xref: /openbmc/linux/kernel/irq/manage.c (revision 505b0877)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
4  * Copyright (C) 2005-2006 Thomas Gleixner
5  *
6  * This file contains driver APIs to the irq subsystem.
7  */
8 
9 #define pr_fmt(fmt) "genirq: " fmt
10 
11 #include <linux/irq.h>
12 #include <linux/kthread.h>
13 #include <linux/module.h>
14 #include <linux/random.h>
15 #include <linux/interrupt.h>
16 #include <linux/irqdomain.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/sched/rt.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/isolation.h>
22 #include <uapi/linux/sched/types.h>
23 #include <linux/task_work.h>
24 
25 #include "internals.h"
26 
27 #if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT)
28 __read_mostly bool force_irqthreads;
29 EXPORT_SYMBOL_GPL(force_irqthreads);
30 
31 static int __init setup_forced_irqthreads(char *arg)
32 {
33 	force_irqthreads = true;
34 	return 0;
35 }
36 early_param("threadirqs", setup_forced_irqthreads);
37 #endif
38 
39 static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip)
40 {
41 	struct irq_data *irqd = irq_desc_get_irq_data(desc);
42 	bool inprogress;
43 
44 	do {
45 		unsigned long flags;
46 
47 		/*
48 		 * Wait until we're out of the critical section.  This might
49 		 * give the wrong answer due to the lack of memory barriers.
50 		 */
51 		while (irqd_irq_inprogress(&desc->irq_data))
52 			cpu_relax();
53 
54 		/* Ok, that indicated we're done: double-check carefully. */
55 		raw_spin_lock_irqsave(&desc->lock, flags);
56 		inprogress = irqd_irq_inprogress(&desc->irq_data);
57 
58 		/*
59 		 * If requested and supported, check at the chip whether it
60 		 * is in flight at the hardware level, i.e. already pending
61 		 * in a CPU and waiting for service and acknowledge.
62 		 */
63 		if (!inprogress && sync_chip) {
64 			/*
65 			 * Ignore the return code. inprogress is only updated
66 			 * when the chip supports it.
67 			 */
68 			__irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE,
69 						&inprogress);
70 		}
71 		raw_spin_unlock_irqrestore(&desc->lock, flags);
72 
73 		/* Oops, that failed? */
74 	} while (inprogress);
75 }
76 
77 /**
78  *	synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
79  *	@irq: interrupt number to wait for
80  *
81  *	This function waits for any pending hard IRQ handlers for this
82  *	interrupt to complete before returning. If you use this
83  *	function while holding a resource the IRQ handler may need you
84  *	will deadlock. It does not take associated threaded handlers
85  *	into account.
86  *
87  *	Do not use this for shutdown scenarios where you must be sure
88  *	that all parts (hardirq and threaded handler) have completed.
89  *
90  *	Returns: false if a threaded handler is active.
91  *
92  *	This function may be called - with care - from IRQ context.
93  *
94  *	It does not check whether there is an interrupt in flight at the
95  *	hardware level, but not serviced yet, as this might deadlock when
96  *	called with interrupts disabled and the target CPU of the interrupt
97  *	is the current CPU.
98  */
99 bool synchronize_hardirq(unsigned int irq)
100 {
101 	struct irq_desc *desc = irq_to_desc(irq);
102 
103 	if (desc) {
104 		__synchronize_hardirq(desc, false);
105 		return !atomic_read(&desc->threads_active);
106 	}
107 
108 	return true;
109 }
110 EXPORT_SYMBOL(synchronize_hardirq);
111 
112 /**
113  *	synchronize_irq - wait for pending IRQ handlers (on other CPUs)
114  *	@irq: interrupt number to wait for
115  *
116  *	This function waits for any pending IRQ handlers for this interrupt
117  *	to complete before returning. If you use this function while
118  *	holding a resource the IRQ handler may need you will deadlock.
119  *
120  *	Can only be called from preemptible code as it might sleep when
121  *	an interrupt thread is associated to @irq.
122  *
123  *	It optionally makes sure (when the irq chip supports that method)
124  *	that the interrupt is not pending in any CPU and waiting for
125  *	service.
126  */
127 void synchronize_irq(unsigned int irq)
128 {
129 	struct irq_desc *desc = irq_to_desc(irq);
130 
131 	if (desc) {
132 		__synchronize_hardirq(desc, true);
133 		/*
134 		 * We made sure that no hardirq handler is
135 		 * running. Now verify that no threaded handlers are
136 		 * active.
137 		 */
138 		wait_event(desc->wait_for_threads,
139 			   !atomic_read(&desc->threads_active));
140 	}
141 }
142 EXPORT_SYMBOL(synchronize_irq);
143 
144 #ifdef CONFIG_SMP
145 cpumask_var_t irq_default_affinity;
146 
147 static bool __irq_can_set_affinity(struct irq_desc *desc)
148 {
149 	if (!desc || !irqd_can_balance(&desc->irq_data) ||
150 	    !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
151 		return false;
152 	return true;
153 }
154 
155 /**
156  *	irq_can_set_affinity - Check if the affinity of a given irq can be set
157  *	@irq:		Interrupt to check
158  *
159  */
160 int irq_can_set_affinity(unsigned int irq)
161 {
162 	return __irq_can_set_affinity(irq_to_desc(irq));
163 }
164 
165 /**
166  * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
167  * @irq:	Interrupt to check
168  *
169  * Like irq_can_set_affinity() above, but additionally checks for the
170  * AFFINITY_MANAGED flag.
171  */
172 bool irq_can_set_affinity_usr(unsigned int irq)
173 {
174 	struct irq_desc *desc = irq_to_desc(irq);
175 
176 	return __irq_can_set_affinity(desc) &&
177 		!irqd_affinity_is_managed(&desc->irq_data);
178 }
179 
180 /**
181  *	irq_set_thread_affinity - Notify irq threads to adjust affinity
182  *	@desc:		irq descriptor which has affitnity changed
183  *
184  *	We just set IRQTF_AFFINITY and delegate the affinity setting
185  *	to the interrupt thread itself. We can not call
186  *	set_cpus_allowed_ptr() here as we hold desc->lock and this
187  *	code can be called from hard interrupt context.
188  */
189 void irq_set_thread_affinity(struct irq_desc *desc)
190 {
191 	struct irqaction *action;
192 
193 	for_each_action_of_desc(desc, action)
194 		if (action->thread)
195 			set_bit(IRQTF_AFFINITY, &action->thread_flags);
196 }
197 
198 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
199 static void irq_validate_effective_affinity(struct irq_data *data)
200 {
201 	const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
202 	struct irq_chip *chip = irq_data_get_irq_chip(data);
203 
204 	if (!cpumask_empty(m))
205 		return;
206 	pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
207 		     chip->name, data->irq);
208 }
209 
210 static inline void irq_init_effective_affinity(struct irq_data *data,
211 					       const struct cpumask *mask)
212 {
213 	cpumask_copy(irq_data_get_effective_affinity_mask(data), mask);
214 }
215 #else
216 static inline void irq_validate_effective_affinity(struct irq_data *data) { }
217 static inline void irq_init_effective_affinity(struct irq_data *data,
218 					       const struct cpumask *mask) { }
219 #endif
220 
221 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
222 			bool force)
223 {
224 	struct irq_desc *desc = irq_data_to_desc(data);
225 	struct irq_chip *chip = irq_data_get_irq_chip(data);
226 	int ret;
227 
228 	if (!chip || !chip->irq_set_affinity)
229 		return -EINVAL;
230 
231 	/*
232 	 * If this is a managed interrupt and housekeeping is enabled on
233 	 * it check whether the requested affinity mask intersects with
234 	 * a housekeeping CPU. If so, then remove the isolated CPUs from
235 	 * the mask and just keep the housekeeping CPU(s). This prevents
236 	 * the affinity setter from routing the interrupt to an isolated
237 	 * CPU to avoid that I/O submitted from a housekeeping CPU causes
238 	 * interrupts on an isolated one.
239 	 *
240 	 * If the masks do not intersect or include online CPU(s) then
241 	 * keep the requested mask. The isolated target CPUs are only
242 	 * receiving interrupts when the I/O operation was submitted
243 	 * directly from them.
244 	 *
245 	 * If all housekeeping CPUs in the affinity mask are offline, the
246 	 * interrupt will be migrated by the CPU hotplug code once a
247 	 * housekeeping CPU which belongs to the affinity mask comes
248 	 * online.
249 	 */
250 	if (irqd_affinity_is_managed(data) &&
251 	    housekeeping_enabled(HK_FLAG_MANAGED_IRQ)) {
252 		const struct cpumask *hk_mask, *prog_mask;
253 
254 		static DEFINE_RAW_SPINLOCK(tmp_mask_lock);
255 		static struct cpumask tmp_mask;
256 
257 		hk_mask = housekeeping_cpumask(HK_FLAG_MANAGED_IRQ);
258 
259 		raw_spin_lock(&tmp_mask_lock);
260 		cpumask_and(&tmp_mask, mask, hk_mask);
261 		if (!cpumask_intersects(&tmp_mask, cpu_online_mask))
262 			prog_mask = mask;
263 		else
264 			prog_mask = &tmp_mask;
265 		ret = chip->irq_set_affinity(data, prog_mask, force);
266 		raw_spin_unlock(&tmp_mask_lock);
267 	} else {
268 		ret = chip->irq_set_affinity(data, mask, force);
269 	}
270 	switch (ret) {
271 	case IRQ_SET_MASK_OK:
272 	case IRQ_SET_MASK_OK_DONE:
273 		cpumask_copy(desc->irq_common_data.affinity, mask);
274 		fallthrough;
275 	case IRQ_SET_MASK_OK_NOCOPY:
276 		irq_validate_effective_affinity(data);
277 		irq_set_thread_affinity(desc);
278 		ret = 0;
279 	}
280 
281 	return ret;
282 }
283 
284 #ifdef CONFIG_GENERIC_PENDING_IRQ
285 static inline int irq_set_affinity_pending(struct irq_data *data,
286 					   const struct cpumask *dest)
287 {
288 	struct irq_desc *desc = irq_data_to_desc(data);
289 
290 	irqd_set_move_pending(data);
291 	irq_copy_pending(desc, dest);
292 	return 0;
293 }
294 #else
295 static inline int irq_set_affinity_pending(struct irq_data *data,
296 					   const struct cpumask *dest)
297 {
298 	return -EBUSY;
299 }
300 #endif
301 
302 static int irq_try_set_affinity(struct irq_data *data,
303 				const struct cpumask *dest, bool force)
304 {
305 	int ret = irq_do_set_affinity(data, dest, force);
306 
307 	/*
308 	 * In case that the underlying vector management is busy and the
309 	 * architecture supports the generic pending mechanism then utilize
310 	 * this to avoid returning an error to user space.
311 	 */
312 	if (ret == -EBUSY && !force)
313 		ret = irq_set_affinity_pending(data, dest);
314 	return ret;
315 }
316 
317 static bool irq_set_affinity_deactivated(struct irq_data *data,
318 					 const struct cpumask *mask, bool force)
319 {
320 	struct irq_desc *desc = irq_data_to_desc(data);
321 
322 	/*
323 	 * Handle irq chips which can handle affinity only in activated
324 	 * state correctly
325 	 *
326 	 * If the interrupt is not yet activated, just store the affinity
327 	 * mask and do not call the chip driver at all. On activation the
328 	 * driver has to make sure anyway that the interrupt is in a
329 	 * useable state so startup works.
