1 /* 2 * linux/kernel/irq/manage.c 3 * 4 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar 5 * Copyright (C) 2005-2006 Thomas Gleixner 6 * 7 * This file contains driver APIs to the irq subsystem. 8 */ 9 10 #define pr_fmt(fmt) "genirq: " fmt 11 12 #include <linux/irq.h> 13 #include <linux/kthread.h> 14 #include <linux/module.h> 15 #include <linux/random.h> 16 #include <linux/interrupt.h> 17 #include <linux/slab.h> 18 #include <linux/sched.h> 19 #include <linux/sched/rt.h> 20 #include <linux/sched/task.h> 21 #include <uapi/linux/sched/types.h> 22 #include <linux/task_work.h> 23 24 #include "internals.h" 25 26 #ifdef CONFIG_IRQ_FORCED_THREADING 27 __read_mostly bool force_irqthreads; 28 29 static int __init setup_forced_irqthreads(char *arg) 30 { 31 force_irqthreads = true; 32 return 0; 33 } 34 early_param("threadirqs", setup_forced_irqthreads); 35 #endif 36 37 static void __synchronize_hardirq(struct irq_desc *desc) 38 { 39 bool inprogress; 40 41 do { 42 unsigned long flags; 43 44 /* 45 * Wait until we're out of the critical section. This might 46 * give the wrong answer due to the lack of memory barriers. 47 */ 48 while (irqd_irq_inprogress(&desc->irq_data)) 49 cpu_relax(); 50 51 /* Ok, that indicated we're done: double-check carefully. */ 52 raw_spin_lock_irqsave(&desc->lock, flags); 53 inprogress = irqd_irq_inprogress(&desc->irq_data); 54 raw_spin_unlock_irqrestore(&desc->lock, flags); 55 56 /* Oops, that failed? */ 57 } while (inprogress); 58 } 59 60 /** 61 * synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs) 62 * @irq: interrupt number to wait for 63 * 64 * This function waits for any pending hard IRQ handlers for this 65 * interrupt to complete before returning. If you use this 66 * function while holding a resource the IRQ handler may need you 67 * will deadlock. It does not take associated threaded handlers 68 * into account. 69 * 70 * Do not use this for shutdown scenarios where you must be sure 71 * that all parts (hardirq and threaded handler) have completed. 72 * 73 * Returns: false if a threaded handler is active. 74 * 75 * This function may be called - with care - from IRQ context. 76 */ 77 bool synchronize_hardirq(unsigned int irq) 78 { 79 struct irq_desc *desc = irq_to_desc(irq); 80 81 if (desc) { 82 __synchronize_hardirq(desc); 83 return !atomic_read(&desc->threads_active); 84 } 85 86 return true; 87 } 88 EXPORT_SYMBOL(synchronize_hardirq); 89 90 /** 91 * synchronize_irq - wait for pending IRQ handlers (on other CPUs) 92 * @irq: interrupt number to wait for 93 * 94 * This function waits for any pending IRQ handlers for this interrupt 95 * to complete before returning. If you use this function while 96 * holding a resource the IRQ handler may need you will deadlock. 97 * 98 * This function may be called - with care - from IRQ context. 99 */ 100 void synchronize_irq(unsigned int irq) 101 { 102 struct irq_desc *desc = irq_to_desc(irq); 103 104 if (desc) { 105 __synchronize_hardirq(desc); 106 /* 107 * We made sure that no hardirq handler is 108 * running. Now verify that no threaded handlers are 109 * active. 110 */ 111 wait_event(desc->wait_for_threads, 112 !atomic_read(&desc->threads_active)); 113 } 114 } 115 EXPORT_SYMBOL(synchronize_irq); 116 117 #ifdef CONFIG_SMP 118 cpumask_var_t irq_default_affinity; 119 120 static bool __irq_can_set_affinity(struct irq_desc *desc) 121 { 122 if (!desc || !irqd_can_balance(&desc->irq_data) || 123 !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity) 124 return false; 125 return true; 126 } 127 128 /** 129 * irq_can_set_affinity - Check if the affinity of a given irq can be set 130 * @irq: Interrupt to check 131 * 132 */ 133 int irq_can_set_affinity(unsigned int irq) 134 { 135 return __irq_can_set_affinity(irq_to_desc(irq)); 136 } 137 138 /** 139 * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space 140 * @irq: Interrupt to check 141 * 142 * Like irq_can_set_affinity() above, but additionally checks for the 143 * AFFINITY_MANAGED flag. 144 */ 145 bool irq_can_set_affinity_usr(unsigned int irq) 146 { 147 struct irq_desc *desc = irq_to_desc(irq); 148 149 return __irq_can_set_affinity(desc) && 150 !irqd_affinity_is_managed(&desc->irq_data); 151 } 152 153 /** 154 * irq_set_thread_affinity - Notify irq threads to adjust affinity 155 * @desc: irq descriptor which has affitnity changed 156 * 157 * We just set IRQTF_AFFINITY and delegate the affinity setting 158 * to the interrupt thread itself. We can not call 159 * set_cpus_allowed_ptr() here as we hold desc->lock and this 160 * code can be called from hard interrupt context. 161 */ 162 void irq_set_thread_affinity(struct irq_desc *desc) 163 { 164 struct irqaction *action; 165 166 for_each_action_of_desc(desc, action) 167 if (action->thread) 168 set_bit(IRQTF_AFFINITY, &action->thread_flags); 169 } 170 171 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask, 172 bool force) 173 { 174 struct irq_desc *desc = irq_data_to_desc(data); 175 struct irq_chip *chip = irq_data_get_irq_chip(data); 176 int ret; 177 178 ret = chip->irq_set_affinity(data, mask, force); 179 switch (ret) { 180 case IRQ_SET_MASK_OK: 181 case IRQ_SET_MASK_OK_DONE: 182 cpumask_copy(desc->irq_common_data.affinity, mask); 183 case IRQ_SET_MASK_OK_NOCOPY: 184 irq_set_thread_affinity(desc); 185 ret = 0; 186 } 187 188 return ret; 189 } 190 191 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask, 192 bool force) 193 { 194 struct irq_chip *chip = irq_data_get_irq_chip(data); 195 struct irq_desc *desc = irq_data_to_desc(data); 196 int ret = 0; 197 198 if (!chip || !chip->irq_set_affinity) 199 return -EINVAL; 200 201 if (irq_can_move_pcntxt(data)) { 202 ret = irq_do_set_affinity(data, mask, force); 203 } else { 204 irqd_set_move_pending(data); 205 irq_copy_pending(desc, mask); 206 } 207 208 if (desc->affinity_notify) { 209 kref_get(&desc->affinity_notify->kref); 210 schedule_work(&desc->affinity_notify->work); 211 } 212 irqd_set(data, IRQD_AFFINITY_SET); 213 214 return ret; 215 } 216 217 int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force) 218 { 219 struct irq_desc *desc = irq_to_desc(irq); 220 unsigned long flags; 221 int ret; 222 223 if (!desc) 224 return -EINVAL; 225 226 raw_spin_lock_irqsave(&desc->lock, flags); 227 ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force); 228 raw_spin_unlock_irqrestore(&desc->lock, flags); 229 return ret; 230 } 231 232 int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m) 233 { 234 unsigned long flags; 235 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 236 237 if (!desc) 238 return -EINVAL; 239 desc->affinity_hint = m; 240 irq_put_desc_unlock(desc, flags); 241 /* set the initial affinity to prevent every interrupt being on CPU0 */ 242 if (m) 243 __irq_set_affinity(irq, m, false); 244 return 0; 245 } 246 EXPORT_SYMBOL_GPL(irq_set_affinity_hint); 247 248 static void irq_affinity_notify(struct work_struct *work) 249 { 250 struct irq_affinity_notify *notify = 251 container_of(work, struct irq_affinity_notify, work); 252 struct irq_desc *desc = irq_to_desc(notify->irq); 253 cpumask_var_t cpumask; 254 unsigned long flags; 255 256 if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL)) 257 goto out; 258 259 raw_spin_lock_irqsave(&desc->lock, flags); 260 if (irq_move_pending(&desc->irq_data)) 261 irq_get_pending(cpumask, desc); 262 else 263 cpumask_copy(cpumask, desc->irq_common_data.affinity); 264 raw_spin_unlock_irqrestore(&desc->lock, flags); 265 266 notify->notify(notify, cpumask); 267 268 free_cpumask_var(cpumask); 269 out: 270 kref_put(¬ify->kref, notify->release); 271 } 272 273 /** 274 * irq_set_affinity_notifier - control notification of IRQ affinity changes 275 * @irq: Interrupt for which to enable/disable notification 276 * @notify: Context for notification, or %NULL to disable 277 * notification. Function pointers must be initialised; 278 * the other fields will be initialised by this function. 