1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar 4 * Copyright (C) 2005-2006 Thomas Gleixner 5 * 6 * This file contains driver APIs to the irq subsystem. 7 */ 8 9 #define pr_fmt(fmt) "genirq: " fmt 10 11 #include <linux/irq.h> 12 #include <linux/kthread.h> 13 #include <linux/module.h> 14 #include <linux/random.h> 15 #include <linux/interrupt.h> 16 #include <linux/irqdomain.h> 17 #include <linux/slab.h> 18 #include <linux/sched.h> 19 #include <linux/sched/rt.h> 20 #include <linux/sched/task.h> 21 #include <linux/sched/isolation.h> 22 #include <uapi/linux/sched/types.h> 23 #include <linux/task_work.h> 24 25 #include "internals.h" 26 27 #if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT) 28 __read_mostly bool force_irqthreads; 29 EXPORT_SYMBOL_GPL(force_irqthreads); 30 31 static int __init setup_forced_irqthreads(char *arg) 32 { 33 force_irqthreads = true; 34 return 0; 35 } 36 early_param("threadirqs", setup_forced_irqthreads); 37 #endif 38 39 static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip) 40 { 41 struct irq_data *irqd = irq_desc_get_irq_data(desc); 42 bool inprogress; 43 44 do { 45 unsigned long flags; 46 47 /* 48 * Wait until we're out of the critical section. This might 49 * give the wrong answer due to the lack of memory barriers. 50 */ 51 while (irqd_irq_inprogress(&desc->irq_data)) 52 cpu_relax(); 53 54 /* Ok, that indicated we're done: double-check carefully. */ 55 raw_spin_lock_irqsave(&desc->lock, flags); 56 inprogress = irqd_irq_inprogress(&desc->irq_data); 57 58 /* 59 * If requested and supported, check at the chip whether it 60 * is in flight at the hardware level, i.e. already pending 61 * in a CPU and waiting for service and acknowledge. 62 */ 63 if (!inprogress && sync_chip) { 64 /* 65 * Ignore the return code. inprogress is only updated 66 * when the chip supports it. 67 */ 68 __irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE, 69 &inprogress); 70 } 71 raw_spin_unlock_irqrestore(&desc->lock, flags); 72 73 /* Oops, that failed? */ 74 } while (inprogress); 75 } 76 77 /** 78 * synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs) 79 * @irq: interrupt number to wait for 80 * 81 * This function waits for any pending hard IRQ handlers for this 82 * interrupt to complete before returning. If you use this 83 * function while holding a resource the IRQ handler may need you 84 * will deadlock. It does not take associated threaded handlers 85 * into account. 86 * 87 * Do not use this for shutdown scenarios where you must be sure 88 * that all parts (hardirq and threaded handler) have completed. 89 * 90 * Returns: false if a threaded handler is active. 91 * 92 * This function may be called - with care - from IRQ context. 93 * 94 * It does not check whether there is an interrupt in flight at the 95 * hardware level, but not serviced yet, as this might deadlock when 96 * called with interrupts disabled and the target CPU of the interrupt 97 * is the current CPU. 98 */ 99 bool synchronize_hardirq(unsigned int irq) 100 { 101 struct irq_desc *desc = irq_to_desc(irq); 102 103 if (desc) { 104 __synchronize_hardirq(desc, false); 105 return !atomic_read(&desc->threads_active); 106 } 107 108 return true; 109 } 110 EXPORT_SYMBOL(synchronize_hardirq); 111 112 /** 113 * synchronize_irq - wait for pending IRQ handlers (on other CPUs) 114 * @irq: interrupt number to wait for 115 * 116 * This function waits for any pending IRQ handlers for this interrupt 117 * to complete before returning. If you use this function while 118 * holding a resource the IRQ handler may need you will deadlock. 119 * 120 * Can only be called from preemptible code as it might sleep when 121 * an interrupt thread is associated to @irq. 122 * 123 * It optionally makes sure (when the irq chip supports that method) 124 * that the interrupt is not pending in any CPU and waiting for 125 * service. 126 */ 127 void synchronize_irq(unsigned int irq) 128 { 129 struct irq_desc *desc = irq_to_desc(irq); 130 131 if (desc) { 132 __synchronize_hardirq(desc, true); 133 /* 134 * We made sure that no hardirq handler is 135 * running. Now verify that no threaded handlers are 136 * active. 137 */ 138 wait_event(desc->wait_for_threads, 139 !atomic_read(&desc->threads_active)); 140 } 141 } 142 EXPORT_SYMBOL(synchronize_irq); 143 144 #ifdef CONFIG_SMP 145 cpumask_var_t irq_default_affinity; 146 147 static bool __irq_can_set_affinity(struct irq_desc *desc) 148 { 149 if (!desc || !irqd_can_balance(&desc->irq_data) || 150 !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity) 151 return false; 152 return true; 153 } 154 155 /** 156 * irq_can_set_affinity - Check if the affinity of a given irq can be set 157 * @irq: Interrupt to check 158 * 159 */ 160 int irq_can_set_affinity(unsigned int irq) 161 { 162 return __irq_can_set_affinity(irq_to_desc(irq)); 163 } 164 165 /** 166 * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space 167 * @irq: Interrupt to check 168 * 169 * Like irq_can_set_affinity() above, but additionally checks for the 170 * AFFINITY_MANAGED flag. 171 */ 172 bool irq_can_set_affinity_usr(unsigned int irq) 173 { 174 struct irq_desc *desc = irq_to_desc(irq); 175 176 return __irq_can_set_affinity(desc) && 177 !irqd_affinity_is_managed(&desc->irq_data); 178 } 179 180 /** 181 * irq_set_thread_affinity - Notify irq threads to adjust affinity 182 * @desc: irq descriptor which has affitnity changed 183 * 184 * We just set IRQTF_AFFINITY and delegate the affinity setting 185 * to the interrupt thread itself. We can not call 186 * set_cpus_allowed_ptr() here as we hold desc->lock and this 187 * code can be called from hard interrupt context. 188 */ 189 void irq_set_thread_affinity(struct irq_desc *desc) 190 { 191 struct irqaction *action; 192 193 for_each_action_of_desc(desc, action) 194 if (action->thread) 195 set_bit(IRQTF_AFFINITY, &action->thread_flags); 196 } 197 198 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK 199 static void irq_validate_effective_affinity(struct irq_data *data) 200 { 201 const struct cpumask *m = irq_data_get_effective_affinity_mask(data); 202 struct irq_chip *chip = irq_data_get_irq_chip(data); 203 204 if (!cpumask_empty(m)) 205 return; 206 pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n", 207 chip->name, data->irq); 208 } 209 210 static inline void irq_init_effective_affinity(struct irq_data *data, 211 const struct cpumask *mask) 212 { 213 cpumask_copy(irq_data_get_effective_affinity_mask(data), mask); 214 } 215 #else 216 static inline void irq_validate_effective_affinity(struct irq_data *data) { } 217 static inline void irq_init_effective_affinity(struct irq_data *data, 218 const struct cpumask *mask) { } 219 #endif 220 221 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask, 222 bool force) 223 { 224 struct irq_desc *desc = irq_data_to_desc(data); 225 struct irq_chip *chip = irq_data_get_irq_chip(data); 226 int ret; 227 228 if (!chip || !chip->irq_set_affinity) 229 return -EINVAL; 230 231 /* 232 * If this is a managed interrupt and housekeeping is enabled on 233 * it check whether the requested affinity mask intersects with 234 * a housekeeping CPU. If so, then remove the isolated CPUs from 235 * the mask and just keep the housekeeping CPU(s). This prevents 236 * the affinity setter from routing the interrupt to an isolated 237 * CPU to avoid that I/O submitted from a housekeeping CPU causes 238 * interrupts on an isolated one. 239 * 240 * If the masks do not intersect or include online CPU(s) then 241 * keep the requested mask. The isolated target CPUs are only 242 * receiving interrupts when the I/O operation was submitted 243 * directly from them. 244 * 245 * If all housekeeping CPUs in the affinity mask are offline, the 246 * interrupt will be migrated by the CPU hotplug code once a 247 * housekeeping CPU which belongs to the affinity mask comes 248 * online. 249 */ 250 if (irqd_affinity_is_managed(data) && 251 housekeeping_enabled(HK_FLAG_MANAGED_IRQ)) { 252 const struct cpumask *hk_mask, *prog_mask; 253 254 static DEFINE_RAW_SPINLOCK(tmp_mask_lock); 255 static struct cpumask tmp_mask; 256 257 hk_mask = housekeeping_cpumask(HK_FLAG_MANAGED_IRQ); 258 259 raw_spin_lock(&tmp_mask_lock); 260 cpumask_and(&tmp_mask, mask, hk_mask); 261 if (!cpumask_intersects(&tmp_mask, cpu_online_mask)) 262 prog_mask = mask; 263 else 264 prog_mask = &tmp_mask; 265 ret = chip->irq_set_affinity(data, prog_mask, force); 266 raw_spin_unlock(&tmp_mask_lock); 267 } else { 268 ret = chip->irq_set_affinity(data, mask, force); 269 } 270 switch (ret) { 271 case IRQ_SET_MASK_OK: 272 case IRQ_SET_MASK_OK_DONE: 273 cpumask_copy(desc->irq_common_data.affinity, mask); 274 fallthrough; 275 case IRQ_SET_MASK_OK_NOCOPY: 276 irq_validate_effective_affinity(data); 277 irq_set_thread_affinity(desc); 278 ret = 0; 279 } 280 281 return ret; 282 } 283 284 #ifdef CONFIG_GENERIC_PENDING_IRQ 285 static inline int irq_set_affinity_pending(struct irq_data *data, 286 const struct cpumask *dest) 287 { 288 struct irq_desc *desc = irq_data_to_desc(data); 289 290 irqd_set_move_pending(data); 291 irq_copy_pending(desc, dest); 292 return 0; 293 } 294 #else 295 static inline int irq_set_affinity_pending(struct irq_data *data, 296 const struct cpumask *dest) 297 { 298 return -EBUSY; 299 } 300 #endif 301 302 static int irq_try_set_affinity(struct irq_data *data, 303 const struct cpumask *dest, bool force) 304 { 305 int ret = irq_do_set_affinity(data, dest, force); 306 307 /* 308 * In case that the underlying vector management is busy and the 309 * architecture supports the generic pending mechanism then utilize 310 * this to avoid returning an error to user space. 311 */ 312 if (ret == -EBUSY && !force) 313 ret = irq_set_affinity_pending(data, dest); 314 return ret; 315 } 316 317 static bool irq_set_affinity_deactivated(struct irq_data *data, 318 const struct cpumask *mask, bool force) 319 { 320 struct irq_desc *desc = irq_data_to_desc(data); 321 322 /* 323 * Handle irq chips which can handle affinity only in activated 324 * state correctly 325 * 326 * If the interrupt is not yet activated, just store the affinity 327 * mask and do not call the chip driver at all. On activation the 328 * driver has to make sure anyway that the interrupt is in a 329 * useable state so startup works. 