330 	 */
331 	if (!IS_ENABLED(CONFIG_IRQ_DOMAIN_HIERARCHY) ||
332 	    irqd_is_activated(data) || !irqd_affinity_on_activate(data))
333 		return false;
334 
335 	cpumask_copy(desc->irq_common_data.affinity, mask);
336 	irq_init_effective_affinity(data, mask);
337 	irqd_set(data, IRQD_AFFINITY_SET);
338 	return true;
339 }
340 
341 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
342 			    bool force)
343 {
344 	struct irq_chip *chip = irq_data_get_irq_chip(data);
345 	struct irq_desc *desc = irq_data_to_desc(data);
346 	int ret = 0;
347 
348 	if (!chip || !chip->irq_set_affinity)
349 		return -EINVAL;
350 
351 	if (irq_set_affinity_deactivated(data, mask, force))
352 		return 0;
353 
354 	if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) {
355 		ret = irq_try_set_affinity(data, mask, force);
356 	} else {
357 		irqd_set_move_pending(data);
358 		irq_copy_pending(desc, mask);
359 	}
360 
361 	if (desc->affinity_notify) {
362 		kref_get(&desc->affinity_notify->kref);
363 		if (!schedule_work(&desc->affinity_notify->work)) {
364 			/* Work was already scheduled, drop our extra ref */
365 			kref_put(&desc->affinity_notify->kref,
366 				 desc->affinity_notify->release);
367 		}
368 	}
369 	irqd_set(data, IRQD_AFFINITY_SET);
370 
371 	return ret;
372 }
373 
374 int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force)
375 {
376 	struct irq_desc *desc = irq_to_desc(irq);
377 	unsigned long flags;
378 	int ret;
379 
380 	if (!desc)
381 		return -EINVAL;
382 
383 	raw_spin_lock_irqsave(&desc->lock, flags);
384 	ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
385 	raw_spin_unlock_irqrestore(&desc->lock, flags);
386 	return ret;
387 }
388 
389 int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m)
390 {
391 	unsigned long flags;
392 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
393 
394 	if (!desc)
395 		return -EINVAL;
396 	desc->affinity_hint = m;
397 	irq_put_desc_unlock(desc, flags);
398 	/* set the initial affinity to prevent every interrupt being on CPU0 */
399 	if (m)
400 		__irq_set_affinity(irq, m, false);
401 	return 0;
402 }
403 EXPORT_SYMBOL_GPL(irq_set_affinity_hint);
404 
405 static void irq_affinity_notify(struct work_struct *work)
406 {
407 	struct irq_affinity_notify *notify =
408 		container_of(work, struct irq_affinity_notify, work);
409 	struct irq_desc *desc = irq_to_desc(notify->irq);
410 	cpumask_var_t cpumask;
411 	unsigned long flags;
412 
413 	if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
414 		goto out;
415 
416 	raw_spin_lock_irqsave(&desc->lock, flags);
417 	if (irq_move_pending(&desc->irq_data))
418 		irq_get_pending(cpumask, desc);
419 	else
420 		cpumask_copy(cpumask, desc->irq_common_data.affinity);
421 	raw_spin_unlock_irqrestore(&desc->lock, flags);
422 
423 	notify->notify(notify, cpumask);
424 
425 	free_cpumask_var(cpumask);
426 out:
427 	kref_put(&notify->kref, notify->release);
428 }
429 
430 /**
431  *	irq_set_affinity_notifier - control notification of IRQ affinity changes
432  *	@irq:		Interrupt for which to enable/disable notification
433  *	@notify:	Context for notification, or %NULL to disable
434  *			notification.  Function pointers must be initialised;
435  *			the other fields will be initialised by this function.
436  *
437  *	Must be called in process context.  Notification may only be enabled
438  *	after the IRQ is allocated and must be disabled before the IRQ is
439  *	freed using free_irq().
440  */
441 int
442 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
443 {
444 	struct irq_desc *desc = irq_to_desc(irq);
445 	struct irq_affinity_notify *old_notify;
446 	unsigned long flags;
447 
448 	/* The release function is promised process context */
449 	might_sleep();
450 
451 	if (!desc || desc->istate & IRQS_NMI)
452 		return -EINVAL;
453 
454 	/* Complete initialisation of *notify */
455 	if (notify) {
456 		notify->irq = irq;
457 		kref_init(&notify->kref);
458 		INIT_WORK(&notify->work, irq_affinity_notify);
459 	}
460 
461 	raw_spin_lock_irqsave(&desc->lock, flags);
462 	old_notify = desc->affinity_notify;
463 	desc->affinity_notify = notify;
464 	raw_spin_unlock_irqrestore(&desc->lock, flags);
465 
466 	if (old_notify) {
467 		if (cancel_work_sync(&old_notify->work)) {
468 			/* Pending work had a ref, put that one too */
469 			kref_put(&old_notify->kref, old_notify->release);
470 		}
471 		kref_put(&old_notify->kref, old_notify->release);
472 	}
473 
474 	return 0;
475 }
476 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
477 
478 #ifndef CONFIG_AUTO_IRQ_AFFINITY
479 /*
480  * Generic version of the affinity autoselector.
481  */
482 int irq_setup_affinity(struct irq_desc *desc)
483 {
484 	struct cpumask *set = irq_default_affinity;
485 	int ret, node = irq_desc_get_node(desc);
486 	static DEFINE_RAW_SPINLOCK(mask_lock);
487 	static struct cpumask mask;
488 
489 	/* Excludes PER_CPU and NO_BALANCE interrupts */
490 	if (!__irq_can_set_affinity(desc))
491 		return 0;
492 
493 	raw_spin_lock(&mask_lock);
494 	/*
495 	 * Preserve the managed affinity setting and a userspace affinity
496 	 * setup, but make sure that one of the targets is online.
497 	 */
498 	if (irqd_affinity_is_managed(&desc->irq_data) ||
499 	    irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
500 		if (cpumask_intersects(desc->irq_common_data.affinity,
501 				       cpu_online_mask))
502 			set = desc->irq_common_data.affinity;
503 		else
504 			irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
505 	}
506 
507 	cpumask_and(&mask, cpu_online_mask, set);
508 	if (cpumask_empty(&mask))
509 		cpumask_copy(&mask, cpu_online_mask);
510 
511 	if (node != NUMA_NO_NODE) {
512 		const struct cpumask *nodemask = cpumask_of_node(node);
513 
514 		/* make sure at least one of the cpus in nodemask is online */
515 		if (cpumask_intersects(&mask, nodemask))
516 			cpumask_and(&mask, &mask, nodemask);
517 	}
518 	ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
519 	raw_spin_unlock(&mask_lock);
520 	return ret;
521 }
522 #else
523 /* Wrapper for ALPHA specific affinity selector magic */
524 int irq_setup_affinity(struct irq_desc *desc)
525 {
526 	return irq_select_affinity(irq_desc_get_irq(desc));
527 }
528 #endif /* CONFIG_AUTO_IRQ_AFFINITY */
529 #endif /* CONFIG_SMP */
530 
531 
532 /**
533  *	irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
534  *	@irq: interrupt number to set affinity
535  *	@vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
536  *	            specific data for percpu_devid interrupts
537  *
538  *	This function uses the vCPU specific data to set the vCPU
539  *	affinity for an irq. The vCPU specific data is passed from
540  *	outside, such as KVM. One example code path is as below:
541  *	KVM -> IOMMU -> irq_set_vcpu_affinity().
542  */
543 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
544 {
545 	unsigned long flags;
546 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
547 	struct irq_data *data;
548 	struct irq_chip *chip;
549 	int ret = -ENOSYS;
550 
551 	if (!desc)
552 		return -EINVAL;
553 
554 	data = irq_desc_get_irq_data(desc);
555 	do {
556 		chip = irq_data_get_irq_chip(data);
557 		if (chip && chip->irq_set_vcpu_affinity)
558 			break;
559 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
560 		data = data->parent_data;
561 #else
562 		data = NULL;
563 #endif
564 	} while (data);
565 
566 	if (data)
567 		ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
568 	irq_put_desc_unlock(desc, flags);
569 
570 	return ret;
571 }
572 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
573 
574 void __disable_irq(struct irq_desc *desc)
575 {
576 	if (!desc->depth++)
577 		irq_disable(desc);
578 }
579 
580 static int __disable_irq_nosync(unsigned int irq)
581 {
582 	unsigned long flags;
583 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
584 
585 	if (!desc)
586 		return -EINVAL;
587 	__disable_irq(desc);
588 	irq_put_desc_busunlock(desc, flags);
589 	return 0;
590 }
591 
592 /**
593  *	disable_irq_nosync - disable an irq without waiting
594  *	@irq: Interrupt to disable
595  *
596  *	Disable the selected interrupt line.  Disables and Enables are
597  *	nested.
598  *	Unlike disable_irq(), this function does not ensure existing
599  *	instances of the IRQ handler have completed before returning.
600  *
601  *	This function may be called from IRQ context.
602  */
603 void disable_irq_nosync(unsigned int irq)
604 {
605 	__disable_irq_nosync(irq);
606 }
607 EXPORT_SYMBOL(disable_irq_nosync);
608 
609 /**
610  *	disable_irq - disable an irq and wait for completion
611  *	@irq: Interrupt to disable
612  *
613  *	Disable the selected interrupt line.  Enables and Disables are
614  *	nested.
615  *	This function waits for any pending IRQ handlers for this interrupt
616  *	to complete before returning. If you use this function while
617  *	holding a resource the IRQ handler may need you will deadlock.
618  *
619  *	This function may be called - with care - from IRQ context.
620  */
621 void disable_irq(unsigned int irq)
622 {
623 	if (!__disable_irq_nosync(irq))
624 		synchronize_irq(irq);
625 }
626 EXPORT_SYMBOL(disable_irq);
627 
628 /**
629  *	disable_hardirq - disables an irq and waits for hardirq completion
630  *	@irq: Interrupt to disable
631  *
632  *	Disable the selected interrupt line.  Enables and Disables are
633  *	nested.
634  *	This function waits for any pending hard IRQ handlers for this
635  *	interrupt to complete before returning. If you use this function while
636  *	holding a resource the hard IRQ handler may need you will deadlock.
637  *
638  *	When used to optimistically disable an interrupt from atomic context
639  *	the return value must be checked.
640  *
641  *	Returns: false if a threaded handler is active.
642  *
643  *	This function may be called - with care - from IRQ context.
644  */
645 bool disable_hardirq(unsigned int irq)
646 {
647 	if (!__disable_irq_nosync(irq))
648 		return synchronize_hardirq(irq);
649 
650 	return false;
651 }
652 EXPORT_SYMBOL_GPL(disable_hardirq);
653 
654 /**
655  *	disable_nmi_nosync - disable an nmi without waiting
656  *	@irq: Interrupt to disable
657  *
658  *	Disable the selected interrupt line. Disables and enables are
659  *	nested.
660  *	The interrupt to disable must have been requested through request_nmi.
661  *	Unlike disable_nmi(), this function does not ensure existing
662  *	instances of the IRQ handler have completed before returning.
663  */
664 void disable_nmi_nosync(unsigned int irq)
665 {
666 	disable_irq_nosync(irq);
667 }
668 
669 void __enable_irq(struct irq_desc *desc)
670 {
671 	switch (desc->depth) {
672 	case 0:
673  err_out:
674 		WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
675 		     irq_desc_get_irq(desc));
676 		break;
677 	case 1: {
678 		if (desc->istate & IRQS_SUSPENDED)
679 			goto err_out;
680 		/* Prevent probing on this irq: */
681 		irq_settings_set_noprobe(desc);
682 		/*
683 		 * Call irq_startup() not irq_enable() here because the
684 		 * interrupt might be marked NOAUTOEN. So irq_startup()
685 		 * needs to be invoked when it gets enabled the first
686 		 * time. If it was already started up, then irq_startup()
687 		 * will invoke irq_enable() under the hood.
