/*
1438 	 * Strictly no need to wake it up, but hung_task complains
1439 	 * when no hard interrupt wakes the thread up.
1440 	 */
1441 	if (new->thread)
1442 		wake_up_process(new->thread);
1443 	if (new->secondary)
1444 		wake_up_process(new->secondary->thread);
1445 
1446 	register_irq_proc(irq, desc);
1447 	new->dir = NULL;
1448 	register_handler_proc(irq, new);
1449 	return 0;
1450 
1451 mismatch:
1452 	if (!(new->flags & IRQF_PROBE_SHARED)) {
1453 		pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1454 		       irq, new->flags, new->name, old->flags, old->name);
1455 #ifdef CONFIG_DEBUG_SHIRQ
1456 		dump_stack();
1457 #endif
1458 	}
1459 	ret = -EBUSY;
1460 
1461 out_unlock:
1462 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1463 
1464 	if (!desc->action)
1465 		irq_release_resources(desc);
1466 out_bus_unlock:
1467 	chip_bus_sync_unlock(desc);
1468 	mutex_unlock(&desc->request_mutex);
1469 
1470 out_thread:
1471 	if (new->thread) {
1472 		struct task_struct *t = new->thread;
1473 
1474 		new->thread = NULL;
1475 		kthread_stop(t);
1476 		put_task_struct(t);
1477 	}
1478 	if (new->secondary && new->secondary->thread) {
1479 		struct task_struct *t = new->secondary->thread;
1480 
1481 		new->secondary->thread = NULL;
1482 		kthread_stop(t);
1483 		put_task_struct(t);
1484 	}
1485 out_mput:
1486 	module_put(desc->owner);
1487 	return ret;
1488 }
1489 
1490 /**
1491  *	setup_irq - setup an interrupt
1492  *	@irq: Interrupt line to setup
1493  *	@act: irqaction for the interrupt
1494  *
1495  * Used to statically setup interrupts in the early boot process.
1496  */
1497 int setup_irq(unsigned int irq, struct irqaction *act)
1498 {
1499 	int retval;
1500 	struct irq_desc *desc = irq_to_desc(irq);
1501 
1502 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1503 		return -EINVAL;
1504 
1505 	retval = irq_chip_pm_get(&desc->irq_data);
1506 	if (retval < 0)
1507 		return retval;
1508 
1509 	retval = __setup_irq(irq, desc, act);
1510 
1511 	if (retval)
1512 		irq_chip_pm_put(&desc->irq_data);
1513 
1514 	return retval;
1515 }
1516 EXPORT_SYMBOL_GPL(setup_irq);
1517 
1518 /*
1519  * Internal function to unregister an irqaction - used to free
1520  * regular and special interrupts that are part of the architecture.
1521  */
1522 static struct irqaction *__free_irq(unsigned int irq, void *dev_id)
1523 {
1524 	struct irq_desc *desc = irq_to_desc(irq);
1525 	struct irqaction *action, **action_ptr;
1526 	unsigned long flags;
1527 
1528 	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1529 
1530 	if (!desc)
1531 		return NULL;
1532 
1533 	mutex_lock(&desc->request_mutex);
1534 	chip_bus_lock(desc);
1535 	raw_spin_lock_irqsave(&desc->lock, flags);
1536 
1537 	/*
1538 	 * There can be multiple actions per IRQ descriptor, find the right
1539 	 * one based on the dev_id:
1540 	 */
1541 	action_ptr = &desc->action;
1542 	for (;;) {
1543 		action = *action_ptr;
1544 
1545 		if (!action) {
1546 			WARN(1, "Trying to free already-free IRQ %d\n", irq);
1547 			raw_spin_unlock_irqrestore(&desc->lock, flags);
1548 			chip_bus_sync_unlock(desc);
1549 			mutex_unlock(&desc->request_mutex);
1550 			return NULL;
1551 		}
1552 
1553 		if (action->dev_id == dev_id)
1554 			break;
1555 		action_ptr = &action->next;
1556 	}
1557 
1558 	/* Found it - now remove it from the list of entries: */
1559 	*action_ptr = action->next;
1560 
1561 	irq_pm_remove_action(desc, action);
1562 
1563 	/* If this was the last handler, shut down the IRQ line: */
1564 	if (!desc->action) {
1565 		irq_settings_clr_disable_unlazy(desc);
1566 		irq_shutdown(desc);
1567 	}
1568 
1569 #ifdef CONFIG_SMP
1570 	/* make sure affinity_hint is cleaned up */
1571 	if (WARN_ON_ONCE(desc->affinity_hint))
1572 		desc->affinity_hint = NULL;
1573 #endif
1574 
1575 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1576 	/*
1577 	 * Drop bus_lock here so the changes which were done in the chip
1578 	 * callbacks above are synced out to the irq chips which hang
1579 	 * behind a slow bus (I2C, SPI) before calling synchronize_irq().