330 */ 331 if (!IS_ENABLED(CONFIG_IRQ_DOMAIN_HIERARCHY) || 332 irqd_is_activated(data) || !irqd_affinity_on_activate(data)) 333 return false; 334 335 cpumask_copy(desc->irq_common_data.affinity, mask); 336 irq_init_effective_affinity(data, mask); 337 irqd_set(data, IRQD_AFFINITY_SET); 338 return true; 339 } 340 341 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask, 342 bool force) 343 { 344 struct irq_chip *chip = irq_data_get_irq_chip(data); 345 struct irq_desc *desc = irq_data_to_desc(data); 346 int ret = 0; 347 348 if (!chip || !chip->irq_set_affinity) 349 return -EINVAL; 350 351 if (irq_set_affinity_deactivated(data, mask, force)) 352 return 0; 353 354 if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) { 355 ret = irq_try_set_affinity(data, mask, force); 356 } else { 357 irqd_set_move_pending(data); 358 irq_copy_pending(desc, mask); 359 } 360 361 if (desc->affinity_notify) { 362 kref_get(&desc->affinity_notify->kref); 363 if (!schedule_work(&desc->affinity_notify->work)) { 364 /* Work was already scheduled, drop our extra ref */ 365 kref_put(&desc->affinity_notify->kref, 366 desc->affinity_notify->release); 367 } 368 } 369 irqd_set(data, IRQD_AFFINITY_SET); 370 371 return ret; 372 } 373 374 int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force) 375 { 376 struct irq_desc *desc = irq_to_desc(irq); 377 unsigned long flags; 378 int ret; 379 380 if (!desc) 381 return -EINVAL; 382 383 raw_spin_lock_irqsave(&desc->lock, flags); 384 ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force); 385 raw_spin_unlock_irqrestore(&desc->lock, flags); 386 return ret; 387 } 388 389 int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m) 390 { 391 unsigned long flags; 392 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 393 394 if (!desc) 395 return -EINVAL; 396 desc->affinity_hint = m; 397 irq_put_desc_unlock(desc, flags); 398 /* set the initial affinity to prevent every interrupt being on CPU0 */ 399 if (m) 400 __irq_set_affinity(irq, m, false); 401 return 0; 402 } 403 EXPORT_SYMBOL_GPL(irq_set_affinity_hint); 404 405 static void irq_affinity_notify(struct work_struct *work) 406 { 407 struct irq_affinity_notify *notify = 408 container_of(work, struct irq_affinity_notify, work); 409 struct irq_desc *desc = irq_to_desc(notify->irq); 410 cpumask_var_t cpumask; 411 unsigned long flags; 412 413 if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL)) 414 goto out; 415 416 raw_spin_lock_irqsave(&desc->lock, flags); 417 if (irq_move_pending(&desc->irq_data)) 418 irq_get_pending(cpumask, desc); 419 else 420 cpumask_copy(cpumask, desc->irq_common_data.affinity); 421 raw_spin_unlock_irqrestore(&desc->lock, flags); 422 423 notify->notify(notify, cpumask); 424 425 free_cpumask_var(cpumask); 426 out: 427 kref_put(¬ify->kref, notify->release); 428 } 429 430 /** 431 * irq_set_affinity_notifier - control notification of IRQ affinity changes 432 * @irq: Interrupt for which to enable/disable notification 433 * @notify: Context for notification, or %NULL to disable 434 * notification. Function pointers must be initialised; 435 * the other fields will be initialised by this function. 436 * 437 * Must be called in process context. Notification may only be enabled 438 * after the IRQ is allocated and must be disabled before the IRQ is 439 * freed using free_irq(). 440 */ 441 int 442 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify) 443 { 444 struct irq_desc *desc = irq_to_desc(irq); 445 struct irq_affinity_notify *old_notify; 446 unsigned long flags; 447 448 /* The release function is promised process context */ 449 might_sleep(); 450 451 if (!desc || desc->istate & IRQS_NMI) 452 return -EINVAL; 453 454 /* Complete initialisation of *notify */ 455 if (notify) { 456 notify->irq = irq; 457 kref_init(¬ify->kref); 458 INIT_WORK(¬ify->work, irq_affinity_notify); 459 } 460 461 raw_spin_lock_irqsave(&desc->lock, flags); 462 old_notify = desc->affinity_notify; 463 desc->affinity_notify = notify; 464 raw_spin_unlock_irqrestore(&desc->lock, flags); 465 466 if (old_notify) { 467 if (cancel_work_sync(&old_notify->work)) { 468 /* Pending work had a ref, put that one too */ 469 kref_put(&old_notify->kref, old_notify->release); 470 } 471 kref_put(&old_notify->kref, old_notify->release); 472 } 473 474 return 0; 475 } 476 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier); 477 478 #ifndef CONFIG_AUTO_IRQ_AFFINITY 479 /* 480 * Generic version of the affinity autoselector. 481 */ 482 int irq_setup_affinity(struct irq_desc *desc) 483 { 484 struct cpumask *set = irq_default_affinity; 485 int ret, node = irq_desc_get_node(desc); 486 static DEFINE_RAW_SPINLOCK(mask_lock); 487 static struct cpumask mask; 488 489 /* Excludes PER_CPU and NO_BALANCE interrupts */ 490 if (!__irq_can_set_affinity(desc)) 491 return 0; 492 493 raw_spin_lock(&mask_lock); 494 /* 495 * Preserve the managed affinity setting and a userspace affinity 496 * setup, but make sure that one of the targets is online. 497 */ 498 if (irqd_affinity_is_managed(&desc->irq_data) || 499 irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) { 500 if (cpumask_intersects(desc->irq_common_data.affinity, 501 cpu_online_mask)) 502 set = desc->irq_common_data.affinity; 503 else 504 irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET); 505 } 506 507 cpumask_and(&mask, cpu_online_mask, set); 508 if (cpumask_empty(&mask)) 509 cpumask_copy(&mask, cpu_online_mask); 510 511 if (node != NUMA_NO_NODE) { 512 const struct cpumask *nodemask = cpumask_of_node(node); 513 514 /* make sure at least one of the cpus in nodemask is online */ 515 if (cpumask_intersects(&mask, nodemask)) 516 cpumask_and(&mask, &mask, nodemask); 517 } 518 ret = irq_do_set_affinity(&desc->irq_data, &mask, false); 519 raw_spin_unlock(&mask_lock); 520 return ret; 521 } 522 #else 523 /* Wrapper for ALPHA specific affinity selector magic */ 524 int irq_setup_affinity(struct irq_desc *desc) 525 { 526 return irq_select_affinity(irq_desc_get_irq(desc)); 527 } 528 #endif /* CONFIG_AUTO_IRQ_AFFINITY */ 529 #endif /* CONFIG_SMP */ 530 531 532 /** 533 * irq_set_vcpu_affinity - Set vcpu affinity for the interrupt 534 * @irq: interrupt number to set affinity 535 * @vcpu_info: vCPU specific data or pointer to a percpu array of vCPU 536 * specific data for percpu_devid interrupts 537 * 538 * This function uses the vCPU specific data to set the vCPU 539 * affinity for an irq. The vCPU specific data is passed from 540 * outside, such as KVM. One example code path is as below: 541 * KVM -> IOMMU -> irq_set_vcpu_affinity(). 542 */ 543 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info) 544 { 545 unsigned long flags; 546 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 547 struct irq_data *data; 548 struct irq_chip *chip; 549 int ret = -ENOSYS; 550 551 if (!desc) 552 return -EINVAL; 553 554 data = irq_desc_get_irq_data(desc); 555 do { 556 chip = irq_data_get_irq_chip(data); 557 if (chip && chip->irq_set_vcpu_affinity) 558 break; 559 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 560 data = data->parent_data; 561 #else 562 data = NULL; 563 #endif 564 } while (data); 565 566 if (data) 567 ret = chip->irq_set_vcpu_affinity(data, vcpu_info); 568 irq_put_desc_unlock(desc, flags); 569 570 return ret; 571 } 572 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity); 573 574 void __disable_irq(struct irq_desc *desc) 575 { 576 if (!desc->depth++) 577 irq_disable(desc); 578 } 579 580 static int __disable_irq_nosync(unsigned int irq) 581 { 582 unsigned long flags; 583 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 584 585 if (!desc) 586 return -EINVAL; 587 __disable_irq(desc); 588 irq_put_desc_busunlock(desc, flags); 589 return 0; 590 } 591 592 /** 593 * disable_irq_nosync - disable an irq without waiting 594 * @irq: Interrupt to disable 595 * 596 * Disable the selected interrupt line. Disables and Enables are 597 * nested. 598 * Unlike disable_irq(), this function does not ensure existing 599 * instances of the IRQ handler have completed before returning. 600 * 601 * This function may be called from IRQ context. 602 */ 603 void disable_irq_nosync(unsigned int irq) 604 { 605 __disable_irq_nosync(irq); 606 } 607 EXPORT_SYMBOL(disable_irq_nosync); 608 609 /** 610 * disable_irq - disable an irq and wait for completion 611 * @irq: Interrupt to disable 612 * 613 * Disable the selected interrupt line. Enables and Disables are 614 * nested. 615 * This function waits for any pending IRQ handlers for this interrupt 616 * to complete before returning. If you use this function while 617 * holding a resource the IRQ handler may need you will deadlock. 618 * 619 * This function may be called - with care - from IRQ context. 620 */ 621 void disable_irq(unsigned int irq) 622 { 623 if (!__disable_irq_nosync(irq)) 624 synchronize_irq(irq); 625 } 626 EXPORT_SYMBOL(disable_irq); 627 628 /** 629 * disable_hardirq - disables an irq and waits for hardirq completion 630 * @irq: Interrupt to disable 631 * 632 * Disable the selected interrupt line. Enables and Disables are 633 * nested. 634 * This function waits for any pending hard IRQ handlers for this 635 * interrupt to complete before returning. If you use this function while 636 * holding a resource the hard IRQ handler may need you will deadlock. 637 * 638 * When used to optimistically disable an interrupt from atomic context 639 * the return value must be checked. 640 * 641 * Returns: false if a threaded handler is active. 642 * 643 * This function may be called - with care - from IRQ context. 644 */ 645 bool disable_hardirq(unsigned int irq) 646 { 647 if (!__disable_irq_nosync(irq)) 648 return synchronize_hardirq(irq); 649 650 return false; 651 } 652 EXPORT_SYMBOL_GPL(disable_hardirq); 653 654 /** 655 * disable_nmi_nosync - disable an nmi without waiting 656 * @irq: Interrupt to disable 657 * 658 * Disable the selected interrupt line. Disables and enables are 659 * nested. 660 * The interrupt to disable must have been requested through request_nmi. 661 * Unlike disable_nmi(), this function does not ensure existing 662 * instances of the IRQ handler have completed before returning. 