688 		 */
689 		irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
690 		break;
691 	}
692 	default:
693 		desc->depth--;
694 	}
695 }
696 
697 /**
698  *	enable_irq - enable handling of an irq
699  *	@irq: Interrupt to enable
700  *
701  *	Undoes the effect of one call to disable_irq().  If this
702  *	matches the last disable, processing of interrupts on this
703  *	IRQ line is re-enabled.
704  *
705  *	This function may be called from IRQ context only when
706  *	desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
707  */
708 void enable_irq(unsigned int irq)
709 {
710 	unsigned long flags;
711 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
712 
713 	if (!desc)
714 		return;
715 	if (WARN(!desc->irq_data.chip,
716 		 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
717 		goto out;
718 
719 	__enable_irq(desc);
720 out:
721 	irq_put_desc_busunlock(desc, flags);
722 }
723 EXPORT_SYMBOL(enable_irq);
724 
725 /**
726  *	enable_nmi - enable handling of an nmi
727  *	@irq: Interrupt to enable
728  *
729  *	The interrupt to enable must have been requested through request_nmi.
730  *	Undoes the effect of one call to disable_nmi(). If this
731  *	matches the last disable, processing of interrupts on this
732  *	IRQ line is re-enabled.
733  */
734 void enable_nmi(unsigned int irq)
735 {
736 	enable_irq(irq);
737 }
738 
739 static int set_irq_wake_real(unsigned int irq, unsigned int on)
740 {
741 	struct irq_desc *desc = irq_to_desc(irq);
742 	int ret = -ENXIO;
743 
744 	if (irq_desc_get_chip(desc)->flags &  IRQCHIP_SKIP_SET_WAKE)
745 		return 0;
746 
747 	if (desc->irq_data.chip->irq_set_wake)
748 		ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
749 
750 	return ret;
751 }
752 
753 /**
754  *	irq_set_irq_wake - control irq power management wakeup
755  *	@irq:	interrupt to control
756  *	@on:	enable/disable power management wakeup
757  *
758  *	Enable/disable power management wakeup mode, which is
759  *	disabled by default.  Enables and disables must match,
760  *	just as they match for non-wakeup mode support.
761  *
762  *	Wakeup mode lets this IRQ wake the system from sleep
763  *	states like "suspend to RAM".
764  *
765  *	Note: irq enable/disable state is completely orthogonal
766  *	to the enable/disable state of irq wake. An irq can be
767  *	disabled with disable_irq() and still wake the system as
768  *	long as the irq has wake enabled. If this does not hold,
769  *	then the underlying irq chip and the related driver need
770  *	to be investigated.
771  */
772 int irq_set_irq_wake(unsigned int irq, unsigned int on)
773 {
774 	unsigned long flags;
775 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
776 	int ret = 0;
777 
778 	if (!desc)
779 		return -EINVAL;
780 
781 	/* Don't use NMIs as wake up interrupts please */
782 	if (desc->istate & IRQS_NMI) {
783 		ret = -EINVAL;
784 		goto out_unlock;
785 	}
786 
787 	/* wakeup-capable irqs can be shared between drivers that
788 	 * don't need to have the same sleep mode behaviors.
789 	 */
790 	if (on) {
791 		if (desc->wake_depth++ == 0) {
792 			ret = set_irq_wake_real(irq, on);
793 			if (ret)
794 				desc->wake_depth = 0;
795 			else
796 				irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
797 		}
798 	} else {
799 		if (desc->wake_depth == 0) {
800 			WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
801 		} else if (--desc->wake_depth == 0) {
802 			ret = set_irq_wake_real(irq, on);
803 			if (ret)
804 				desc->wake_depth = 1;
805 			else
806 				irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
807 		}
808 	}
809 
810 out_unlock:
811 	irq_put_desc_busunlock(desc, flags);
812 	return ret;
813 }
814 EXPORT_SYMBOL(irq_set_irq_wake);
815 
816 /*
817  * Internal function that tells the architecture code whether a
818  * particular irq has been exclusively allocated or is available
819  * for driver use.
820  */
821 int can_request_irq(unsigned int irq, unsigned long irqflags)
822 {
823 	unsigned long flags;
824 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
825 	int canrequest = 0;
826 
827 	if (!desc)
828 		return 0;
829 
830 	if (irq_settings_can_request(desc)) {
831 		if (!desc->action ||
832 		    irqflags & desc->action->flags & IRQF_SHARED)
833 			canrequest = 1;
834 	}
835 	irq_put_desc_unlock(desc, flags);
836 	return canrequest;
837 }
838 
839 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
840 {
841 	struct irq_chip *chip = desc->irq_data.chip;
842 	int ret, unmask = 0;
843 
844 	if (!chip || !chip->irq_set_type) {
845 		/*
846 		 * IRQF_TRIGGER_* but the PIC does not support multiple
847 		 * flow-types?
848 		 */
849 		pr_debug("No set_type function for IRQ %d (%s)\n",
850 			 irq_desc_get_irq(desc),
851 			 chip ? (chip->name ? : "unknown") : "unknown");
852 		return 0;
853 	}
854 
855 	if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
856 		if (!irqd_irq_masked(&desc->irq_data))
857 			mask_irq(desc);
858 		if (!irqd_irq_disabled(&desc->irq_data))
859 			unmask = 1;
860 	}
861 
862 	/* Mask all flags except trigger mode */
863 	flags &= IRQ_TYPE_SENSE_MASK;
864 	ret = chip->irq_set_type(&desc->irq_data, flags);
865 
866 	switch (ret) {
867 	case IRQ_SET_MASK_OK:
868 	case IRQ_SET_MASK_OK_DONE:
869 		irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
870 		irqd_set(&desc->irq_data, flags);
871 		fallthrough;
872 
873 	case IRQ_SET_MASK_OK_NOCOPY:
874 		flags = irqd_get_trigger_type(&desc->irq_data);
875 		irq_settings_set_trigger_mask(desc, flags);
876 		irqd_clear(&desc->irq_data, IRQD_LEVEL);
877 		irq_settings_clr_level(desc);
878 		if (flags & IRQ_TYPE_LEVEL_MASK) {
879 			irq_settings_set_level(desc);
880 			irqd_set(&desc->irq_data, IRQD_LEVEL);
881 		}
882 
883 		ret = 0;
884 		break;
885 	default:
886 		pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n",
887 		       flags, irq_desc_get_irq(desc), chip->irq_set_type);
888 	}
889 	if (unmask)
890 		unmask_irq(desc);
891 	return ret;
892 }
893 
894 #ifdef CONFIG_HARDIRQS_SW_RESEND
895 int irq_set_parent(int irq, int parent_irq)
896 {
897 	unsigned long flags;
898 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
899 
900 	if (!desc)
901 		return -EINVAL;
902 
903 	desc->parent_irq = parent_irq;
904 
905 	irq_put_desc_unlock(desc, flags);
906 	return 0;
907 }
908 EXPORT_SYMBOL_GPL(irq_set_parent);
909 #endif
910 
911 /*
912  * Default primary interrupt handler for threaded interrupts. Is
913  * assigned as primary handler when request_threaded_irq is called
914  * with handler == NULL. Useful for oneshot interrupts.
915  */
916 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
917 {
918 	return IRQ_WAKE_THREAD;
919 }
920 
921 /*
922  * Primary handler for nested threaded interrupts. Should never be
923  * called.
924  */
925 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
926 {
927 	WARN(1, "Primary handler called for nested irq %d\n", irq);
928 	return IRQ_NONE;
929 }
930 
931 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
932 {
933 	WARN(1, "Secondary action handler called for irq %d\n", irq);
934 	return IRQ_NONE;
935 }
936 
937 static int irq_wait_for_interrupt(struct irqaction *action)
938 {
939 	for (;;) {
940 		set_current_state(TASK_INTERRUPTIBLE);
941 
942 		if (kthread_should_stop()) {
943 			/* may need to run one last time */
944 			if (test_and_clear_bit(IRQTF_RUNTHREAD,
945 					       &action->thread_flags)) {
946 				__set_current_state(TASK_RUNNING);
947 				return 0;
948 			}
949 			__set_current_state(TASK_RUNNING);
950 			return -1;
951 		}
952 
953 		if (test_and_clear_bit(IRQTF_RUNTHREAD,
954 				       &action->thread_flags)) {
955 			__set_current_state(TASK_RUNNING);
956 			return 0;
957 		}
958 		schedule();
959 	}
960 }
961 
962 /*
963  * Oneshot interrupts keep the irq line masked until the threaded
964  * handler finished. unmask if the interrupt has not been disabled and
965  * is marked MASKED.
966  */
967 static void irq_finalize_oneshot(struct irq_desc *desc,
968 				 struct irqaction *action)
969 {
970 	if (!(desc->istate & IRQS_ONESHOT) ||
971 	    action->handler == irq_forced_secondary_handler)
972 		return;
973 again:
974 	chip_bus_lock(desc);
975 	raw_spin_lock_irq(&desc->lock);
976 
977 	/*
978 	 * Implausible though it may be we need to protect us against
979 	 * the following scenario:
980 	 *
981 	 * The thread is faster done than the hard interrupt handler
982 	 * on the other CPU. If we unmask the irq line then the
983 	 * interrupt can come in again and masks the line, leaves due
984 	 * to IRQS_INPROGRESS and the irq line is masked forever.
985 	 *
986 	 * This also serializes the state of shared oneshot handlers
987 	 * versus "desc->threads_onehsot |= action->thread_mask;" in
988 	 * irq_wake_thread(). See the comment there which explains the
989 	 * serialization.
990 	 */
991 	if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
992 		raw_spin_unlock_irq(&desc->lock);
993 		chip_bus_sync_unlock(desc);
994 		cpu_relax();
995 		goto again;
996 	}
997 
998 	/*
999 	 * Now check again, whether the thread should run. Otherwise
1000 	 * we would clear the threads_oneshot bit of this thread which
1001 	 * was just set.
1002 	 */
1003 	if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1004 		goto out_unlock;
1005 
1006 	desc->threads_oneshot &= ~action->thread_mask;
1007 
1008 	if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
1009 	    irqd_irq_masked(&desc->irq_data))
1010 		unmask_threaded_irq(desc);
1011 
1012 out_unlock:
1013 	raw_spin_unlock_irq(&desc->lock);
1014 	chip_bus_sync_unlock(desc);
1015 }
1016 
1017 #ifdef CONFIG_SMP
1018 /*
1019  * Check whether we need to change the affinity of the interrupt thread.
1020  */
1021 static void
1022 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
1023 {
1024 	cpumask_var_t mask;
1025 	bool valid = true;
1026 
1027 	if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
1028 		return;
1029 
1030 	/*
1031 	 * In case we are out of memory we set IRQTF_AFFINITY again and
1032 	 * try again next time
1033 	 */
1034 	if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
1035 		set_bit(IRQTF_AFFINITY, &action->thread_flags);
1036 		return;
1037 	}
1038 
1039 	raw_spin_lock_irq(&desc->lock);
1040 	/*
1041 	 * This code is triggered unconditionally. Check the affinity
1042 	 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
1043 	 */
1044 	if (cpumask_available(desc->irq_common_data.affinity)) {
1045 		const struct cpumask *m;
1046 
1047 		m = irq_data_get_effective_affinity_mask(&desc->irq_data);
1048 		cpumask_copy(mask, m);
1049 	} else {
1050 		valid = false;
1051 	}
1052 	raw_spin_unlock_irq(&desc->lock);
1053 
1054 	if (valid)
1055 		set_cpus_allowed_ptr(current, mask);
1056 	free_cpumask_var(mask);
1057 }
1058 #else
1059 static inline void
1060 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
1061 #endif
1062 
1063 /*
1064  * Interrupts which are not explicitly requested as threaded
1065  * interrupts rely on the implicit bh/preempt disable of the hard irq
1066  * context. So we need to disable bh here to avoid deadlocks and other
1067  * side effects.