1580 	 *
1581 	 * Aside of that the bus_lock can also be taken from the threaded
1582 	 * handler in irq_finalize_oneshot() which results in a deadlock
1583 	 * because synchronize_irq() would wait forever for the thread to
1584 	 * complete, which is blocked on the bus lock.
1585 	 *
1586 	 * The still held desc->request_mutex() protects against a
1587 	 * concurrent request_irq() of this irq so the release of resources
1588 	 * and timing data is properly serialized.
1589 	 */
1590 	chip_bus_sync_unlock(desc);
1591 
1592 	unregister_handler_proc(irq, action);
1593 
1594 	/* Make sure it's not being used on another CPU: */
1595 	synchronize_irq(irq);
1596 
1597 #ifdef CONFIG_DEBUG_SHIRQ
1598 	/*
1599 	 * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1600 	 * event to happen even now it's being freed, so let's make sure that
1601 	 * is so by doing an extra call to the handler ....
1602 	 *
1603 	 * ( We do this after actually deregistering it, to make sure that a
1604 	 *   'real' IRQ doesn't run in * parallel with our fake. )
1605 	 */
1606 	if (action->flags & IRQF_SHARED) {
1607 		local_irq_save(flags);
1608 		action->handler(irq, dev_id);
1609 		local_irq_restore(flags);
1610 	}
1611 #endif
1612 
1613 	if (action->thread) {
1614 		kthread_stop(action->thread);
1615 		put_task_struct(action->thread);
1616 		if (action->secondary && action->secondary->thread) {
1617 			kthread_stop(action->secondary->thread);
1618 			put_task_struct(action->secondary->thread);
1619 		}
1620 	}
1621 
1622 	/* Last action releases resources */
1623 	if (!desc->action) {
1624 		/*
1625 		 * Reaquire bus lock as irq_release_resources() might
1626 		 * require it to deallocate resources over the slow bus.
1627 		 */
1628 		chip_bus_lock(desc);
1629 		irq_release_resources(desc);
1630 		chip_bus_sync_unlock(desc);
1631 		irq_remove_timings(desc);
1632 	}
1633 
1634 	mutex_unlock(&desc->request_mutex);
1635 
1636 	irq_chip_pm_put(&desc->irq_data);
1637 	module_put(desc->owner);
1638 	kfree(action->secondary);
1639 	return action;
1640 }
1641 
1642 /**
1643  *	remove_irq - free an interrupt
1644  *	@irq: Interrupt line to free
1645  *	@act: irqaction for the interrupt
1646  *
1647  * Used to remove interrupts statically setup by the early boot process.
1648  */
1649 void remove_irq(unsigned int irq, struct irqaction *act)
1650 {
1651 	struct irq_desc *desc = irq_to_desc(irq);
1652 
1653 	if (desc && !WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1654 		__free_irq(irq, act->dev_id);
1655 }
1656 EXPORT_SYMBOL_GPL(remove_irq);
1657 
1658 /**
1659  *	free_irq - free an interrupt allocated with request_irq
1660  *	@irq: Interrupt line to free
1661  *	@dev_id: Device identity to free
1662  *
1663  *	Remove an interrupt handler. The handler is removed and if the
1664  *	interrupt line is no longer in use by any driver it is disabled.
1665  *	On a shared IRQ the caller must ensure the interrupt is disabled
1666  *	on the card it drives before calling this function. The function
1667  *	does not return until any executing interrupts for this IRQ
1668  *	have completed.
1669  *
1670  *	This function must not be called from interrupt context.
1671  *
1672  *	Returns the devname argument passed to request_irq.