663 */ 664 void disable_nmi_nosync(unsigned int irq) 665 { 666 disable_irq_nosync(irq); 667 } 668 669 void __enable_irq(struct irq_desc *desc) 670 { 671 switch (desc->depth) { 672 case 0: 673 err_out: 674 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n", 675 irq_desc_get_irq(desc)); 676 break; 677 case 1: { 678 if (desc->istate & IRQS_SUSPENDED) 679 goto err_out; 680 /* Prevent probing on this irq: */ 681 irq_settings_set_noprobe(desc); 682 /* 683 * Call irq_startup() not irq_enable() here because the 684 * interrupt might be marked NOAUTOEN. So irq_startup() 685 * needs to be invoked when it gets enabled the first 686 * time. If it was already started up, then irq_startup() 687 * will invoke irq_enable() under the hood. 688 */ 689 irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE); 690 break; 691 } 692 default: 693 desc->depth--; 694 } 695 } 696 697 /** 698 * enable_irq - enable handling of an irq 699 * @irq: Interrupt to enable 700 * 701 * Undoes the effect of one call to disable_irq(). If this 702 * matches the last disable, processing of interrupts on this 703 * IRQ line is re-enabled. 704 * 705 * This function may be called from IRQ context only when 706 * desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL ! 707 */ 708 void enable_irq(unsigned int irq) 709 { 710 unsigned long flags; 711 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 712 713 if (!desc) 714 return; 715 if (WARN(!desc->irq_data.chip, 716 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq)) 717 goto out; 718 719 __enable_irq(desc); 720 out: 721 irq_put_desc_busunlock(desc, flags); 722 } 723 EXPORT_SYMBOL(enable_irq); 724 725 /** 726 * enable_nmi - enable handling of an nmi 727 * @irq: Interrupt to enable 728 * 729 * The interrupt to enable must have been requested through request_nmi. 730 * Undoes the effect of one call to disable_nmi(). If this 731 * matches the last disable, processing of interrupts on this 732 * IRQ line is re-enabled. 733 */ 734 void enable_nmi(unsigned int irq) 735 { 736 enable_irq(irq); 737 } 738 739 static int set_irq_wake_real(unsigned int irq, unsigned int on) 740 { 741 struct irq_desc *desc = irq_to_desc(irq); 742 int ret = -ENXIO; 743 744 if (irq_desc_get_chip(desc)->flags & IRQCHIP_SKIP_SET_WAKE) 745 return 0; 746 747 if (desc->irq_data.chip->irq_set_wake) 748 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on); 749 750 return ret; 751 } 752 753 /** 754 * irq_set_irq_wake - control irq power management wakeup 755 * @irq: interrupt to control 756 * @on: enable/disable power management wakeup 757 * 758 * Enable/disable power management wakeup mode, which is 759 * disabled by default. Enables and disables must match, 760 * just as they match for non-wakeup mode support. 761 * 762 * Wakeup mode lets this IRQ wake the system from sleep 763 * states like "suspend to RAM". 764 * 765 * Note: irq enable/disable state is completely orthogonal 766 * to the enable/disable state of irq wake. An irq can be 767 * disabled with disable_irq() and still wake the system as 768 * long as the irq has wake enabled. If this does not hold, 769 * then the underlying irq chip and the related driver need 770 * to be investigated. 771 */ 772 int irq_set_irq_wake(unsigned int irq, unsigned int on) 773 { 774 unsigned long flags; 775 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 776 int ret = 0; 777 778 if (!desc) 779 return -EINVAL; 780 781 /* Don't use NMIs as wake up interrupts please */ 782 if (desc->istate & IRQS_NMI) { 783 ret = -EINVAL; 784 goto out_unlock; 785 } 786 787 /* wakeup-capable irqs can be shared between drivers that 788 * don't need to have the same sleep mode behaviors. 789 */ 790 if (on) { 791 if (desc->wake_depth++ == 0) { 792 ret = set_irq_wake_real(irq, on); 793 if (ret) 794 desc->wake_depth = 0; 795 else 796 irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE); 797 } 798 } else { 799 if (desc->wake_depth == 0) { 800 WARN(1, "Unbalanced IRQ %d wake disable\n", irq); 801 } else if (--desc->wake_depth == 0) { 802 ret = set_irq_wake_real(irq, on); 803 if (ret) 804 desc->wake_depth = 1; 805 else 806 irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE); 807 } 808 } 809 810 out_unlock: 811 irq_put_desc_busunlock(desc, flags); 812 return ret; 813 } 814 EXPORT_SYMBOL(irq_set_irq_wake); 815 816 /* 817 * Internal function that tells the architecture code whether a 818 * particular irq has been exclusively allocated or is available 819 * for driver use. 820 */ 821 int can_request_irq(unsigned int irq, unsigned long irqflags) 822 { 823 unsigned long flags; 824 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 825 int canrequest = 0; 826 827 if (!desc) 828 return 0; 829 830 if (irq_settings_can_request(desc)) { 831 if (!desc->action || 832 irqflags & desc->action->flags & IRQF_SHARED) 833 canrequest = 1; 834 } 835 irq_put_desc_unlock(desc, flags); 836 return canrequest; 837 } 838 839 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags) 840 { 841 struct irq_chip *chip = desc->irq_data.chip; 842 int ret, unmask = 0; 843 844 if (!chip || !chip->irq_set_type) { 845 /* 846 * IRQF_TRIGGER_* but the PIC does not support multiple 847 * flow-types? 848 */ 849 pr_debug("No set_type function for IRQ %d (%s)\n", 850 irq_desc_get_irq(desc), 851 chip ? (chip->name ? : "unknown") : "unknown"); 852 return 0; 853 } 854 855 if (chip->flags & IRQCHIP_SET_TYPE_MASKED) { 856 if (!irqd_irq_masked(&desc->irq_data)) 857 mask_irq(desc); 858 if (!irqd_irq_disabled(&desc->irq_data)) 859 unmask = 1; 860 } 861 862 /* Mask all flags except trigger mode */ 863 flags &= IRQ_TYPE_SENSE_MASK; 864 ret = chip->irq_set_type(&desc->irq_data, flags); 865 866 switch (ret) { 867 case IRQ_SET_MASK_OK: 868 case IRQ_SET_MASK_OK_DONE: 869 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK); 870 irqd_set(&desc->irq_data, flags); 871 fallthrough; 872 873 case IRQ_SET_MASK_OK_NOCOPY: 874 flags = irqd_get_trigger_type(&desc->irq_data); 875 irq_settings_set_trigger_mask(desc, flags); 876 irqd_clear(&desc->irq_data, IRQD_LEVEL); 877 irq_settings_clr_level(desc); 878 if (flags & IRQ_TYPE_LEVEL_MASK) { 879 irq_settings_set_level(desc); 880 irqd_set(&desc->irq_data, IRQD_LEVEL); 881 } 882 883 ret = 0; 884 break; 885 default: 886 pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n", 887 flags, irq_desc_get_irq(desc), chip->irq_set_type); 888 } 889 if (unmask) 890 unmask_irq(desc); 891 return ret; 892 } 893 894 #ifdef CONFIG_HARDIRQS_SW_RESEND 895 int irq_set_parent(int irq, int parent_irq) 896 { 897 unsigned long flags; 898 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 899 900 if (!desc) 901 return -EINVAL; 902 903 desc->parent_irq = parent_irq; 904 905 irq_put_desc_unlock(desc, flags); 906 return 0; 907 } 908 EXPORT_SYMBOL_GPL(irq_set_parent); 909 #endif 910 911 /* 912 * Default primary interrupt handler for threaded interrupts. Is 913 * assigned as primary handler when request_threaded_irq is called 914 * with handler == NULL. Useful for oneshot interrupts. 915 */ 916 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id) 917 { 918 return IRQ_WAKE_THREAD; 919 } 920 921 /* 922 * Primary handler for nested threaded interrupts. Should never be 923 * called. 924 */ 925 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id) 926 { 927 WARN(1, "Primary handler called for nested irq %d\n", irq); 928 return IRQ_NONE; 929 } 930 931 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id) 932 { 933 WARN(1, "Secondary action handler called for irq %d\n", irq); 934 return IRQ_NONE; 935 } 936 937 static int irq_wait_for_interrupt(struct irqaction *action) 938 { 939 for (;;) { 940 set_current_state(TASK_INTERRUPTIBLE); 941 942 if (kthread_should_stop()) { 943 /* may need to run one last time */ 944 if (test_and_clear_bit(IRQTF_RUNTHREAD, 945 &action->thread_flags)) { 946 __set_current_state(TASK_RUNNING); 947 return 0; 948 } 949 __set_current_state(TASK_RUNNING); 950 return -1; 951 } 952 953 if (test_and_clear_bit(IRQTF_RUNTHREAD, 954 &action->thread_flags)) { 955 __set_current_state(TASK_RUNNING); 956 return 0; 957 } 958 schedule(); 959 } 960 } 961 962 /* 963 * Oneshot interrupts keep the irq line masked until the threaded 964 * handler finished. unmask if the interrupt has not been disabled and 965 * is marked MASKED. 966 */ 967 static void irq_finalize_oneshot(struct irq_desc *desc, 968 struct irqaction *action) 969 { 970 if (!(desc->istate & IRQS_ONESHOT) || 971 action->handler == irq_forced_secondary_handler) 972 return; 973 again: 974 chip_bus_lock(desc); 975 raw_spin_lock_irq(&desc->lock); 976 977 /* 978 * Implausible though it may be we need to protect us against 979 * the following scenario: 980 * 981 * The thread is faster done than the hard interrupt handler 982 * on the other CPU. If we unmask the irq line then the 983 * interrupt can come in again and masks the line, leaves due 984 * to IRQS_INPROGRESS and the irq line is masked forever. 985 * 986 * This also serializes the state of shared oneshot handlers 987 * versus "desc->threads_onehsot |= action->thread_mask;" in 988 * irq_wake_thread(). See the comment there which explains the 989 * serialization. 990 */ 991 if (unlikely(irqd_irq_inprogress(&desc->irq_data))) { 992 raw_spin_unlock_irq(&desc->lock); 993 chip_bus_sync_unlock(desc); 994 cpu_relax(); 995 goto again; 996 } 997 998 /* 999 * Now check again, whether the thread should run. Otherwise 1000 * we would clear the threads_oneshot bit of this thread which 1001 * was just set. 1002 */ 1003 if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags)) 1004 goto out_unlock; 1005 1006 desc->threads_oneshot &= ~action->thread_mask; 1007 1008 if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) && 1009 irqd_irq_masked(&desc->irq_data)) 1010 unmask_threaded_irq(desc); 1011 1012 out_unlock: 1013 raw_spin_unlock_irq(&desc->lock); 1014 chip_bus_sync_unlock(desc); 1015 } 1016 1017 #ifdef CONFIG_SMP 1018 /* 1019 * Check whether we need to change the affinity of the interrupt thread. 