xref: /openbmc/linux/kernel/irq/manage.c (revision 584eab291c67894cb17cc87544b9d086228ea70f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
4  * Copyright (C) 2005-2006 Thomas Gleixner
5  *
6  * This file contains driver APIs to the irq subsystem.
7  */
8 
9 #define pr_fmt(fmt) "genirq: " fmt
10 
11 #include <linux/irq.h>
12 #include <linux/kthread.h>
13 #include <linux/module.h>
14 #include <linux/random.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/sched.h>
18 #include <linux/sched/rt.h>
19 #include <linux/sched/task.h>
20 #include <uapi/linux/sched/types.h>
21 #include <linux/task_work.h>
22 
23 #include "internals.h"
24 
25 #ifdef CONFIG_IRQ_FORCED_THREADING
26 __read_mostly bool force_irqthreads;
27 EXPORT_SYMBOL_GPL(force_irqthreads);
28 
29 static int __init setup_forced_irqthreads(char *arg)
30 {
31 	force_irqthreads = true;
32 	return 0;
33 }
34 early_param("threadirqs", setup_forced_irqthreads);
35 #endif
36 
37 static void __synchronize_hardirq(struct irq_desc *desc)
38 {
39 	bool inprogress;
40 
41 	do {
42 		unsigned long flags;
43 
44 		/*
45 		 * Wait until we're out of the critical section.  This might
46 		 * give the wrong answer due to the lack of memory barriers.
47 		 */
48 		while (irqd_irq_inprogress(&desc->irq_data))
49 			cpu_relax();
50 
51 		/* Ok, that indicated we're done: double-check carefully. */
52 		raw_spin_lock_irqsave(&desc->lock, flags);
53 		inprogress = irqd_irq_inprogress(&desc->irq_data);
54 		raw_spin_unlock_irqrestore(&desc->lock, flags);
55 
56 		/* Oops, that failed? */
57 	} while (inprogress);
58 }
59 
60 /**
61  *	synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
62  *	@irq: interrupt number to wait for
63  *
64  *	This function waits for any pending hard IRQ handlers for this
65  *	interrupt to complete before returning. If you use this
66  *	function while holding a resource the IRQ handler may need you
67  *	will deadlock. It does not take associated threaded handlers
68  *	into account.
69  *
70  *	Do not use this for shutdown scenarios where you must be sure
71  *	that all parts (hardirq and threaded handler) have completed.
72  *
73  *	Returns: false if a threaded handler is active.
74  *
75  *	This function may be called - with care - from IRQ context.
76  */
77 bool synchronize_hardirq(unsigned int irq)
78 {
79 	struct irq_desc *desc = irq_to_desc(irq);
80 
81 	if (desc) {
82 		__synchronize_hardirq(desc);
83 		return !atomic_read(&desc->threads_active);
84 	}
85 
86 	return true;
87 }
88 EXPORT_SYMBOL(synchronize_hardirq);
89 
90 /**
91  *	synchronize_irq - wait for pending IRQ handlers (on other CPUs)
92  *	@irq: interrupt number to wait for
93  *
94  *	This function waits for any pending IRQ handlers for this interrupt
95  *	to complete before returning. If you use this function while
96  *	holding a resource the IRQ handler may need you will deadlock.
97  *
98  *	This function may be called - with care - from IRQ context.
99  */
100 void synchronize_irq(unsigned int irq)
101 {
102 	struct irq_desc *desc = irq_to_desc(irq);
103 
104 	if (desc) {
105 		__synchronize_hardirq(desc);
106 		/*
107 		 * We made sure that no hardirq handler is
108 		 * running. Now verify that no threaded handlers are
109 		 * active.
110 		 */
111 		wait_event(desc->wait_for_threads,
112 			   !atomic_read(&desc->threads_active));
113 	}
114 }
115 EXPORT_SYMBOL(synchronize_irq);
116 
117 #ifdef CONFIG_SMP
118 cpumask_var_t irq_default_affinity;
119 
120 static bool __irq_can_set_affinity(struct irq_desc *desc)
121 {
122 	if (!desc || !irqd_can_balance(&desc->irq_data) ||
123 	    !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
124 		return false;
125 	return true;
126 }
127 
128 /**
129  *	irq_can_set_affinity - Check if the affinity of a given irq can be set
130  *	@irq:		Interrupt to check
131  *
132  */
133 int irq_can_set_affinity(unsigned int irq)
134 {
135 	return __irq_can_set_affinity(irq_to_desc(irq));
136 }
137 
138 /**
139  * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
140  * @irq:	Interrupt to check
141  *
142  * Like irq_can_set_affinity() above, but additionally checks for the
143  * AFFINITY_MANAGED flag.
144  */
145 bool irq_can_set_affinity_usr(unsigned int irq)
146 {
147 	struct irq_desc *desc = irq_to_desc(irq);
148 
149 	return __irq_can_set_affinity(desc) &&
150 		!irqd_affinity_is_managed(&desc->irq_data);
151 }
152 
153 /**
154  *	irq_set_thread_affinity - Notify irq threads to adjust affinity
155  *	@desc:		irq descriptor which has affitnity changed
156  *
157  *	We just set IRQTF_AFFINITY and delegate the affinity setting
158  *	to the interrupt thread itself. We can not call
159  *	set_cpus_allowed_ptr() here as we hold desc->lock and this
160  *	code can be called from hard interrupt context.
161  */
162 void irq_set_thread_affinity(struct irq_desc *desc)
163 {
164 	struct irqaction *action;
165 
166 	for_each_action_of_desc(desc, action)
167 		if (action->thread)
168 			set_bit(IRQTF_AFFINITY, &action->thread_flags);
169 }
170 
171 static void irq_validate_effective_affinity(struct irq_data *data)
172 {
173 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
174 	const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
175 	struct irq_chip *chip = irq_data_get_irq_chip(data);
176 
177 	if (!cpumask_empty(m))
178 		return;
179 	pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
180 		     chip->name, data->irq);
181 #endif
182 }
183 
184 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
185 			bool force)
186 {
187 	struct irq_desc *desc = irq_data_to_desc(data);
188 	struct irq_chip *chip = irq_data_get_irq_chip(data);
189 	int ret;
190 
191 	if (!chip || !chip->irq_set_affinity)
192 		return -EINVAL;
193 
194 	ret = chip->irq_set_affinity(data, mask, force);
195 	switch (ret) {
196 	case IRQ_SET_MASK_OK:
197 	case IRQ_SET_MASK_OK_DONE:
198 		cpumask_copy(desc->irq_common_data.affinity, mask);
199 	case IRQ_SET_MASK_OK_NOCOPY:
200 		irq_validate_effective_affinity(data);
201 		irq_set_thread_affinity(desc);
202 		ret = 0;
203 	}
204 
205 	return ret;
206 }
207 
208 #ifdef CONFIG_GENERIC_PENDING_IRQ
209 static inline int irq_set_affinity_pending(struct irq_data *data,
210 					   const struct cpumask *dest)
211 {
212 	struct irq_desc *desc = irq_data_to_desc(data);
213 
214 	irqd_set_move_pending(data);
215 	irq_copy_pending(desc, dest);
216 	return 0;
217 }
218 #else
219 static inline int irq_set_affinity_pending(struct irq_data *data,
220 					   const struct cpumask *dest)
221 {
222 	return -EBUSY;
223 }
224 #endif
225 
226 static int irq_try_set_affinity(struct irq_data *data,
227 				const struct cpumask *dest, bool force)
228 {
229 	int ret = irq_do_set_affinity(data, dest, force);
230 
231 	/*
232 	 * In case that the underlying vector management is busy and the
233 	 * architecture supports the generic pending mechanism then utilize
234 	 * this to avoid returning an error to user space.
235 	 */
236 	if (ret == -EBUSY && !force)
237 		ret = irq_set_affinity_pending(data, dest);
238 	return ret;
239 }
240 
241 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
242 			    bool force)
243 {
244 	struct irq_chip *chip = irq_data_get_irq_chip(data);
245 	struct irq_desc *desc = irq_data_to_desc(data);
246 	int ret = 0;
247 
248 	if (!chip || !chip->irq_set_affinity)
249 		return -EINVAL;
250 
251 	if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) {
252 		ret = irq_try_set_affinity(data, mask, force);
253 	} else {
254 		irqd_set_move_pending(data);
255 		irq_copy_pending(desc, mask);
256 	}
257 
258 	if (desc->affinity_notify) {
259 		kref_get(&desc->affinity_notify->kref);
260 		schedule_work(&desc->affinity_notify->work);
261 	}
262 	irqd_set(data, IRQD_AFFINITY_SET);
263 
264 	return ret;
265 }
266 
267 int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force)
268 {
269 	struct irq_desc *desc = irq_to_desc(irq);
270 	unsigned long flags;
271 	int ret;
272 
273 	if (!desc)
274 		return -EINVAL;
275 
276 	raw_spin_lock_irqsave(&desc->lock, flags);
277 	ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
278 	raw_spin_unlock_irqrestore(&desc->lock, flags);
279 	return ret;
280 }
281 
282 int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m)
283 {
284 	unsigned long flags;
285 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
286 
287 	if (!desc)
288 		return -EINVAL;
289 	desc->affinity_hint = m;
290 	irq_put_desc_unlock(desc, flags);
291 	/* set the initial affinity to prevent every interrupt being on CPU0 */
292 	if (m)
293 		__irq_set_affinity(irq, m, false);
294 	return 0;
295 }
296 EXPORT_SYMBOL_GPL(irq_set_affinity_hint);
297 
298 static void irq_affinity_notify(struct work_struct *work)
299 {
300 	struct irq_affinity_notify *notify =
301 		container_of(work, struct irq_affinity_notify, work);
302 	struct irq_desc *desc = irq_to_desc(notify->irq);
303 	cpumask_var_t cpumask;
304 	unsigned long flags;
305 
306 	if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
307 		goto out;
308 
309 	raw_spin_lock_irqsave(&desc->lock, flags);
310 	if (irq_move_pending(&desc->irq_data))
311 		irq_get_pending(cpumask, desc);
312 	else
313 		cpumask_copy(cpumask, desc->irq_common_data.affinity);
314 	raw_spin_unlock_irqrestore(&desc->lock, flags);
315 
316 	notify->notify(notify, cpumask);
317 
318 	free_cpumask_var(cpumask);
319 out:
320 	kref_put(&notify->kref, notify->release);
321 }
322 
323 /**
324  *	irq_set_affinity_notifier - control notification of IRQ affinity changes
325  *	@irq:		Interrupt for which to enable/disable notification
326  *	@notify:	Context for notification, or %NULL to disable
327  *			notification.  Function pointers must be initialised;
328  *			the other fields will be initialised by this function.