279 * 280 * Must be called in process context. Notification may only be enabled 281 * after the IRQ is allocated and must be disabled before the IRQ is 282 * freed using free_irq(). 283 */ 284 int 285 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify) 286 { 287 struct irq_desc *desc = irq_to_desc(irq); 288 struct irq_affinity_notify *old_notify; 289 unsigned long flags; 290 291 /* The release function is promised process context */ 292 might_sleep(); 293 294 if (!desc) 295 return -EINVAL; 296 297 /* Complete initialisation of *notify */ 298 if (notify) { 299 notify->irq = irq; 300 kref_init(¬ify->kref); 301 INIT_WORK(¬ify->work, irq_affinity_notify); 302 } 303 304 raw_spin_lock_irqsave(&desc->lock, flags); 305 old_notify = desc->affinity_notify; 306 desc->affinity_notify = notify; 307 raw_spin_unlock_irqrestore(&desc->lock, flags); 308 309 if (old_notify) 310 kref_put(&old_notify->kref, old_notify->release); 311 312 return 0; 313 } 314 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier); 315 316 #ifndef CONFIG_AUTO_IRQ_AFFINITY 317 /* 318 * Generic version of the affinity autoselector. 319 */ 320 int irq_setup_affinity(struct irq_desc *desc) 321 { 322 struct cpumask *set = irq_default_affinity; 323 int ret, node = irq_desc_get_node(desc); 324 static DEFINE_RAW_SPINLOCK(mask_lock); 325 static struct cpumask mask; 326 327 /* Excludes PER_CPU and NO_BALANCE interrupts */ 328 if (!__irq_can_set_affinity(desc)) 329 return 0; 330 331 raw_spin_lock(&mask_lock); 332 /* 333 * Preserve the managed affinity setting and a userspace affinity 334 * setup, but make sure that one of the targets is online. 335 */ 336 if (irqd_affinity_is_managed(&desc->irq_data) || 337 irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) { 338 if (cpumask_intersects(desc->irq_common_data.affinity, 339 cpu_online_mask)) 340 set = desc->irq_common_data.affinity; 341 else 342 irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET); 343 } 344 345 cpumask_and(&mask, cpu_online_mask, set); 346 if (node != NUMA_NO_NODE) { 347 const struct cpumask *nodemask = cpumask_of_node(node); 348 349 /* make sure at least one of the cpus in nodemask is online */ 350 if (cpumask_intersects(&mask, nodemask)) 351 cpumask_and(&mask, &mask, nodemask); 352 } 353 ret = irq_do_set_affinity(&desc->irq_data, &mask, false); 354 raw_spin_unlock(&mask_lock); 355 return ret; 356 } 357 #else 358 /* Wrapper for ALPHA specific affinity selector magic */ 359 int irq_setup_affinity(struct irq_desc *desc) 360 { 361 return irq_select_affinity(irq_desc_get_irq(desc)); 362 } 363 #endif 364 365 /* 366 * Called when a bogus affinity is set via /proc/irq 367 */ 368 int irq_select_affinity_usr(unsigned int irq) 369 { 370 struct irq_desc *desc = irq_to_desc(irq); 371 unsigned long flags; 372 int ret; 373 374 raw_spin_lock_irqsave(&desc->lock, flags); 375 ret = irq_setup_affinity(desc); 376 raw_spin_unlock_irqrestore(&desc->lock, flags); 377 return ret; 378 } 379 #endif 380 381 /** 382 * irq_set_vcpu_affinity - Set vcpu affinity for the interrupt 383 * @irq: interrupt number to set affinity 384 * @vcpu_info: vCPU specific data 385 * 386 * This function uses the vCPU specific data to set the vCPU 387 * affinity for an irq. The vCPU specific data is passed from 388 * outside, such as KVM. One example code path is as below: 389 * KVM -> IOMMU -> irq_set_vcpu_affinity(). 390 */ 391 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info) 392 { 393 unsigned long flags; 394 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 395 struct irq_data *data; 396 struct irq_chip *chip; 397 int ret = -ENOSYS; 398 399 if (!desc) 400 return -EINVAL; 401 402 data = irq_desc_get_irq_data(desc); 403 chip = irq_data_get_irq_chip(data); 404 if (chip && chip->irq_set_vcpu_affinity) 405 ret = chip->irq_set_vcpu_affinity(data, vcpu_info); 406 irq_put_desc_unlock(desc, flags); 407 408 return ret; 409 } 410 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity); 411 412 void __disable_irq(struct irq_desc *desc) 413 { 414 if (!desc->depth++) 415 irq_disable(desc); 416 } 417 418 static int __disable_irq_nosync(unsigned int irq) 419 { 420 unsigned long flags; 421 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 422 423 if (!desc) 424 return -EINVAL; 425 __disable_irq(desc); 426 irq_put_desc_busunlock(desc, flags); 427 return 0; 428 } 429 430 /** 431 * disable_irq_nosync - disable an irq without waiting 432 * @irq: Interrupt to disable 433 * 434 * Disable the selected interrupt line. Disables and Enables are 435 * nested. 436 * Unlike disable_irq(), this function does not ensure existing 437 * instances of the IRQ handler have completed before returning. 438 * 439 * This function may be called from IRQ context. 440 */ 441 void disable_irq_nosync(unsigned int irq) 442 { 443 __disable_irq_nosync(irq); 444 } 445 EXPORT_SYMBOL(disable_irq_nosync); 446 447 /** 448 * disable_irq - disable an irq and wait for completion 449 * @irq: Interrupt to disable 450 * 451 * Disable the selected interrupt line. Enables and Disables are 452 * nested. 453 * This function waits for any pending IRQ handlers for this interrupt 454 * to complete before returning. If you use this function while 455 * holding a resource the IRQ handler may need you will deadlock. 456 * 457 * This function may be called - with care - from IRQ context. 458 */ 459 void disable_irq(unsigned int irq) 460 { 461 if (!__disable_irq_nosync(irq)) 462 synchronize_irq(irq); 463 } 464 EXPORT_SYMBOL(disable_irq); 465 466 /** 467 * disable_hardirq - disables an irq and waits for hardirq completion 468 * @irq: Interrupt to disable 469 * 470 * Disable the selected interrupt line. Enables and Disables are 471 * nested. 472 * This function waits for any pending hard IRQ handlers for this 473 * interrupt to complete before returning. If you use this function while 474 * holding a resource the hard IRQ handler may need you will deadlock. 475 * 476 * When used to optimistically disable an interrupt from atomic context 477 * the return value must be checked. 478 * 479 * Returns: false if a threaded handler is active. 480 * 481 * This function may be called - with care - from IRQ context. 482 */ 483 bool disable_hardirq(unsigned int irq) 484 { 485 if (!__disable_irq_nosync(irq)) 486 return synchronize_hardirq(irq); 487 488 return false; 489 } 490 EXPORT_SYMBOL_GPL(disable_hardirq); 491 492 void __enable_irq(struct irq_desc *desc) 493 { 494 switch (desc->depth) { 495 case 0: 496 err_out: 497 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n", 498 irq_desc_get_irq(desc)); 499 break; 500 case 1: { 501 if (desc->istate & IRQS_SUSPENDED) 502 goto err_out; 503 /* Prevent probing on this irq: */ 504 irq_settings_set_noprobe(desc); 505 /* 506 * Call irq_startup() not irq_enable() here because the 507 * interrupt might be marked NOAUTOEN. So irq_startup() 508 * needs to be invoked when it gets enabled the first 509 * time. If it was already started up, then irq_startup() 510 * will invoke irq_enable() under the hood. 511 */ 512 irq_startup(desc, IRQ_RESEND, IRQ_START_COND); 513 break; 514 } 515 default: 516 desc->depth--; 517 } 518 } 519 520 /** 521 * enable_irq - enable handling of an irq 522 * @irq: Interrupt to enable 523 * 524 * Undoes the effect of one call to disable_irq(). If this 525 * matches the last disable, processing of interrupts on this 526 * IRQ line is re-enabled. 527 * 528 * This function may be called from IRQ context only when 529 * desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL ! 