1020 */ 1021 static void 1022 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) 1023 { 1024 cpumask_var_t mask; 1025 bool valid = true; 1026 1027 if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags)) 1028 return; 1029 1030 /* 1031 * In case we are out of memory we set IRQTF_AFFINITY again and 1032 * try again next time 1033 */ 1034 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) { 1035 set_bit(IRQTF_AFFINITY, &action->thread_flags); 1036 return; 1037 } 1038 1039 raw_spin_lock_irq(&desc->lock); 1040 /* 1041 * This code is triggered unconditionally. Check the affinity 1042 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out. 1043 */ 1044 if (cpumask_available(desc->irq_common_data.affinity)) { 1045 const struct cpumask *m; 1046 1047 m = irq_data_get_effective_affinity_mask(&desc->irq_data); 1048 cpumask_copy(mask, m); 1049 } else { 1050 valid = false; 1051 } 1052 raw_spin_unlock_irq(&desc->lock); 1053 1054 if (valid) 1055 set_cpus_allowed_ptr(current, mask); 1056 free_cpumask_var(mask); 1057 } 1058 #else 1059 static inline void 1060 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { } 1061 #endif 1062 1063 /* 1064 * Interrupts which are not explicitly requested as threaded 1065 * interrupts rely on the implicit bh/preempt disable of the hard irq 1066 * context. So we need to disable bh here to avoid deadlocks and other 1067 * side effects. 1068 */ 1069 static irqreturn_t 1070 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action) 1071 { 1072 irqreturn_t ret; 1073 1074 local_bh_disable(); 1075 ret = action->thread_fn(action->irq, action->dev_id); 1076 if (ret == IRQ_HANDLED) 1077 atomic_inc(&desc->threads_handled); 1078 1079 irq_finalize_oneshot(desc, action); 1080 local_bh_enable(); 1081 return ret; 1082 } 1083 1084 /* 1085 * Interrupts explicitly requested as threaded interrupts want to be 1086 * preemtible - many of them need to sleep and wait for slow busses to 1087 * complete. 1088 */ 1089 static irqreturn_t irq_thread_fn(struct irq_desc *desc, 1090 struct irqaction *action) 1091 { 1092 irqreturn_t ret; 1093 1094 ret = action->thread_fn(action->irq, action->dev_id); 1095 if (ret == IRQ_HANDLED) 1096 atomic_inc(&desc->threads_handled); 1097 1098 irq_finalize_oneshot(desc, action); 1099 return ret; 1100 } 1101 1102 static void wake_threads_waitq(struct irq_desc *desc) 1103 { 1104 if (atomic_dec_and_test(&desc->threads_active)) 1105 wake_up(&desc->wait_for_threads); 1106 } 1107 1108 static void irq_thread_dtor(struct callback_head *unused) 1109 { 1110 struct task_struct *tsk = current; 1111 struct irq_desc *desc; 1112 struct irqaction *action; 1113 1114 if (WARN_ON_ONCE(!(current->flags & PF_EXITING))) 1115 return; 1116 1117 action = kthread_data(tsk); 1118 1119 pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n", 1120 tsk->comm, tsk->pid, action->irq); 1121 1122 1123 desc = irq_to_desc(action->irq); 1124 /* 1125 * If IRQTF_RUNTHREAD is set, we need to decrement 1126 * desc->threads_active and wake possible waiters. 1127 */ 1128 if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags)) 1129 wake_threads_waitq(desc); 1130 1131 /* Prevent a stale desc->threads_oneshot */ 1132 irq_finalize_oneshot(desc, action); 1133 } 1134 1135 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action) 1136 { 1137 struct irqaction *secondary = action->secondary; 1138 1139 if (WARN_ON_ONCE(!secondary)) 1140 return; 1141 1142 raw_spin_lock_irq(&desc->lock); 1143 __irq_wake_thread(desc, secondary); 1144 raw_spin_unlock_irq(&desc->lock); 1145 } 1146 1147 /* 1148 * Interrupt handler thread 1149 */ 1150 static int irq_thread(void *data) 1151 { 1152 struct callback_head on_exit_work; 1153 struct irqaction *action = data; 1154 struct irq_desc *desc = irq_to_desc(action->irq); 1155 irqreturn_t (*handler_fn)(struct irq_desc *desc, 1156 struct irqaction *action); 1157 1158 if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD, 1159 &action->thread_flags)) 1160 handler_fn = irq_forced_thread_fn; 1161 else 1162 handler_fn = irq_thread_fn; 1163 1164 init_task_work(&on_exit_work, irq_thread_dtor); 1165 task_work_add(current, &on_exit_work, TWA_NONE); 1166 1167 irq_thread_check_affinity(desc, action); 1168 1169 while (!irq_wait_for_interrupt(action)) { 1170 irqreturn_t action_ret; 1171 1172 irq_thread_check_affinity(desc, action); 1173 1174 action_ret = handler_fn(desc, action); 1175 if (action_ret == IRQ_WAKE_THREAD) 1176 irq_wake_secondary(desc, action); 1177 1178 wake_threads_waitq(desc); 1179 } 1180 1181 /* 1182 * This is the regular exit path. __free_irq() is stopping the 1183 * thread via kthread_stop() after calling 1184 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the 1185 * oneshot mask bit can be set. 1186 */ 1187 task_work_cancel(current, irq_thread_dtor); 1188 return 0; 1189 } 1190 1191 /** 1192 * irq_wake_thread - wake the irq thread for the action identified by dev_id 1193 * @irq: Interrupt line 1194 * @dev_id: Device identity for which the thread should be woken 1195 * 1196 */ 1197 void irq_wake_thread(unsigned int irq, void *dev_id) 1198 { 1199 struct irq_desc *desc = irq_to_desc(irq); 1200 struct irqaction *action; 1201 unsigned long flags; 1202 1203 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1204 return; 1205 1206 raw_spin_lock_irqsave(&desc->lock, flags); 1207 for_each_action_of_desc(desc, action) { 1208 if (action->dev_id == dev_id) { 1209 if (action->thread) 1210 __irq_wake_thread(desc, action); 1211 break; 1212 } 1213 } 1214 raw_spin_unlock_irqrestore(&desc->lock, flags); 1215 } 1216 EXPORT_SYMBOL_GPL(irq_wake_thread); 1217 1218 static int irq_setup_forced_threading(struct irqaction *new) 1219 { 1220 if (!force_irqthreads) 1221 return 0; 1222 if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT)) 1223 return 0; 1224 1225 /* 1226 * No further action required for interrupts which are requested as 1227 * threaded interrupts already 1228 */ 1229 if (new->handler == irq_default_primary_handler) 1230 return 0; 1231 1232 new->flags |= IRQF_ONESHOT; 1233 1234 /* 1235 * Handle the case where we have a real primary handler and a 1236 * thread handler. We force thread them as well by creating a 1237 * secondary action. 1238 */ 1239 if (new->handler && new->thread_fn) { 1240 /* Allocate the secondary action */ 1241 new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 1242 if (!new->secondary) 1243 return -ENOMEM; 1244 new->secondary->handler = irq_forced_secondary_handler; 1245 new->secondary->thread_fn = new->thread_fn; 1246 new->secondary->dev_id = new->dev_id; 1247 new->secondary->irq = new->irq; 1248 new->secondary->name = new->name; 1249 } 1250 /* Deal with the primary handler */ 1251 set_bit(IRQTF_FORCED_THREAD, &new->thread_flags); 1252 new->thread_fn = new->handler; 1253 new->handler = irq_default_primary_handler; 1254 return 0; 1255 } 1256 1257 static int irq_request_resources(struct irq_desc *desc) 1258 { 1259 struct irq_data *d = &desc->irq_data; 1260 struct irq_chip *c = d->chip; 1261 1262 return c->irq_request_resources ? c->irq_request_resources(d) : 0; 1263 } 1264 1265 static void irq_release_resources(struct irq_desc *desc) 1266 { 1267 struct irq_data *d = &desc->irq_data; 1268 struct irq_chip *c = d->chip; 1269 1270 if (c->irq_release_resources) 1271 c->irq_release_resources(d); 1272 } 1273 1274 static bool irq_supports_nmi(struct irq_desc *desc) 1275 { 1276 struct irq_data *d = irq_desc_get_irq_data(desc); 1277 1278 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 1279 /* Only IRQs directly managed by the root irqchip can be set as NMI */ 1280 if (d->parent_data) 1281 return false; 1282 #endif 1283 /* Don't support NMIs for chips behind a slow bus */ 1284 if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock) 1285 return false; 1286 1287 return d->chip->flags & IRQCHIP_SUPPORTS_NMI; 1288 } 1289 1290 static int irq_nmi_setup(struct irq_desc *desc) 1291 { 1292 struct irq_data *d = irq_desc_get_irq_data(desc); 1293 struct irq_chip *c = d->chip; 1294 1295 return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL; 1296 } 1297 1298 static void irq_nmi_teardown(struct irq_desc *desc) 1299 { 1300 struct irq_data *d = irq_desc_get_irq_data(desc); 1301 struct irq_chip *c = d->chip; 1302 1303 if (c->irq_nmi_teardown) 1304 c->irq_nmi_teardown(d); 1305 } 1306 1307 static int 1308 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary) 1309 { 1310 struct task_struct *t; 1311 1312 if (!secondary) { 1313 t = kthread_create(irq_thread, new, "irq/%d-%s", irq, 1314 new->name); 1315 } else { 1316 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq, 1317 new->name); 1318 } 1319 1320 if (IS_ERR(t)) 1321 return PTR_ERR(t); 1322 1323 sched_set_fifo(t); 1324 1325 /* 1326 * We keep the reference to the task struct even if 1327 * the thread dies to avoid that the interrupt code 1328 * references an already freed task_struct. 1329 */ 1330 new->thread = get_task_struct(t); 1331 /* 1332 * Tell the thread to set its affinity. This is 1333 * important for shared interrupt handlers as we do 1334 * not invoke setup_affinity() for the secondary 1335 * handlers as everything is already set up. Even for 1336 * interrupts marked with IRQF_NO_BALANCE this is 1337 * correct as we want the thread to move to the cpu(s) 1338 * on which the requesting code placed the interrupt. 1339 */ 1340 set_bit(IRQTF_AFFINITY, &new->thread_flags); 1341 return 0; 1342 } 1343 1344 /* 1345 * Internal function to register an irqaction - typically used to 1346 * allocate special interrupts that are part of the architecture. 1347 * 1348 * Locking rules: 1349 * 1350 * desc->request_mutex Provides serialization against a concurrent free_irq() 1351 * chip_bus_lock Provides serialization for slow bus operations 1352 * desc->lock Provides serialization against hard interrupts 1353 * 1354 * chip_bus_lock and desc->lock are sufficient for all other management and 1355 * interrupt related functions. desc->request_mutex solely serializes 1356 * request/free_irq(). 1357 */ 1358 static int 1359 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new) 1360 { 1361 struct irqaction *old, **old_ptr; 1362 unsigned long flags, thread_mask = 0; 1363 int ret, nested, shared = 0; 1364 1365 if (!desc) 1366 return -EINVAL; 1367 1368 if (desc->irq_data.chip == &no_irq_chip) 1369 return -ENOSYS; 1370 if (!try_module_get(desc->owner)) 1371 return -ENODEV; 1372 1373 new->irq = irq; 1374 1375 /* 1376 * If the trigger type is not specified by the caller, 1377 * then use the default for this interrupt. 1378 */ 1379 if (!(new->flags & IRQF_TRIGGER_MASK)) 1380 new->flags |= irqd_get_trigger_type(&desc->irq_data); 1381 1382 /* 1383 * Check whether the interrupt nests into another interrupt 1384 * thread. 