1673  */
1674 const void *free_irq(unsigned int irq, void *dev_id)
1675 {
1676 	struct irq_desc *desc = irq_to_desc(irq);
1677 	struct irqaction *action;
1678 	const char *devname;
1679 
1680 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1681 		return NULL;
1682 
1683 #ifdef CONFIG_SMP
1684 	if (WARN_ON(desc->affinity_notify))
1685 		desc->affinity_notify = NULL;
1686 #endif
1687 
1688 	action = __free_irq(irq, dev_id);
1689 
1690 	if (!action)
1691 		return NULL;
1692 
1693 	devname = action->name;
1694 	kfree(action);
1695 	return devname;
1696 }
1697 EXPORT_SYMBOL(free_irq);
1698 
1699 /**
1700  *	request_threaded_irq - allocate an interrupt line
1701  *	@irq: Interrupt line to allocate
1702  *	@handler: Function to be called when the IRQ occurs.
1703  *		  Primary handler for threaded interrupts
1704  *		  If NULL and thread_fn != NULL the default
1705  *		  primary handler is installed
1706  *	@thread_fn: Function called from the irq handler thread
1707  *		    If NULL, no irq thread is created
1708  *	@irqflags: Interrupt type flags
1709  *	@devname: An ascii name for the claiming device
1710  *	@dev_id: A cookie passed back to the handler function
1711  *
1712  *	This call allocates interrupt resources and enables the
1713  *	interrupt line and IRQ handling. From the point this
1714  *	call is made your handler function may be invoked. Since
1715  *	your handler function must clear any interrupt the board
1716  *	raises, you must take care both to initialise your hardware
1717  *	and to set up the interrupt handler in the right order.
1718  *
1719  *	If you want to set up a threaded irq handler for your device
1720  *	then you need to supply @handler and @thread_fn. @handler is
1721  *	still called in hard interrupt context and has to check
1722  *	whether the interrupt originates from the device. If yes it
1723  *	needs to disable the interrupt on the device and return
1724  *	IRQ_WAKE_THREAD which will wake up the handler thread and run
1725  *	@thread_fn. This split handler design is necessary to support
1726  *	shared interrupts.
1727  *
1728  *	Dev_id must be globally unique. Normally the address of the
1729  *	device data structure is used as the cookie. Since the handler
1730  *	receives this value it makes sense to use it.
1731  *
1732  *	If your interrupt is shared you must pass a non NULL dev_id
1733  *	as this is required when freeing the interrupt.
1734  *
1735  *	Flags:
1736  *
1737  *	IRQF_SHARED		Interrupt is shared
1738  *	IRQF_TRIGGER_*		Specify active edge(s) or level
1739  *
1740  */
1741 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
1742 			 irq_handler_t thread_fn, unsigned long irqflags,
1743 			 const char *devname, void *dev_id)
1744 {
1745 	struct irqaction *action;
1746 	struct irq_desc *desc;
1747 	int retval;
1748 
1749 	if (irq == IRQ_NOTCONNECTED)
1750 		return -ENOTCONN;
1751 
1752 	/*
1753 	 * Sanity-check: shared interrupts must pass in a real dev-ID,
1754 	 * otherwise we'll have trouble later trying to figure out
1755 	 * which interrupt is which (messes up the interrupt freeing
1756 	 * logic etc).
1757 	 *
1758 	 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
1759 	 * it cannot be set along with IRQF_NO_SUSPEND.
1760 	 */
1761 	if (((irqflags & IRQF_SHARED) && !dev_id) ||
1762 	    (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
1763 	    ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
1764 		return -EINVAL;
1765 
1766 	desc = irq_to_desc(irq);
1767 	if (!desc)
1768 		return -EINVAL;
1769 
1770 	if (!irq_settings_can_request(desc) ||
1771 	    WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1772 		return -EINVAL;
1773 
1774 	if (!handler) {
1775 		if (!thread_fn)
1776 			return -EINVAL;
1777 		handler = irq_default_primary_handler;
1778 	}
1779 
1780 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1781 	if (!action)
1782 		return -ENOMEM;
1783 
1784 	action->handler = handler;
1785 	action->thread_fn = thread_fn;
1786 	action->flags = irqflags;
1787 	action->name = devname;
1788 	action->dev_id = dev_id;
1789 
1790 	retval = irq_chip_pm_get(&desc->irq_data);
1791 	if (retval < 0) {
1792 		kfree(action);
1793 		return retval;
1794 	}
1795 
1796 	retval = __setup_irq(irq, desc, action);
1797 
1798 	if (retval) {
1799 		irq_chip_pm_put(&desc->irq_data);
1800 		kfree(action->secondary);
1801 		kfree(action);
1802 	}
1803 
1804 #ifdef CONFIG_DEBUG_SHIRQ_FIXME
1805 	if (!retval && (irqflags & IRQF_SHARED)) {
1806 		/*
1807 		 * It's a shared IRQ -- the driver ought to be prepared for it
1808 		 * to happen immediately, so let's make sure....