530 */ 531 void enable_irq(unsigned int irq) 532 { 533 unsigned long flags; 534 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 535 536 if (!desc) 537 return; 538 if (WARN(!desc->irq_data.chip, 539 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq)) 540 goto out; 541 542 __enable_irq(desc); 543 out: 544 irq_put_desc_busunlock(desc, flags); 545 } 546 EXPORT_SYMBOL(enable_irq); 547 548 static int set_irq_wake_real(unsigned int irq, unsigned int on) 549 { 550 struct irq_desc *desc = irq_to_desc(irq); 551 int ret = -ENXIO; 552 553 if (irq_desc_get_chip(desc)->flags & IRQCHIP_SKIP_SET_WAKE) 554 return 0; 555 556 if (desc->irq_data.chip->irq_set_wake) 557 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on); 558 559 return ret; 560 } 561 562 /** 563 * irq_set_irq_wake - control irq power management wakeup 564 * @irq: interrupt to control 565 * @on: enable/disable power management wakeup 566 * 567 * Enable/disable power management wakeup mode, which is 568 * disabled by default. Enables and disables must match, 569 * just as they match for non-wakeup mode support. 570 * 571 * Wakeup mode lets this IRQ wake the system from sleep 572 * states like "suspend to RAM". 573 */ 574 int irq_set_irq_wake(unsigned int irq, unsigned int on) 575 { 576 unsigned long flags; 577 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 578 int ret = 0; 579 580 if (!desc) 581 return -EINVAL; 582 583 /* wakeup-capable irqs can be shared between drivers that 584 * don't need to have the same sleep mode behaviors. 585 */ 586 if (on) { 587 if (desc->wake_depth++ == 0) { 588 ret = set_irq_wake_real(irq, on); 589 if (ret) 590 desc->wake_depth = 0; 591 else 592 irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE); 593 } 594 } else { 595 if (desc->wake_depth == 0) { 596 WARN(1, "Unbalanced IRQ %d wake disable\n", irq); 597 } else if (--desc->wake_depth == 0) { 598 ret = set_irq_wake_real(irq, on); 599 if (ret) 600 desc->wake_depth = 1; 601 else 602 irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE); 603 } 604 } 605 irq_put_desc_busunlock(desc, flags); 606 return ret; 607 } 608 EXPORT_SYMBOL(irq_set_irq_wake); 609 610 /* 611 * Internal function that tells the architecture code whether a 612 * particular irq has been exclusively allocated or is available 613 * for driver use. 614 */ 615 int can_request_irq(unsigned int irq, unsigned long irqflags) 616 { 617 unsigned long flags; 618 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 619 int canrequest = 0; 620 621 if (!desc) 622 return 0; 623 624 if (irq_settings_can_request(desc)) { 625 if (!desc->action || 626 irqflags & desc->action->flags & IRQF_SHARED) 627 canrequest = 1; 628 } 629 irq_put_desc_unlock(desc, flags); 630 return canrequest; 631 } 632 633 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags) 634 { 635 struct irq_chip *chip = desc->irq_data.chip; 636 int ret, unmask = 0; 637 638 if (!chip || !chip->irq_set_type) { 639 /* 640 * IRQF_TRIGGER_* but the PIC does not support multiple 641 * flow-types? 642 */ 643 pr_debug("No set_type function for IRQ %d (%s)\n", 644 irq_desc_get_irq(desc), 645 chip ? (chip->name ? : "unknown") : "unknown"); 646 return 0; 647 } 648 649 if (chip->flags & IRQCHIP_SET_TYPE_MASKED) { 650 if (!irqd_irq_masked(&desc->irq_data)) 651 mask_irq(desc); 652 if (!irqd_irq_disabled(&desc->irq_data)) 653 unmask = 1; 654 } 655 656 /* Mask all flags except trigger mode */ 657 flags &= IRQ_TYPE_SENSE_MASK; 658 ret = chip->irq_set_type(&desc->irq_data, flags); 659 660 switch (ret) { 661 case IRQ_SET_MASK_OK: 662 case IRQ_SET_MASK_OK_DONE: 663 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK); 664 irqd_set(&desc->irq_data, flags); 665 666 case IRQ_SET_MASK_OK_NOCOPY: 667 flags = irqd_get_trigger_type(&desc->irq_data); 668 irq_settings_set_trigger_mask(desc, flags); 669 irqd_clear(&desc->irq_data, IRQD_LEVEL); 670 irq_settings_clr_level(desc); 671 if (flags & IRQ_TYPE_LEVEL_MASK) { 672 irq_settings_set_level(desc); 673 irqd_set(&desc->irq_data, IRQD_LEVEL); 674 } 675 676 ret = 0; 677 break; 678 default: 679 pr_err("Setting trigger mode %lu for irq %u failed (%pF)\n", 680 flags, irq_desc_get_irq(desc), chip->irq_set_type); 681 } 682 if (unmask) 683 unmask_irq(desc); 684 return ret; 685 } 686 687 #ifdef CONFIG_HARDIRQS_SW_RESEND 688 int irq_set_parent(int irq, int parent_irq) 689 { 690 unsigned long flags; 691 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 692 693 if (!desc) 694 return -EINVAL; 695 696 desc->parent_irq = parent_irq; 697 698 irq_put_desc_unlock(desc, flags); 699 return 0; 700 } 701 EXPORT_SYMBOL_GPL(irq_set_parent); 702 #endif 703 704 /* 705 * Default primary interrupt handler for threaded interrupts. Is 706 * assigned as primary handler when request_threaded_irq is called 707 * with handler == NULL. Useful for oneshot interrupts. 708 */ 709 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id) 710 { 711 return IRQ_WAKE_THREAD; 712 } 713 714 /* 715 * Primary handler for nested threaded interrupts. Should never be 716 * called. 717 */ 718 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id) 719 { 720 WARN(1, "Primary handler called for nested irq %d\n", irq); 721 return IRQ_NONE; 722 } 723 724 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id) 725 { 726 WARN(1, "Secondary action handler called for irq %d\n", irq); 727 return IRQ_NONE; 728 } 729 730 static int irq_wait_for_interrupt(struct irqaction *action) 731 { 732 set_current_state(TASK_INTERRUPTIBLE); 733 734 while (!kthread_should_stop()) { 735 736 if (test_and_clear_bit(IRQTF_RUNTHREAD, 737 &action->thread_flags)) { 738 __set_current_state(TASK_RUNNING); 739 return 0; 740 } 741 schedule(); 742 set_current_state(TASK_INTERRUPTIBLE); 743 } 744 __set_current_state(TASK_RUNNING); 745 return -1; 746 } 747 748 /* 749 * Oneshot interrupts keep the irq line masked until the threaded 750 * handler finished. unmask if the interrupt has not been disabled and 751 * is marked MASKED. 752 */ 753 static void irq_finalize_oneshot(struct irq_desc *desc, 754 struct irqaction *action) 755 { 756 if (!(desc->istate & IRQS_ONESHOT) || 757 action->handler == irq_forced_secondary_handler) 758 return; 759 again: 760 chip_bus_lock(desc); 761 raw_spin_lock_irq(&desc->lock); 762 763 /* 764 * Implausible though it may be we need to protect us against 765 * the following scenario: 766 * 767 * The thread is faster done than the hard interrupt handler 768 * on the other CPU. If we unmask the irq line then the 769 * interrupt can come in again and masks the line, leaves due 770 * to IRQS_INPROGRESS and the irq line is masked forever. 771 * 772 * This also serializes the state of shared oneshot handlers 773 * versus "desc->threads_onehsot |= action->thread_mask;" in 774 * irq_wake_thread(). See the comment there which explains the 775 * serialization. 776 */ 777 if (unlikely(irqd_irq_inprogress(&desc->irq_data))) { 778 raw_spin_unlock_irq(&desc->lock); 779 chip_bus_sync_unlock(desc); 780 cpu_relax(); 781 goto again; 782 } 783 784 /* 785 * Now check again, whether the thread should run. Otherwise 786 * we would clear the threads_oneshot bit of this thread which 787 * was just set. 788 */ 789 if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags)) 790 goto out_unlock; 791 792 desc->threads_oneshot &= ~action->thread_mask; 793 794 if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) && 795 irqd_irq_masked(&desc->irq_data)) 796 unmask_threaded_irq(desc); 797 798 out_unlock: 799 raw_spin_unlock_irq(&desc->lock); 800 chip_bus_sync_unlock(desc); 801 } 802 803 #ifdef CONFIG_SMP 804 /* 805 * Check whether we need to change the affinity of the interrupt thread. 