329  *
330  *	Must be called in process context.  Notification may only be enabled
331  *	after the IRQ is allocated and must be disabled before the IRQ is
332  *	freed using free_irq().
333  */
334 int
335 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
336 {
337 	struct irq_desc *desc = irq_to_desc(irq);
338 	struct irq_affinity_notify *old_notify;
339 	unsigned long flags;
340 
341 	/* The release function is promised process context */
342 	might_sleep();
343 
344 	if (!desc)
345 		return -EINVAL;
346 
347 	/* Complete initialisation of *notify */
348 	if (notify) {
349 		notify->irq = irq;
350 		kref_init(&notify->kref);
351 		INIT_WORK(&notify->work, irq_affinity_notify);
352 	}
353 
354 	raw_spin_lock_irqsave(&desc->lock, flags);
355 	old_notify = desc->affinity_notify;
356 	desc->affinity_notify = notify;
357 	raw_spin_unlock_irqrestore(&desc->lock, flags);
358 
359 	if (old_notify)
360 		kref_put(&old_notify->kref, old_notify->release);
361 
362 	return 0;
363 }
364 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
365 
366 #ifndef CONFIG_AUTO_IRQ_AFFINITY
367 /*
368  * Generic version of the affinity autoselector.
369  */
370 int irq_setup_affinity(struct irq_desc *desc)
371 {
372 	struct cpumask *set = irq_default_affinity;
373 	int ret, node = irq_desc_get_node(desc);
374 	static DEFINE_RAW_SPINLOCK(mask_lock);
375 	static struct cpumask mask;
376 
377 	/* Excludes PER_CPU and NO_BALANCE interrupts */
378 	if (!__irq_can_set_affinity(desc))
379 		return 0;
380 
381 	raw_spin_lock(&mask_lock);
382 	/*
383 	 * Preserve the managed affinity setting and a userspace affinity
384 	 * setup, but make sure that one of the targets is online.
385 	 */
386 	if (irqd_affinity_is_managed(&desc->irq_data) ||
387 	    irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
388 		if (cpumask_intersects(desc->irq_common_data.affinity,
389 				       cpu_online_mask))
390 			set = desc->irq_common_data.affinity;
391 		else
392 			irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
393 	}
394 
395 	cpumask_and(&mask, cpu_online_mask, set);
396 	if (node != NUMA_NO_NODE) {
397 		const struct cpumask *nodemask = cpumask_of_node(node);
398 
399 		/* make sure at least one of the cpus in nodemask is online */
400 		if (cpumask_intersects(&mask, nodemask))
401 			cpumask_and(&mask, &mask, nodemask);
402 	}
403 	ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
404 	raw_spin_unlock(&mask_lock);
405 	return ret;
406 }
407 #else
408 /* Wrapper for ALPHA specific affinity selector magic */
409 int irq_setup_affinity(struct irq_desc *desc)
410 {
411 	return irq_select_affinity(irq_desc_get_irq(desc));
412 }
413 #endif
414 
415 /*
416  * Called when a bogus affinity is set via /proc/irq
417  */
418 int irq_select_affinity_usr(unsigned int irq)
419 {
420 	struct irq_desc *desc = irq_to_desc(irq);
421 	unsigned long flags;
422 	int ret;
423 
424 	raw_spin_lock_irqsave(&desc->lock, flags);
425 	ret = irq_setup_affinity(desc);
426 	raw_spin_unlock_irqrestore(&desc->lock, flags);
427 	return ret;
428 }
429 #endif
430 
431 /**
432  *	irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
433  *	@irq: interrupt number to set affinity
434  *	@vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
435  *	            specific data for percpu_devid interrupts
436  *
437  *	This function uses the vCPU specific data to set the vCPU
438  *	affinity for an irq. The vCPU specific data is passed from
439  *	outside, such as KVM. One example code path is as below:
440  *	KVM -> IOMMU -> irq_set_vcpu_affinity().
441  */
442 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
443 {
444 	unsigned long flags;
445 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
446 	struct irq_data *data;
447 	struct irq_chip *chip;
448 	int ret = -ENOSYS;
449 
450 	if (!desc)
451 		return -EINVAL;
452 
453 	data = irq_desc_get_irq_data(desc);
454 	do {
455 		chip = irq_data_get_irq_chip(data);
456 		if (chip && chip->irq_set_vcpu_affinity)
457 			break;
458 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
459 		data = data->parent_data;
460 #else
461 		data = NULL;
462 #endif
463 	} while (data);
464 
465 	if (data)
466 		ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
467 	irq_put_desc_unlock(desc, flags);
468 
469 	return ret;
470 }
471 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
472 
473 void __disable_irq(struct irq_desc *desc)
474 {
475 	if (!desc->depth++)
476 		irq_disable(desc);
477 }
478 
479 static int __disable_irq_nosync(unsigned int irq)
480 {
481 	unsigned long flags;
482 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
483 
484 	if (!desc)
485 		return -EINVAL;
486 	__disable_irq(desc);
487 	irq_put_desc_busunlock(desc, flags);
488 	return 0;
489 }
490 
491 /**
492  *	disable_irq_nosync - disable an irq without waiting
493  *	@irq: Interrupt to disable
494  *
495  *	Disable the selected interrupt line.  Disables and Enables are
496  *	nested.
497  *	Unlike disable_irq(), this function does not ensure existing
498  *	instances of the IRQ handler have completed before returning.
499  *
500  *	This function may be called from IRQ context.
501  */
502 void disable_irq_nosync(unsigned int irq)
503 {
504 	__disable_irq_nosync(irq);
505 }
506 EXPORT_SYMBOL(disable_irq_nosync);
507 
508 /**
509  *	disable_irq - disable an irq and wait for completion
510  *	@irq: Interrupt to disable
511  *
512  *	Disable the selected interrupt line.  Enables and Disables are
513  *	nested.
514  *	This function waits for any pending IRQ handlers for this interrupt
515  *	to complete before returning. If you use this function while
516  *	holding a resource the IRQ handler may need you will deadlock.
517  *
518  *	This function may be called - with care - from IRQ context.
519  */
520 void disable_irq(unsigned int irq)
521 {
522 	if (!__disable_irq_nosync(irq))
523 		synchronize_irq(irq);
524 }
525 EXPORT_SYMBOL(disable_irq);
526 
527 /**
528  *	disable_hardirq - disables an irq and waits for hardirq completion
529  *	@irq: Interrupt to disable
530  *
531  *	Disable the selected interrupt line.  Enables and Disables are
532  *	nested.
533  *	This function waits for any pending hard IRQ handlers for this
534  *	interrupt to complete before returning. If you use this function while
535  *	holding a resource the hard IRQ handler may need you will deadlock.
536  *
537  *	When used to optimistically disable an interrupt from atomic context
538  *	the return value must be checked.
539  *
540  *	Returns: false if a threaded handler is active.
541  *
542  *	This function may be called - with care - from IRQ context.
543  */
544 bool disable_hardirq(unsigned int irq)
545 {
546 	if (!__disable_irq_nosync(irq))
547 		return synchronize_hardirq(irq);
548 
549 	return false;
550 }
551 EXPORT_SYMBOL_GPL(disable_hardirq);
552 
553 void __enable_irq(struct irq_desc *desc)
554 {
555 	switch (desc->depth) {
556 	case 0:
557  err_out:
558 		WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
559 		     irq_desc_get_irq(desc));
560 		break;
561 	case 1: {
562 		if (desc->istate & IRQS_SUSPENDED)
563 			goto err_out;
564 		/* Prevent probing on this irq: */
565 		irq_settings_set_noprobe(desc);
566 		/*
567 		 * Call irq_startup() not irq_enable() here because the
568 		 * interrupt might be marked NOAUTOEN. So irq_startup()
569 		 * needs to be invoked when it gets enabled the first
570 		 * time. If it was already started up, then irq_startup()
571 		 * will invoke irq_enable() under the hood.
572 		 */
573 		irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
574 		break;
575 	}
576 	default:
577 		desc->depth--;
578 	}
579 }
580 
581 /**
582  *	enable_irq - enable handling of an irq
583  *	@irq: Interrupt to enable
584  *
585  *	Undoes the effect of one call to disable_irq().  If this
586  *	matches the last disable, processing of interrupts on this
587  *	IRQ line is re-enabled.