1809 		 * We disable the irq to make sure that a 'real' IRQ doesn't
1810 		 * run in parallel with our fake.
1811 		 */
1812 		unsigned long flags;
1813 
1814 		disable_irq(irq);
1815 		local_irq_save(flags);
1816 
1817 		handler(irq, dev_id);
1818 
1819 		local_irq_restore(flags);
1820 		enable_irq(irq);
1821 	}
1822 #endif
1823 	return retval;
1824 }
1825 EXPORT_SYMBOL(request_threaded_irq);
1826 
1827 /**
1828  *	request_any_context_irq - allocate an interrupt line
1829  *	@irq: Interrupt line to allocate
1830  *	@handler: Function to be called when the IRQ occurs.
1831  *		  Threaded handler for threaded interrupts.
1832  *	@flags: Interrupt type flags
1833  *	@name: An ascii name for the claiming device
1834  *	@dev_id: A cookie passed back to the handler function
1835  *
1836  *	This call allocates interrupt resources and enables the
1837  *	interrupt line and IRQ handling. It selects either a
1838  *	hardirq or threaded handling method depending on the
1839  *	context.
1840  *
1841  *	On failure, it returns a negative value. On success,
1842  *	it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
1843  */
1844 int request_any_context_irq(unsigned int irq, irq_handler_t handler,
1845 			    unsigned long flags, const char *name, void *dev_id)
1846 {
1847 	struct irq_desc *desc;
1848 	int ret;
1849 
1850 	if (irq == IRQ_NOTCONNECTED)
1851 		return -ENOTCONN;
1852 
1853 	desc = irq_to_desc(irq);
1854 	if (!desc)
1855 		return -EINVAL;
1856 
1857 	if (irq_settings_is_nested_thread(desc)) {
1858 		ret = request_threaded_irq(irq, NULL, handler,
1859 					   flags, name, dev_id);
1860 		return !ret ? IRQC_IS_NESTED : ret;
1861 	}
1862 
1863 	ret = request_irq(irq, handler, flags, name, dev_id);
1864 	return !ret ? IRQC_IS_HARDIRQ : ret;
1865 }
1866 EXPORT_SYMBOL_GPL(request_any_context_irq);
1867 
1868 void enable_percpu_irq(unsigned int irq, unsigned int type)
1869 {
1870 	unsigned int cpu = smp_processor_id();
1871 	unsigned long flags;
1872 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1873 
1874 	if (!desc)
1875 		return;
1876 
1877 	/*
1878 	 * If the trigger type is not specified by the caller, then
1879 	 * use the default for this interrupt.
1880 	 */
1881 	type &= IRQ_TYPE_SENSE_MASK;
1882 	if (type == IRQ_TYPE_NONE)
1883 		type = irqd_get_trigger_type(&desc->irq_data);
1884 
1885 	if (type != IRQ_TYPE_NONE) {
1886 		int ret;
1887 
1888 		ret = __irq_set_trigger(desc, type);
1889 
1890 		if (ret) {
1891 			WARN(1, "failed to set type for IRQ%d\n", irq);
1892 			goto out;
1893 		}
1894 	}
1895 
1896 	irq_percpu_enable(desc, cpu);
1897 out:
1898 	irq_put_desc_unlock(desc, flags);
1899 }
1900 EXPORT_SYMBOL_GPL(enable_percpu_irq);
1901 
1902 /**
1903  * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
1904  * @irq:	Linux irq number to check for
1905  *
1906  * Must be called from a non migratable context. Returns the enable
1907  * state of a per cpu interrupt on the current cpu.
1908  */
1909 bool irq_percpu_is_enabled(unsigned int irq)
1910 {
1911 	unsigned int cpu = smp_processor_id();
1912 	struct irq_desc *desc;
1913 	unsigned long flags;
1914 	bool is_enabled;
1915 
1916 	desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1917 	if (!desc)
1918 		return false;
1919 
1920 	is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
1921 	irq_put_desc_unlock(desc, flags);
1922 
1923 	return is_enabled;
1924 }
1925 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
1926 
1927 void disable_percpu_irq(unsigned int irq)
1928 {
1929 	unsigned int cpu = smp_processor_id();
1930 	unsigned long flags;
1931 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1932 
1933 	if (!desc)
1934 		return;
1935 
1936 	irq_percpu_disable(desc, cpu);
1937 	irq_put_desc_unlock(desc, flags);
1938 }
1939 EXPORT_SYMBOL_GPL(disable_percpu_irq);
1940 
1941 /*
1942  * Internal function to unregister a percpu irqaction.