806 */ 807 static void 808 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) 809 { 810 cpumask_var_t mask; 811 bool valid = true; 812 813 if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags)) 814 return; 815 816 /* 817 * In case we are out of memory we set IRQTF_AFFINITY again and 818 * try again next time 819 */ 820 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) { 821 set_bit(IRQTF_AFFINITY, &action->thread_flags); 822 return; 823 } 824 825 raw_spin_lock_irq(&desc->lock); 826 /* 827 * This code is triggered unconditionally. Check the affinity 828 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out. 829 */ 830 if (cpumask_available(desc->irq_common_data.affinity)) 831 cpumask_copy(mask, desc->irq_common_data.affinity); 832 else 833 valid = false; 834 raw_spin_unlock_irq(&desc->lock); 835 836 if (valid) 837 set_cpus_allowed_ptr(current, mask); 838 free_cpumask_var(mask); 839 } 840 #else 841 static inline void 842 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { } 843 #endif 844 845 /* 846 * Interrupts which are not explicitely requested as threaded 847 * interrupts rely on the implicit bh/preempt disable of the hard irq 848 * context. So we need to disable bh here to avoid deadlocks and other 849 * side effects. 850 */ 851 static irqreturn_t 852 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action) 853 { 854 irqreturn_t ret; 855 856 local_bh_disable(); 857 ret = action->thread_fn(action->irq, action->dev_id); 858 irq_finalize_oneshot(desc, action); 859 local_bh_enable(); 860 return ret; 861 } 862 863 /* 864 * Interrupts explicitly requested as threaded interrupts want to be 865 * preemtible - many of them need to sleep and wait for slow busses to 866 * complete. 867 */ 868 static irqreturn_t irq_thread_fn(struct irq_desc *desc, 869 struct irqaction *action) 870 { 871 irqreturn_t ret; 872 873 ret = action->thread_fn(action->irq, action->dev_id); 874 irq_finalize_oneshot(desc, action); 875 return ret; 876 } 877 878 static void wake_threads_waitq(struct irq_desc *desc) 879 { 880 if (atomic_dec_and_test(&desc->threads_active)) 881 wake_up(&desc->wait_for_threads); 882 } 883 884 static void irq_thread_dtor(struct callback_head *unused) 885 { 886 struct task_struct *tsk = current; 887 struct irq_desc *desc; 888 struct irqaction *action; 889 890 if (WARN_ON_ONCE(!(current->flags & PF_EXITING))) 891 return; 892 893 action = kthread_data(tsk); 894 895 pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n", 896 tsk->comm, tsk->pid, action->irq); 897 898 899 desc = irq_to_desc(action->irq); 900 /* 901 * If IRQTF_RUNTHREAD is set, we need to decrement 902 * desc->threads_active and wake possible waiters. 903 */ 904 if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags)) 905 wake_threads_waitq(desc); 906 907 /* Prevent a stale desc->threads_oneshot */ 908 irq_finalize_oneshot(desc, action); 909 } 910 911 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action) 912 { 913 struct irqaction *secondary = action->secondary; 914 915 if (WARN_ON_ONCE(!secondary)) 916 return; 917 918 raw_spin_lock_irq(&desc->lock); 919 __irq_wake_thread(desc, secondary); 920 raw_spin_unlock_irq(&desc->lock); 921 } 922 923 /* 924 * Interrupt handler thread 925 */ 926 static int irq_thread(void *data) 927 { 928 struct callback_head on_exit_work; 929 struct irqaction *action = data; 930 struct irq_desc *desc = irq_to_desc(action->irq); 931 irqreturn_t (*handler_fn)(struct irq_desc *desc, 932 struct irqaction *action); 933 934 if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD, 935 &action->thread_flags)) 936 handler_fn = irq_forced_thread_fn; 937 else 938 handler_fn = irq_thread_fn; 939 940 init_task_work(&on_exit_work, irq_thread_dtor); 941 task_work_add(current, &on_exit_work, false); 942 943 irq_thread_check_affinity(desc, action); 944 945 while (!irq_wait_for_interrupt(action)) { 946 irqreturn_t action_ret; 947 948 irq_thread_check_affinity(desc, action); 949 950 action_ret = handler_fn(desc, action); 951 if (action_ret == IRQ_HANDLED) 952 atomic_inc(&desc->threads_handled); 953 if (action_ret == IRQ_WAKE_THREAD) 954 irq_wake_secondary(desc, action); 955 956 wake_threads_waitq(desc); 957 } 958 959 /* 960 * This is the regular exit path. __free_irq() is stopping the 961 * thread via kthread_stop() after calling 962 * synchronize_irq(). So neither IRQTF_RUNTHREAD nor the 963 * oneshot mask bit can be set. We cannot verify that as we 964 * cannot touch the oneshot mask at this point anymore as 965 * __setup_irq() might have given out currents thread_mask 966 * again. 967 */ 968 task_work_cancel(current, irq_thread_dtor); 969 return 0; 970 } 971 972 /** 973 * irq_wake_thread - wake the irq thread for the action identified by dev_id 974 * @irq: Interrupt line 975 * @dev_id: Device identity for which the thread should be woken 976 * 977 */ 978 void irq_wake_thread(unsigned int irq, void *dev_id) 979 { 980 struct irq_desc *desc = irq_to_desc(irq); 981 struct irqaction *action; 982 unsigned long flags; 983 984 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc))) 985 return; 986 987 raw_spin_lock_irqsave(&desc->lock, flags); 988 for_each_action_of_desc(desc, action) { 989 if (action->dev_id == dev_id) { 990 if (action->thread) 991 __irq_wake_thread(desc, action); 992 break; 993 } 994 } 995 raw_spin_unlock_irqrestore(&desc->lock, flags); 996 } 997 EXPORT_SYMBOL_GPL(irq_wake_thread); 998 999 static int irq_setup_forced_threading(struct irqaction *new) 1000 { 1001 if (!force_irqthreads) 1002 return 0; 1003 if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT)) 1004 return 0; 1005 1006 new->flags |= IRQF_ONESHOT; 1007 1008 /* 1009 * Handle the case where we have a real primary handler and a 1010 * thread handler. We force thread them as well by creating a 1011 * secondary action. 1012 */ 1013 if (new->handler != irq_default_primary_handler && new->thread_fn) { 1014 /* Allocate the secondary action */ 1015 new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 1016 if (!new->secondary) 1017 return -ENOMEM; 1018 new->secondary->handler = irq_forced_secondary_handler; 1019 new->secondary->thread_fn = new->thread_fn; 1020 new->secondary->dev_id = new->dev_id; 1021 new->secondary->irq = new->irq; 1022 new->secondary->name = new->name; 1023 } 1024 /* Deal with the primary handler */ 1025 set_bit(IRQTF_FORCED_THREAD, &new->thread_flags); 1026 new->thread_fn = new->handler; 1027 new->handler = irq_default_primary_handler; 1028 return 0; 1029 } 1030 1031 static int irq_request_resources(struct irq_desc *desc) 1032 { 1033 struct irq_data *d = &desc->irq_data; 1034 struct irq_chip *c = d->chip; 1035 1036 return c->irq_request_resources ? c->irq_request_resources(d) : 0; 1037 } 1038 1039 static void irq_release_resources(struct irq_desc *desc) 1040 { 1041 struct irq_data *d = &desc->irq_data; 1042 struct irq_chip *c = d->chip; 1043 1044 if (c->irq_release_resources) 1045 c->irq_release_resources(d); 1046 } 1047 1048 static int 1049 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary) 1050 { 1051 struct task_struct *t; 1052 struct sched_param param = { 1053 .sched_priority = MAX_USER_RT_PRIO/2, 1054 }; 1055 1056 if (!secondary) { 1057 t = kthread_create(irq_thread, new, "irq/%d-%s", irq, 1058 new->name); 1059 } else { 1060 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq, 1061 new->name); 1062 param.sched_priority -= 1; 1063 } 1064 1065 if (IS_ERR(t)) 1066 return PTR_ERR(t); 1067 1068 sched_setscheduler_nocheck(t, SCHED_FIFO, ¶m); 1069 1070 /* 1071 * We keep the reference to the task struct even if 1072 * the thread dies to avoid that the interrupt code 1073 * references an already freed task_struct. 