1068  */
1069 static irqreturn_t
1070 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
1071 {
1072 	irqreturn_t ret;
1073 
1074 	local_bh_disable();
1075 	ret = action->thread_fn(action->irq, action->dev_id);
1076 	if (ret == IRQ_HANDLED)
1077 		atomic_inc(&desc->threads_handled);
1078 
1079 	irq_finalize_oneshot(desc, action);
1080 	local_bh_enable();
1081 	return ret;
1082 }
1083 
1084 /*
1085  * Interrupts explicitly requested as threaded interrupts want to be
1086  * preemtible - many of them need to sleep and wait for slow busses to
1087  * complete.
1088  */
1089 static irqreturn_t irq_thread_fn(struct irq_desc *desc,
1090 		struct irqaction *action)
1091 {
1092 	irqreturn_t ret;
1093 
1094 	ret = action->thread_fn(action->irq, action->dev_id);
1095 	if (ret == IRQ_HANDLED)
1096 		atomic_inc(&desc->threads_handled);
1097 
1098 	irq_finalize_oneshot(desc, action);
1099 	return ret;
1100 }
1101 
1102 static void wake_threads_waitq(struct irq_desc *desc)
1103 {
1104 	if (atomic_dec_and_test(&desc->threads_active))
1105 		wake_up(&desc->wait_for_threads);
1106 }
1107 
1108 static void irq_thread_dtor(struct callback_head *unused)
1109 {
1110 	struct task_struct *tsk = current;
1111 	struct irq_desc *desc;
1112 	struct irqaction *action;
1113 
1114 	if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
1115 		return;
1116 
1117 	action = kthread_data(tsk);
1118 
1119 	pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
1120 	       tsk->comm, tsk->pid, action->irq);
1121 
1122 
1123 	desc = irq_to_desc(action->irq);
1124 	/*
1125 	 * If IRQTF_RUNTHREAD is set, we need to decrement
1126 	 * desc->threads_active and wake possible waiters.
1127 	 */
1128 	if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1129 		wake_threads_waitq(desc);
1130 
1131 	/* Prevent a stale desc->threads_oneshot */
1132 	irq_finalize_oneshot(desc, action);
1133 }
1134 
1135 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
1136 {
1137 	struct irqaction *secondary = action->secondary;
1138 
1139 	if (WARN_ON_ONCE(!secondary))
1140 		return;
1141 
1142 	raw_spin_lock_irq(&desc->lock);
1143 	__irq_wake_thread(desc, secondary);
1144 	raw_spin_unlock_irq(&desc->lock);
1145 }
1146 
1147 /*
1148  * Interrupt handler thread
1149  */
1150 static int irq_thread(void *data)
1151 {
1152 	struct callback_head on_exit_work;
1153 	struct irqaction *action = data;
1154 	struct irq_desc *desc = irq_to_desc(action->irq);
1155 	irqreturn_t (*handler_fn)(struct irq_desc *desc,
1156 			struct irqaction *action);
1157 
1158 	if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD,
1159 					&action->thread_flags))
1160 		handler_fn = irq_forced_thread_fn;
1161 	else
1162 		handler_fn = irq_thread_fn;
1163 
1164 	init_task_work(&on_exit_work, irq_thread_dtor);
1165 	task_work_add(current, &on_exit_work, TWA_NONE);
1166 
1167 	irq_thread_check_affinity(desc, action);
1168 
1169 	while (!irq_wait_for_interrupt(action)) {
1170 		irqreturn_t action_ret;
1171 
1172 		irq_thread_check_affinity(desc, action);
1173 
1174 		action_ret = handler_fn(desc, action);
1175 		if (action_ret == IRQ_WAKE_THREAD)
1176 			irq_wake_secondary(desc, action);
1177 
1178 		wake_threads_waitq(desc);
1179 	}
1180 
1181 	/*
1182 	 * This is the regular exit path. __free_irq() is stopping the
1183 	 * thread via kthread_stop() after calling
1184 	 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the
1185 	 * oneshot mask bit can be set.
1186 	 */
1187 	task_work_cancel(current, irq_thread_dtor);
1188 	return 0;
1189 }
1190 
1191 /**
1192  *	irq_wake_thread - wake the irq thread for the action identified by dev_id
1193  *	@irq:		Interrupt line
1194  *	@dev_id:	Device identity for which the thread should be woken
1195  *
1196  */
1197 void irq_wake_thread(unsigned int irq, void *dev_id)
1198 {
1199 	struct irq_desc *desc = irq_to_desc(irq);
1200 	struct irqaction *action;
1201 	unsigned long flags;
1202 
1203 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1204 		return;
1205 
1206 	raw_spin_lock_irqsave(&desc->lock, flags);
1207 	for_each_action_of_desc(desc, action) {
1208 		if (action->dev_id == dev_id) {
1209 			if (action->thread)
1210 				__irq_wake_thread(desc, action);
1211 			break;
1212 		}
1213 	}
1214 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1215 }
1216 EXPORT_SYMBOL_GPL(irq_wake_thread);
1217 
1218 static int irq_setup_forced_threading(struct irqaction *new)
1219 {
1220 	if (!force_irqthreads)
1221 		return 0;
1222 	if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1223 		return 0;
1224 
1225 	/*
1226 	 * No further action required for interrupts which are requested as
1227 	 * threaded interrupts already
1228 	 */
1229 	if (new->handler == irq_default_primary_handler)
1230 		return 0;
1231 
1232 	new->flags |= IRQF_ONESHOT;
1233 
1234 	/*
1235 	 * Handle the case where we have a real primary handler and a
1236 	 * thread handler. We force thread them as well by creating a
1237 	 * secondary action.
1238 	 */
1239 	if (new->handler && new->thread_fn) {
1240 		/* Allocate the secondary action */
1241 		new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1242 		if (!new->secondary)
1243 			return -ENOMEM;
1244 		new->secondary->handler = irq_forced_secondary_handler;
1245 		new->secondary->thread_fn = new->thread_fn;
1246 		new->secondary->dev_id = new->dev_id;
1247 		new->secondary->irq = new->irq;
1248 		new->secondary->name = new->name;
1249 	}
1250 	/* Deal with the primary handler */
1251 	set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1252 	new->thread_fn = new->handler;
1253 	new->handler = irq_default_primary_handler;
1254 	return 0;
1255 }
1256 
1257 static int irq_request_resources(struct irq_desc *desc)
1258 {
1259 	struct irq_data *d = &desc->irq_data;
1260 	struct irq_chip *c = d->chip;
1261 
1262 	return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1263 }
1264 
1265 static void irq_release_resources(struct irq_desc *desc)
1266 {
1267 	struct irq_data *d = &desc->irq_data;
1268 	struct irq_chip *c = d->chip;
1269 
1270 	if (c->irq_release_resources)
1271 		c->irq_release_resources(d);
1272 }
1273 
1274 static bool irq_supports_nmi(struct irq_desc *desc)
1275 {
1276 	struct irq_data *d = irq_desc_get_irq_data(desc);
1277 
1278 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
1279 	/* Only IRQs directly managed by the root irqchip can be set as NMI */
1280 	if (d->parent_data)
1281 		return false;
1282 #endif
1283 	/* Don't support NMIs for chips behind a slow bus */
1284 	if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock)
1285 		return false;
1286 
1287 	return d->chip->flags & IRQCHIP_SUPPORTS_NMI;
1288 }
1289 
1290 static int irq_nmi_setup(struct irq_desc *desc)
1291 {
1292 	struct irq_data *d = irq_desc_get_irq_data(desc);
1293 	struct irq_chip *c = d->chip;
1294 
1295 	return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL;
1296 }
1297 
1298 static void irq_nmi_teardown(struct irq_desc *desc)
1299 {
1300 	struct irq_data *d = irq_desc_get_irq_data(desc);
1301 	struct irq_chip *c = d->chip;
1302 
1303 	if (c->irq_nmi_teardown)
1304 		c->irq_nmi_teardown(d);
1305 }
1306 
1307 static int
1308 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1309 {
1310 	struct task_struct *t;
1311 
1312 	if (!secondary) {
1313 		t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1314 				   new->name);
1315 	} else {
1316 		t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1317 				   new->name);
1318 	}
1319 
1320 	if (IS_ERR(t))
1321 		return PTR_ERR(t);
1322 
1323 	sched_set_fifo(t);
1324 
1325 	/*
1326 	 * We keep the reference to the task struct even if
1327 	 * the thread dies to avoid that the interrupt code
1328 	 * references an already freed task_struct.
1329 	 */
1330 	new->thread = get_task_struct(t);
1331 	/*
1332 	 * Tell the thread to set its affinity. This is
1333 	 * important for shared interrupt handlers as we do
1334 	 * not invoke setup_affinity() for the secondary
1335 	 * handlers as everything is already set up. Even for
1336 	 * interrupts marked with IRQF_NO_BALANCE this is
1337 	 * correct as we want the thread to move to the cpu(s)
1338 	 * on which the requesting code placed the interrupt.
1339 	 */
1340 	set_bit(IRQTF_AFFINITY, &new->thread_flags);
1341 	return 0;
1342 }
1343 
1344 /*
1345  * Internal function to register an irqaction - typically used to
1346  * allocate special interrupts that are part of the architecture.
1347  *
1348  * Locking rules:
1349  *
1350  * desc->request_mutex	Provides serialization against a concurrent free_irq()
1351  *   chip_bus_lock	Provides serialization for slow bus operations
1352  *     desc->lock	Provides serialization against hard interrupts
1353  *
1354  * chip_bus_lock and desc->lock are sufficient for all other management and
1355  * interrupt related functions. desc->request_mutex solely serializes
1356  * request/free_irq().
1357  */
1358 static int
1359 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1360 {
1361 	struct irqaction *old, **old_ptr;
1362 	unsigned long flags, thread_mask = 0;
1363 	int ret, nested, shared = 0;
1364 
1365 	if (!desc)
1366 		return -EINVAL;
1367 
1368 	if (desc->irq_data.chip == &no_irq_chip)
1369 		return -ENOSYS;
1370 	if (!try_module_get(desc->owner))
1371 		return -ENODEV;
1372 
1373 	new->irq = irq;
1374 
1375 	/*
1376 	 * If the trigger type is not specified by the caller,
1377 	 * then use the default for this interrupt.
1378 	 */
1379 	if (!(new->flags & IRQF_TRIGGER_MASK))
1380 		new->flags |= irqd_get_trigger_type(&desc->irq_data);
1381 
1382 	/*
1383 	 * Check whether the interrupt nests into another interrupt
1384 	 * thread.
1385 	 */
1386 	nested = irq_settings_is_nested_thread(desc);
1387 	if (nested) {
1388 		if (!new->thread_fn) {
1389 			ret = -EINVAL;
1390 			goto out_mput;
1391 		}
1392 		/*
1393 		 * Replace the primary handler which was provided from
1394 		 * the driver for non nested interrupt handling by the
1395 		 * dummy function which warns when called.
1396 		 */
1397 		new->handler = irq_nested_primary_handler;
1398 	} else {
1399 		if (irq_settings_can_thread(desc)) {
1400 			ret = irq_setup_forced_threading(new);
1401 			if (ret)
1402 				goto out_mput;
1403 		}
1404 	}
1405 
1406 	/*
1407 	 * Create a handler thread when a thread function is supplied
1408 	 * and the interrupt does not nest into another interrupt
1409 	 * thread.
