1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar 4 * Copyright (C) 2005-2006 Thomas Gleixner 5 * 6 * This file contains driver APIs to the irq subsystem. 7 */ 8 9 #define pr_fmt(fmt) "genirq: " fmt 10 11 #include <linux/irq.h> 12 #include <linux/kthread.h> 13 #include <linux/module.h> 14 #include <linux/random.h> 15 #include <linux/interrupt.h> 16 #include <linux/irqdomain.h> 17 #include <linux/slab.h> 18 #include <linux/sched.h> 19 #include <linux/sched/rt.h> 20 #include <linux/sched/task.h> 21 #include <uapi/linux/sched/types.h> 22 #include <linux/task_work.h> 23 24 #include "internals.h" 25 26 #ifdef CONFIG_IRQ_FORCED_THREADING 27 __read_mostly bool force_irqthreads; 28 EXPORT_SYMBOL_GPL(force_irqthreads); 29 30 static int __init setup_forced_irqthreads(char *arg) 31 { 32 force_irqthreads = true; 33 return 0; 34 } 35 early_param("threadirqs", setup_forced_irqthreads); 36 #endif 37 38 static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip) 39 { 40 struct irq_data *irqd = irq_desc_get_irq_data(desc); 41 bool inprogress; 42 43 do { 44 unsigned long flags; 45 46 /* 47 * Wait until we're out of the critical section. This might 48 * give the wrong answer due to the lack of memory barriers. 49 */ 50 while (irqd_irq_inprogress(&desc->irq_data)) 51 cpu_relax(); 52 53 /* Ok, that indicated we're done: double-check carefully. */ 54 raw_spin_lock_irqsave(&desc->lock, flags); 55 inprogress = irqd_irq_inprogress(&desc->irq_data); 56 57 /* 58 * If requested and supported, check at the chip whether it 59 * is in flight at the hardware level, i.e. already pending 60 * in a CPU and waiting for service and acknowledge. 61 */ 62 if (!inprogress && sync_chip) { 63 /* 64 * Ignore the return code. inprogress is only updated 65 * when the chip supports it. 66 */ 67 __irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE, 68 &inprogress); 69 } 70 raw_spin_unlock_irqrestore(&desc->lock, flags); 71 72 /* Oops, that failed? */ 73 } while (inprogress); 74 } 75 76 /** 77 * synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs) 78 * @irq: interrupt number to wait for 79 * 80 * This function waits for any pending hard IRQ handlers for this 81 * interrupt to complete before returning. If you use this 82 * function while holding a resource the IRQ handler may need you 83 * will deadlock. It does not take associated threaded handlers 84 * into account. 85 * 86 * Do not use this for shutdown scenarios where you must be sure 87 * that all parts (hardirq and threaded handler) have completed. 88 * 89 * Returns: false if a threaded handler is active. 90 * 91 * This function may be called - with care - from IRQ context. 92 * 93 * It does not check whether there is an interrupt in flight at the 94 * hardware level, but not serviced yet, as this might deadlock when 95 * called with interrupts disabled and the target CPU of the interrupt 96 * is the current CPU. 97 */ 98 bool synchronize_hardirq(unsigned int irq) 99 { 100 struct irq_desc *desc = irq_to_desc(irq); 101 102 if (desc) { 103 __synchronize_hardirq(desc, false); 104 return !atomic_read(&desc->threads_active); 105 } 106 107 return true; 108 } 109 EXPORT_SYMBOL(synchronize_hardirq); 110 111 /** 112 * synchronize_irq - wait for pending IRQ handlers (on other CPUs) 113 * @irq: interrupt number to wait for 114 * 115 * This function waits for any pending IRQ handlers for this interrupt 116 * to complete before returning. If you use this function while 117 * holding a resource the IRQ handler may need you will deadlock. 118 * 119 * Can only be called from preemptible code as it might sleep when 120 * an interrupt thread is associated to @irq. 121 * 122 * It optionally makes sure (when the irq chip supports that method) 123 * that the interrupt is not pending in any CPU and waiting for 124 * service. 125 */ 126 void synchronize_irq(unsigned int irq) 127 { 128 struct irq_desc *desc = irq_to_desc(irq); 129 130 if (desc) { 131 __synchronize_hardirq(desc, true); 132 /* 133 * We made sure that no hardirq handler is 134 * running. Now verify that no threaded handlers are 135 * active. 