1074 */ 1075 get_task_struct(t); 1076 new->thread = t; 1077 /* 1078 * Tell the thread to set its affinity. This is 1079 * important for shared interrupt handlers as we do 1080 * not invoke setup_affinity() for the secondary 1081 * handlers as everything is already set up. Even for 1082 * interrupts marked with IRQF_NO_BALANCE this is 1083 * correct as we want the thread to move to the cpu(s) 1084 * on which the requesting code placed the interrupt. 1085 */ 1086 set_bit(IRQTF_AFFINITY, &new->thread_flags); 1087 return 0; 1088 } 1089 1090 /* 1091 * Internal function to register an irqaction - typically used to 1092 * allocate special interrupts that are part of the architecture. 1093 */ 1094 static int 1095 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new) 1096 { 1097 struct irqaction *old, **old_ptr; 1098 unsigned long flags, thread_mask = 0; 1099 int ret, nested, shared = 0; 1100 1101 if (!desc) 1102 return -EINVAL; 1103 1104 if (desc->irq_data.chip == &no_irq_chip) 1105 return -ENOSYS; 1106 if (!try_module_get(desc->owner)) 1107 return -ENODEV; 1108 1109 new->irq = irq; 1110 1111 /* 1112 * If the trigger type is not specified by the caller, 1113 * then use the default for this interrupt. 1114 */ 1115 if (!(new->flags & IRQF_TRIGGER_MASK)) 1116 new->flags |= irqd_get_trigger_type(&desc->irq_data); 1117 1118 /* 1119 * Check whether the interrupt nests into another interrupt 1120 * thread. 1121 */ 1122 nested = irq_settings_is_nested_thread(desc); 1123 if (nested) { 1124 if (!new->thread_fn) { 1125 ret = -EINVAL; 1126 goto out_mput; 1127 } 1128 /* 1129 * Replace the primary handler which was provided from 1130 * the driver for non nested interrupt handling by the 1131 * dummy function which warns when called. 1132 */ 1133 new->handler = irq_nested_primary_handler; 1134 } else { 1135 if (irq_settings_can_thread(desc)) { 1136 ret = irq_setup_forced_threading(new); 1137 if (ret) 1138 goto out_mput; 1139 } 1140 } 1141 1142 /* 1143 * Create a handler thread when a thread function is supplied 1144 * and the interrupt does not nest into another interrupt 1145 * thread. 1146 */ 1147 if (new->thread_fn && !nested) { 1148 ret = setup_irq_thread(new, irq, false); 1149 if (ret) 1150 goto out_mput; 1151 if (new->secondary) { 1152 ret = setup_irq_thread(new->secondary, irq, true); 1153 if (ret) 1154 goto out_thread; 1155 } 1156 } 1157 1158 /* 1159 * Drivers are often written to work w/o knowledge about the 1160 * underlying irq chip implementation, so a request for a 1161 * threaded irq without a primary hard irq context handler 1162 * requires the ONESHOT flag to be set. Some irq chips like 1163 * MSI based interrupts are per se one shot safe. Check the 1164 * chip flags, so we can avoid the unmask dance at the end of 1165 * the threaded handler for those. 1166 */ 1167 if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE) 1168 new->flags &= ~IRQF_ONESHOT; 1169 1170 mutex_lock(&desc->request_mutex); 1171 if (!desc->action) { 1172 ret = irq_request_resources(desc); 1173 if (ret) { 1174 pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n", 1175 new->name, irq, desc->irq_data.chip->name); 1176 goto out_mutex; 1177 } 1178 } 1179 1180 chip_bus_lock(desc); 1181 1182 /* 1183 * The following block of code has to be executed atomically 1184 */ 1185 raw_spin_lock_irqsave(&desc->lock, flags); 1186 old_ptr = &desc->action; 1187 old = *old_ptr; 1188 if (old) { 1189 /* 1190 * Can't share interrupts unless both agree to and are 1191 * the same type (level, edge, polarity). So both flag 1192 * fields must have IRQF_SHARED set and the bits which 1193 * set the trigger type must match. Also all must 1194 * agree on ONESHOT. 1195 */ 1196 unsigned int oldtype = irqd_get_trigger_type(&desc->irq_data); 1197 1198 if (!((old->flags & new->flags) & IRQF_SHARED) || 1199 (oldtype != (new->flags & IRQF_TRIGGER_MASK)) || 1200 ((old->flags ^ new->flags) & IRQF_ONESHOT)) 1201 goto mismatch; 1202 1203 /* All handlers must agree on per-cpuness */ 1204 if ((old->flags & IRQF_PERCPU) != 1205 (new->flags & IRQF_PERCPU)) 1206 goto mismatch; 1207 1208 /* add new interrupt at end of irq queue */ 1209 do { 1210 /* 1211 * Or all existing action->thread_mask bits, 1212 * so we can find the next zero bit for this 1213 * new action. 1214 */ 1215 thread_mask |= old->thread_mask; 1216 old_ptr = &old->next; 1217 old = *old_ptr; 1218 } while (old); 1219 shared = 1; 1220 } 1221 1222 /* 1223 * Setup the thread mask for this irqaction for ONESHOT. For 1224 * !ONESHOT irqs the thread mask is 0 so we can avoid a 1225 * conditional in irq_wake_thread(). 1226 */ 1227 if (new->flags & IRQF_ONESHOT) { 1228 /* 1229 * Unlikely to have 32 resp 64 irqs sharing one line, 1230 * but who knows. 1231 */ 1232 if (thread_mask == ~0UL) { 1233 ret = -EBUSY; 1234 goto out_unlock; 1235 } 1236 /* 1237 * The thread_mask for the action is or'ed to 1238 * desc->thread_active to indicate that the 1239 * IRQF_ONESHOT thread handler has been woken, but not 1240 * yet finished. The bit is cleared when a thread 1241 * completes. When all threads of a shared interrupt 1242 * line have completed desc->threads_active becomes 1243 * zero and the interrupt line is unmasked. See 1244 * handle.c:irq_wake_thread() for further information. 1245 * 1246 * If no thread is woken by primary (hard irq context) 1247 * interrupt handlers, then desc->threads_active is 1248 * also checked for zero to unmask the irq line in the 1249 * affected hard irq flow handlers 1250 * (handle_[fasteoi|level]_irq). 1251 * 1252 * The new action gets the first zero bit of 1253 * thread_mask assigned. See the loop above which or's 1254 * all existing action->thread_mask bits. 1255 */ 1256 new->thread_mask = 1 << ffz(thread_mask); 1257 1258 } else if (new->handler == irq_default_primary_handler && 1259 !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) { 1260 /* 1261 * The interrupt was requested with handler = NULL, so 1262 * we use the default primary handler for it. But it 1263 * does not have the oneshot flag set. In combination 1264 * with level interrupts this is deadly, because the 1265 * default primary handler just wakes the thread, then 1266 * the irq lines is reenabled, but the device still 1267 * has the level irq asserted. Rinse and repeat.... 1268 * 1269 * While this works for edge type interrupts, we play 1270 * it safe and reject unconditionally because we can't 1271 * say for sure which type this interrupt really 1272 * has. The type flags are unreliable as the 1273 * underlying chip implementation can override them. 1274 */ 1275 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for irq %d\n", 1276 irq); 1277 ret = -EINVAL; 1278 goto out_unlock; 1279 } 1280 1281 if (!shared) { 1282 init_waitqueue_head(&desc->wait_for_threads); 1283 1284 /* Setup the type (level, edge polarity) if configured: */ 1285 if (new->flags & IRQF_TRIGGER_MASK) { 1286 ret = __irq_set_trigger(desc, 1287 new->flags & IRQF_TRIGGER_MASK); 1288 1289 if (ret) { 1290 irq_release_resources(desc); 1291 goto out_unlock; 1292 } 1293 } 1294 1295 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \ 1296 IRQS_ONESHOT | IRQS_WAITING); 1297 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS); 1298 1299 if (new->flags & IRQF_PERCPU) { 1300 irqd_set(&desc->irq_data, IRQD_PER_CPU); 1301 irq_settings_set_per_cpu(desc); 1302 } 1303 1304 if (new->flags & IRQF_ONESHOT) 1305 desc->istate |= IRQS_ONESHOT; 1306 1307 /* Exclude IRQ from balancing if requested */ 1308 if (new->flags & IRQF_NOBALANCING) { 1309 irq_settings_set_no_balancing(desc); 1310 irqd_set(&desc->irq_data, IRQD_NO_BALANCING); 1311 } 1312 1313 if (irq_settings_can_autoenable(desc)) { 1314 irq_startup(desc, IRQ_RESEND, IRQ_START_COND); 1315 } else { 1316 /* 1317 * Shared interrupts do not go well with disabling 1318 * auto enable. The sharing interrupt might request 1319 * it while it's still disabled and then wait for 1320 * interrupts forever. 