1943  */
1944 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
1945 {
1946 	struct irq_desc *desc = irq_to_desc(irq);
1947 	struct irqaction *action;
1948 	unsigned long flags;
1949 
1950 	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1951 
1952 	if (!desc)
1953 		return NULL;
1954 
1955 	raw_spin_lock_irqsave(&desc->lock, flags);
1956 
1957 	action = desc->action;
1958 	if (!action || action->percpu_dev_id != dev_id) {
1959 		WARN(1, "Trying to free already-free IRQ %d\n", irq);
1960 		goto bad;
1961 	}
1962 
1963 	if (!cpumask_empty(desc->percpu_enabled)) {
1964 		WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
1965 		     irq, cpumask_first(desc->percpu_enabled));
1966 		goto bad;
1967 	}
1968 
1969 	/* Found it - now remove it from the list of entries: */
1970 	desc->action = NULL;
1971 
1972 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1973 
1974 	unregister_handler_proc(irq, action);
1975 
1976 	irq_chip_pm_put(&desc->irq_data);
1977 	module_put(desc->owner);
1978 	return action;
1979 
1980 bad:
1981 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1982 	return NULL;
1983 }
1984 
1985 /**
1986  *	remove_percpu_irq - free a per-cpu interrupt
1987  *	@irq: Interrupt line to free
1988  *	@act: irqaction for the interrupt
1989  *
1990  * Used to remove interrupts statically setup by the early boot process.
1991  */
1992 void remove_percpu_irq(unsigned int irq, struct irqaction *act)
1993 {
1994 	struct irq_desc *desc = irq_to_desc(irq);
1995 
1996 	if (desc && irq_settings_is_per_cpu_devid(desc))
1997 	    __free_percpu_irq(irq, act->percpu_dev_id);
1998 }
1999 
2000 /**
2001  *	free_percpu_irq - free an interrupt allocated with request_percpu_irq
2002  *	@irq: Interrupt line to free
2003  *	@dev_id: Device identity to free
2004  *
2005  *	Remove a percpu interrupt handler. The handler is removed, but
2006  *	the interrupt line is not disabled. This must be done on each
2007  *	CPU before calling this function. The function does not return
2008  *	until any executing interrupts for this IRQ have completed.
2009  *
2010  *	This function must not be called from interrupt context.
2011  */
2012 void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2013 {
2014 	struct irq_desc *desc = irq_to_desc(irq);
2015 
2016 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2017 		return;
2018 
2019 	chip_bus_lock(desc);
2020 	kfree(__free_percpu_irq(irq, dev_id));
2021 	chip_bus_sync_unlock(desc);
2022 }
2023 EXPORT_SYMBOL_GPL(free_percpu_irq);
2024 
2025 /**
2026  *	setup_percpu_irq - setup a per-cpu interrupt
2027  *	@irq: Interrupt line to setup
2028  *	@act: irqaction for the interrupt
2029  *
2030  * Used to statically setup per-cpu interrupts in the early boot process.
2031  */
2032 int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2033 {
2034 	struct irq_desc *desc = irq_to_desc(irq);
2035 	int retval;
2036 
2037 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2038 		return -EINVAL;
2039 
2040 	retval = irq_chip_pm_get(&desc->irq_data);
2041 	if (retval < 0)
2042 		return retval;
2043 
2044 	retval = __setup_irq(irq, desc, act);
2045 
2046 	if (retval)
2047 		irq_chip_pm_put(&desc->irq_data);
2048 
2049 	return retval;
2050 }
2051 
2052 /**
2053  *	__request_percpu_irq - allocate a percpu interrupt line
2054  *	@irq: Interrupt line to allocate
2055  *	@handler: Function to be called when the IRQ occurs.
2056  *	@flags: Interrupt type flags (IRQF_TIMER only)
2057  *	@devname: An ascii name for the claiming device
2058  *	@dev_id: A percpu cookie passed back to the handler function
2059  *
2060  *	This call allocates interrupt resources and enables the
2061  *	interrupt on the local CPU. If the interrupt is supposed to be
2062  *	enabled on other CPUs, it has to be done on each CPU using
2063  *	enable_percpu_irq().
2064  *
2065  *	Dev_id must be globally unique. It is a per-cpu variable, and
2066  *	the handler gets called with the interrupted CPU's instance of
2067  *	that variable.