588  *
589  *	This function may be called from IRQ context only when
590  *	desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
591  */
592 void enable_irq(unsigned int irq)
593 {
594 	unsigned long flags;
595 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
596 
597 	if (!desc)
598 		return;
599 	if (WARN(!desc->irq_data.chip,
600 		 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
601 		goto out;
602 
603 	__enable_irq(desc);
604 out:
605 	irq_put_desc_busunlock(desc, flags);
606 }
607 EXPORT_SYMBOL(enable_irq);
608 
609 static int set_irq_wake_real(unsigned int irq, unsigned int on)
610 {
611 	struct irq_desc *desc = irq_to_desc(irq);
612 	int ret = -ENXIO;
613 
614 	if (irq_desc_get_chip(desc)->flags &  IRQCHIP_SKIP_SET_WAKE)
615 		return 0;
616 
617 	if (desc->irq_data.chip->irq_set_wake)
618 		ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
619 
620 	return ret;
621 }
622 
623 /**
624  *	irq_set_irq_wake - control irq power management wakeup
625  *	@irq:	interrupt to control
626  *	@on:	enable/disable power management wakeup
627  *
628  *	Enable/disable power management wakeup mode, which is
629  *	disabled by default.  Enables and disables must match,
630  *	just as they match for non-wakeup mode support.
631  *
632  *	Wakeup mode lets this IRQ wake the system from sleep
633  *	states like "suspend to RAM".
634  */
635 int irq_set_irq_wake(unsigned int irq, unsigned int on)
636 {
637 	unsigned long flags;
638 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
639 	int ret = 0;
640 
641 	if (!desc)
642 		return -EINVAL;
643 
644 	/* wakeup-capable irqs can be shared between drivers that
645 	 * don't need to have the same sleep mode behaviors.
646 	 */
647 	if (on) {
648 		if (desc->wake_depth++ == 0) {
649 			ret = set_irq_wake_real(irq, on);
650 			if (ret)
651 				desc->wake_depth = 0;
652 			else
653 				irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
654 		}
655 	} else {
656 		if (desc->wake_depth == 0) {
657 			WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
658 		} else if (--desc->wake_depth == 0) {
659 			ret = set_irq_wake_real(irq, on);
660 			if (ret)
661 				desc->wake_depth = 1;
662 			else
663 				irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
664 		}
665 	}
666 	irq_put_desc_busunlock(desc, flags);
667 	return ret;
668 }
669 EXPORT_SYMBOL(irq_set_irq_wake);
670 
671 /*
672  * Internal function that tells the architecture code whether a
673  * particular irq has been exclusively allocated or is available
674  * for driver use.
675  */
676 int can_request_irq(unsigned int irq, unsigned long irqflags)
677 {
678 	unsigned long flags;
679 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
680 	int canrequest = 0;
681 
682 	if (!desc)
683 		return 0;
684 
685 	if (irq_settings_can_request(desc)) {
686 		if (!desc->action ||
687 		    irqflags & desc->action->flags & IRQF_SHARED)
688 			canrequest = 1;
689 	}
690 	irq_put_desc_unlock(desc, flags);
691 	return canrequest;
692 }
693 
694 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
695 {
696 	struct irq_chip *chip = desc->irq_data.chip;
697 	int ret, unmask = 0;
698 
699 	if (!chip || !chip->irq_set_type) {
700 		/*
701 		 * IRQF_TRIGGER_* but the PIC does not support multiple
702 		 * flow-types?
703 		 */
704 		pr_debug("No set_type function for IRQ %d (%s)\n",
705 			 irq_desc_get_irq(desc),
706 			 chip ? (chip->name ? : "unknown") : "unknown");
707 		return 0;
708 	}
709 
710 	if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
711 		if (!irqd_irq_masked(&desc->irq_data))
712 			mask_irq(desc);
713 		if (!irqd_irq_disabled(&desc->irq_data))
714 			unmask = 1;
715 	}
716 
717 	/* Mask all flags except trigger mode */
718 	flags &= IRQ_TYPE_SENSE_MASK;
719 	ret = chip->irq_set_type(&desc->irq_data, flags);
720 
721 	switch (ret) {
722 	case IRQ_SET_MASK_OK:
723 	case IRQ_SET_MASK_OK_DONE:
724 		irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
725 		irqd_set(&desc->irq_data, flags);
726 
727 	case IRQ_SET_MASK_OK_NOCOPY:
728 		flags = irqd_get_trigger_type(&desc->irq_data);
729 		irq_settings_set_trigger_mask(desc, flags);
730 		irqd_clear(&desc->irq_data, IRQD_LEVEL);
731 		irq_settings_clr_level(desc);
732 		if (flags & IRQ_TYPE_LEVEL_MASK) {
733 			irq_settings_set_level(desc);
734 			irqd_set(&desc->irq_data, IRQD_LEVEL);
735 		}
736 
737 		ret = 0;
738 		break;
739 	default:
740 		pr_err("Setting trigger mode %lu for irq %u failed (%pF)\n",
741 		       flags, irq_desc_get_irq(desc), chip->irq_set_type);
742 	}
743 	if (unmask)
744 		unmask_irq(desc);
745 	return ret;
746 }
747 
748 #ifdef CONFIG_HARDIRQS_SW_RESEND
749 int irq_set_parent(int irq, int parent_irq)
750 {
751 	unsigned long flags;
752 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
753 
754 	if (!desc)
755 		return -EINVAL;
756 
757 	desc->parent_irq = parent_irq;
758 
759 	irq_put_desc_unlock(desc, flags);
760 	return 0;
761 }
762 EXPORT_SYMBOL_GPL(irq_set_parent);
763 #endif
764 
765 /*
766  * Default primary interrupt handler for threaded interrupts. Is
767  * assigned as primary handler when request_threaded_irq is called
768  * with handler == NULL. Useful for oneshot interrupts.
769  */
770 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
771 {
772 	return IRQ_WAKE_THREAD;
773 }
774 
775 /*
776  * Primary handler for nested threaded interrupts. Should never be
777  * called.
778  */
779 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
780 {
781 	WARN(1, "Primary handler called for nested irq %d\n", irq);
782 	return IRQ_NONE;
783 }
784 
785 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
786 {
787 	WARN(1, "Secondary action handler called for irq %d\n", irq);
788 	return IRQ_NONE;
789 }
790 
791 static int irq_wait_for_interrupt(struct irqaction *action)
792 {
793 	for (;;) {
794 		set_current_state(TASK_INTERRUPTIBLE);
795 
796 		if (kthread_should_stop()) {
797 			/* may need to run one last time */
798 			if (test_and_clear_bit(IRQTF_RUNTHREAD,
799 					       &action->thread_flags)) {
800 				__set_current_state(TASK_RUNNING);
801 				return 0;
802 			}
803 			__set_current_state(TASK_RUNNING);
804 			return -1;
805 		}
806 
807 		if (test_and_clear_bit(IRQTF_RUNTHREAD,
808 				       &action->thread_flags)) {
809 			__set_current_state(TASK_RUNNING);
810 			return 0;
811 		}
812 		schedule();
813 	}
814 }
815 
816 /*
817  * Oneshot interrupts keep the irq line masked until the threaded
818  * handler finished. unmask if the interrupt has not been disabled and
819  * is marked MASKED.
820  */
821 static void irq_finalize_oneshot(struct irq_desc *desc,
822 				 struct irqaction *action)
823 {
824 	if (!(desc->istate & IRQS_ONESHOT) ||
825 	    action->handler == irq_forced_secondary_handler)
826 		return;
827 again:
828 	chip_bus_lock(desc);
829 	raw_spin_lock_irq(&desc->lock);
830 
831 	/*
832 	 * Implausible though it may be we need to protect us against
833 	 * the following scenario:
834 	 *
835 	 * The thread is faster done than the hard interrupt handler
836 	 * on the other CPU. If we unmask the irq line then the
837 	 * interrupt can come in again and masks the line, leaves due
838 	 * to IRQS_INPROGRESS and the irq line is masked forever.
839 	 *
840 	 * This also serializes the state of shared oneshot handlers
841 	 * versus "desc->threads_onehsot |= action->thread_mask;" in
842 	 * irq_wake_thread(). See the comment there which explains the
843 	 * serialization.
844 	 */
845 	if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
846 		raw_spin_unlock_irq(&desc->lock);
847 		chip_bus_sync_unlock(desc);
848 		cpu_relax();
849 		goto again;
850 	}
851 
852 	/*
853 	 * Now check again, whether the thread should run. Otherwise
854 	 * we would clear the threads_oneshot bit of this thread which
855 	 * was just set.
856 	 */
857 	if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
858 		goto out_unlock;
859 
860 	desc->threads_oneshot &= ~action->thread_mask;
861 
862 	if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
863 	    irqd_irq_masked(&desc->irq_data))
864 		unmask_threaded_irq(desc);
865 
866 out_unlock:
867 	raw_spin_unlock_irq(&desc->lock);
868 	chip_bus_sync_unlock(desc);
869 }
870 
871 #ifdef CONFIG_SMP
872 /*
873  * Check whether we need to change the affinity of the interrupt thread.