1385 */ 1386 nested = irq_settings_is_nested_thread(desc); 1387 if (nested) { 1388 if (!new->thread_fn) { 1389 ret = -EINVAL; 1390 goto out_mput; 1391 } 1392 /* 1393 * Replace the primary handler which was provided from 1394 * the driver for non nested interrupt handling by the 1395 * dummy function which warns when called. 1396 */ 1397 new->handler = irq_nested_primary_handler; 1398 } else { 1399 if (irq_settings_can_thread(desc)) { 1400 ret = irq_setup_forced_threading(new); 1401 if (ret) 1402 goto out_mput; 1403 } 1404 } 1405 1406 /* 1407 * Create a handler thread when a thread function is supplied 1408 * and the interrupt does not nest into another interrupt 1409 * thread. 1410 */ 1411 if (new->thread_fn && !nested) { 1412 ret = setup_irq_thread(new, irq, false); 1413 if (ret) 1414 goto out_mput; 1415 if (new->secondary) { 1416 ret = setup_irq_thread(new->secondary, irq, true); 1417 if (ret) 1418 goto out_thread; 1419 } 1420 } 1421 1422 /* 1423 * Drivers are often written to work w/o knowledge about the 1424 * underlying irq chip implementation, so a request for a 1425 * threaded irq without a primary hard irq context handler 1426 * requires the ONESHOT flag to be set. Some irq chips like 1427 * MSI based interrupts are per se one shot safe. Check the 1428 * chip flags, so we can avoid the unmask dance at the end of 1429 * the threaded handler for those. 1430 */ 1431 if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE) 1432 new->flags &= ~IRQF_ONESHOT; 1433 1434 /* 1435 * Protects against a concurrent __free_irq() call which might wait 1436 * for synchronize_hardirq() to complete without holding the optional 1437 * chip bus lock and desc->lock. Also protects against handing out 1438 * a recycled oneshot thread_mask bit while it's still in use by 1439 * its previous owner. 1440 */ 1441 mutex_lock(&desc->request_mutex); 1442 1443 /* 1444 * Acquire bus lock as the irq_request_resources() callback below 1445 * might rely on the serialization or the magic power management 1446 * functions which are abusing the irq_bus_lock() callback, 1447 */ 1448 chip_bus_lock(desc); 1449 1450 /* First installed action requests resources. */ 1451 if (!desc->action) { 1452 ret = irq_request_resources(desc); 1453 if (ret) { 1454 pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n", 1455 new->name, irq, desc->irq_data.chip->name); 1456 goto out_bus_unlock; 1457 } 1458 } 1459 1460 /* 1461 * The following block of code has to be executed atomically 1462 * protected against a concurrent interrupt and any of the other 1463 * management calls which are not serialized via 1464 * desc->request_mutex or the optional bus lock. 1465 */ 1466 raw_spin_lock_irqsave(&desc->lock, flags); 1467 old_ptr = &desc->action; 1468 old = *old_ptr; 1469 if (old) { 1470 /* 1471 * Can't share interrupts unless both agree to and are 1472 * the same type (level, edge, polarity). So both flag 1473 * fields must have IRQF_SHARED set and the bits which 1474 * set the trigger type must match. Also all must 1475 * agree on ONESHOT. 1476 * Interrupt lines used for NMIs cannot be shared. 1477 */ 1478 unsigned int oldtype; 1479 1480 if (desc->istate & IRQS_NMI) { 1481 pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n", 1482 new->name, irq, desc->irq_data.chip->name); 1483 ret = -EINVAL; 1484 goto out_unlock; 1485 } 1486 1487 /* 1488 * If nobody did set the configuration before, inherit 1489 * the one provided by the requester. 1490 */ 1491 if (irqd_trigger_type_was_set(&desc->irq_data)) { 1492 oldtype = irqd_get_trigger_type(&desc->irq_data); 1493 } else { 1494 oldtype = new->flags & IRQF_TRIGGER_MASK; 1495 irqd_set_trigger_type(&desc->irq_data, oldtype); 1496 } 1497 1498 if (!((old->flags & new->flags) & IRQF_SHARED) || 1499 (oldtype != (new->flags & IRQF_TRIGGER_MASK)) || 1500 ((old->flags ^ new->flags) & IRQF_ONESHOT)) 1501 goto mismatch; 1502 1503 /* All handlers must agree on per-cpuness */ 1504 if ((old->flags & IRQF_PERCPU) != 1505 (new->flags & IRQF_PERCPU)) 1506 goto mismatch; 1507 1508 /* add new interrupt at end of irq queue */ 1509 do { 1510 /* 1511 * Or all existing action->thread_mask bits, 1512 * so we can find the next zero bit for this 1513 * new action. 1514 */ 1515 thread_mask |= old->thread_mask; 1516 old_ptr = &old->next; 1517 old = *old_ptr; 1518 } while (old); 1519 shared = 1; 1520 } 1521 1522 /* 1523 * Setup the thread mask for this irqaction for ONESHOT. For 1524 * !ONESHOT irqs the thread mask is 0 so we can avoid a 1525 * conditional in irq_wake_thread(). 1526 */ 1527 if (new->flags & IRQF_ONESHOT) { 1528 /* 1529 * Unlikely to have 32 resp 64 irqs sharing one line, 1530 * but who knows. 1531 */ 1532 if (thread_mask == ~0UL) { 1533 ret = -EBUSY; 1534 goto out_unlock; 1535 } 1536 /* 1537 * The thread_mask for the action is or'ed to 1538 * desc->thread_active to indicate that the 1539 * IRQF_ONESHOT thread handler has been woken, but not 1540 * yet finished. The bit is cleared when a thread 1541 * completes. When all threads of a shared interrupt 1542 * line have completed desc->threads_active becomes 1543 * zero and the interrupt line is unmasked. See 1544 * handle.c:irq_wake_thread() for further information. 1545 * 1546 * If no thread is woken by primary (hard irq context) 1547 * interrupt handlers, then desc->threads_active is 1548 * also checked for zero to unmask the irq line in the 1549 * affected hard irq flow handlers 1550 * (handle_[fasteoi|level]_irq). 1551 * 1552 * The new action gets the first zero bit of 1553 * thread_mask assigned. See the loop above which or's 1554 * all existing action->thread_mask bits. 1555 */ 1556 new->thread_mask = 1UL << ffz(thread_mask); 1557 1558 } else if (new->handler == irq_default_primary_handler && 1559 !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) { 1560 /* 1561 * The interrupt was requested with handler = NULL, so 1562 * we use the default primary handler for it. But it 1563 * does not have the oneshot flag set. In combination 1564 * with level interrupts this is deadly, because the 1565 * default primary handler just wakes the thread, then 1566 * the irq lines is reenabled, but the device still 1567 * has the level irq asserted. Rinse and repeat.... 1568 * 1569 * While this works for edge type interrupts, we play 1570 * it safe and reject unconditionally because we can't 1571 * say for sure which type this interrupt really 1572 * has. The type flags are unreliable as the 1573 * underlying chip implementation can override them. 1574 */ 1575 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for %s (irq %d)\n", 1576 new->name, irq); 1577 ret = -EINVAL; 1578 goto out_unlock; 1579 } 1580 1581 if (!shared) { 1582 init_waitqueue_head(&desc->wait_for_threads); 1583 1584 /* Setup the type (level, edge polarity) if configured: */ 1585 if (new->flags & IRQF_TRIGGER_MASK) { 1586 ret = __irq_set_trigger(desc, 1587 new->flags & IRQF_TRIGGER_MASK); 1588 1589 if (ret) 1590 goto out_unlock; 1591 } 1592 1593 /* 1594 * Activate the interrupt. That activation must happen 1595 * independently of IRQ_NOAUTOEN. request_irq() can fail 1596 * and the callers are supposed to handle 1597 * that. enable_irq() of an interrupt requested with 1598 * IRQ_NOAUTOEN is not supposed to fail. The activation 1599 * keeps it in shutdown mode, it merily associates 1600 * resources if necessary and if that's not possible it 1601 * fails. Interrupts which are in managed shutdown mode 1602 * will simply ignore that activation request. 1603 */ 1604 ret = irq_activate(desc); 1605 if (ret) 1606 goto out_unlock; 1607 1608 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \ 1609 IRQS_ONESHOT | IRQS_WAITING); 1610 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS); 1611 1612 if (new->flags & IRQF_PERCPU) { 1613 irqd_set(&desc->irq_data, IRQD_PER_CPU); 1614 irq_settings_set_per_cpu(desc); 1615 } 1616 1617 if (new->flags & IRQF_ONESHOT) 1618 desc->istate |= IRQS_ONESHOT; 1619 1620 /* Exclude IRQ from balancing if requested */ 1621 if (new->flags & IRQF_NOBALANCING) { 1622 irq_settings_set_no_balancing(desc); 1623 irqd_set(&desc->irq_data, IRQD_NO_BALANCING); 1624 } 1625 1626 if (irq_settings_can_autoenable(desc)) { 1627 irq_startup(desc, IRQ_RESEND, IRQ_START_COND); 1628 } else { 1629 /* 1630 * Shared interrupts do not go well with disabling 1631 * auto enable. The sharing interrupt might request 1632 * it while it's still disabled and then wait for 1633 * interrupts forever. 1634 */ 1635 WARN_ON_ONCE(new->flags & IRQF_SHARED); 1636 /* Undo nested disables: */ 1637 desc->depth = 1; 1638 } 1639 1640 } else if (new->flags & IRQF_TRIGGER_MASK) { 1641 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK; 1642 unsigned int omsk = irqd_get_trigger_type(&desc->irq_data); 1643 1644 if (nmsk != omsk) 1645 /* hope the handler works with current trigger mode */ 1646 pr_warn("irq %d uses trigger mode %u; requested %u\n", 1647 irq, omsk, nmsk); 1648 } 1649 1650 *old_ptr = new; 1651 1652 irq_pm_install_action(desc, new); 1653 1654 /* Reset broken irq detection when installing new handler */ 1655 desc->irq_count = 0; 1656 desc->irqs_unhandled = 0; 1657 1658 /* 1659 * Check whether we disabled the irq via the spurious handler 1660 * before. Reenable it and give it another chance. 1661 */ 1662 if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) { 1663 desc->istate &= ~IRQS_SPURIOUS_DISABLED; 1664 __enable_irq(desc); 1665 } 1666 1667 raw_spin_unlock_irqrestore(&desc->lock, flags); 1668 chip_bus_sync_unlock(desc); 1669 mutex_unlock(&desc->request_mutex); 1670 1671 irq_setup_timings(desc, new); 1672 1673 /* 1674 * Strictly no need to wake it up, but hung_task complains 1675 * when no hard interrupt wakes the thread up. 1676 */ 1677 if (new->thread) 1678 wake_up_process(new->thread); 1679 if (new->secondary) 1680 wake_up_process(new->secondary->thread); 1681 1682 register_irq_proc(irq, desc); 1683 new->dir = NULL; 1684 register_handler_proc(irq, new); 1685 return 0; 1686 1687 mismatch: 1688 if (!