1321 */ 1322 WARN_ON_ONCE(new->flags & IRQF_SHARED); 1323 /* Undo nested disables: */ 1324 desc->depth = 1; 1325 } 1326 1327 } else if (new->flags & IRQF_TRIGGER_MASK) { 1328 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK; 1329 unsigned int omsk = irqd_get_trigger_type(&desc->irq_data); 1330 1331 if (nmsk != omsk) 1332 /* hope the handler works with current trigger mode */ 1333 pr_warn("irq %d uses trigger mode %u; requested %u\n", 1334 irq, omsk, nmsk); 1335 } 1336 1337 *old_ptr = new; 1338 1339 irq_pm_install_action(desc, new); 1340 1341 /* Reset broken irq detection when installing new handler */ 1342 desc->irq_count = 0; 1343 desc->irqs_unhandled = 0; 1344 1345 /* 1346 * Check whether we disabled the irq via the spurious handler 1347 * before. Reenable it and give it another chance. 1348 */ 1349 if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) { 1350 desc->istate &= ~IRQS_SPURIOUS_DISABLED; 1351 __enable_irq(desc); 1352 } 1353 1354 raw_spin_unlock_irqrestore(&desc->lock, flags); 1355 chip_bus_sync_unlock(desc); 1356 mutex_unlock(&desc->request_mutex); 1357 1358 irq_setup_timings(desc, new); 1359 1360 /* 1361 * Strictly no need to wake it up, but hung_task complains 1362 * when no hard interrupt wakes the thread up. 1363 */ 1364 if (new->thread) 1365 wake_up_process(new->thread); 1366 if (new->secondary) 1367 wake_up_process(new->secondary->thread); 1368 1369 register_irq_proc(irq, desc); 1370 irq_add_debugfs_entry(irq, desc); 1371 new->dir = NULL; 1372 register_handler_proc(irq, new); 1373 return 0; 1374 1375 mismatch: 1376 if (!(new->flags & IRQF_PROBE_SHARED)) { 1377 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n", 1378 irq, new->flags, new->name, old->flags, old->name); 1379 #ifdef CONFIG_DEBUG_SHIRQ 1380 dump_stack(); 1381 #endif 1382 } 1383 ret = -EBUSY; 1384 1385 out_unlock: 1386 raw_spin_unlock_irqrestore(&desc->lock, flags); 1387 1388 chip_bus_sync_unlock(desc); 1389 1390 if (!desc->action) 1391 irq_release_resources(desc); 1392 1393 out_mutex: 1394 mutex_unlock(&desc->request_mutex); 1395 1396 out_thread: 1397 if (new->thread) { 1398 struct task_struct *t = new->thread; 1399 1400 new->thread = NULL; 1401 kthread_stop(t); 1402 put_task_struct(t); 1403 } 1404 if (new->secondary && new->secondary->thread) { 1405 struct task_struct *t = new->secondary->thread; 1406 1407 new->secondary->thread = NULL; 1408 kthread_stop(t); 1409 put_task_struct(t); 1410 } 1411 out_mput: 1412 module_put(desc->owner); 1413 return ret; 1414 } 1415 1416 /** 1417 * setup_irq - setup an interrupt 1418 * @irq: Interrupt line to setup 1419 * @act: irqaction for the interrupt 1420 * 1421 * Used to statically setup interrupts in the early boot process. 1422 */ 1423 int setup_irq(unsigned int irq, struct irqaction *act) 1424 { 1425 int retval; 1426 struct irq_desc *desc = irq_to_desc(irq); 1427 1428 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1429 return -EINVAL; 1430 1431 retval = irq_chip_pm_get(&desc->irq_data); 1432 if (retval < 0) 1433 return retval; 1434 1435 retval = __setup_irq(irq, desc, act); 1436 1437 if (retval) 1438 irq_chip_pm_put(&desc->irq_data); 1439 1440 return retval; 1441 } 1442 EXPORT_SYMBOL_GPL(setup_irq); 1443 1444 /* 1445 * Internal function to unregister an irqaction - used to free 1446 * regular and special interrupts that are part of the architecture. 1447 */ 1448 static struct irqaction *__free_irq(unsigned int irq, void *dev_id) 1449 { 1450 struct irq_desc *desc = irq_to_desc(irq); 1451 struct irqaction *action, **action_ptr; 1452 unsigned long flags; 1453 1454 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq); 1455 1456 if (!desc) 1457 return NULL; 1458 1459 mutex_lock(&desc->request_mutex); 1460 chip_bus_lock(desc); 1461 raw_spin_lock_irqsave(&desc->lock, flags); 1462 1463 /* 1464 * There can be multiple actions per IRQ descriptor, find the right 1465 * one based on the dev_id: 1466 */ 1467 action_ptr = &desc->action; 1468 for (;;) { 1469 action = *action_ptr; 1470 1471 if (!action) { 1472 WARN(1, "Trying to free already-free IRQ %d\n", irq); 1473 raw_spin_unlock_irqrestore(&desc->lock, flags); 1474 chip_bus_sync_unlock(desc); 1475 return NULL; 1476 } 1477 1478 if (action->dev_id == dev_id) 1479 break; 1480 action_ptr = &action->next; 1481 } 1482 1483 /* Found it - now remove it from the list of entries: */ 1484 *action_ptr = action->next; 1485 1486 irq_pm_remove_action(desc, action); 1487 1488 /* If this was the last handler, shut down the IRQ line: */ 1489 if (!desc->action) { 1490 irq_settings_clr_disable_unlazy(desc); 1491 irq_shutdown(desc); 1492 } 1493 1494 #ifdef CONFIG_SMP 1495 /* make sure affinity_hint is cleaned up */ 1496 if (WARN_ON_ONCE(desc->affinity_hint)) 1497 desc->affinity_hint = NULL; 1498 #endif 1499 1500 raw_spin_unlock_irqrestore(&desc->lock, flags); 1501 chip_bus_sync_unlock(desc); 1502 1503 unregister_handler_proc(irq, action); 1504 1505 /* Make sure it's not being used on another CPU: */ 1506 synchronize_irq(irq); 1507 1508 #ifdef CONFIG_DEBUG_SHIRQ 1509 /* 1510 * It's a shared IRQ -- the driver ought to be prepared for an IRQ 1511 * event to happen even now it's being freed, so let's make sure that 1512 * is so by doing an extra call to the handler .... 1513 * 1514 * ( We do this after actually deregistering it, to make sure that a 1515 * 'real' IRQ doesn't run in * parallel with our fake. ) 1516 */ 1517 if (action->flags & IRQF_SHARED) { 1518 local_irq_save(flags); 1519 action->handler(irq, dev_id); 1520 local_irq_restore(flags); 1521 } 1522 #endif 1523 1524 if (action->thread) { 1525 kthread_stop(action->thread); 1526 put_task_struct(action->thread); 1527 if (action->secondary && action->secondary->thread) { 1528 kthread_stop(action->secondary->thread); 1529 put_task_struct(action->secondary->thread); 1530 } 1531 } 1532 1533 if (!desc->action) { 1534 irq_release_resources(desc); 1535 irq_remove_timings(desc); 1536 } 1537 1538 mutex_unlock(&desc->request_mutex); 1539 1540 irq_chip_pm_put(&desc->irq_data); 1541 module_put(desc->owner); 1542 kfree(action->secondary); 1543 return action; 1544 } 1545 1546 /** 1547 * remove_irq - free an interrupt 1548 * @irq: Interrupt line to free 1549 * @act: irqaction for the interrupt 1550 * 1551 * Used to remove interrupts statically setup by the early boot process. 1552 */ 1553 void remove_irq(unsigned int irq, struct irqaction *act) 1554 { 1555 struct irq_desc *desc = irq_to_desc(irq); 1556 1557 if (desc && !WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1558 __free_irq(irq, act->dev_id); 1559 } 1560 EXPORT_SYMBOL_GPL(remove_irq); 1561 1562 /** 1563 * free_irq - free an interrupt allocated with request_irq 1564 * @irq: Interrupt line to free 1565 * @dev_id: Device identity to free 1566 * 1567 * Remove an interrupt handler. The handler is removed and if the 1568 * interrupt line is no longer in use by any driver it is disabled. 1569 * On a shared IRQ the caller must ensure the interrupt is disabled 1570 * on the card it drives before calling this function. The function 1571 * does not return until any executing interrupts for this IRQ 1572 * have completed. 1573 * 1574 * This function must not be called from interrupt context. 1575 * 1576 * Returns the devname argument passed to request_irq. 1577 */ 1578 const void *free_irq(unsigned int irq, void *dev_id) 1579 { 1580 struct irq_desc *desc = irq_to_desc(irq); 1581 struct irqaction *action; 1582 const char *devname; 1583 1584 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1585 return NULL; 1586 1587 #ifdef CONFIG_SMP 1588 if (WARN_ON(desc->affinity_notify)) 1589 desc->affinity_notify = NULL; 1590 #endif 1591 1592 action = __free_irq(irq, dev_id); 1593 devname = action->name; 1594 kfree(action); 1595 return devname; 1596 } 1597 EXPORT_SYMBOL(free_irq); 1598 1599 /** 1600 * request_threaded_irq - allocate an interrupt line 1601 * @irq: Interrupt line to allocate 1602 * @handler: Function to be called when the IRQ occurs. 