874  */
875 static void
876 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
877 {
878 	cpumask_var_t mask;
879 	bool valid = true;
880 
881 	if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
882 		return;
883 
884 	/*
885 	 * In case we are out of memory we set IRQTF_AFFINITY again and
886 	 * try again next time
887 	 */
888 	if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
889 		set_bit(IRQTF_AFFINITY, &action->thread_flags);
890 		return;
891 	}
892 
893 	raw_spin_lock_irq(&desc->lock);
894 	/*
895 	 * This code is triggered unconditionally. Check the affinity
896 	 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
897 	 */
898 	if (cpumask_available(desc->irq_common_data.affinity)) {
899 		const struct cpumask *m;
900 
901 		m = irq_data_get_effective_affinity_mask(&desc->irq_data);
902 		cpumask_copy(mask, m);
903 	} else {
904 		valid = false;
905 	}
906 	raw_spin_unlock_irq(&desc->lock);
907 
908 	if (valid)
909 		set_cpus_allowed_ptr(current, mask);
910 	free_cpumask_var(mask);
911 }
912 #else
913 static inline void
914 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
915 #endif
916 
917 /*
918  * Interrupts which are not explicitely requested as threaded
919  * interrupts rely on the implicit bh/preempt disable of the hard irq
920  * context. So we need to disable bh here to avoid deadlocks and other
921  * side effects.
922  */
923 static irqreturn_t
924 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
925 {
926 	irqreturn_t ret;
927 
928 	local_bh_disable();
929 	ret = action->thread_fn(action->irq, action->dev_id);
930 	if (ret == IRQ_HANDLED)
931 		atomic_inc(&desc->threads_handled);
932 
933 	irq_finalize_oneshot(desc, action);
934 	local_bh_enable();
935 	return ret;
936 }
937 
938 /*
939  * Interrupts explicitly requested as threaded interrupts want to be
940  * preemtible - many of them need to sleep and wait for slow busses to
941  * complete.
942  */
943 static irqreturn_t irq_thread_fn(struct irq_desc *desc,
944 		struct irqaction *action)
945 {
946 	irqreturn_t ret;
947 
948 	ret = action->thread_fn(action->irq, action->dev_id);
949 	if (ret == IRQ_HANDLED)
950 		atomic_inc(&desc->threads_handled);
951 
952 	irq_finalize_oneshot(desc, action);
953 	return ret;
954 }
955 
956 static void wake_threads_waitq(struct irq_desc *desc)
957 {
958 	if (atomic_dec_and_test(&desc->threads_active))
959 		wake_up(&desc->wait_for_threads);
960 }
961 
962 static void irq_thread_dtor(struct callback_head *unused)
963 {
964 	struct task_struct *tsk = current;
965 	struct irq_desc *desc;
966 	struct irqaction *action;
967 
968 	if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
969 		return;
970 
971 	action = kthread_data(tsk);
972 
973 	pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
974 	       tsk->comm, tsk->pid, action->irq);
975 
976 
977 	desc = irq_to_desc(action->irq);
978 	/*
979 	 * If IRQTF_RUNTHREAD is set, we need to decrement
980 	 * desc->threads_active and wake possible waiters.
981 	 */
982 	if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
983 		wake_threads_waitq(desc);
984 
985 	/* Prevent a stale desc->threads_oneshot */
986 	irq_finalize_oneshot(desc, action);
987 }
988 
989 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
990 {
991 	struct irqaction *secondary = action->secondary;
992 
993 	if (WARN_ON_ONCE(!secondary))
994 		return;
995 
996 	raw_spin_lock_irq(&desc->lock);
997 	__irq_wake_thread(desc, secondary);
998 	raw_spin_unlock_irq(&desc->lock);
999 }
1000 
1001 /*
1002  * Interrupt handler thread
1003  */
1004 static int irq_thread(void *data)
1005 {
1006 	struct callback_head on_exit_work;
1007 	struct irqaction *action = data;
1008 	struct irq_desc *desc = irq_to_desc(action->irq);
1009 	irqreturn_t (*handler_fn)(struct irq_desc *desc,
1010 			struct irqaction *action);
1011 
1012 	if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD,
1013 					&action->thread_flags))
1014 		handler_fn = irq_forced_thread_fn;
1015 	else
1016 		handler_fn = irq_thread_fn;
1017 
1018 	init_task_work(&on_exit_work, irq_thread_dtor);
1019 	task_work_add(current, &on_exit_work, false);
1020 
1021 	irq_thread_check_affinity(desc, action);
1022 
1023 	while (!irq_wait_for_interrupt(action)) {
1024 		irqreturn_t action_ret;
1025 
1026 		irq_thread_check_affinity(desc, action);
1027 
1028 		action_ret = handler_fn(desc, action);
1029 		if (action_ret == IRQ_WAKE_THREAD)
1030 			irq_wake_secondary(desc, action);
1031 
1032 		wake_threads_waitq(desc);
1033 	}
1034 
1035 	/*
1036 	 * This is the regular exit path. __free_irq() is stopping the
1037 	 * thread via kthread_stop() after calling
1038 	 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the
1039 	 * oneshot mask bit can be set.
1040 	 */
1041 	task_work_cancel(current, irq_thread_dtor);
1042 	return 0;
1043 }
1044 
1045 /**
1046  *	irq_wake_thread - wake the irq thread for the action identified by dev_id
1047  *	@irq:		Interrupt line
1048  *	@dev_id:	Device identity for which the thread should be woken
1049  *
1050  */
1051 void irq_wake_thread(unsigned int irq, void *dev_id)
1052 {
1053 	struct irq_desc *desc = irq_to_desc(irq);
1054 	struct irqaction *action;
1055 	unsigned long flags;
1056 
1057 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1058 		return;
1059 
1060 	raw_spin_lock_irqsave(&desc->lock, flags);
1061 	for_each_action_of_desc(desc, action) {
1062 		if (action->dev_id == dev_id) {
1063 			if (action->thread)
1064 				__irq_wake_thread(desc, action);
1065 			break;
1066 		}
1067 	}
1068 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1069 }
1070 EXPORT_SYMBOL_GPL(irq_wake_thread);
1071 
1072 static int irq_setup_forced_threading(struct irqaction *new)
1073 {
1074 	if (!force_irqthreads)
1075 		return 0;
1076 	if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1077 		return 0;
1078 
1079 	/*
1080 	 * No further action required for interrupts which are requested as
1081 	 * threaded interrupts already
1082 	 */
1083 	if (new->handler == irq_default_primary_handler)
1084 		return 0;
1085 
1086 	new->flags |= IRQF_ONESHOT;
1087 
1088 	/*
1089 	 * Handle the case where we have a real primary handler and a
1090 	 * thread handler. We force thread them as well by creating a
1091 	 * secondary action.
1092 	 */
1093 	if (new->handler && new->thread_fn) {
1094 		/* Allocate the secondary action */
1095 		new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1096 		if (!new->secondary)
1097 			return -ENOMEM;
1098 		new->secondary->handler = irq_forced_secondary_handler;
1099 		new->secondary->thread_fn = new->thread_fn;
1100 		new->secondary->dev_id = new->dev_id;
1101 		new->secondary->irq = new->irq;
1102 		new->secondary->name = new->name;
1103 	}
1104 	/* Deal with the primary handler */
1105 	set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1106 	new->thread_fn = new->handler;
1107 	new->handler = irq_default_primary_handler;
1108 	return 0;
1109 }
1110 
1111 static int irq_request_resources(struct irq_desc *desc)
1112 {
1113 	struct irq_data *d = &desc->irq_data;
1114 	struct irq_chip *c = d->chip;
1115 
1116 	return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1117 }
1118 
1119 static void irq_release_resources(struct irq_desc *desc)
1120 {
1121 	struct irq_data *d = &desc->irq_data;
1122 	struct irq_chip *c = d->chip;
1123 
1124 	if (c->irq_release_resources)
1125 		c->irq_release_resources(d);
1126 }
1127 
1128 static int
1129 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1130 {
1131 	struct task_struct *t;
1132 	struct sched_param param = {
1133 		.sched_priority = MAX_USER_RT_PRIO/2,
1134 	};
1135 
1136 	if (!secondary) {
1137 		t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1138 				   new->name);
1139 	} else {
1140 		t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1141 				   new->name);
1142 		param.sched_priority -= 1;
1143 	}
1144 
1145 	if (IS_ERR(t))
1146 		return PTR_ERR(t);
1147 
1148 	sched_setscheduler_nocheck(t, SCHED_FIFO, &param);
1149 
1150 	/*
1151 	 * We keep the reference to the task struct even if
1152 	 * the thread dies to avoid that the interrupt code
1153 	 * references an already freed task_struct.
1154 	 */
1155 	get_task_struct(t);
1156 	new->thread = t;
1157 	/*
1158 	 * Tell the thread to set its affinity. This is
1159 	 * important for shared interrupt handlers as we do
1160 	 * not invoke setup_affinity() for the secondary
1161 	 * handlers as everything is already set up. Even for
1162 	 * interrupts marked with IRQF_NO_BALANCE this is
1163 	 * correct as we want the thread to move to the cpu(s)
1164 	 * on which the requesting code placed the interrupt.
1165 	 */
1166 	set_bit(IRQTF_AFFINITY, &new->thread_flags);
1167 	return 0;
1168 }
1169 
1170 /*
1171  * Internal function to register an irqaction - typically used to
1172  * allocate special interrupts that are part of the architecture.
1173  *
1174  * Locking rules:
1175  *
1176  * desc->request_mutex	Provides serialization against a concurrent free_irq()
1177  *   chip_bus_lock	Provides serialization for slow bus operations
1178  *     desc->lock	Provides serialization against hard interrupts
1179  *
1180  * chip_bus_lock and desc->lock are sufficient for all other management and
1181  * interrupt related functions. desc->request_mutex solely serializes
1182  * request/free_irq().