(new->flags & IRQF_PROBE_SHARED)) { 1689 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n", 1690 irq, new->flags, new->name, old->flags, old->name); 1691 #ifdef CONFIG_DEBUG_SHIRQ 1692 dump_stack(); 1693 #endif 1694 } 1695 ret = -EBUSY; 1696 1697 out_unlock: 1698 raw_spin_unlock_irqrestore(&desc->lock, flags); 1699 1700 if (!desc->action) 1701 irq_release_resources(desc); 1702 out_bus_unlock: 1703 chip_bus_sync_unlock(desc); 1704 mutex_unlock(&desc->request_mutex); 1705 1706 out_thread: 1707 if (new->thread) { 1708 struct task_struct *t = new->thread; 1709 1710 new->thread = NULL; 1711 kthread_stop(t); 1712 put_task_struct(t); 1713 } 1714 if (new->secondary && new->secondary->thread) { 1715 struct task_struct *t = new->secondary->thread; 1716 1717 new->secondary->thread = NULL; 1718 kthread_stop(t); 1719 put_task_struct(t); 1720 } 1721 out_mput: 1722 module_put(desc->owner); 1723 return ret; 1724 } 1725 1726 /* 1727 * Internal function to unregister an irqaction - used to free 1728 * regular and special interrupts that are part of the architecture. 1729 */ 1730 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id) 1731 { 1732 unsigned irq = desc->irq_data.irq; 1733 struct irqaction *action, **action_ptr; 1734 unsigned long flags; 1735 1736 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq); 1737 1738 mutex_lock(&desc->request_mutex); 1739 chip_bus_lock(desc); 1740 raw_spin_lock_irqsave(&desc->lock, flags); 1741 1742 /* 1743 * There can be multiple actions per IRQ descriptor, find the right 1744 * one based on the dev_id: 1745 */ 1746 action_ptr = &desc->action; 1747 for (;;) { 1748 action = *action_ptr; 1749 1750 if (!action) { 1751 WARN(1, "Trying to free already-free IRQ %d\n", irq); 1752 raw_spin_unlock_irqrestore(&desc->lock, flags); 1753 chip_bus_sync_unlock(desc); 1754 mutex_unlock(&desc->request_mutex); 1755 return NULL; 1756 } 1757 1758 if (action->dev_id == dev_id) 1759 break; 1760 action_ptr = &action->next; 1761 } 1762 1763 /* Found it - now remove it from the list of entries: */ 1764 *action_ptr = action->next; 1765 1766 irq_pm_remove_action(desc, action); 1767 1768 /* If this was the last handler, shut down the IRQ line: */ 1769 if (!desc->action) { 1770 irq_settings_clr_disable_unlazy(desc); 1771 /* Only shutdown. Deactivate after synchronize_hardirq() */ 1772 irq_shutdown(desc); 1773 } 1774 1775 #ifdef CONFIG_SMP 1776 /* make sure affinity_hint is cleaned up */ 1777 if (WARN_ON_ONCE(desc->affinity_hint)) 1778 desc->affinity_hint = NULL; 1779 #endif 1780 1781 raw_spin_unlock_irqrestore(&desc->lock, flags); 1782 /* 1783 * Drop bus_lock here so the changes which were done in the chip 1784 * callbacks above are synced out to the irq chips which hang 1785 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq(). 1786 * 1787 * Aside of that the bus_lock can also be taken from the threaded 1788 * handler in irq_finalize_oneshot() which results in a deadlock 1789 * because kthread_stop() would wait forever for the thread to 1790 * complete, which is blocked on the bus lock. 1791 * 1792 * The still held desc->request_mutex() protects against a 1793 * concurrent request_irq() of this irq so the release of resources 1794 * and timing data is properly serialized. 1795 */ 1796 chip_bus_sync_unlock(desc); 1797 1798 unregister_handler_proc(irq, action); 1799 1800 /* 1801 * Make sure it's not being used on another CPU and if the chip 1802 * supports it also make sure that there is no (not yet serviced) 1803 * interrupt in flight at the hardware level. 1804 */ 1805 __synchronize_hardirq(desc, true); 1806 1807 #ifdef CONFIG_DEBUG_SHIRQ 1808 /* 1809 * It's a shared IRQ -- the driver ought to be prepared for an IRQ 1810 * event to happen even now it's being freed, so let's make sure that 1811 * is so by doing an extra call to the handler .... 1812 * 1813 * ( We do this after actually deregistering it, to make sure that a 1814 * 'real' IRQ doesn't run in parallel with our fake. ) 1815 */ 1816 if (action->flags & IRQF_SHARED) { 1817 local_irq_save(flags); 1818 action->handler(irq, dev_id); 1819 local_irq_restore(flags); 1820 } 1821 #endif 1822 1823 /* 1824 * The action has already been removed above, but the thread writes 1825 * its oneshot mask bit when it completes. Though request_mutex is 1826 * held across this which prevents __setup_irq() from handing out 1827 * the same bit to a newly requested action. 1828 */ 1829 if (action->thread) { 1830 kthread_stop(action->thread); 1831 put_task_struct(action->thread); 1832 if (action->secondary && action->secondary->thread) { 1833 kthread_stop(action->secondary->thread); 1834 put_task_struct(action->secondary->thread); 1835 } 1836 } 1837 1838 /* Last action releases resources */ 1839 if (!desc->action) { 1840 /* 1841 * Reaquire bus lock as irq_release_resources() might 1842 * require it to deallocate resources over the slow bus. 1843 */ 1844 chip_bus_lock(desc); 1845 /* 1846 * There is no interrupt on the fly anymore. Deactivate it 1847 * completely. 1848 */ 1849 raw_spin_lock_irqsave(&desc->lock, flags); 1850 irq_domain_deactivate_irq(&desc->irq_data); 1851 raw_spin_unlock_irqrestore(&desc->lock, flags); 1852 1853 irq_release_resources(desc); 1854 chip_bus_sync_unlock(desc); 1855 irq_remove_timings(desc); 1856 } 1857 1858 mutex_unlock(&desc->request_mutex); 1859 1860 irq_chip_pm_put(&desc->irq_data); 1861 module_put(desc->owner); 1862 kfree(action->secondary); 1863 return action; 1864 } 1865 1866 /** 1867 * free_irq - free an interrupt allocated with request_irq 1868 * @irq: Interrupt line to free 1869 * @dev_id: Device identity to free 1870 * 1871 * Remove an interrupt handler. The handler is removed and if the 1872 * interrupt line is no longer in use by any driver it is disabled. 1873 * On a shared IRQ the caller must ensure the interrupt is disabled 1874 * on the card it drives before calling this function. The function 1875 * does not return until any executing interrupts for this IRQ 1876 * have completed. 1877 * 1878 * This function must not be called from interrupt context. 1879 * 1880 * Returns the devname argument passed to request_irq. 1881 */ 1882 const void *free_irq(unsigned int irq, void *dev_id) 1883 { 1884 struct irq_desc *desc = irq_to_desc(irq); 1885 struct irqaction *action; 1886 const char *devname; 1887 1888 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1889 return NULL; 1890 1891 #ifdef CONFIG_SMP 1892 if (WARN_ON(desc->affinity_notify)) 1893 desc->affinity_notify = NULL; 1894 #endif 1895 1896 action = __free_irq(desc, dev_id); 1897 1898 if (!action) 1899 return NULL; 1900 1901 devname = action->name; 1902 kfree(action); 1903 return devname; 1904 } 1905 EXPORT_SYMBOL(free_irq); 1906 1907 /* This function must be called with desc->lock held */ 1908 static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc) 1909 { 1910 const char *devname = NULL; 1911 1912 desc->istate &= ~IRQS_NMI; 1913 1914 if (!WARN_ON(desc->action == NULL)) { 1915 irq_pm_remove_action(desc, desc->action); 1916 devname = desc->action->name; 1917 unregister_handler_proc(irq, desc->action); 1918 1919 kfree(desc->action); 1920 desc->action = NULL; 1921 } 1922 1923 irq_settings_clr_disable_unlazy(desc); 1924 irq_shutdown_and_deactivate(desc); 1925 1926 irq_release_resources(desc); 1927 1928 irq_chip_pm_put(&desc->irq_data); 1929 module_put(desc->owner); 1930 1931 return devname; 1932 } 1933 1934 const void *free_nmi(unsigned int irq, void *dev_id) 1935 { 1936 struct irq_desc *desc = irq_to_desc(irq); 1937 unsigned long flags; 1938 const void *devname; 1939 1940 if (!desc || WARN_ON(!(desc->istate & IRQS_NMI))) 1941 return NULL; 1942 1943 if (WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1944 return NULL; 1945 1946 /* NMI still enabled */ 1947 if (WARN_ON(desc->depth == 0)) 1948 disable_nmi_nosync(irq); 1949 1950 raw_spin_lock_irqsave(&desc->lock, flags); 1951 1952 irq_nmi_teardown(desc); 1953 devname = __cleanup_nmi(irq, desc); 1954 1955 raw_spin_unlock_irqrestore(&desc->lock, flags); 1956 1957 return devname; 1958 } 1959 1960 /** 1961 * request_threaded_irq - allocate an interrupt line 1962 * @irq: Interrupt line to allocate 1963 * @handler: Function to be called when the IRQ occurs. 1964 * Primary handler for threaded interrupts 1965 * If NULL and thread_fn != NULL the default 1966 * primary handler is installed 1967 * @thread_fn: Function called from the irq handler thread 1968 * If NULL, no irq thread is created 1969 * @irqflags: Interrupt type flags 1970 * @devname: An ascii name for the claiming device 1971 * @dev_id: A cookie passed back to the handler function 1972 * 1973 * This call allocates interrupt resources and enables the 1974 * interrupt line and IRQ handling. From the point this 1975 * call is made your handler function may be invoked. Since 1976 * your handler function must clear any interrupt the board 1977 * raises, you must take care both to initialise your hardware 1978 * and to set up the interrupt handler in the right order. 1979 * 1980 * If you want to set up a threaded irq handler for your device 1981 * then you need to supply @handler and @thread_fn. @handler is 1982 * still called in hard interrupt context and has to check 1983 * whether the interrupt originates from the device. If yes it 1984 * needs to disable the interrupt on the device and return 1985 * IRQ_WAKE_THREAD which will wake up the handler thread and run 1986 * @thread_fn. This split handler design is necessary to support 1987 * shared interrupts. 1988 * 1989 * Dev_id must be globally unique. Normally the address of the 1990 * device data structure is used as the cookie. Since the handler 1991 * receives this value it makes sense to use it. 1992 * 1993 * If your interrupt is shared you must pass a non NULL dev_id 1994 * as this is required when freeing the interrupt. 1995 * 1996 * Flags: 1997 * 1998 * IRQF_SHARED Interrupt is shared 1999 * IRQF_TRIGGER_* Specify active edge(s) or level 2000 * 2001 */ 2002 int request_threaded_irq(unsigned int irq, irq_handler_t handler, 2003 irq_handler_t thread_fn, unsigned long irqflags, 2004 const char *devname, void *dev_id) 2005 { 2006 struct irqaction *action; 2007 struct irq_desc *desc; 2008 int retval; 2009 2010 if (irq == IRQ_NOTCONNECTED) 2011 return -ENOTCONN; 2012 2013 /* 2014 * Sanity-check: shared interrupts must pass in a real dev-ID, 2015 * otherwise we'll have trouble later trying to figure out 2016 * which interrupt is which (messes up the interrupt freeing 2017 * logic etc). 2018 * 2019 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and 2020 * it cannot be set along with IRQF_NO_SUSPEND. 