1603 * Primary handler for threaded interrupts 1604 * If NULL and thread_fn != NULL the default 1605 * primary handler is installed 1606 * @thread_fn: Function called from the irq handler thread 1607 * If NULL, no irq thread is created 1608 * @irqflags: Interrupt type flags 1609 * @devname: An ascii name for the claiming device 1610 * @dev_id: A cookie passed back to the handler function 1611 * 1612 * This call allocates interrupt resources and enables the 1613 * interrupt line and IRQ handling. From the point this 1614 * call is made your handler function may be invoked. Since 1615 * your handler function must clear any interrupt the board 1616 * raises, you must take care both to initialise your hardware 1617 * and to set up the interrupt handler in the right order. 1618 * 1619 * If you want to set up a threaded irq handler for your device 1620 * then you need to supply @handler and @thread_fn. @handler is 1621 * still called in hard interrupt context and has to check 1622 * whether the interrupt originates from the device. If yes it 1623 * needs to disable the interrupt on the device and return 1624 * IRQ_WAKE_THREAD which will wake up the handler thread and run 1625 * @thread_fn. This split handler design is necessary to support 1626 * shared interrupts. 1627 * 1628 * Dev_id must be globally unique. Normally the address of the 1629 * device data structure is used as the cookie. Since the handler 1630 * receives this value it makes sense to use it. 1631 * 1632 * If your interrupt is shared you must pass a non NULL dev_id 1633 * as this is required when freeing the interrupt. 1634 * 1635 * Flags: 1636 * 1637 * IRQF_SHARED Interrupt is shared 1638 * IRQF_TRIGGER_* Specify active edge(s) or level 1639 * 1640 */ 1641 int request_threaded_irq(unsigned int irq, irq_handler_t handler, 1642 irq_handler_t thread_fn, unsigned long irqflags, 1643 const char *devname, void *dev_id) 1644 { 1645 struct irqaction *action; 1646 struct irq_desc *desc; 1647 int retval; 1648 1649 if (irq == IRQ_NOTCONNECTED) 1650 return -ENOTCONN; 1651 1652 /* 1653 * Sanity-check: shared interrupts must pass in a real dev-ID, 1654 * otherwise we'll have trouble later trying to figure out 1655 * which interrupt is which (messes up the interrupt freeing 1656 * logic etc). 1657 * 1658 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and 1659 * it cannot be set along with IRQF_NO_SUSPEND. 1660 */ 1661 if (((irqflags & IRQF_SHARED) && !dev_id) || 1662 (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) || 1663 ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND))) 1664 return -EINVAL; 1665 1666 desc = irq_to_desc(irq); 1667 if (!desc) 1668 return -EINVAL; 1669 1670 if (!irq_settings_can_request(desc) || 1671 WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1672 return -EINVAL; 1673 1674 if (!handler) { 1675 if (!thread_fn) 1676 return -EINVAL; 1677 handler = irq_default_primary_handler; 1678 } 1679 1680 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 1681 if (!action) 1682 return -ENOMEM; 1683 1684 action->handler = handler; 1685 action->thread_fn = thread_fn; 1686 action->flags = irqflags; 1687 action->name = devname; 1688 action->dev_id = dev_id; 1689 1690 retval = irq_chip_pm_get(&desc->irq_data); 1691 if (retval < 0) { 1692 kfree(action); 1693 return retval; 1694 } 1695 1696 retval = __setup_irq(irq, desc, action); 1697 1698 if (retval) { 1699 irq_chip_pm_put(&desc->irq_data); 1700 kfree(action->secondary); 1701 kfree(action); 1702 } 1703 1704 #ifdef CONFIG_DEBUG_SHIRQ_FIXME 1705 if (!retval && (irqflags & IRQF_SHARED)) { 1706 /* 1707 * It's a shared IRQ -- the driver ought to be prepared for it 1708 * to happen immediately, so let's make sure.... 1709 * We disable the irq to make sure that a 'real' IRQ doesn't 1710 * run in parallel with our fake. 1711 */ 1712 unsigned long flags; 1713 1714 disable_irq(irq); 1715 local_irq_save(flags); 1716 1717 handler(irq, dev_id); 1718 1719 local_irq_restore(flags); 1720 enable_irq(irq); 1721 } 1722 #endif 1723 return retval; 1724 } 1725 EXPORT_SYMBOL(request_threaded_irq); 1726 1727 /** 1728 * request_any_context_irq - allocate an interrupt line 1729 * @irq: Interrupt line to allocate 1730 * @handler: Function to be called when the IRQ occurs. 1731 * Threaded handler for threaded interrupts. 1732 * @flags: Interrupt type flags 1733 * @name: An ascii name for the claiming device 1734 * @dev_id: A cookie passed back to the handler function 1735 * 1736 * This call allocates interrupt resources and enables the 1737 * interrupt line and IRQ handling. It selects either a 1738 * hardirq or threaded handling method depending on the 1739 * context. 1740 * 1741 * On failure, it returns a negative value. On success, 1742 * it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED. 1743 */ 1744 int request_any_context_irq(unsigned int irq, irq_handler_t handler, 1745 unsigned long flags, const char *name, void *dev_id) 1746 { 1747 struct irq_desc *desc; 1748 int ret; 1749 1750 if (irq == IRQ_NOTCONNECTED) 1751 return -ENOTCONN; 1752 1753 desc = irq_to_desc(irq); 1754 if (!desc) 1755 return -EINVAL; 1756 1757 if (irq_settings_is_nested_thread(desc)) { 1758 ret = request_threaded_irq(irq, NULL, handler, 1759 flags, name, dev_id); 1760 return !ret ? IRQC_IS_NESTED : ret; 1761 } 1762 1763 ret = request_irq(irq, handler, flags, name, dev_id); 1764 return !ret ? IRQC_IS_HARDIRQ : ret; 1765 } 1766 EXPORT_SYMBOL_GPL(request_any_context_irq); 1767 1768 void enable_percpu_irq(unsigned int irq, unsigned int type) 1769 { 1770 unsigned int cpu = smp_processor_id(); 1771 unsigned long flags; 1772 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 1773 1774 if (!desc) 1775 return; 1776 1777 /* 1778 * If the trigger type is not specified by the caller, then 1779 * use the default for this interrupt. 1780 */ 1781 type &= IRQ_TYPE_SENSE_MASK; 1782 if (type == IRQ_TYPE_NONE) 1783 type = irqd_get_trigger_type(&desc->irq_data); 1784 1785 if (type != IRQ_TYPE_NONE) { 1786 int ret; 1787 1788 ret = __irq_set_trigger(desc, type); 1789 1790 if (ret) { 1791 WARN(1, "failed to set type for IRQ%d\n", irq); 1792 goto out; 1793 } 1794 } 1795 1796 irq_percpu_enable(desc, cpu); 1797 out: 1798 irq_put_desc_unlock(desc, flags); 1799 } 1800 EXPORT_SYMBOL_GPL(enable_percpu_irq); 1801 1802 /** 1803 * irq_percpu_is_enabled - Check whether the per cpu irq is enabled 1804 * @irq: Linux irq number to check for 1805 * 1806 * Must be called from a non migratable context. Returns the enable 1807 * state of a per cpu interrupt on the current cpu. 1808 */ 1809 bool irq_percpu_is_enabled(unsigned int irq) 1810 { 1811 unsigned int cpu = smp_processor_id(); 1812 struct irq_desc *desc; 1813 unsigned long flags; 1814 bool is_enabled; 1815 1816 desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 1817 if (!desc) 1818 return false; 1819 1820 is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled); 1821 irq_put_desc_unlock(desc, flags); 1822 1823 return is_enabled; 1824 } 1825 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled); 1826 1827 void disable_percpu_irq(unsigned int irq) 1828 { 1829 unsigned int cpu = smp_processor_id(); 1830 unsigned long flags; 1831 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 1832 1833 if (!desc) 1834 return; 1835 1836 irq_percpu_disable(desc, cpu); 1837 irq_put_desc_unlock(desc, flags); 1838 } 1839 EXPORT_SYMBOL_GPL(disable_percpu_irq); 1840 1841 /* 1842 * Internal function to unregister a percpu irqaction. 