1410 	 */
1411 	if (new->thread_fn && !nested) {
1412 		ret = setup_irq_thread(new, irq, false);
1413 		if (ret)
1414 			goto out_mput;
1415 		if (new->secondary) {
1416 			ret = setup_irq_thread(new->secondary, irq, true);
1417 			if (ret)
1418 				goto out_thread;
1419 		}
1420 	}
1421 
1422 	/*
1423 	 * Drivers are often written to work w/o knowledge about the
1424 	 * underlying irq chip implementation, so a request for a
1425 	 * threaded irq without a primary hard irq context handler
1426 	 * requires the ONESHOT flag to be set. Some irq chips like
1427 	 * MSI based interrupts are per se one shot safe. Check the
1428 	 * chip flags, so we can avoid the unmask dance at the end of
1429 	 * the threaded handler for those.
1430 	 */
1431 	if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1432 		new->flags &= ~IRQF_ONESHOT;
1433 
1434 	/*
1435 	 * Protects against a concurrent __free_irq() call which might wait
1436 	 * for synchronize_hardirq() to complete without holding the optional
1437 	 * chip bus lock and desc->lock. Also protects against handing out
1438 	 * a recycled oneshot thread_mask bit while it's still in use by
1439 	 * its previous owner.
1440 	 */
1441 	mutex_lock(&desc->request_mutex);
1442 
1443 	/*
1444 	 * Acquire bus lock as the irq_request_resources() callback below
1445 	 * might rely on the serialization or the magic power management
1446 	 * functions which are abusing the irq_bus_lock() callback,
1447 	 */
1448 	chip_bus_lock(desc);
1449 
1450 	/* First installed action requests resources. */
1451 	if (!desc->action) {
1452 		ret = irq_request_resources(desc);
1453 		if (ret) {
1454 			pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1455 			       new->name, irq, desc->irq_data.chip->name);
1456 			goto out_bus_unlock;
1457 		}
1458 	}
1459 
1460 	/*
1461 	 * The following block of code has to be executed atomically
1462 	 * protected against a concurrent interrupt and any of the other
1463 	 * management calls which are not serialized via
1464 	 * desc->request_mutex or the optional bus lock.
1465 	 */
1466 	raw_spin_lock_irqsave(&desc->lock, flags);
1467 	old_ptr = &desc->action;
1468 	old = *old_ptr;
1469 	if (old) {
1470 		/*
1471 		 * Can't share interrupts unless both agree to and are
1472 		 * the same type (level, edge, polarity). So both flag
1473 		 * fields must have IRQF_SHARED set and the bits which
1474 		 * set the trigger type must match. Also all must
1475 		 * agree on ONESHOT.
1476 		 * Interrupt lines used for NMIs cannot be shared.
1477 		 */
1478 		unsigned int oldtype;
1479 
1480 		if (desc->istate & IRQS_NMI) {
1481 			pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n",
1482 				new->name, irq, desc->irq_data.chip->name);
1483 			ret = -EINVAL;
1484 			goto out_unlock;
1485 		}
1486 
1487 		/*
1488 		 * If nobody did set the configuration before, inherit
1489 		 * the one provided by the requester.
1490 		 */
1491 		if (irqd_trigger_type_was_set(&desc->irq_data)) {
1492 			oldtype = irqd_get_trigger_type(&desc->irq_data);
1493 		} else {
1494 			oldtype = new->flags & IRQF_TRIGGER_MASK;
1495 			irqd_set_trigger_type(&desc->irq_data, oldtype);
1496 		}
1497 
1498 		if (!((old->flags & new->flags) & IRQF_SHARED) ||
1499 		    (oldtype != (new->flags & IRQF_TRIGGER_MASK)) ||
1500 		    ((old->flags ^ new->flags) & IRQF_ONESHOT))
1501 			goto mismatch;
1502 
1503 		/* All handlers must agree on per-cpuness */
1504 		if ((old->flags & IRQF_PERCPU) !=
1505 		    (new->flags & IRQF_PERCPU))
1506 			goto mismatch;
1507 
1508 		/* add new interrupt at end of irq queue */
1509 		do {
1510 			/*
1511 			 * Or all existing action->thread_mask bits,
1512 			 * so we can find the next zero bit for this
1513 			 * new action.
1514 			 */
1515 			thread_mask |= old->thread_mask;
1516 			old_ptr = &old->next;
1517 			old = *old_ptr;
1518 		} while (old);
1519 		shared = 1;
1520 	}
1521 
1522 	/*
1523 	 * Setup the thread mask for this irqaction for ONESHOT. For
1524 	 * !ONESHOT irqs the thread mask is 0 so we can avoid a
1525 	 * conditional in irq_wake_thread().
1526 	 */
1527 	if (new->flags & IRQF_ONESHOT) {
1528 		/*
1529 		 * Unlikely to have 32 resp 64 irqs sharing one line,
1530 		 * but who knows.
1531 		 */
1532 		if (thread_mask == ~0UL) {
1533 			ret = -EBUSY;
1534 			goto out_unlock;
1535 		}
1536 		/*
1537 		 * The thread_mask for the action is or'ed to
1538 		 * desc->thread_active to indicate that the
1539 		 * IRQF_ONESHOT thread handler has been woken, but not
1540 		 * yet finished. The bit is cleared when a thread
1541 		 * completes. When all threads of a shared interrupt
1542 		 * line have completed desc->threads_active becomes
1543 		 * zero and the interrupt line is unmasked. See
1544 		 * handle.c:irq_wake_thread() for further information.
1545 		 *
1546 		 * If no thread is woken by primary (hard irq context)
1547 		 * interrupt handlers, then desc->threads_active is
1548 		 * also checked for zero to unmask the irq line in the
1549 		 * affected hard irq flow handlers
1550 		 * (handle_[fasteoi|level]_irq).
1551 		 *
1552 		 * The new action gets the first zero bit of
1553 		 * thread_mask assigned. See the loop above which or's
1554 		 * all existing action->thread_mask bits.
1555 		 */
1556 		new->thread_mask = 1UL << ffz(thread_mask);
1557 
1558 	} else if (new->handler == irq_default_primary_handler &&
1559 		   !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1560 		/*
1561 		 * The interrupt was requested with handler = NULL, so
1562 		 * we use the default primary handler for it. But it
1563 		 * does not have the oneshot flag set. In combination
1564 		 * with level interrupts this is deadly, because the
1565 		 * default primary handler just wakes the thread, then
1566 		 * the irq lines is reenabled, but the device still
1567 		 * has the level irq asserted. Rinse and repeat....
1568 		 *
1569 		 * While this works for edge type interrupts, we play
1570 		 * it safe and reject unconditionally because we can't
1571 		 * say for sure which type this interrupt really
1572 		 * has. The type flags are unreliable as the
1573 		 * underlying chip implementation can override them.
1574 		 */
1575 		pr_err("Threaded irq requested with handler=NULL and !ONESHOT for %s (irq %d)\n",
1576 		       new->name, irq);
1577 		ret = -EINVAL;
1578 		goto out_unlock;
1579 	}
1580 
1581 	if (!shared) {
1582 		init_waitqueue_head(&desc->wait_for_threads);
1583 
1584 		/* Setup the type (level, edge polarity) if configured: */
1585 		if (new->flags & IRQF_TRIGGER_MASK) {
1586 			ret = __irq_set_trigger(desc,
1587 						new->flags & IRQF_TRIGGER_MASK);
1588 
1589 			if (ret)
1590 				goto out_unlock;
1591 		}
1592 
1593 		/*
1594 		 * Activate the interrupt. That activation must happen
1595 		 * independently of IRQ_NOAUTOEN. request_irq() can fail
1596 		 * and the callers are supposed to handle
1597 		 * that. enable_irq() of an interrupt requested with
1598 		 * IRQ_NOAUTOEN is not supposed to fail. The activation
1599 		 * keeps it in shutdown mode, it merily associates
1600 		 * resources if necessary and if that's not possible it
1601 		 * fails. Interrupts which are in managed shutdown mode
1602 		 * will simply ignore that activation request.
1603 		 */
1604 		ret = irq_activate(desc);
1605 		if (ret)
1606 			goto out_unlock;
1607 
1608 		desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1609 				  IRQS_ONESHOT | IRQS_WAITING);
1610 		irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1611 
1612 		if (new->flags & IRQF_PERCPU) {
1613 			irqd_set(&desc->irq_data, IRQD_PER_CPU);
1614 			irq_settings_set_per_cpu(desc);
1615 		}
1616 
1617 		if (new->flags & IRQF_ONESHOT)
1618 			desc->istate |= IRQS_ONESHOT;
1619 
1620 		/* Exclude IRQ from balancing if requested */
1621 		if (new->flags & IRQF_NOBALANCING) {
1622 			irq_settings_set_no_balancing(desc);
1623 			irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1624 		}
1625 
1626 		if (irq_settings_can_autoenable(desc)) {
1627 			irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1628 		} else {
1629 			/*
1630 			 * Shared interrupts do not go well with disabling
1631 			 * auto enable. The sharing interrupt might request
1632 			 * it while it's still disabled and then wait for
1633 			 * interrupts forever.
1634 			 */
1635 			WARN_ON_ONCE(new->flags & IRQF_SHARED);
1636 			/* Undo nested disables: */
1637 			desc->depth = 1;
1638 		}
1639 
1640 	} else if (new->flags & IRQF_TRIGGER_MASK) {
1641 		unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1642 		unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1643 
1644 		if (nmsk != omsk)
1645 			/* hope the handler works with current  trigger mode */
1646 			pr_warn("irq %d uses trigger mode %u; requested %u\n",
1647 				irq, omsk, nmsk);
1648 	}
1649 
1650 	*old_ptr = new;
1651 
1652 	irq_pm_install_action(desc, new);
1653 
1654 	/* Reset broken irq detection when installing new handler */
1655 	desc->irq_count = 0;
1656 	desc->irqs_unhandled = 0;
1657 
1658 	/*
1659 	 * Check whether we disabled the irq via the spurious handler
1660 	 * before. Reenable it and give it another chance.
1661 	 */
1662 	if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1663 		desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1664 		__enable_irq(desc);
1665 	}
1666 
1667 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1668 	chip_bus_sync_unlock(desc);
1669 	mutex_unlock(&desc->request_mutex);
1670 
1671 	irq_setup_timings(desc, new);
1672 
1673 	/*
1674 	 * Strictly no need to wake it up, but hung_task complains
1675 	 * when no hard interrupt wakes the thread up.
1676 	 */
1677 	if (new->thread)
1678 		wake_up_process(new->thread);
1679 	if (new->secondary)
1680 		wake_up_process(new->secondary->thread);
1681 
1682 	register_irq_proc(irq, desc);
1683 	new->dir = NULL;
1684 	register_handler_proc(irq, new);
1685 	return 0;
1686 
1687 mismatch:
1688 	if (!(new->flags & IRQF_PROBE_SHARED)) {
1689 		pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1690 		       irq, new->flags, new->name, old->flags, old->name);
1691 #ifdef CONFIG_DEBUG_SHIRQ
1692 		dump_stack();
1693 #endif
1694 	}
1695 	ret = -EBUSY;
1696 
1697 out_unlock:
1698 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1699 
1700 	if (!desc->action)
1701 		irq_release_resources(desc);
1702 out_bus_unlock:
1703 	chip_bus_sync_unlock(desc);
1704 	mutex_unlock(&desc->request_mutex);
1705 
1706 out_thread:
1707 	if (new->thread) {
1708 		struct task_struct *t = new->thread;
1709 
1710 		new->thread = NULL;
1711 		kthread_stop(t);
1712 		put_task_struct(t);
1713 	}
1714 	if (new->secondary && new->secondary->thread) {
1715 		struct task_struct *t = new->secondary->thread;
1716 
1717 		new->secondary->thread = NULL;
1718 		kthread_stop(t);
1719 		put_task_struct(t);
1720 	}
1721 out_mput:
1722 	module_put(desc->owner);
1723 	return ret;
1724 }
1725 
1726 /*
1727  * Internal function to unregister an irqaction - used to free
1728  * regular and special interrupts that are part of the architecture.