1183  */
1184 static int
1185 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1186 {
1187 	struct irqaction *old, **old_ptr;
1188 	unsigned long flags, thread_mask = 0;
1189 	int ret, nested, shared = 0;
1190 
1191 	if (!desc)
1192 		return -EINVAL;
1193 
1194 	if (desc->irq_data.chip == &no_irq_chip)
1195 		return -ENOSYS;
1196 	if (!try_module_get(desc->owner))
1197 		return -ENODEV;
1198 
1199 	new->irq = irq;
1200 
1201 	/*
1202 	 * If the trigger type is not specified by the caller,
1203 	 * then use the default for this interrupt.
1204 	 */
1205 	if (!(new->flags & IRQF_TRIGGER_MASK))
1206 		new->flags |= irqd_get_trigger_type(&desc->irq_data);
1207 
1208 	/*
1209 	 * Check whether the interrupt nests into another interrupt
1210 	 * thread.
1211 	 */
1212 	nested = irq_settings_is_nested_thread(desc);
1213 	if (nested) {
1214 		if (!new->thread_fn) {
1215 			ret = -EINVAL;
1216 			goto out_mput;
1217 		}
1218 		/*
1219 		 * Replace the primary handler which was provided from
1220 		 * the driver for non nested interrupt handling by the
1221 		 * dummy function which warns when called.
1222 		 */
1223 		new->handler = irq_nested_primary_handler;
1224 	} else {
1225 		if (irq_settings_can_thread(desc)) {
1226 			ret = irq_setup_forced_threading(new);
1227 			if (ret)
1228 				goto out_mput;
1229 		}
1230 	}
1231 
1232 	/*
1233 	 * Create a handler thread when a thread function is supplied
1234 	 * and the interrupt does not nest into another interrupt
1235 	 * thread.
1236 	 */
1237 	if (new->thread_fn && !nested) {
1238 		ret = setup_irq_thread(new, irq, false);
1239 		if (ret)
1240 			goto out_mput;
1241 		if (new->secondary) {
1242 			ret = setup_irq_thread(new->secondary, irq, true);
1243 			if (ret)
1244 				goto out_thread;
1245 		}
1246 	}
1247 
1248 	/*
1249 	 * Drivers are often written to work w/o knowledge about the
1250 	 * underlying irq chip implementation, so a request for a
1251 	 * threaded irq without a primary hard irq context handler
1252 	 * requires the ONESHOT flag to be set. Some irq chips like
1253 	 * MSI based interrupts are per se one shot safe. Check the
1254 	 * chip flags, so we can avoid the unmask dance at the end of
1255 	 * the threaded handler for those.
1256 	 */
1257 	if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1258 		new->flags &= ~IRQF_ONESHOT;
1259 
1260 	/*
1261 	 * Protects against a concurrent __free_irq() call which might wait
1262 	 * for synchronize_hardirq() to complete without holding the optional
1263 	 * chip bus lock and desc->lock. Also protects against handing out
1264 	 * a recycled oneshot thread_mask bit while it's still in use by
1265 	 * its previous owner.
1266 	 */
1267 	mutex_lock(&desc->request_mutex);
1268 
1269 	/*
1270 	 * Acquire bus lock as the irq_request_resources() callback below
1271 	 * might rely on the serialization or the magic power management
1272 	 * functions which are abusing the irq_bus_lock() callback,
1273 	 */
1274 	chip_bus_lock(desc);
1275 
1276 	/* First installed action requests resources. */
1277 	if (!desc->action) {
1278 		ret = irq_request_resources(desc);
1279 		if (ret) {
1280 			pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1281 			       new->name, irq, desc->irq_data.chip->name);
1282 			goto out_bus_unlock;
1283 		}
1284 	}
1285 
1286 	/*
1287 	 * The following block of code has to be executed atomically
1288 	 * protected against a concurrent interrupt and any of the other
1289 	 * management calls which are not serialized via
1290 	 * desc->request_mutex or the optional bus lock.
1291 	 */
1292 	raw_spin_lock_irqsave(&desc->lock, flags);
1293 	old_ptr = &desc->action;
1294 	old = *old_ptr;
1295 	if (old) {
1296 		/*
1297 		 * Can't share interrupts unless both agree to and are
1298 		 * the same type (level, edge, polarity). So both flag
1299 		 * fields must have IRQF_SHARED set and the bits which
1300 		 * set the trigger type must match. Also all must
1301 		 * agree on ONESHOT.
1302 		 */
1303 		unsigned int oldtype;
1304 
1305 		/*
1306 		 * If nobody did set the configuration before, inherit
1307 		 * the one provided by the requester.
1308 		 */
1309 		if (irqd_trigger_type_was_set(&desc->irq_data)) {
1310 			oldtype = irqd_get_trigger_type(&desc->irq_data);
1311 		} else {
1312 			oldtype = new->flags & IRQF_TRIGGER_MASK;
1313 			irqd_set_trigger_type(&desc->irq_data, oldtype);
1314 		}
1315 
1316 		if (!((old->flags & new->flags) & IRQF_SHARED) ||
1317 		    (oldtype != (new->flags & IRQF_TRIGGER_MASK)) ||
1318 		    ((old->flags ^ new->flags) & IRQF_ONESHOT))
1319 			goto mismatch;
1320 
1321 		/* All handlers must agree on per-cpuness */
1322 		if ((old->flags & IRQF_PERCPU) !=
1323 		    (new->flags & IRQF_PERCPU))
1324 			goto mismatch;
1325 
1326 		/* add new interrupt at end of irq queue */
1327 		do {
1328 			/*
1329 			 * Or all existing action->thread_mask bits,
1330 			 * so we can find the next zero bit for this
1331 			 * new action.
1332 			 */
1333 			thread_mask |= old->thread_mask;
1334 			old_ptr = &old->next;
1335 			old = *old_ptr;
1336 		} while (old);
1337 		shared = 1;
1338 	}
1339 
1340 	/*
1341 	 * Setup the thread mask for this irqaction for ONESHOT. For
1342 	 * !ONESHOT irqs the thread mask is 0 so we can avoid a
1343 	 * conditional in irq_wake_thread().
1344 	 */
1345 	if (new->flags & IRQF_ONESHOT) {
1346 		/*
1347 		 * Unlikely to have 32 resp 64 irqs sharing one line,
1348 		 * but who knows.
1349 		 */
1350 		if (thread_mask == ~0UL) {
1351 			ret = -EBUSY;
1352 			goto out_unlock;
1353 		}
1354 		/*
1355 		 * The thread_mask for the action is or'ed to
1356 		 * desc->thread_active to indicate that the
1357 		 * IRQF_ONESHOT thread handler has been woken, but not
1358 		 * yet finished. The bit is cleared when a thread
1359 		 * completes. When all threads of a shared interrupt
1360 		 * line have completed desc->threads_active becomes
1361 		 * zero and the interrupt line is unmasked. See
1362 		 * handle.c:irq_wake_thread() for further information.
1363 		 *
1364 		 * If no thread is woken by primary (hard irq context)
1365 		 * interrupt handlers, then desc->threads_active is
1366 		 * also checked for zero to unmask the irq line in the
1367 		 * affected hard irq flow handlers
1368 		 * (handle_[fasteoi|level]_irq).
1369 		 *
1370 		 * The new action gets the first zero bit of
1371 		 * thread_mask assigned. See the loop above which or's
1372 		 * all existing action->thread_mask bits.
1373 		 */
1374 		new->thread_mask = 1UL << ffz(thread_mask);
1375 
1376 	} else if (new->handler == irq_default_primary_handler &&
1377 		   !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1378 		/*
1379 		 * The interrupt was requested with handler = NULL, so
1380 		 * we use the default primary handler for it. But it
1381 		 * does not have the oneshot flag set. In combination
1382 		 * with level interrupts this is deadly, because the
1383 		 * default primary handler just wakes the thread, then
1384 		 * the irq lines is reenabled, but the device still
1385 		 * has the level irq asserted. Rinse and repeat....
1386 		 *
1387 		 * While this works for edge type interrupts, we play
1388 		 * it safe and reject unconditionally because we can't
1389 		 * say for sure which type this interrupt really
1390 		 * has. The type flags are unreliable as the
1391 		 * underlying chip implementation can override them.
1392 		 */
1393 		pr_err("Threaded irq requested with handler=NULL and !ONESHOT for irq %d\n",
1394 		       irq);
1395 		ret = -EINVAL;
1396 		goto out_unlock;
1397 	}
1398 
1399 	if (!shared) {
1400 		init_waitqueue_head(&desc->wait_for_threads);
1401 
1402 		/* Setup the type (level, edge polarity) if configured: */
1403 		if (new->flags & IRQF_TRIGGER_MASK) {
1404 			ret = __irq_set_trigger(desc,
1405 						new->flags & IRQF_TRIGGER_MASK);
1406 
1407 			if (ret)
1408 				goto out_unlock;
1409 		}
1410 
1411 		/*
1412 		 * Activate the interrupt. That activation must happen
1413 		 * independently of IRQ_NOAUTOEN. request_irq() can fail
1414 		 * and the callers are supposed to handle
1415 		 * that. enable_irq() of an interrupt requested with
1416 		 * IRQ_NOAUTOEN is not supposed to fail. The activation
1417 		 * keeps it in shutdown mode, it merily associates
1418 		 * resources if necessary and if that's not possible it
1419 		 * fails. Interrupts which are in managed shutdown mode
1420 		 * will simply ignore that activation request.