2021 */ 2022 if (((irqflags & IRQF_SHARED) && !dev_id) || 2023 (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) || 2024 ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND))) 2025 return -EINVAL; 2026 2027 desc = irq_to_desc(irq); 2028 if (!desc) 2029 return -EINVAL; 2030 2031 if (!irq_settings_can_request(desc) || 2032 WARN_ON(irq_settings_is_per_cpu_devid(desc))) 2033 return -EINVAL; 2034 2035 if (!handler) { 2036 if (!thread_fn) 2037 return -EINVAL; 2038 handler = irq_default_primary_handler; 2039 } 2040 2041 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2042 if (!action) 2043 return -ENOMEM; 2044 2045 action->handler = handler; 2046 action->thread_fn = thread_fn; 2047 action->flags = irqflags; 2048 action->name = devname; 2049 action->dev_id = dev_id; 2050 2051 retval = irq_chip_pm_get(&desc->irq_data); 2052 if (retval < 0) { 2053 kfree(action); 2054 return retval; 2055 } 2056 2057 retval = __setup_irq(irq, desc, action); 2058 2059 if (retval) { 2060 irq_chip_pm_put(&desc->irq_data); 2061 kfree(action->secondary); 2062 kfree(action); 2063 } 2064 2065 #ifdef CONFIG_DEBUG_SHIRQ_FIXME 2066 if (!retval && (irqflags & IRQF_SHARED)) { 2067 /* 2068 * It's a shared IRQ -- the driver ought to be prepared for it 2069 * to happen immediately, so let's make sure.... 2070 * We disable the irq to make sure that a 'real' IRQ doesn't 2071 * run in parallel with our fake. 2072 */ 2073 unsigned long flags; 2074 2075 disable_irq(irq); 2076 local_irq_save(flags); 2077 2078 handler(irq, dev_id); 2079 2080 local_irq_restore(flags); 2081 enable_irq(irq); 2082 } 2083 #endif 2084 return retval; 2085 } 2086 EXPORT_SYMBOL(request_threaded_irq); 2087 2088 /** 2089 * request_any_context_irq - allocate an interrupt line 2090 * @irq: Interrupt line to allocate 2091 * @handler: Function to be called when the IRQ occurs. 2092 * Threaded handler for threaded interrupts. 2093 * @flags: Interrupt type flags 2094 * @name: An ascii name for the claiming device 2095 * @dev_id: A cookie passed back to the handler function 2096 * 2097 * This call allocates interrupt resources and enables the 2098 * interrupt line and IRQ handling. It selects either a 2099 * hardirq or threaded handling method depending on the 2100 * context. 2101 * 2102 * On failure, it returns a negative value. On success, 2103 * it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED. 2104 */ 2105 int request_any_context_irq(unsigned int irq, irq_handler_t handler, 2106 unsigned long flags, const char *name, void *dev_id) 2107 { 2108 struct irq_desc *desc; 2109 int ret; 2110 2111 if (irq == IRQ_NOTCONNECTED) 2112 return -ENOTCONN; 2113 2114 desc = irq_to_desc(irq); 2115 if (!desc) 2116 return -EINVAL; 2117 2118 if (irq_settings_is_nested_thread(desc)) { 2119 ret = request_threaded_irq(irq, NULL, handler, 2120 flags, name, dev_id); 2121 return !ret ? IRQC_IS_NESTED : ret; 2122 } 2123 2124 ret = request_irq(irq, handler, flags, name, dev_id); 2125 return !ret ? IRQC_IS_HARDIRQ : ret; 2126 } 2127 EXPORT_SYMBOL_GPL(request_any_context_irq); 2128 2129 /** 2130 * request_nmi - allocate an interrupt line for NMI delivery 2131 * @irq: Interrupt line to allocate 2132 * @handler: Function to be called when the IRQ occurs. 2133 * Threaded handler for threaded interrupts. 2134 * @irqflags: Interrupt type flags 2135 * @name: An ascii name for the claiming device 2136 * @dev_id: A cookie passed back to the handler function 2137 * 2138 * This call allocates interrupt resources and enables the 2139 * interrupt line and IRQ handling. It sets up the IRQ line 2140 * to be handled as an NMI. 2141 * 2142 * An interrupt line delivering NMIs cannot be shared and IRQ handling 2143 * cannot be threaded. 2144 * 2145 * Interrupt lines requested for NMI delivering must produce per cpu 2146 * interrupts and have auto enabling setting disabled. 2147 * 2148 * Dev_id must be globally unique. Normally the address of the 2149 * device data structure is used as the cookie. Since the handler 2150 * receives this value it makes sense to use it. 2151 * 2152 * If the interrupt line cannot be used to deliver NMIs, function 2153 * will fail and return a negative value. 2154 */ 2155 int request_nmi(unsigned int irq, irq_handler_t handler, 2156 unsigned long irqflags, const char *name, void *dev_id) 2157 { 2158 struct irqaction *action; 2159 struct irq_desc *desc; 2160 unsigned long flags; 2161 int retval; 2162 2163 if (irq == IRQ_NOTCONNECTED) 2164 return -ENOTCONN; 2165 2166 /* NMI cannot be shared, used for Polling */ 2167 if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL)) 2168 return -EINVAL; 2169 2170 if (!(irqflags & IRQF_PERCPU)) 2171 return -EINVAL; 2172 2173 if (!handler) 2174 return -EINVAL; 2175 2176 desc = irq_to_desc(irq); 2177 2178 if (!desc || irq_settings_can_autoenable(desc) || 2179 !irq_settings_can_request(desc) || 2180 WARN_ON(irq_settings_is_per_cpu_devid(desc)) || 2181 !irq_supports_nmi(desc)) 2182 return -EINVAL; 2183 2184 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2185 if (!action) 2186 return -ENOMEM; 2187 2188 action->handler = handler; 2189 action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING; 2190 action->name = name; 2191 action->dev_id = dev_id; 2192 2193 retval = irq_chip_pm_get(&desc->irq_data); 2194 if (retval < 0) 2195 goto err_out; 2196 2197 retval = __setup_irq(irq, desc, action); 2198 if (retval) 2199 goto err_irq_setup; 2200 2201 raw_spin_lock_irqsave(&desc->lock, flags); 2202 2203 /* Setup NMI state */ 2204 desc->istate |= IRQS_NMI; 2205 retval = irq_nmi_setup(desc); 2206 if (retval) { 2207 __cleanup_nmi(irq, desc); 2208 raw_spin_unlock_irqrestore(&desc->lock, flags); 2209 return -EINVAL; 2210 } 2211 2212 raw_spin_unlock_irqrestore(&desc->lock, flags); 2213 2214 return 0; 2215 2216 err_irq_setup: 2217 irq_chip_pm_put(&desc->irq_data); 2218 err_out: 2219 kfree(action); 2220 2221 return retval; 2222 } 2223 2224 void enable_percpu_irq(unsigned int irq, unsigned int type) 2225 { 2226 unsigned int cpu = smp_processor_id(); 2227 unsigned long flags; 2228 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 2229 2230 if (!desc) 2231 return; 2232 2233 /* 2234 * If the trigger type is not specified by the caller, then 2235 * use the default for this interrupt. 2236 */ 2237 type &= IRQ_TYPE_SENSE_MASK; 2238 if (type == IRQ_TYPE_NONE) 2239 type = irqd_get_trigger_type(&desc->irq_data); 2240 2241 if (type != IRQ_TYPE_NONE) { 2242 int ret; 2243 2244 ret = __irq_set_trigger(desc, type); 2245 2246 if (ret) { 2247 WARN(1, "failed to set type for IRQ%d\n", irq); 2248 goto out; 2249 } 2250 } 2251 2252 irq_percpu_enable(desc, cpu); 2253 out: 2254 irq_put_desc_unlock(desc, flags); 2255 } 2256 EXPORT_SYMBOL_GPL(enable_percpu_irq); 2257 2258 void enable_percpu_nmi(unsigned int irq, unsigned int type) 2259 { 2260 enable_percpu_irq(irq, type); 2261 } 2262 2263 /** 2264 * irq_percpu_is_enabled - Check whether the per cpu irq is enabled 2265 * @irq: Linux irq number to check for 2266 * 2267 * Must be called from a non migratable context. Returns the enable 2268 * state of a per cpu interrupt on the current cpu. 2269 */ 2270 bool irq_percpu_is_enabled(unsigned int irq) 2271 { 2272 unsigned int cpu = smp_processor_id(); 2273 struct irq_desc *desc; 2274 unsigned long flags; 2275 bool is_enabled; 2276 2277 desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 2278 if (!desc) 2279 return false; 2280 2281 is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled); 2282 irq_put_desc_unlock(desc, flags); 2283 2284 return is_enabled; 2285 } 2286 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled); 2287 2288 void disable_percpu_irq(unsigned int irq) 2289 { 2290 unsigned int cpu = smp_processor_id(); 2291 unsigned long flags; 2292 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 2293 2294 if (!desc) 2295 return; 2296 2297 irq_percpu_disable(desc, cpu); 2298 irq_put_desc_unlock(desc, flags); 2299 } 2300 EXPORT_SYMBOL_GPL(disable_percpu_irq); 2301 2302 void disable_percpu_nmi(unsigned int irq) 2303 { 2304 disable_percpu_irq(irq); 2305 } 2306 2307 /* 2308 * Internal function to unregister a percpu irqaction. 2309 */ 2310 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id) 2311 { 2312 struct irq_desc *desc = irq_to_desc(irq); 2313 struct irqaction *action; 2314 unsigned long flags; 2315 2316 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq); 2317 2318 if (!desc) 2319 return NULL; 2320 2321 raw_spin_lock_irqsave(&desc->lock, flags); 2322 2323 action = desc->action; 2324 if (!action || action->percpu_dev_id != dev_id) { 2325 WARN(1, "Trying to free already-free IRQ %d\n", irq); 2326 goto bad; 2327 } 2328 2329 if (!cpumask_empty(desc->percpu_enabled)) { 2330 WARN(1, "percpu IRQ %d still enabled on CPU%d!\n", 2331 irq, cpumask_first(desc->percpu_enabled)); 2332 goto bad; 2333 } 2334 2335 /* Found it - now remove it from the list of entries: */ 2336 desc->action = NULL; 2337 2338 desc->istate &= ~IRQS_NMI; 2339 2340 raw_spin_unlock_irqrestore(&desc->lock, flags); 2341 2342 unregister_handler_proc(irq, action); 2343 2344 irq_chip_pm_put(&desc->irq_data); 2345 module_put(desc->owner); 2346 return action; 2347 2348 bad: 2349 raw_spin_unlock_irqrestore(&desc->lock, flags); 2350 return NULL; 2351 } 2352 2353 /** 2354 * remove_percpu_irq - free a per-cpu interrupt 2355 * @irq: Interrupt line to free 2356 * @act: irqaction for the interrupt 2357 * 2358 * Used to remove interrupts statically setup by the early boot process. 2359 */ 2360 void remove_percpu_irq(unsigned int irq, struct irqaction *act) 2361 { 2362 struct irq_desc *desc = irq_to_desc(irq); 2363 2364 if (desc && irq_settings_is_per_cpu_devid(desc)) 2365 __free_percpu_irq(irq, act->percpu_dev_id); 2366 } 2367 2368 /** 2369 * free_percpu_irq - free an interrupt allocated with request_percpu_irq 2370 * @irq: Interrupt line to free 2371 * @dev_id: Device identity to free 2372 * 2373 * Remove a percpu interrupt handler. The handler is removed, but 2374 * the interrupt line is not disabled. This must be done on each 2375 * CPU before calling this function. The function does not return 2376 * until any executing interrupts for this IRQ have completed. 2377 * 2378 * This function must not be called from interrupt context. 