1729  */
1730 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1731 {
1732 	unsigned irq = desc->irq_data.irq;
1733 	struct irqaction *action, **action_ptr;
1734 	unsigned long flags;
1735 
1736 	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1737 
1738 	mutex_lock(&desc->request_mutex);
1739 	chip_bus_lock(desc);
1740 	raw_spin_lock_irqsave(&desc->lock, flags);
1741 
1742 	/*
1743 	 * There can be multiple actions per IRQ descriptor, find the right
1744 	 * one based on the dev_id:
1745 	 */
1746 	action_ptr = &desc->action;
1747 	for (;;) {
1748 		action = *action_ptr;
1749 
1750 		if (!action) {
1751 			WARN(1, "Trying to free already-free IRQ %d\n", irq);
1752 			raw_spin_unlock_irqrestore(&desc->lock, flags);
1753 			chip_bus_sync_unlock(desc);
1754 			mutex_unlock(&desc->request_mutex);
1755 			return NULL;
1756 		}
1757 
1758 		if (action->dev_id == dev_id)
1759 			break;
1760 		action_ptr = &action->next;
1761 	}
1762 
1763 	/* Found it - now remove it from the list of entries: */
1764 	*action_ptr = action->next;
1765 
1766 	irq_pm_remove_action(desc, action);
1767 
1768 	/* If this was the last handler, shut down the IRQ line: */
1769 	if (!desc->action) {
1770 		irq_settings_clr_disable_unlazy(desc);
1771 		/* Only shutdown. Deactivate after synchronize_hardirq() */
1772 		irq_shutdown(desc);
1773 	}
1774 
1775 #ifdef CONFIG_SMP
1776 	/* make sure affinity_hint is cleaned up */
1777 	if (WARN_ON_ONCE(desc->affinity_hint))
1778 		desc->affinity_hint = NULL;
1779 #endif
1780 
1781 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1782 	/*
1783 	 * Drop bus_lock here so the changes which were done in the chip
1784 	 * callbacks above are synced out to the irq chips which hang
1785 	 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq().
1786 	 *
1787 	 * Aside of that the bus_lock can also be taken from the threaded
1788 	 * handler in irq_finalize_oneshot() which results in a deadlock
1789 	 * because kthread_stop() would wait forever for the thread to
1790 	 * complete, which is blocked on the bus lock.
1791 	 *
1792 	 * The still held desc->request_mutex() protects against a
1793 	 * concurrent request_irq() of this irq so the release of resources
1794 	 * and timing data is properly serialized.
1795 	 */
1796 	chip_bus_sync_unlock(desc);
1797 
1798 	unregister_handler_proc(irq, action);
1799 
1800 	/*
1801 	 * Make sure it's not being used on another CPU and if the chip
1802 	 * supports it also make sure that there is no (not yet serviced)
1803 	 * interrupt in flight at the hardware level.
1804 	 */
1805 	__synchronize_hardirq(desc, true);
1806 
1807 #ifdef CONFIG_DEBUG_SHIRQ
1808 	/*
1809 	 * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1810 	 * event to happen even now it's being freed, so let's make sure that
1811 	 * is so by doing an extra call to the handler ....
1812 	 *
1813 	 * ( We do this after actually deregistering it, to make sure that a
1814 	 *   'real' IRQ doesn't run in parallel with our fake. )
1815 	 */
1816 	if (action->flags & IRQF_SHARED) {
1817 		local_irq_save(flags);
1818 		action->handler(irq, dev_id);
1819 		local_irq_restore(flags);
1820 	}
1821 #endif
1822 
1823 	/*
1824 	 * The action has already been removed above, but the thread writes
1825 	 * its oneshot mask bit when it completes. Though request_mutex is
1826 	 * held across this which prevents __setup_irq() from handing out
1827 	 * the same bit to a newly requested action.
1828 	 */
1829 	if (action->thread) {
1830 		kthread_stop(action->thread);
1831 		put_task_struct(action->thread);
1832 		if (action->secondary && action->secondary->thread) {
1833 			kthread_stop(action->secondary->thread);
1834 			put_task_struct(action->secondary->thread);
1835 		}
1836 	}
1837 
1838 	/* Last action releases resources */
1839 	if (!desc->action) {
1840 		/*
1841 		 * Reaquire bus lock as irq_release_resources() might
1842 		 * require it to deallocate resources over the slow bus.
1843 		 */
1844 		chip_bus_lock(desc);
1845 		/*
1846 		 * There is no interrupt on the fly anymore. Deactivate it
1847 		 * completely.
1848 		 */
1849 		raw_spin_lock_irqsave(&desc->lock, flags);
1850 		irq_domain_deactivate_irq(&desc->irq_data);
1851 		raw_spin_unlock_irqrestore(&desc->lock, flags);
1852 
1853 		irq_release_resources(desc);
1854 		chip_bus_sync_unlock(desc);
1855 		irq_remove_timings(desc);
1856 	}
1857 
1858 	mutex_unlock(&desc->request_mutex);
1859 
1860 	irq_chip_pm_put(&desc->irq_data);
1861 	module_put(desc->owner);
1862 	kfree(action->secondary);
1863 	return action;
1864 }
1865 
1866 /**
1867  *	free_irq - free an interrupt allocated with request_irq
1868  *	@irq: Interrupt line to free
1869  *	@dev_id: Device identity to free
1870  *
1871  *	Remove an interrupt handler. The handler is removed and if the
1872  *	interrupt line is no longer in use by any driver it is disabled.
1873  *	On a shared IRQ the caller must ensure the interrupt is disabled
1874  *	on the card it drives before calling this function. The function
1875  *	does not return until any executing interrupts for this IRQ
1876  *	have completed.
1877  *
1878  *	This function must not be called from interrupt context.
1879  *
1880  *	Returns the devname argument passed to request_irq.
1881  */
1882 const void *free_irq(unsigned int irq, void *dev_id)
1883 {
1884 	struct irq_desc *desc = irq_to_desc(irq);
1885 	struct irqaction *action;
1886 	const char *devname;
1887 
1888 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1889 		return NULL;
1890 
1891 #ifdef CONFIG_SMP
1892 	if (WARN_ON(desc->affinity_notify))
1893 		desc->affinity_notify = NULL;
1894 #endif
1895 
1896 	action = __free_irq(desc, dev_id);
1897 
1898 	if (!action)
1899 		return NULL;
1900 
1901 	devname = action->name;
1902 	kfree(action);
1903 	return devname;
1904 }
1905 EXPORT_SYMBOL(free_irq);
1906 
1907 /* This function must be called with desc->lock held */
1908 static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc)
1909 {
1910 	const char *devname = NULL;
1911 
1912 	desc->istate &= ~IRQS_NMI;
1913 
1914 	if (!WARN_ON(desc->action == NULL)) {
1915 		irq_pm_remove_action(desc, desc->action);
1916 		devname = desc->action->name;
1917 		unregister_handler_proc(irq, desc->action);
1918 
1919 		kfree(desc->action);
1920 		desc->action = NULL;
1921 	}
1922 
1923 	irq_settings_clr_disable_unlazy(desc);
1924 	irq_shutdown_and_deactivate(desc);
1925 
1926 	irq_release_resources(desc);
1927 
1928 	irq_chip_pm_put(&desc->irq_data);
1929 	module_put(desc->owner);
1930 
1931 	return devname;
1932 }
1933 
1934 const void *free_nmi(unsigned int irq, void *dev_id)
1935 {
1936 	struct irq_desc *desc = irq_to_desc(irq);
1937 	unsigned long flags;
1938 	const void *devname;
1939 
1940 	if (!desc || WARN_ON(!(desc->istate & IRQS_NMI)))
1941 		return NULL;
1942 
1943 	if (WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1944 		return NULL;
1945 
1946 	/* NMI still enabled */
1947 	if (WARN_ON(desc->depth == 0))
1948 		disable_nmi_nosync(irq);
1949 
1950 	raw_spin_lock_irqsave(&desc->lock, flags);
1951 
1952 	irq_nmi_teardown(desc);
1953 	devname = __cleanup_nmi(irq, desc);
1954 
1955 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1956 
1957 	return devname;
1958 }
1959 
1960 /**
1961  *	request_threaded_irq - allocate an interrupt line
1962  *	@irq: Interrupt line to allocate
1963  *	@handler: Function to be called when the IRQ occurs.
1964  *		  Primary handler for threaded interrupts
1965  *		  If NULL and thread_fn != NULL the default
1966  *		  primary handler is installed
1967  *	@thread_fn: Function called from the irq handler thread
1968  *		    If NULL, no irq thread is created
1969  *	@irqflags: Interrupt type flags
1970  *	@devname: An ascii name for the claiming device
1971  *	@dev_id: A cookie passed back to the handler function
1972  *
1973  *	This call allocates interrupt resources and enables the
1974  *	interrupt line and IRQ handling. From the point this
1975  *	call is made your handler function may be invoked. Since
1976  *	your handler function must clear any interrupt the board
1977  *	raises, you must take care both to initialise your hardware
1978  *	and to set up the interrupt handler in the right order.
1979  *
1980  *	If you want to set up a threaded irq handler for your device
1981  *	then you need to supply @handler and @thread_fn. @handler is
1982  *	still called in hard interrupt context and has to check
1983  *	whether the interrupt originates from the device. If yes it
1984  *	needs to disable the interrupt on the device and return
1985  *	IRQ_WAKE_THREAD which will wake up the handler thread and run
1986  *	@thread_fn. This split handler design is necessary to support
1987  *	shared interrupts.
1988  *
1989  *	Dev_id must be globally unique. Normally the address of the
1990  *	device data structure is used as the cookie. Since the handler
1991  *	receives this value it makes sense to use it.
1992  *
1993  *	If your interrupt is shared you must pass a non NULL dev_id
1994  *	as this is required when freeing the interrupt.
1995  *
1996  *	Flags:
1997  *
1998  *	IRQF_SHARED		Interrupt is shared
1999  *	IRQF_TRIGGER_*		Specify active edge(s) or level
2000  *
2001  */
2002 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
2003 			 irq_handler_t thread_fn, unsigned long irqflags,
2004 			 const char *devname, void *dev_id)
2005 {
2006 	struct irqaction *action;
2007 	struct irq_desc *desc;
2008 	int retval;
2009 
2010 	if (irq == IRQ_NOTCONNECTED)
2011 		return -ENOTCONN;
2012 
2013 	/*
2014 	 * Sanity-check: shared interrupts must pass in a real dev-ID,
2015 	 * otherwise we'll have trouble later trying to figure out
2016 	 * which interrupt is which (messes up the interrupt freeing
2017 	 * logic etc).
2018 	 *
2019 	 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
2020 	 * it cannot be set along with IRQF_NO_SUSPEND.
2021 	 */
2022 	if (((irqflags & IRQF_SHARED) && !dev_id) ||
2023 	    (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
2024 	    ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
2025 		return -EINVAL;
2026 
2027 	desc = irq_to_desc(irq);
2028 	if (!desc)
2029 		return -EINVAL;
2030 
2031 	if (!irq_settings_can_request(desc) ||
2032 	    WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2033 		return -EINVAL;
2034 
2035 	if (!handler) {
2036 		if (!thread_fn)
2037 			return -EINVAL;
2038 		handler = irq_default_primary_handler;
2039 	}
2040 
2041 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2042 	if (!action)
2043 		return -ENOMEM;
2044 
2045 	action->handler = handler;
2046 	action->thread_fn = thread_fn;
2047 	action->flags = irqflags;
2048 	action->name = devname;
2049 	action->dev_id = dev_id;
2050 
2051 	retval = irq_chip_pm_get(&desc->irq_data);
2052 	if (retval < 0) {
2053 		kfree(action);
2054 		return retval;
2055 	}
2056 
2057 	retval = __setup_irq(irq, desc, action);
2058 
2059 	if (retval) {
2060 		irq_chip_pm_put(&desc->irq_data);
2061 		kfree(action->secondary);
2062 		kfree(action);
2063 	}
2064 
2065 #ifdef CONFIG_DEBUG_SHIRQ_FIXME
2066 	if (!retval && (irqflags & IRQF_SHARED)) {
2067 		/*
2068 		 * It's a shared IRQ -- the driver ought to be prepared for it
2069 		 * to happen immediately, so let's make sure....