1421 		 */
1422 		ret = irq_activate(desc);
1423 		if (ret)
1424 			goto out_unlock;
1425 
1426 		desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1427 				  IRQS_ONESHOT | IRQS_WAITING);
1428 		irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1429 
1430 		if (new->flags & IRQF_PERCPU) {
1431 			irqd_set(&desc->irq_data, IRQD_PER_CPU);
1432 			irq_settings_set_per_cpu(desc);
1433 		}
1434 
1435 		if (new->flags & IRQF_ONESHOT)
1436 			desc->istate |= IRQS_ONESHOT;
1437 
1438 		/* Exclude IRQ from balancing if requested */
1439 		if (new->flags & IRQF_NOBALANCING) {
1440 			irq_settings_set_no_balancing(desc);
1441 			irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1442 		}
1443 
1444 		if (irq_settings_can_autoenable(desc)) {
1445 			irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1446 		} else {
1447 			/*
1448 			 * Shared interrupts do not go well with disabling
1449 			 * auto enable. The sharing interrupt might request
1450 			 * it while it's still disabled and then wait for
1451 			 * interrupts forever.
1452 			 */
1453 			WARN_ON_ONCE(new->flags & IRQF_SHARED);
1454 			/* Undo nested disables: */
1455 			desc->depth = 1;
1456 		}
1457 
1458 	} else if (new->flags & IRQF_TRIGGER_MASK) {
1459 		unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1460 		unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1461 
1462 		if (nmsk != omsk)
1463 			/* hope the handler works with current  trigger mode */
1464 			pr_warn("irq %d uses trigger mode %u; requested %u\n",
1465 				irq, omsk, nmsk);
1466 	}
1467 
1468 	*old_ptr = new;
1469 
1470 	irq_pm_install_action(desc, new);
1471 
1472 	/* Reset broken irq detection when installing new handler */
1473 	desc->irq_count = 0;
1474 	desc->irqs_unhandled = 0;
1475 
1476 	/*
1477 	 * Check whether we disabled the irq via the spurious handler
1478 	 * before. Reenable it and give it another chance.
1479 	 */
1480 	if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1481 		desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1482 		__enable_irq(desc);
1483 	}
1484 
1485 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1486 	chip_bus_sync_unlock(desc);
1487 	mutex_unlock(&desc->request_mutex);
1488 
1489 	irq_setup_timings(desc, new);
1490 
1491 	/*
1492 	 * Strictly no need to wake it up, but hung_task complains
1493 	 * when no hard interrupt wakes the thread up.
1494 	 */
1495 	if (new->thread)
1496 		wake_up_process(new->thread);
1497 	if (new->secondary)
1498 		wake_up_process(new->secondary->thread);
1499 
1500 	register_irq_proc(irq, desc);
1501 	new->dir = NULL;
1502 	register_handler_proc(irq, new);
1503 	return 0;
1504 
1505 mismatch:
1506 	if (!(new->flags & IRQF_PROBE_SHARED)) {
1507 		pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1508 		       irq, new->flags, new->name, old->flags, old->name);
1509 #ifdef CONFIG_DEBUG_SHIRQ
1510 		dump_stack();
1511 #endif
1512 	}
1513 	ret = -EBUSY;
1514 
1515 out_unlock:
1516 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1517 
1518 	if (!desc->action)
1519 		irq_release_resources(desc);
1520 out_bus_unlock:
1521 	chip_bus_sync_unlock(desc);
1522 	mutex_unlock(&desc->request_mutex);
1523 
1524 out_thread:
1525 	if (new->thread) {
1526 		struct task_struct *t = new->thread;
1527 
1528 		new->thread = NULL;
1529 		kthread_stop(t);
1530 		put_task_struct(t);
1531 	}
1532 	if (new->secondary && new->secondary->thread) {
1533 		struct task_struct *t = new->secondary->thread;
1534 
1535 		new->secondary->thread = NULL;
1536 		kthread_stop(t);
1537 		put_task_struct(t);
1538 	}
1539 out_mput:
1540 	module_put(desc->owner);
1541 	return ret;
1542 }
1543 
1544 /**
1545  *	setup_irq - setup an interrupt
1546  *	@irq: Interrupt line to setup
1547  *	@act: irqaction for the interrupt
1548  *
1549  * Used to statically setup interrupts in the early boot process.
1550  */
1551 int setup_irq(unsigned int irq, struct irqaction *act)
1552 {
1553 	int retval;
1554 	struct irq_desc *desc = irq_to_desc(irq);
1555 
1556 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1557 		return -EINVAL;
1558 
1559 	retval = irq_chip_pm_get(&desc->irq_data);
1560 	if (retval < 0)
1561 		return retval;
1562 
1563 	retval = __setup_irq(irq, desc, act);
1564 
1565 	if (retval)
1566 		irq_chip_pm_put(&desc->irq_data);
1567 
1568 	return retval;
1569 }
1570 EXPORT_SYMBOL_GPL(setup_irq);
1571 
1572 /*
1573  * Internal function to unregister an irqaction - used to free
1574  * regular and special interrupts that are part of the architecture.
1575  */
1576 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1577 {
1578 	unsigned irq = desc->irq_data.irq;
1579 	struct irqaction *action, **action_ptr;
1580 	unsigned long flags;
1581 
1582 	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1583 
1584 	mutex_lock(&desc->request_mutex);
1585 	chip_bus_lock(desc);
1586 	raw_spin_lock_irqsave(&desc->lock, flags);
1587 
1588 	/*
1589 	 * There can be multiple actions per IRQ descriptor, find the right
1590 	 * one based on the dev_id:
1591 	 */
1592 	action_ptr = &desc->action;
1593 	for (;;) {
1594 		action = *action_ptr;
1595 
1596 		if (!action) {
1597 			WARN(1, "Trying to free already-free IRQ %d\n", irq);
1598 			raw_spin_unlock_irqrestore(&desc->lock, flags);
1599 			chip_bus_sync_unlock(desc);
1600 			mutex_unlock(&desc->request_mutex);
1601 			return NULL;
1602 		}
1603 
1604 		if (action->dev_id == dev_id)
1605 			break;
1606 		action_ptr = &action->next;
1607 	}
1608 
1609 	/* Found it - now remove it from the list of entries: */
1610 	*action_ptr = action->next;
1611 
1612 	irq_pm_remove_action(desc, action);
1613 
1614 	/* If this was the last handler, shut down the IRQ line: */
1615 	if (!desc->action) {
1616 		irq_settings_clr_disable_unlazy(desc);
1617 		irq_shutdown(desc);
1618 	}
1619 
1620 #ifdef CONFIG_SMP
1621 	/* make sure affinity_hint is cleaned up */
1622 	if (WARN_ON_ONCE(desc->affinity_hint))
1623 		desc->affinity_hint = NULL;
1624 #endif
1625 
1626 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1627 	/*
1628 	 * Drop bus_lock here so the changes which were done in the chip
1629 	 * callbacks above are synced out to the irq chips which hang
1630 	 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq().
1631 	 *
1632 	 * Aside of that the bus_lock can also be taken from the threaded
1633 	 * handler in irq_finalize_oneshot() which results in a deadlock
1634 	 * because kthread_stop() would wait forever for the thread to
1635 	 * complete, which is blocked on the bus lock.
1636 	 *
1637 	 * The still held desc->request_mutex() protects against a
1638 	 * concurrent request_irq() of this irq so the release of resources
1639 	 * and timing data is properly serialized.
1640 	 */
1641 	chip_bus_sync_unlock(desc);
1642 
1643 	unregister_handler_proc(irq, action);
1644 
1645 	/* Make sure it's not being used on another CPU: */
1646 	synchronize_hardirq(irq);
1647 
1648 #ifdef CONFIG_DEBUG_SHIRQ
1649 	/*
1650 	 * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1651 	 * event to happen even now it's being freed, so let's make sure that
1652 	 * is so by doing an extra call to the handler ....
1653 	 *
1654 	 * ( We do this after actually deregistering it, to make sure that a
1655 	 *   'real' IRQ doesn't run in parallel with our fake. )
1656 	 */
1657 	if (action->flags & IRQF_SHARED) {
1658 		local_irq_save(flags);
1659 		action->handler(irq, dev_id);
1660 		local_irq_restore(flags);
1661 	}
1662 #endif
1663 
1664 	/*
1665 	 * The action has already been removed above, but the thread writes
1666 	 * its oneshot mask bit when it completes. Though request_mutex is
1667 	 * held across this which prevents __setup_irq() from handing out
1668 	 * the same bit to a newly requested action.
1669 	 */
1670 	if (action->thread) {
1671 		kthread_stop(action->thread);
1672 		put_task_struct(action->thread);
1673 		if (action->secondary && action->secondary->thread) {
1674 			kthread_stop(action->secondary->thread);
1675 			put_task_struct(action->secondary->thread);
1676 		}
1677 	}
1678 
1679 	/* Last action releases resources */
1680 	if (!desc->action) {
1681 		/*
1682 		 * Reaquire bus lock as irq_release_resources() might
1683 		 * require it to deallocate resources over the slow bus.
1684 		 */
1685 		chip_bus_lock(desc);
1686 		irq_release_resources(desc);
1687 		chip_bus_sync_unlock(desc);
1688 		irq_remove_timings(desc);
1689 	}
1690 
1691 	mutex_unlock(&desc->request_mutex);
1692 
1693 	irq_chip_pm_put(&desc->irq_data);
1694 	module_put(desc->owner);
1695 	kfree(action->secondary);
1696 	return action;
1697 }
1698 
1699 /**
1700  *	remove_irq - free an interrupt
1701  *	@irq: Interrupt line to free
1702  *	@act: irqaction for the interrupt
1703  *
1704  * Used to remove interrupts statically setup by the early boot process.