1843 */ 1844 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id) 1845 { 1846 struct irq_desc *desc = irq_to_desc(irq); 1847 struct irqaction *action; 1848 unsigned long flags; 1849 1850 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq); 1851 1852 if (!desc) 1853 return NULL; 1854 1855 raw_spin_lock_irqsave(&desc->lock, flags); 1856 1857 action = desc->action; 1858 if (!action || action->percpu_dev_id != dev_id) { 1859 WARN(1, "Trying to free already-free IRQ %d\n", irq); 1860 goto bad; 1861 } 1862 1863 if (!cpumask_empty(desc->percpu_enabled)) { 1864 WARN(1, "percpu IRQ %d still enabled on CPU%d!\n", 1865 irq, cpumask_first(desc->percpu_enabled)); 1866 goto bad; 1867 } 1868 1869 /* Found it - now remove it from the list of entries: */ 1870 desc->action = NULL; 1871 1872 raw_spin_unlock_irqrestore(&desc->lock, flags); 1873 1874 unregister_handler_proc(irq, action); 1875 1876 irq_chip_pm_put(&desc->irq_data); 1877 module_put(desc->owner); 1878 return action; 1879 1880 bad: 1881 raw_spin_unlock_irqrestore(&desc->lock, flags); 1882 return NULL; 1883 } 1884 1885 /** 1886 * remove_percpu_irq - free a per-cpu interrupt 1887 * @irq: Interrupt line to free 1888 * @act: irqaction for the interrupt 1889 * 1890 * Used to remove interrupts statically setup by the early boot process. 1891 */ 1892 void remove_percpu_irq(unsigned int irq, struct irqaction *act) 1893 { 1894 struct irq_desc *desc = irq_to_desc(irq); 1895 1896 if (desc && irq_settings_is_per_cpu_devid(desc)) 1897 __free_percpu_irq(irq, act->percpu_dev_id); 1898 } 1899 1900 /** 1901 * free_percpu_irq - free an interrupt allocated with request_percpu_irq 1902 * @irq: Interrupt line to free 1903 * @dev_id: Device identity to free 1904 * 1905 * Remove a percpu interrupt handler. The handler is removed, but 1906 * the interrupt line is not disabled. This must be done on each 1907 * CPU before calling this function. The function does not return 1908 * until any executing interrupts for this IRQ have completed. 1909 * 1910 * This function must not be called from interrupt context. 1911 */ 1912 void free_percpu_irq(unsigned int irq, void __percpu *dev_id) 1913 { 1914 struct irq_desc *desc = irq_to_desc(irq); 1915 1916 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 1917 return; 1918 1919 chip_bus_lock(desc); 1920 kfree(__free_percpu_irq(irq, dev_id)); 1921 chip_bus_sync_unlock(desc); 1922 } 1923 EXPORT_SYMBOL_GPL(free_percpu_irq); 1924 1925 /** 1926 * setup_percpu_irq - setup a per-cpu interrupt 1927 * @irq: Interrupt line to setup 1928 * @act: irqaction for the interrupt 1929 * 1930 * Used to statically setup per-cpu interrupts in the early boot process. 1931 */ 1932 int setup_percpu_irq(unsigned int irq, struct irqaction *act) 1933 { 1934 struct irq_desc *desc = irq_to_desc(irq); 1935 int retval; 1936 1937 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 1938 return -EINVAL; 1939 1940 retval = irq_chip_pm_get(&desc->irq_data); 1941 if (retval < 0) 1942 return retval; 1943 1944 retval = __setup_irq(irq, desc, act); 1945 1946 if (retval) 1947 irq_chip_pm_put(&desc->irq_data); 1948 1949 return retval; 1950 } 1951 1952 /** 1953 * __request_percpu_irq - allocate a percpu interrupt line 1954 * @irq: Interrupt line to allocate 1955 * @handler: Function to be called when the IRQ occurs. 1956 * @flags: Interrupt type flags (IRQF_TIMER only) 1957 * @devname: An ascii name for the claiming device 1958 * @dev_id: A percpu cookie passed back to the handler function 1959 * 1960 * This call allocates interrupt resources and enables the 1961 * interrupt on the local CPU. If the interrupt is supposed to be 1962 * enabled on other CPUs, it has to be done on each CPU using 1963 * enable_percpu_irq(). 1964 * 1965 * Dev_id must be globally unique. It is a per-cpu variable, and 1966 * the handler gets called with the interrupted CPU's instance of 1967 * that variable. 1968 */ 1969 int __request_percpu_irq(unsigned int irq, irq_handler_t handler, 1970 unsigned long flags, const char *devname, 1971 void __percpu *dev_id) 1972 { 1973 struct irqaction *action; 1974 struct irq_desc *desc; 1975 int retval; 1976 1977 if (!dev_id) 1978 return -EINVAL; 1979 1980 desc = irq_to_desc(irq); 1981 if (!desc || !irq_settings_can_request(desc) || 1982 !irq_settings_is_per_cpu_devid(desc)) 1983 return -EINVAL; 1984 1985 if (flags && flags != IRQF_TIMER) 1986 return -EINVAL; 1987 1988 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 1989 if (!action) 1990 return -ENOMEM; 1991 1992 action->handler = handler; 1993 action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND; 1994 action->name = devname; 1995 action->percpu_dev_id = dev_id; 1996 1997 retval = irq_chip_pm_get(&desc->irq_data); 1998 if (retval < 0) { 1999 kfree(action); 2000 return retval; 2001 } 2002 2003 retval = __setup_irq(irq, desc, action); 2004 2005 if (retval) { 2006 irq_chip_pm_put(&desc->irq_data); 2007 kfree(action); 2008 } 2009 2010 return retval; 2011 } 2012 EXPORT_SYMBOL_GPL(__request_percpu_irq); 2013 2014 /** 2015 * irq_get_irqchip_state - returns the irqchip state of a interrupt. 2016 * @irq: Interrupt line that is forwarded to a VM 2017 * @which: One of IRQCHIP_STATE_* the caller wants to know about 2018 * @state: a pointer to a boolean where the state is to be storeed 2019 * 2020 * This call snapshots the internal irqchip state of an 2021 * interrupt, returning into @state the bit corresponding to 2022 * stage @which 2023 * 2024 * This function should be called with preemption disabled if the 2025 * interrupt controller has per-cpu registers. 2026 */ 2027 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which, 2028 bool *state) 2029 { 2030 struct irq_desc *desc; 2031 struct irq_data *data; 2032 struct irq_chip *chip; 2033 unsigned long flags; 2034 int err = -EINVAL; 2035 2036 desc = irq_get_desc_buslock(irq, &flags, 0); 2037 if (!desc) 2038 return err; 2039 2040 data = irq_desc_get_irq_data(desc); 2041 2042 do { 2043 chip = irq_data_get_irq_chip(data); 2044 if (chip->irq_get_irqchip_state) 2045 break; 2046 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 2047 data = data->parent_data; 2048 #else 2049 data = NULL; 2050 #endif 2051 } while (data); 2052 2053 if (data) 2054 err = chip->irq_get_irqchip_state(data, which, state); 2055 2056 irq_put_desc_busunlock(desc, flags); 2057 return err; 2058 } 2059 EXPORT_SYMBOL_GPL(irq_get_irqchip_state); 2060 2061 /** 2062 * irq_set_irqchip_state - set the state of a forwarded interrupt. 2063 * @irq: Interrupt line that is forwarded to a VM 2064 * @which: State to be restored (one of IRQCHIP_STATE_*) 2065 * @val: Value corresponding to @which 2066 * 2067 * This call sets the internal irqchip state of an interrupt, 2068 * depending on the value of @which. 2069 * 2070 * This function should be called with preemption disabled if the 2071 * interrupt controller has per-cpu registers. 2072 */ 2073 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which, 2074 bool val) 2075 { 2076 struct irq_desc *desc; 2077 struct irq_data *data; 2078 struct irq_chip *chip; 2079 unsigned long flags; 2080 int err = -EINVAL; 2081 2082 desc = irq_get_desc_buslock(irq, &flags, 0); 2083 if (!desc) 2084 return err; 2085 2086 data = irq_desc_get_irq_data(desc); 2087 2088 do { 2089 chip = irq_data_get_irq_chip(data); 2090 if (chip->irq_set_irqchip_state) 2091 break; 2092 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 2093 data = data->parent_data; 2094 #else 2095 data = NULL; 2096 #endif 2097 } while (data); 2098 2099 if (data) 2100 err = chip->irq_set_irqchip_state(data, which, val); 2101 2102 irq_put_desc_busunlock(desc, flags); 2103 return err; 2104 } 2105 EXPORT_SYMBOL_GPL(irq_set_irqchip_state); 2106