2070 		 * We disable the irq to make sure that a 'real' IRQ doesn't
2071 		 * run in parallel with our fake.
2072 		 */
2073 		unsigned long flags;
2074 
2075 		disable_irq(irq);
2076 		local_irq_save(flags);
2077 
2078 		handler(irq, dev_id);
2079 
2080 		local_irq_restore(flags);
2081 		enable_irq(irq);
2082 	}
2083 #endif
2084 	return retval;
2085 }
2086 EXPORT_SYMBOL(request_threaded_irq);
2087 
2088 /**
2089  *	request_any_context_irq - allocate an interrupt line
2090  *	@irq: Interrupt line to allocate
2091  *	@handler: Function to be called when the IRQ occurs.
2092  *		  Threaded handler for threaded interrupts.
2093  *	@flags: Interrupt type flags
2094  *	@name: An ascii name for the claiming device
2095  *	@dev_id: A cookie passed back to the handler function
2096  *
2097  *	This call allocates interrupt resources and enables the
2098  *	interrupt line and IRQ handling. It selects either a
2099  *	hardirq or threaded handling method depending on the
2100  *	context.
2101  *
2102  *	On failure, it returns a negative value. On success,
2103  *	it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
2104  */
2105 int request_any_context_irq(unsigned int irq, irq_handler_t handler,
2106 			    unsigned long flags, const char *name, void *dev_id)
2107 {
2108 	struct irq_desc *desc;
2109 	int ret;
2110 
2111 	if (irq == IRQ_NOTCONNECTED)
2112 		return -ENOTCONN;
2113 
2114 	desc = irq_to_desc(irq);
2115 	if (!desc)
2116 		return -EINVAL;
2117 
2118 	if (irq_settings_is_nested_thread(desc)) {
2119 		ret = request_threaded_irq(irq, NULL, handler,
2120 					   flags, name, dev_id);
2121 		return !ret ? IRQC_IS_NESTED : ret;
2122 	}
2123 
2124 	ret = request_irq(irq, handler, flags, name, dev_id);
2125 	return !ret ? IRQC_IS_HARDIRQ : ret;
2126 }
2127 EXPORT_SYMBOL_GPL(request_any_context_irq);
2128 
2129 /**
2130  *	request_nmi - allocate an interrupt line for NMI delivery
2131  *	@irq: Interrupt line to allocate
2132  *	@handler: Function to be called when the IRQ occurs.
2133  *		  Threaded handler for threaded interrupts.
2134  *	@irqflags: Interrupt type flags
2135  *	@name: An ascii name for the claiming device
2136  *	@dev_id: A cookie passed back to the handler function
2137  *
2138  *	This call allocates interrupt resources and enables the
2139  *	interrupt line and IRQ handling. It sets up the IRQ line
2140  *	to be handled as an NMI.
2141  *
2142  *	An interrupt line delivering NMIs cannot be shared and IRQ handling
2143  *	cannot be threaded.
2144  *
2145  *	Interrupt lines requested for NMI delivering must produce per cpu
2146  *	interrupts and have auto enabling setting disabled.
2147  *
2148  *	Dev_id must be globally unique. Normally the address of the
2149  *	device data structure is used as the cookie. Since the handler
2150  *	receives this value it makes sense to use it.
2151  *
2152  *	If the interrupt line cannot be used to deliver NMIs, function
2153  *	will fail and return a negative value.
2154  */
2155 int request_nmi(unsigned int irq, irq_handler_t handler,
2156 		unsigned long irqflags, const char *name, void *dev_id)
2157 {
2158 	struct irqaction *action;
2159 	struct irq_desc *desc;
2160 	unsigned long flags;
2161 	int retval;
2162 
2163 	if (irq == IRQ_NOTCONNECTED)
2164 		return -ENOTCONN;
2165 
2166 	/* NMI cannot be shared, used for Polling */
2167 	if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL))
2168 		return -EINVAL;
2169 
2170 	if (!(irqflags & IRQF_PERCPU))
2171 		return -EINVAL;
2172 
2173 	if (!handler)
2174 		return -EINVAL;
2175 
2176 	desc = irq_to_desc(irq);
2177 
2178 	if (!desc || irq_settings_can_autoenable(desc) ||
2179 	    !irq_settings_can_request(desc) ||
2180 	    WARN_ON(irq_settings_is_per_cpu_devid(desc)) ||
2181 	    !irq_supports_nmi(desc))
2182 		return -EINVAL;
2183 
2184 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2185 	if (!action)
2186 		return -ENOMEM;
2187 
2188 	action->handler = handler;
2189 	action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING;
2190 	action->name = name;
2191 	action->dev_id = dev_id;
2192 
2193 	retval = irq_chip_pm_get(&desc->irq_data);
2194 	if (retval < 0)
2195 		goto err_out;
2196 
2197 	retval = __setup_irq(irq, desc, action);
2198 	if (retval)
2199 		goto err_irq_setup;
2200 
2201 	raw_spin_lock_irqsave(&desc->lock, flags);
2202 
2203 	/* Setup NMI state */
2204 	desc->istate |= IRQS_NMI;
2205 	retval = irq_nmi_setup(desc);
2206 	if (retval) {
2207 		__cleanup_nmi(irq, desc);
2208 		raw_spin_unlock_irqrestore(&desc->lock, flags);
2209 		return -EINVAL;
2210 	}
2211 
2212 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2213 
2214 	return 0;
2215 
2216 err_irq_setup:
2217 	irq_chip_pm_put(&desc->irq_data);
2218 err_out:
2219 	kfree(action);
2220 
2221 	return retval;
2222 }
2223 
2224 void enable_percpu_irq(unsigned int irq, unsigned int type)
2225 {
2226 	unsigned int cpu = smp_processor_id();
2227 	unsigned long flags;
2228 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2229 
2230 	if (!desc)
2231 		return;
2232 
2233 	/*
2234 	 * If the trigger type is not specified by the caller, then
2235 	 * use the default for this interrupt.
2236 	 */
2237 	type &= IRQ_TYPE_SENSE_MASK;
2238 	if (type == IRQ_TYPE_NONE)
2239 		type = irqd_get_trigger_type(&desc->irq_data);
2240 
2241 	if (type != IRQ_TYPE_NONE) {
2242 		int ret;
2243 
2244 		ret = __irq_set_trigger(desc, type);
2245 
2246 		if (ret) {
2247 			WARN(1, "failed to set type for IRQ%d\n", irq);
2248 			goto out;
2249 		}
2250 	}
2251 
2252 	irq_percpu_enable(desc, cpu);
2253 out:
2254 	irq_put_desc_unlock(desc, flags);
2255 }
2256 EXPORT_SYMBOL_GPL(enable_percpu_irq);
2257 
2258 void enable_percpu_nmi(unsigned int irq, unsigned int type)
2259 {
2260 	enable_percpu_irq(irq, type);
2261 }
2262 
2263 /**
2264  * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
2265  * @irq:	Linux irq number to check for
2266  *
2267  * Must be called from a non migratable context. Returns the enable
2268  * state of a per cpu interrupt on the current cpu.
2269  */
2270 bool irq_percpu_is_enabled(unsigned int irq)
2271 {
2272 	unsigned int cpu = smp_processor_id();
2273 	struct irq_desc *desc;
2274 	unsigned long flags;
2275 	bool is_enabled;
2276 
2277 	desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2278 	if (!desc)
2279 		return false;
2280 
2281 	is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
2282 	irq_put_desc_unlock(desc, flags);
2283 
2284 	return is_enabled;
2285 }
2286 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
2287 
2288 void disable_percpu_irq(unsigned int irq)
2289 {
2290 	unsigned int cpu = smp_processor_id();
2291 	unsigned long flags;
2292 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2293 
2294 	if (!desc)
2295 		return;
2296 
2297 	irq_percpu_disable(desc, cpu);
2298 	irq_put_desc_unlock(desc, flags);
2299 }
2300 EXPORT_SYMBOL_GPL(disable_percpu_irq);
2301 
2302 void disable_percpu_nmi(unsigned int irq)
2303 {
2304 	disable_percpu_irq(irq);
2305 }
2306 
2307 /*
2308  * Internal function to unregister a percpu irqaction.
2309  */
2310 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2311 {
2312 	struct irq_desc *desc = irq_to_desc(irq);
2313 	struct irqaction *action;
2314 	unsigned long flags;
2315 
2316 	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
2317 
2318 	if (!desc)
2319 		return NULL;
2320 
2321 	raw_spin_lock_irqsave(&desc->lock, flags);
2322 
2323 	action = desc->action;
2324 	if (!action || action->percpu_dev_id != dev_id) {
2325 		WARN(1, "Trying to free already-free IRQ %d\n", irq);
2326 		goto bad;
2327 	}
2328 
2329 	if (!cpumask_empty(desc->percpu_enabled)) {
2330 		WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
2331 		     irq, cpumask_first(desc->percpu_enabled));
2332 		goto bad;
2333 	}
2334 
2335 	/* Found it - now remove it from the list of entries: */
2336 	desc->action = NULL;
2337 
2338 	desc->istate &= ~IRQS_NMI;
2339 
2340 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2341 
2342 	unregister_handler_proc(irq, action);
2343 
2344 	irq_chip_pm_put(&desc->irq_data);
2345 	module_put(desc->owner);
2346 	return action;
2347 
2348 bad:
2349 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2350 	return NULL;
2351 }
2352 
2353 /**
2354  *	remove_percpu_irq - free a per-cpu interrupt
2355  *	@irq: Interrupt line to free
2356  *	@act: irqaction for the interrupt
2357  *
2358  * Used to remove interrupts statically setup by the early boot process.
2359  */
2360 void remove_percpu_irq(unsigned int irq, struct irqaction *act)
2361 {
2362 	struct irq_desc *desc = irq_to_desc(irq);
2363 
2364 	if (desc && irq_settings_is_per_cpu_devid(desc))
2365 	    __free_percpu_irq(irq, act->percpu_dev_id);
2366 }
2367 
2368 /**
2369  *	free_percpu_irq - free an interrupt allocated with request_percpu_irq
2370  *	@irq: Interrupt line to free
2371  *	@dev_id: Device identity to free
2372  *
2373  *	Remove a percpu interrupt handler. The handler is removed, but
2374  *	the interrupt line is not disabled. This must be done on each
2375  *	CPU before calling this function. The function does not return
2376  *	until any executing interrupts for this IRQ have completed.
2377  *
2378  *	This function must not be called from interrupt context.
2379  */
2380 void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2381 {
2382 	struct irq_desc *desc = irq_to_desc(irq);
2383 
2384 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2385 		return;
2386 
2387 	chip_bus_lock(desc);
2388 	kfree(__free_percpu_irq(irq, dev_id));
2389 	chip_bus_sync_unlock(desc);
2390 }
2391 EXPORT_SYMBOL_GPL(free_percpu_irq);
2392 
2393 void free_percpu_nmi(unsigned int irq, void __percpu *dev_id)
2394 {
2395 	struct irq_desc *desc = irq_to_desc(irq);
2396 
2397 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2398 		return;
2399 
2400 	if (WARN_ON(!(desc->istate & IRQS_NMI)))
2401 		return;
2402 
2403 	kfree(__free_percpu_irq(irq, dev_id));
2404 }
2405 
2406 /**
2407  *	setup_percpu_irq - setup a per-cpu interrupt
2408  *	@irq: Interrupt line to setup
2409  *	@act: irqaction for the interrupt
2410  *
2411  * Used to statically setup per-cpu interrupts in the early boot process.