1705  */
1706 void remove_irq(unsigned int irq, struct irqaction *act)
1707 {
1708 	struct irq_desc *desc = irq_to_desc(irq);
1709 
1710 	if (desc && !WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1711 		__free_irq(desc, act->dev_id);
1712 }
1713 EXPORT_SYMBOL_GPL(remove_irq);
1714 
1715 /**
1716  *	free_irq - free an interrupt allocated with request_irq
1717  *	@irq: Interrupt line to free
1718  *	@dev_id: Device identity to free
1719  *
1720  *	Remove an interrupt handler. The handler is removed and if the
1721  *	interrupt line is no longer in use by any driver it is disabled.
1722  *	On a shared IRQ the caller must ensure the interrupt is disabled
1723  *	on the card it drives before calling this function. The function
1724  *	does not return until any executing interrupts for this IRQ
1725  *	have completed.
1726  *
1727  *	This function must not be called from interrupt context.
1728  *
1729  *	Returns the devname argument passed to request_irq.
1730  */
1731 const void *free_irq(unsigned int irq, void *dev_id)
1732 {
1733 	struct irq_desc *desc = irq_to_desc(irq);
1734 	struct irqaction *action;
1735 	const char *devname;
1736 
1737 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1738 		return NULL;
1739 
1740 #ifdef CONFIG_SMP
1741 	if (WARN_ON(desc->affinity_notify))
1742 		desc->affinity_notify = NULL;
1743 #endif
1744 
1745 	action = __free_irq(desc, dev_id);
1746 
1747 	if (!action)
1748 		return NULL;
1749 
1750 	devname = action->name;
1751 	kfree(action);
1752 	return devname;
1753 }
1754 EXPORT_SYMBOL(free_irq);
1755 
1756 /**
1757  *	request_threaded_irq - allocate an interrupt line
1758  *	@irq: Interrupt line to allocate
1759  *	@handler: Function to be called when the IRQ occurs.
1760  *		  Primary handler for threaded interrupts
1761  *		  If NULL and thread_fn != NULL the default
1762  *		  primary handler is installed
1763  *	@thread_fn: Function called from the irq handler thread
1764  *		    If NULL, no irq thread is created
1765  *	@irqflags: Interrupt type flags
1766  *	@devname: An ascii name for the claiming device
1767  *	@dev_id: A cookie passed back to the handler function
1768  *
1769  *	This call allocates interrupt resources and enables the
1770  *	interrupt line and IRQ handling. From the point this
1771  *	call is made your handler function may be invoked. Since
1772  *	your handler function must clear any interrupt the board
1773  *	raises, you must take care both to initialise your hardware
1774  *	and to set up the interrupt handler in the right order.
1775  *
1776  *	If you want to set up a threaded irq handler for your device
1777  *	then you need to supply @handler and @thread_fn. @handler is
1778  *	still called in hard interrupt context and has to check
1779  *	whether the interrupt originates from the device. If yes it
1780  *	needs to disable the interrupt on the device and return
1781  *	IRQ_WAKE_THREAD which will wake up the handler thread and run
1782  *	@thread_fn. This split handler design is necessary to support
1783  *	shared interrupts.
1784  *
1785  *	Dev_id must be globally unique. Normally the address of the
1786  *	device data structure is used as the cookie. Since the handler
1787  *	receives this value it makes sense to use it.
1788  *
1789  *	If your interrupt is shared you must pass a non NULL dev_id
1790  *	as this is required when freeing the interrupt.
1791  *
1792  *	Flags:
1793  *
1794  *	IRQF_SHARED		Interrupt is shared
1795  *	IRQF_TRIGGER_*		Specify active edge(s) or level
1796  *
1797  */
1798 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
1799 			 irq_handler_t thread_fn, unsigned long irqflags,
1800 			 const char *devname, void *dev_id)
1801 {
1802 	struct irqaction *action;
1803 	struct irq_desc *desc;
1804 	int retval;
1805 
1806 	if (irq == IRQ_NOTCONNECTED)
1807 		return -ENOTCONN;
1808 
1809 	/*
1810 	 * Sanity-check: shared interrupts must pass in a real dev-ID,
1811 	 * otherwise we'll have trouble later trying to figure out
1812 	 * which interrupt is which (messes up the interrupt freeing
1813 	 * logic etc).
1814 	 *
1815 	 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
1816 	 * it cannot be set along with IRQF_NO_SUSPEND.
1817 	 */
1818 	if (((irqflags & IRQF_SHARED) && !dev_id) ||
1819 	    (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
1820 	    ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
1821 		return -EINVAL;
1822 
1823 	desc = irq_to_desc(irq);
1824 	if (!desc)
1825 		return -EINVAL;
1826 
1827 	if (!irq_settings_can_request(desc) ||
1828 	    WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1829 		return -EINVAL;
1830 
1831 	if (!handler) {
1832 		if (!thread_fn)
1833 			return -EINVAL;
1834 		handler = irq_default_primary_handler;
1835 	}
1836 
1837 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1838 	if (!action)
1839 		return -ENOMEM;
1840 
1841 	action->handler = handler;
1842 	action->thread_fn = thread_fn;
1843 	action->flags = irqflags;
1844 	action->name = devname;
1845 	action->dev_id = dev_id;
1846 
1847 	retval = irq_chip_pm_get(&desc->irq_data);
1848 	if (retval < 0) {
1849 		kfree(action);
1850 		return retval;
1851 	}
1852 
1853 	retval = __setup_irq(irq, desc, action);
1854 
1855 	if (retval) {
1856 		irq_chip_pm_put(&desc->irq_data);
1857 		kfree(action->secondary);
1858 		kfree(action);
1859 	}
1860 
1861 #ifdef CONFIG_DEBUG_SHIRQ_FIXME
1862 	if (!retval && (irqflags & IRQF_SHARED)) {
1863 		/*
1864 		 * It's a shared IRQ -- the driver ought to be prepared for it
1865 		 * to happen immediately, so let's make sure....
1866 		 * We disable the irq to make sure that a 'real' IRQ doesn't
1867 		 * run in parallel with our fake.
1868 		 */
1869 		unsigned long flags;
1870 
1871 		disable_irq(irq);
1872 		local_irq_save(flags);
1873 
1874 		handler(irq, dev_id);
1875 
1876 		local_irq_restore(flags);
1877 		enable_irq(irq);
1878 	}
1879 #endif
1880 	return retval;
1881 }
1882 EXPORT_SYMBOL(request_threaded_irq);
1883 
1884 /**
1885  *	request_any_context_irq - allocate an interrupt line
1886  *	@irq: Interrupt line to allocate
1887  *	@handler: Function to be called when the IRQ occurs.
1888  *		  Threaded handler for threaded interrupts.
1889  *	@flags: Interrupt type flags
1890  *	@name: An ascii name for the claiming device
1891  *	@dev_id: A cookie passed back to the handler function
1892  *
1893  *	This call allocates interrupt resources and enables the
1894  *	interrupt line and IRQ handling. It selects either a
1895  *	hardirq or threaded handling method depending on the
1896  *	context.
1897  *
1898  *	On failure, it returns a negative value. On success,
1899  *	it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
1900  */
1901 int request_any_context_irq(unsigned int irq, irq_handler_t handler,
1902 			    unsigned long flags, const char *name, void *dev_id)
1903 {
1904 	struct irq_desc *desc;
1905 	int ret;
1906 
1907 	if (irq == IRQ_NOTCONNECTED)
1908 		return -ENOTCONN;
1909 
1910 	desc = irq_to_desc(irq);
1911 	if (!desc)
1912 		return -EINVAL;
1913 
1914 	if (irq_settings_is_nested_thread(desc)) {
1915 		ret = request_threaded_irq(irq, NULL, handler,
1916 					   flags, name, dev_id);
1917 		return !ret ? IRQC_IS_NESTED : ret;
1918 	}
1919 
1920 	ret = request_irq(irq, handler, flags, name, dev_id);
1921 	return !ret ? IRQC_IS_HARDIRQ : ret;
1922 }
1923 EXPORT_SYMBOL_GPL(request_any_context_irq);
1924 
1925 void enable_percpu_irq(unsigned int irq, unsigned int type)
1926 {
1927 	unsigned int cpu = smp_processor_id();
1928 	unsigned long flags;
1929 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1930 
1931 	if (!desc)
1932 		return;
1933 
1934 	/*
1935 	 * If the trigger type is not specified by the caller, then
1936 	 * use the default for this interrupt.
1937 	 */
1938 	type &= IRQ_TYPE_SENSE_MASK;
1939 	if (type == IRQ_TYPE_NONE)
1940 		type = irqd_get_trigger_type(&desc->irq_data);
1941 
1942 	if (type != IRQ_TYPE_NONE) {
1943 		int ret;
1944 
1945 		ret = __irq_set_trigger(desc, type);
1946 
1947 		if (ret) {
1948 			WARN(1, "failed to set type for IRQ%d\n", irq);
1949 			goto out;
1950 		}
1951 	}
1952 
1953 	irq_percpu_enable(desc, cpu);
1954 out:
1955 	irq_put_desc_unlock(desc, flags);
1956 }
1957 EXPORT_SYMBOL_GPL(enable_percpu_irq);
1958 
1959 /**
1960  * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
1961  * @irq:	Linux irq number to check for
1962  *
1963  * Must be called from a non migratable context. Returns the enable
1964  * state of a per cpu interrupt on the current cpu.