2068  */
2069 int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2070 			 unsigned long flags, const char *devname,
2071 			 void __percpu *dev_id)
2072 {
2073 	struct irqaction *action;
2074 	struct irq_desc *desc;
2075 	int retval;
2076 
2077 	if (!dev_id)
2078 		return -EINVAL;
2079 
2080 	desc = irq_to_desc(irq);
2081 	if (!desc || !irq_settings_can_request(desc) ||
2082 	    !irq_settings_is_per_cpu_devid(desc))
2083 		return -EINVAL;
2084 
2085 	if (flags && flags != IRQF_TIMER)
2086 		return -EINVAL;
2087 
2088 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2089 	if (!action)
2090 		return -ENOMEM;
2091 
2092 	action->handler = handler;
2093 	action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2094 	action->name = devname;
2095 	action->percpu_dev_id = dev_id;
2096 
2097 	retval = irq_chip_pm_get(&desc->irq_data);
2098 	if (retval < 0) {
2099 		kfree(action);
2100 		return retval;
2101 	}
2102 
2103 	retval = __setup_irq(irq, desc, action);
2104 
2105 	if (retval) {
2106 		irq_chip_pm_put(&desc->irq_data);
2107 		kfree(action);
2108 	}
2109 
2110 	return retval;
2111 }
2112 EXPORT_SYMBOL_GPL(__request_percpu_irq);
2113 
2114 /**
2115  *	irq_get_irqchip_state - returns the irqchip state of a interrupt.
2116  *	@irq: Interrupt line that is forwarded to a VM
2117  *	@which: One of IRQCHIP_STATE_* the caller wants to know about
2118  *	@state: a pointer to a boolean where the state is to be storeed
2119  *
2120  *	This call snapshots the internal irqchip state of an
2121  *	interrupt, returning into @state the bit corresponding to
2122  *	stage @which
2123  *
2124  *	This function should be called with preemption disabled if the
2125  *	interrupt controller has per-cpu registers.
2126  */
2127 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2128 			  bool *state)
2129 {
2130 	struct irq_desc *desc;
2131 	struct irq_data *data;
2132 	struct irq_chip *chip;
2133 	unsigned long flags;
2134 	int err = -EINVAL;
2135 
2136 	desc = irq_get_desc_buslock(irq, &flags, 0);
2137 	if (!desc)
2138 		return err;
2139 
2140 	data = irq_desc_get_irq_data(desc);
2141 
2142 	do {
2143 		chip = irq_data_get_irq_chip(data);
2144 		if (chip->irq_get_irqchip_state)
2145 			break;
2146 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2147 		data = data->parent_data;
2148 #else
2149 		data = NULL;
2150 #endif
2151 	} while (data);
2152 
2153 	if (data)
2154 		err = chip->irq_get_irqchip_state(data, which, state);
2155 
2156 	irq_put_desc_busunlock(desc, flags);
2157 	return err;
2158 }
2159 EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2160 
2161 /**
2162  *	irq_set_irqchip_state - set the state of a forwarded interrupt.
2163  *	@irq: Interrupt line that is forwarded to a VM
2164  *	@which: State to be restored (one of IRQCHIP_STATE_*)
2165  *	@val: Value corresponding to @which
2166  *
2167  *	This call sets the internal irqchip state of an interrupt,
2168  *	depending on the value of @which.
2169  *
2170  *	This function should be called with preemption disabled if the
2171  *	interrupt controller has per-cpu registers.
2172  */
2173 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2174 			  bool val)
2175 {
2176 	struct irq_desc *desc;
2177 	struct irq_data *data;
2178 	struct irq_chip *chip;
2179 	unsigned long flags;
2180 	int err = -EINVAL;
2181 
2182 	desc = irq_get_desc_buslock(irq, &flags, 0);
2183 	if (!desc)
2184 		return err;
2185 
2186 	data = irq_desc_get_irq_data(desc);
2187 
2188 	do {
2189 		chip = irq_data_get_irq_chip(data);
2190 		if (chip->irq_set_irqchip_state)
2191 			break;
2192 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2193 		data = data->parent_data;
2194 #else
2195 		data = NULL;
2196 #endif
2197 	} while (data);
2198 
2199 	if (data)
2200 		err = chip->irq_set_irqchip_state(data, which, val);
2201 
2202 	irq_put_desc_busunlock(desc, flags);
2203 	return err;
2204 }
2205 EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
2206