2412  */
2413 int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2414 {
2415 	struct irq_desc *desc = irq_to_desc(irq);
2416 	int retval;
2417 
2418 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2419 		return -EINVAL;
2420 
2421 	retval = irq_chip_pm_get(&desc->irq_data);
2422 	if (retval < 0)
2423 		return retval;
2424 
2425 	retval = __setup_irq(irq, desc, act);
2426 
2427 	if (retval)
2428 		irq_chip_pm_put(&desc->irq_data);
2429 
2430 	return retval;
2431 }
2432 
2433 /**
2434  *	__request_percpu_irq - allocate a percpu interrupt line
2435  *	@irq: Interrupt line to allocate
2436  *	@handler: Function to be called when the IRQ occurs.
2437  *	@flags: Interrupt type flags (IRQF_TIMER only)
2438  *	@devname: An ascii name for the claiming device
2439  *	@dev_id: A percpu cookie passed back to the handler function
2440  *
2441  *	This call allocates interrupt resources and enables the
2442  *	interrupt on the local CPU. If the interrupt is supposed to be
2443  *	enabled on other CPUs, it has to be done on each CPU using
2444  *	enable_percpu_irq().
2445  *
2446  *	Dev_id must be globally unique. It is a per-cpu variable, and
2447  *	the handler gets called with the interrupted CPU's instance of
2448  *	that variable.
2449  */
2450 int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2451 			 unsigned long flags, const char *devname,
2452 			 void __percpu *dev_id)
2453 {
2454 	struct irqaction *action;
2455 	struct irq_desc *desc;
2456 	int retval;
2457 
2458 	if (!dev_id)
2459 		return -EINVAL;
2460 
2461 	desc = irq_to_desc(irq);
2462 	if (!desc || !irq_settings_can_request(desc) ||
2463 	    !irq_settings_is_per_cpu_devid(desc))
2464 		return -EINVAL;
2465 
2466 	if (flags && flags != IRQF_TIMER)
2467 		return -EINVAL;
2468 
2469 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2470 	if (!action)
2471 		return -ENOMEM;
2472 
2473 	action->handler = handler;
2474 	action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2475 	action->name = devname;
2476 	action->percpu_dev_id = dev_id;
2477 
2478 	retval = irq_chip_pm_get(&desc->irq_data);
2479 	if (retval < 0) {
2480 		kfree(action);
2481 		return retval;
2482 	}
2483 
2484 	retval = __setup_irq(irq, desc, action);
2485 
2486 	if (retval) {
2487 		irq_chip_pm_put(&desc->irq_data);
2488 		kfree(action);
2489 	}
2490 
2491 	return retval;
2492 }
2493 EXPORT_SYMBOL_GPL(__request_percpu_irq);
2494 
2495 /**
2496  *	request_percpu_nmi - allocate a percpu interrupt line for NMI delivery
2497  *	@irq: Interrupt line to allocate
2498  *	@handler: Function to be called when the IRQ occurs.
2499  *	@name: An ascii name for the claiming device
2500  *	@dev_id: A percpu cookie passed back to the handler function
2501  *
2502  *	This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs
2503  *	have to be setup on each CPU by calling prepare_percpu_nmi() before
2504  *	being enabled on the same CPU by using enable_percpu_nmi().
2505  *
2506  *	Dev_id must be globally unique. It is a per-cpu variable, and
2507  *	the handler gets called with the interrupted CPU's instance of
2508  *	that variable.
2509  *
2510  *	Interrupt lines requested for NMI delivering should have auto enabling
2511  *	setting disabled.
2512  *
2513  *	If the interrupt line cannot be used to deliver NMIs, function
2514  *	will fail returning a negative value.
2515  */
2516 int request_percpu_nmi(unsigned int irq, irq_handler_t handler,
2517 		       const char *name, void __percpu *dev_id)
2518 {
2519 	struct irqaction *action;
2520 	struct irq_desc *desc;
2521 	unsigned long flags;
2522 	int retval;
2523 
2524 	if (!handler)
2525 		return -EINVAL;
2526 
2527 	desc = irq_to_desc(irq);
2528 
2529 	if (!desc || !irq_settings_can_request(desc) ||
2530 	    !irq_settings_is_per_cpu_devid(desc) ||
2531 	    irq_settings_can_autoenable(desc) ||
2532 	    !irq_supports_nmi(desc))
2533 		return -EINVAL;
2534 
2535 	/* The line cannot already be NMI */
2536 	if (desc->istate & IRQS_NMI)
2537 		return -EINVAL;
2538 
2539 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2540 	if (!action)
2541 		return -ENOMEM;
2542 
2543 	action->handler = handler;
2544 	action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD
2545 		| IRQF_NOBALANCING;
2546 	action->name = name;
2547 	action->percpu_dev_id = dev_id;
2548 
2549 	retval = irq_chip_pm_get(&desc->irq_data);
2550 	if (retval < 0)
2551 		goto err_out;
2552 
2553 	retval = __setup_irq(irq, desc, action);
2554 	if (retval)
2555 		goto err_irq_setup;
2556 
2557 	raw_spin_lock_irqsave(&desc->lock, flags);
2558 	desc->istate |= IRQS_NMI;
2559 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2560 
2561 	return 0;
2562 
2563 err_irq_setup:
2564 	irq_chip_pm_put(&desc->irq_data);
2565 err_out:
2566 	kfree(action);
2567 
2568 	return retval;
2569 }
2570 
2571 /**
2572  *	prepare_percpu_nmi - performs CPU local setup for NMI delivery
2573  *	@irq: Interrupt line to prepare for NMI delivery
2574  *
2575  *	This call prepares an interrupt line to deliver NMI on the current CPU,
2576  *	before that interrupt line gets enabled with enable_percpu_nmi().
2577  *
2578  *	As a CPU local operation, this should be called from non-preemptible
2579  *	context.
2580  *
2581  *	If the interrupt line cannot be used to deliver NMIs, function
2582  *	will fail returning a negative value.
2583  */
2584 int prepare_percpu_nmi(unsigned int irq)
2585 {
2586 	unsigned long flags;
2587 	struct irq_desc *desc;
2588 	int ret = 0;
2589 
2590 	WARN_ON(preemptible());
2591 
2592 	desc = irq_get_desc_lock(irq, &flags,
2593 				 IRQ_GET_DESC_CHECK_PERCPU);
2594 	if (!desc)
2595 		return -EINVAL;
2596 
2597 	if (WARN(!(desc->istate & IRQS_NMI),
2598 		 KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n",
2599 		 irq)) {
2600 		ret = -EINVAL;
2601 		goto out;
2602 	}
2603 
2604 	ret = irq_nmi_setup(desc);
2605 	if (ret) {
2606 		pr_err("Failed to setup NMI delivery: irq %u\n", irq);
2607 		goto out;
2608 	}
2609 
2610 out:
2611 	irq_put_desc_unlock(desc, flags);
2612 	return ret;
2613 }
2614 
2615 /**
2616  *	teardown_percpu_nmi - undoes NMI setup of IRQ line
2617  *	@irq: Interrupt line from which CPU local NMI configuration should be
2618  *	      removed
2619  *
2620  *	This call undoes the setup done by prepare_percpu_nmi().
2621  *
2622  *	IRQ line should not be enabled for the current CPU.
2623  *
2624  *	As a CPU local operation, this should be called from non-preemptible
2625  *	context.
2626  */
2627 void teardown_percpu_nmi(unsigned int irq)
2628 {
2629 	unsigned long flags;
2630 	struct irq_desc *desc;
2631 
2632 	WARN_ON(preemptible());
2633 
2634 	desc = irq_get_desc_lock(irq, &flags,
2635 				 IRQ_GET_DESC_CHECK_PERCPU);
2636 	if (!desc)
2637 		return;
2638 
2639 	if (WARN_ON(!(desc->istate & IRQS_NMI)))
2640 		goto out;
2641 
2642 	irq_nmi_teardown(desc);
2643 out:
2644 	irq_put_desc_unlock(desc, flags);
2645 }
2646 
2647 int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which,
2648 			    bool *state)
2649 {
2650 	struct irq_chip *chip;
2651 	int err = -EINVAL;
2652 
2653 	do {
2654 		chip = irq_data_get_irq_chip(data);
2655 		if (WARN_ON_ONCE(!chip))
2656 			return -ENODEV;
2657 		if (chip->irq_get_irqchip_state)
2658 			break;
2659 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2660 		data = data->parent_data;
2661 #else
2662 		data = NULL;
2663 #endif
2664 	} while (data);
2665 
2666 	if (data)
2667 		err = chip->irq_get_irqchip_state(data, which, state);
2668 	return err;
2669 }
2670 
2671 /**
2672  *	irq_get_irqchip_state - returns the irqchip state of a interrupt.
2673  *	@irq: Interrupt line that is forwarded to a VM
2674  *	@which: One of IRQCHIP_STATE_* the caller wants to know about
2675  *	@state: a pointer to a boolean where the state is to be storeed
2676  *
2677  *	This call snapshots the internal irqchip state of an
2678  *	interrupt, returning into @state the bit corresponding to
2679  *	stage @which
2680  *
2681  *	This function should be called with preemption disabled if the
2682  *	interrupt controller has per-cpu registers.
2683  */
2684 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2685 			  bool *state)
2686 {
2687 	struct irq_desc *desc;
2688 	struct irq_data *data;
2689 	unsigned long flags;
2690 	int err = -EINVAL;
2691 
2692 	desc = irq_get_desc_buslock(irq, &flags, 0);
2693 	if (!desc)
2694 		return err;
2695 
2696 	data = irq_desc_get_irq_data(desc);
2697 
2698 	err = __irq_get_irqchip_state(data, which, state);
2699 
2700 	irq_put_desc_busunlock(desc, flags);
2701 	return err;
2702 }
2703 EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2704 
2705 /**
2706  *	irq_set_irqchip_state - set the state of a forwarded interrupt.
2707  *	@irq: Interrupt line that is forwarded to a VM
2708  *	@which: State to be restored (one of IRQCHIP_STATE_*)
2709  *	@val: Value corresponding to @which
2710  *
2711  *	This call sets the internal irqchip state of an interrupt,
2712  *	depending on the value of @which.
2713  *
2714  *	This function should be called with preemption disabled if the
2715  *	interrupt controller has per-cpu registers.
2716  */
2717 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2718 			  bool val)
2719 {
2720 	struct irq_desc *desc;
2721 	struct irq_data *data;
2722 	struct irq_chip *chip;
2723 	unsigned long flags;
2724 	int err = -EINVAL;
2725 
2726 	desc = irq_get_desc_buslock(irq, &flags, 0);
2727 	if (!desc)
2728 		return err;
2729 
2730 	data = irq_desc_get_irq_data(desc);
2731 
2732 	do {
2733 		chip = irq_data_get_irq_chip(data);
2734 		if (WARN_ON_ONCE(!chip)) {
2735 			err = -ENODEV;
2736 			goto out_unlock;
2737 		}
2738 		if (chip->irq_set_irqchip_state)
2739 			break;
2740 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2741 		data = data->parent_data;
2742 #else
2743 		data = NULL;
2744 #endif
2745 	} while (data);
2746 
2747 	if (data)
2748 		err = chip->irq_set_irqchip_state(data, which, val);
2749 
2750 out_unlock:
2751 	irq_put_desc_busunlock(desc, flags);
2752 	return err;
2753 }
2754 EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
2755