1965  */
1966 bool irq_percpu_is_enabled(unsigned int irq)
1967 {
1968 	unsigned int cpu = smp_processor_id();
1969 	struct irq_desc *desc;
1970 	unsigned long flags;
1971 	bool is_enabled;
1972 
1973 	desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1974 	if (!desc)
1975 		return false;
1976 
1977 	is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
1978 	irq_put_desc_unlock(desc, flags);
1979 
1980 	return is_enabled;
1981 }
1982 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
1983 
1984 void disable_percpu_irq(unsigned int irq)
1985 {
1986 	unsigned int cpu = smp_processor_id();
1987 	unsigned long flags;
1988 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1989 
1990 	if (!desc)
1991 		return;
1992 
1993 	irq_percpu_disable(desc, cpu);
1994 	irq_put_desc_unlock(desc, flags);
1995 }
1996 EXPORT_SYMBOL_GPL(disable_percpu_irq);
1997 
1998 /*
1999  * Internal function to unregister a percpu irqaction.
2000  */
2001 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2002 {
2003 	struct irq_desc *desc = irq_to_desc(irq);
2004 	struct irqaction *action;
2005 	unsigned long flags;
2006 
2007 	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
2008 
2009 	if (!desc)
2010 		return NULL;
2011 
2012 	raw_spin_lock_irqsave(&desc->lock, flags);
2013 
2014 	action = desc->action;
2015 	if (!action || action->percpu_dev_id != dev_id) {
2016 		WARN(1, "Trying to free already-free IRQ %d\n", irq);
2017 		goto bad;
2018 	}
2019 
2020 	if (!cpumask_empty(desc->percpu_enabled)) {
2021 		WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
2022 		     irq, cpumask_first(desc->percpu_enabled));
2023 		goto bad;
2024 	}
2025 
2026 	/* Found it - now remove it from the list of entries: */
2027 	desc->action = NULL;
2028 
2029 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2030 
2031 	unregister_handler_proc(irq, action);
2032 
2033 	irq_chip_pm_put(&desc->irq_data);
2034 	module_put(desc->owner);
2035 	return action;
2036 
2037 bad:
2038 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2039 	return NULL;
2040 }
2041 
2042 /**
2043  *	remove_percpu_irq - free a per-cpu interrupt
2044  *	@irq: Interrupt line to free
2045  *	@act: irqaction for the interrupt
2046  *
2047  * Used to remove interrupts statically setup by the early boot process.
2048  */
2049 void remove_percpu_irq(unsigned int irq, struct irqaction *act)
2050 {
2051 	struct irq_desc *desc = irq_to_desc(irq);
2052 
2053 	if (desc && irq_settings_is_per_cpu_devid(desc))
2054 	    __free_percpu_irq(irq, act->percpu_dev_id);
2055 }
2056 
2057 /**
2058  *	free_percpu_irq - free an interrupt allocated with request_percpu_irq
2059  *	@irq: Interrupt line to free
2060  *	@dev_id: Device identity to free
2061  *
2062  *	Remove a percpu interrupt handler. The handler is removed, but
2063  *	the interrupt line is not disabled. This must be done on each
2064  *	CPU before calling this function. The function does not return
2065  *	until any executing interrupts for this IRQ have completed.
2066  *
2067  *	This function must not be called from interrupt context.
2068  */
2069 void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2070 {
2071 	struct irq_desc *desc = irq_to_desc(irq);
2072 
2073 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2074 		return;
2075 
2076 	chip_bus_lock(desc);
2077 	kfree(__free_percpu_irq(irq, dev_id));
2078 	chip_bus_sync_unlock(desc);
2079 }
2080 EXPORT_SYMBOL_GPL(free_percpu_irq);
2081 
2082 /**
2083  *	setup_percpu_irq - setup a per-cpu interrupt
2084  *	@irq: Interrupt line to setup
2085  *	@act: irqaction for the interrupt
2086  *
2087  * Used to statically setup per-cpu interrupts in the early boot process.
2088  */
2089 int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2090 {
2091 	struct irq_desc *desc = irq_to_desc(irq);
2092 	int retval;
2093 
2094 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2095 		return -EINVAL;
2096 
2097 	retval = irq_chip_pm_get(&desc->irq_data);
2098 	if (retval < 0)
2099 		return retval;
2100 
2101 	retval = __setup_irq(irq, desc, act);
2102 
2103 	if (retval)
2104 		irq_chip_pm_put(&desc->irq_data);
2105 
2106 	return retval;
2107 }
2108 
2109 /**
2110  *	__request_percpu_irq - allocate a percpu interrupt line
2111  *	@irq: Interrupt line to allocate
2112  *	@handler: Function to be called when the IRQ occurs.
2113  *	@flags: Interrupt type flags (IRQF_TIMER only)
2114  *	@devname: An ascii name for the claiming device
2115  *	@dev_id: A percpu cookie passed back to the handler function
2116  *
2117  *	This call allocates interrupt resources and enables the
2118  *	interrupt on the local CPU. If the interrupt is supposed to be
2119  *	enabled on other CPUs, it has to be done on each CPU using
2120  *	enable_percpu_irq().
2121  *
2122  *	Dev_id must be globally unique. It is a per-cpu variable, and
2123  *	the handler gets called with the interrupted CPU's instance of
2124  *	that variable.
2125  */
2126 int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2127 			 unsigned long flags, const char *devname,
2128 			 void __percpu *dev_id)
2129 {
2130 	struct irqaction *action;
2131 	struct irq_desc *desc;
2132 	int retval;
2133 
2134 	if (!dev_id)
2135 		return -EINVAL;
2136 
2137 	desc = irq_to_desc(irq);
2138 	if (!desc || !irq_settings_can_request(desc) ||
2139 	    !irq_settings_is_per_cpu_devid(desc))
2140 		return -EINVAL;
2141 
2142 	if (flags && flags != IRQF_TIMER)
2143 		return -EINVAL;
2144 
2145 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2146 	if (!action)
2147 		return -ENOMEM;
2148 
2149 	action->handler = handler;
2150 	action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2151 	action->name = devname;
2152 	action->percpu_dev_id = dev_id;
2153 
2154 	retval = irq_chip_pm_get(&desc->irq_data);
2155 	if (retval < 0) {
2156 		kfree(action);
2157 		return retval;
2158 	}
2159 
2160 	retval = __setup_irq(irq, desc, action);
2161 
2162 	if (retval) {
2163 		irq_chip_pm_put(&desc->irq_data);
2164 		kfree(action);
2165 	}
2166 
2167 	return retval;
2168 }
2169 EXPORT_SYMBOL_GPL(__request_percpu_irq);
2170 
2171 /**
2172  *	irq_get_irqchip_state - returns the irqchip state of a interrupt.
2173  *	@irq: Interrupt line that is forwarded to a VM
2174  *	@which: One of IRQCHIP_STATE_* the caller wants to know about
2175  *	@state: a pointer to a boolean where the state is to be storeed
2176  *
2177  *	This call snapshots the internal irqchip state of an
2178  *	interrupt, returning into @state the bit corresponding to
2179  *	stage @which
2180  *
2181  *	This function should be called with preemption disabled if the
2182  *	interrupt controller has per-cpu registers.
2183  */
2184 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2185 			  bool *state)
2186 {
2187 	struct irq_desc *desc;
2188 	struct irq_data *data;
2189 	struct irq_chip *chip;
2190 	unsigned long flags;
2191 	int err = -EINVAL;
2192 
2193 	desc = irq_get_desc_buslock(irq, &flags, 0);
2194 	if (!desc)
2195 		return err;
2196 
2197 	data = irq_desc_get_irq_data(desc);
2198 
2199 	do {
2200 		chip = irq_data_get_irq_chip(data);
2201 		if (chip->irq_get_irqchip_state)
2202 			break;
2203 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2204 		data = data->parent_data;
2205 #else
2206 		data = NULL;
2207 #endif
2208 	} while (data);
2209 
2210 	if (data)
2211 		err = chip->irq_get_irqchip_state(data, which, state);
2212 
2213 	irq_put_desc_busunlock(desc, flags);
2214 	return err;
2215 }
2216 EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2217 
2218 /**
2219  *	irq_set_irqchip_state - set the state of a forwarded interrupt.
2220  *	@irq: Interrupt line that is forwarded to a VM
2221  *	@which: State to be restored (one of IRQCHIP_STATE_*)
2222  *	@val: Value corresponding to @which
2223  *
2224  *	This call sets the internal irqchip state of an interrupt,
2225  *	depending on the value of @which.
2226  *
2227  *	This function should be called with preemption disabled if the
2228  *	interrupt controller has per-cpu registers.
2229  */
2230 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2231 			  bool val)
2232 {
2233 	struct irq_desc *desc;
2234 	struct irq_data *data;
2235 	struct irq_chip *chip;
2236 	unsigned long flags;
2237 	int err = -EINVAL;
2238 
2239 	desc = irq_get_desc_buslock(irq, &flags, 0);
2240 	if (!desc)
2241 		return err;
2242 
2243 	data = irq_desc_get_irq_data(desc);
2244 
2245 	do {
2246 		chip = irq_data_get_irq_chip(data);
2247 		if (chip->irq_set_irqchip_state)
2248 			break;
2249 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2250 		data = data->parent_data;
2251 #else
2252 		data = NULL;
2253 #endif
2254 	} while (data);
2255 
2256 	if (data)
2257 		err = chip->irq_set_irqchip_state(data, which, val);
2258 
2259 	irq_put_desc_busunlock(desc, flags);
2260 	return err;
2261 }
2262 EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
2263