2379 */ 2380 void free_percpu_irq(unsigned int irq, void __percpu *dev_id) 2381 { 2382 struct irq_desc *desc = irq_to_desc(irq); 2383 2384 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2385 return; 2386 2387 chip_bus_lock(desc); 2388 kfree(__free_percpu_irq(irq, dev_id)); 2389 chip_bus_sync_unlock(desc); 2390 } 2391 EXPORT_SYMBOL_GPL(free_percpu_irq); 2392 2393 void free_percpu_nmi(unsigned int irq, void __percpu *dev_id) 2394 { 2395 struct irq_desc *desc = irq_to_desc(irq); 2396 2397 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2398 return; 2399 2400 if (WARN_ON(!(desc->istate & IRQS_NMI))) 2401 return; 2402 2403 kfree(__free_percpu_irq(irq, dev_id)); 2404 } 2405 2406 /** 2407 * setup_percpu_irq - setup a per-cpu interrupt 2408 * @irq: Interrupt line to setup 2409 * @act: irqaction for the interrupt 2410 * 2411 * Used to statically setup per-cpu interrupts in the early boot process. 2412 */ 2413 int setup_percpu_irq(unsigned int irq, struct irqaction *act) 2414 { 2415 struct irq_desc *desc = irq_to_desc(irq); 2416 int retval; 2417 2418 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2419 return -EINVAL; 2420 2421 retval = irq_chip_pm_get(&desc->irq_data); 2422 if (retval < 0) 2423 return retval; 2424 2425 retval = __setup_irq(irq, desc, act); 2426 2427 if (retval) 2428 irq_chip_pm_put(&desc->irq_data); 2429 2430 return retval; 2431 } 2432 2433 /** 2434 * __request_percpu_irq - allocate a percpu interrupt line 2435 * @irq: Interrupt line to allocate 2436 * @handler: Function to be called when the IRQ occurs. 2437 * @flags: Interrupt type flags (IRQF_TIMER only) 2438 * @devname: An ascii name for the claiming device 2439 * @dev_id: A percpu cookie passed back to the handler function 2440 * 2441 * This call allocates interrupt resources and enables the 2442 * interrupt on the local CPU. If the interrupt is supposed to be 2443 * enabled on other CPUs, it has to be done on each CPU using 2444 * enable_percpu_irq(). 2445 * 2446 * Dev_id must be globally unique. It is a per-cpu variable, and 2447 * the handler gets called with the interrupted CPU's instance of 2448 * that variable. 2449 */ 2450 int __request_percpu_irq(unsigned int irq, irq_handler_t handler, 2451 unsigned long flags, const char *devname, 2452 void __percpu *dev_id) 2453 { 2454 struct irqaction *action; 2455 struct irq_desc *desc; 2456 int retval; 2457 2458 if (!dev_id) 2459 return -EINVAL; 2460 2461 desc = irq_to_desc(irq); 2462 if (!desc || !irq_settings_can_request(desc) || 2463 !irq_settings_is_per_cpu_devid(desc)) 2464 return -EINVAL; 2465 2466 if (flags && flags != IRQF_TIMER) 2467 return -EINVAL; 2468 2469 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2470 if (!action) 2471 return -ENOMEM; 2472 2473 action->handler = handler; 2474 action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND; 2475 action->name = devname; 2476 action->percpu_dev_id = dev_id; 2477 2478 retval = irq_chip_pm_get(&desc->irq_data); 2479 if (retval < 0) { 2480 kfree(action); 2481 return retval; 2482 } 2483 2484 retval = __setup_irq(irq, desc, action); 2485 2486 if (retval) { 2487 irq_chip_pm_put(&desc->irq_data); 2488 kfree(action); 2489 } 2490 2491 return retval; 2492 } 2493 EXPORT_SYMBOL_GPL(__request_percpu_irq); 2494 2495 /** 2496 * request_percpu_nmi - allocate a percpu interrupt line for NMI delivery 2497 * @irq: Interrupt line to allocate 2498 * @handler: Function to be called when the IRQ occurs. 2499 * @name: An ascii name for the claiming device 2500 * @dev_id: A percpu cookie passed back to the handler function 2501 * 2502 * This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs 2503 * have to be setup on each CPU by calling prepare_percpu_nmi() before 2504 * being enabled on the same CPU by using enable_percpu_nmi(). 2505 * 2506 * Dev_id must be globally unique. It is a per-cpu variable, and 2507 * the handler gets called with the interrupted CPU's instance of 2508 * that variable. 2509 * 2510 * Interrupt lines requested for NMI delivering should have auto enabling 2511 * setting disabled. 2512 * 2513 * If the interrupt line cannot be used to deliver NMIs, function 2514 * will fail returning a negative value. 2515 */ 2516 int request_percpu_nmi(unsigned int irq, irq_handler_t handler, 2517 const char *name, void __percpu *dev_id) 2518 { 2519 struct irqaction *action; 2520 struct irq_desc *desc; 2521 unsigned long flags; 2522 int retval; 2523 2524 if (!handler) 2525 return -EINVAL; 2526 2527 desc = irq_to_desc(irq); 2528 2529 if (!desc || !irq_settings_can_request(desc) || 2530 !irq_settings_is_per_cpu_devid(desc) || 2531 irq_settings_can_autoenable(desc) || 2532 !irq_supports_nmi(desc)) 2533 return -EINVAL; 2534 2535 /* The line cannot already be NMI */ 2536 if (desc->istate & IRQS_NMI) 2537 return -EINVAL; 2538 2539 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2540 if (!action) 2541 return -ENOMEM; 2542 2543 action->handler = handler; 2544 action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD 2545 | IRQF_NOBALANCING; 2546 action->name = name; 2547 action->percpu_dev_id = dev_id; 2548 2549 retval = irq_chip_pm_get(&desc->irq_data); 2550 if (retval < 0) 2551 goto err_out; 2552 2553 retval = __setup_irq(irq, desc, action); 2554 if (retval) 2555 goto err_irq_setup; 2556 2557 raw_spin_lock_irqsave(&desc->lock, flags); 2558 desc->istate |= IRQS_NMI; 2559 raw_spin_unlock_irqrestore(&desc->lock, flags); 2560 2561 return 0; 2562 2563 err_irq_setup: 2564 irq_chip_pm_put(&desc->irq_data); 2565 err_out: 2566 kfree(action); 2567 2568 return retval; 2569 } 2570 2571 /** 2572 * prepare_percpu_nmi - performs CPU local setup for NMI delivery 2573 * @irq: Interrupt line to prepare for NMI delivery 2574 * 2575 * This call prepares an interrupt line to deliver NMI on the current CPU, 2576 * before that interrupt line gets enabled with enable_percpu_nmi(). 2577 * 2578 * As a CPU local operation, this should be called from non-preemptible 2579 * context. 2580 * 2581 * If the interrupt line cannot be used to deliver NMIs, function 2582 * will fail returning a negative value. 2583 */ 2584 int prepare_percpu_nmi(unsigned int irq) 2585 { 2586 unsigned long flags; 2587 struct irq_desc *desc; 2588 int ret = 0; 2589 2590 WARN_ON(preemptible()); 2591 2592 desc = irq_get_desc_lock(irq, &flags, 2593 IRQ_GET_DESC_CHECK_PERCPU); 2594 if (!desc) 2595 return -EINVAL; 2596 2597 if (WARN(!(desc->istate & IRQS_NMI), 2598 KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n", 2599 irq)) { 2600 ret = -EINVAL; 2601 goto out; 2602 } 2603 2604 ret = irq_nmi_setup(desc); 2605 if (ret) { 2606 pr_err("Failed to setup NMI delivery: irq %u\n", irq); 2607 goto out; 2608 } 2609 2610 out: 2611 irq_put_desc_unlock(desc, flags); 2612 return ret; 2613 } 2614 2615 /** 2616 * teardown_percpu_nmi - undoes NMI setup of IRQ line 2617 * @irq: Interrupt line from which CPU local NMI configuration should be 2618 * removed 2619 * 2620 * This call undoes the setup done by prepare_percpu_nmi(). 2621 * 2622 * IRQ line should not be enabled for the current CPU. 2623 * 2624 * As a CPU local operation, this should be called from non-preemptible 2625 * context. 2626 */ 2627 void teardown_percpu_nmi(unsigned int irq) 2628 { 2629 unsigned long flags; 2630 struct irq_desc *desc; 2631 2632 WARN_ON(preemptible()); 2633 2634 desc = irq_get_desc_lock(irq, &flags, 2635 IRQ_GET_DESC_CHECK_PERCPU); 2636 if (!desc) 2637 return; 2638 2639 if (WARN_ON(!(desc->istate & IRQS_NMI))) 2640 goto out; 2641 2642 irq_nmi_teardown(desc); 2643 out: 2644 irq_put_desc_unlock(desc, flags); 2645 } 2646 2647 int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which, 2648 bool *state) 2649 { 2650 struct irq_chip *chip; 2651 int err = -EINVAL; 2652 2653 do { 2654 chip = irq_data_get_irq_chip(data); 2655 if (WARN_ON_ONCE(!chip)) 2656 return -ENODEV; 2657 if (chip->irq_get_irqchip_state) 2658 break; 2659 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 2660 data = data->parent_data; 2661 #else 2662 data = NULL; 2663 #endif 2664 } while (data); 2665 2666 if (data) 2667 err = chip->irq_get_irqchip_state(data, which, state); 2668 return err; 2669 } 2670 2671 /** 2672 * irq_get_irqchip_state - returns the irqchip state of a interrupt. 2673 * @irq: Interrupt line that is forwarded to a VM 2674 * @which: One of IRQCHIP_STATE_* the caller wants to know about 2675 * @state: a pointer to a boolean where the state is to be storeed 2676 * 2677 * This call snapshots the internal irqchip state of an 2678 * interrupt, returning into @state the bit corresponding to 2679 * stage @which 2680 * 2681 * This function should be called with preemption disabled if the 2682 * interrupt controller has per-cpu registers. 2683 */ 2684 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which, 2685 bool *state) 2686 { 2687 struct irq_desc *desc; 2688 struct irq_data *data; 2689 unsigned long flags; 2690 int err = -EINVAL; 2691 2692 desc = irq_get_desc_buslock(irq, &flags, 0); 2693 if (!desc) 2694 return err; 2695 2696 data = irq_desc_get_irq_data(desc); 2697 2698 err = __irq_get_irqchip_state(data, which, state); 2699 2700 irq_put_desc_busunlock(desc, flags); 2701 return err; 2702 } 2703 EXPORT_SYMBOL_GPL(irq_get_irqchip_state); 2704 2705 /** 2706 * irq_set_irqchip_state - set the state of a forwarded interrupt. 2707 * @irq: Interrupt line that is forwarded to a VM 2708 * @which: State to be restored (one of IRQCHIP_STATE_*) 2709 * @val: Value corresponding to @which 2710 * 2711 * This call sets the internal irqchip state of an interrupt, 2712 * depending on the value of @which. 2713 * 2714 * This function should be called with preemption disabled if the 2715 * interrupt controller has per-cpu registers. 2716 */ 2717 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which, 2718 bool val) 2719 { 2720 struct irq_desc *desc; 2721 struct irq_data *data; 2722 struct irq_chip *chip; 2723 unsigned long flags; 2724 int err = -EINVAL; 2725 2726 desc = irq_get_desc_buslock(irq, &flags, 0); 2727 if (!desc) 2728 return err; 2729 2730 data = irq_desc_get_irq_data(desc); 2731 2732 do { 2733 chip = irq_data_get_irq_chip(data); 2734 if (WARN_ON_ONCE(!chip)) { 2735 err = -ENODEV; 2736 goto out_unlock; 2737 } 2738 if (chip->irq_set_irqchip_state) 2739 break; 2740 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 2741 data = data->parent_data; 2742 #else 2743 data = NULL; 2744 #endif 2745 } while (data); 2746 2747 if (data) 2748 err = chip->irq_set_irqchip_state(data, which, val); 2749 2750 out_unlock: 2751 irq_put_desc_busunlock(desc, flags); 2752 return err; 2753 } 2754 EXPORT_SYMBOL_GPL(irq_set_irqchip_state); 2755