136 */ 137 wait_event(desc->wait_for_threads, 138 !atomic_read(&desc->threads_active)); 139 } 140 } 141 EXPORT_SYMBOL(synchronize_irq); 142 143 #ifdef CONFIG_SMP 144 cpumask_var_t irq_default_affinity; 145 146 static bool __irq_can_set_affinity(struct irq_desc *desc) 147 { 148 if (!desc || !irqd_can_balance(&desc->irq_data) || 149 !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity) 150 return false; 151 return true; 152 } 153 154 /** 155 * irq_can_set_affinity - Check if the affinity of a given irq can be set 156 * @irq: Interrupt to check 157 * 158 */ 159 int irq_can_set_affinity(unsigned int irq) 160 { 161 return __irq_can_set_affinity(irq_to_desc(irq)); 162 } 163 164 /** 165 * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space 166 * @irq: Interrupt to check 167 * 168 * Like irq_can_set_affinity() above, but additionally checks for the 169 * AFFINITY_MANAGED flag. 170 */ 171 bool irq_can_set_affinity_usr(unsigned int irq) 172 { 173 struct irq_desc *desc = irq_to_desc(irq); 174 175 return __irq_can_set_affinity(desc) && 176 !irqd_affinity_is_managed(&desc->irq_data); 177 } 178 179 /** 180 * irq_set_thread_affinity - Notify irq threads to adjust affinity 181 * @desc: irq descriptor which has affitnity changed 182 * 183 * We just set IRQTF_AFFINITY and delegate the affinity setting 184 * to the interrupt thread itself. We can not call 185 * set_cpus_allowed_ptr() here as we hold desc->lock and this 186 * code can be called from hard interrupt context. 187 */ 188 void irq_set_thread_affinity(struct irq_desc *desc) 189 { 190 struct irqaction *action; 191 192 for_each_action_of_desc(desc, action) 193 if (action->thread) 194 set_bit(IRQTF_AFFINITY, &action->thread_flags); 195 } 196 197 static void irq_validate_effective_affinity(struct irq_data *data) 198 { 199 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK 200 const struct cpumask *m = irq_data_get_effective_affinity_mask(data); 201 struct irq_chip *chip = irq_data_get_irq_chip(data); 202 203 if (!cpumask_empty(m)) 204 return; 205 pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n", 206 chip->name, data->irq); 207 #endif 208 } 209 210 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask, 211 bool force) 212 { 213 struct irq_desc *desc = irq_data_to_desc(data); 214 struct irq_chip *chip = irq_data_get_irq_chip(data); 215 int ret; 216 217 if (!chip || !chip->irq_set_affinity) 218 return -EINVAL; 219 220 ret = chip->irq_set_affinity(data, mask, force); 221 switch (ret) { 222 case IRQ_SET_MASK_OK: 223 case IRQ_SET_MASK_OK_DONE: 224 cpumask_copy(desc->irq_common_data.affinity, mask); 225 /* fall through */ 226 case IRQ_SET_MASK_OK_NOCOPY: 227 irq_validate_effective_affinity(data); 228 irq_set_thread_affinity(desc); 229 ret = 0; 230 } 231 232 return ret; 233 } 234 235 #ifdef CONFIG_GENERIC_PENDING_IRQ 236 static inline int irq_set_affinity_pending(struct irq_data *data, 237 const struct cpumask *dest) 238 { 239 struct irq_desc *desc = irq_data_to_desc(data); 240 241 irqd_set_move_pending(data); 242 irq_copy_pending(desc, dest); 243 return 0; 244 } 245 #else 246 static inline int irq_set_affinity_pending(struct irq_data *data, 247 const struct cpumask *dest) 248 { 249 return -EBUSY; 250 } 251 #endif 252 253 static int irq_try_set_affinity(struct irq_data *data, 254 const struct cpumask *dest, bool force) 255 { 256 int ret = irq_do_set_affinity(data, dest, force); 257 258 /* 259 * In case that the underlying vector management is busy and the 260 * architecture supports the generic pending mechanism then utilize 261 * this to avoid returning an error to user space. 262 */ 263 if (ret == -EBUSY && !force) 264 ret = irq_set_affinity_pending(data, dest); 265 return ret; 266 } 267 268 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask, 269 bool force) 270 { 271 struct irq_chip *chip = irq_data_get_irq_chip(data); 272 struct irq_desc *desc = irq_data_to_desc(data); 273 int ret = 0; 274 275 if (!chip || !chip->irq_set_affinity) 276 return -EINVAL; 277 278 if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) { 279 ret = irq_try_set_affinity(data, mask, force); 280 } else { 281 irqd_set_move_pending(data); 282 irq_copy_pending(desc, mask); 283 } 284 285 if (desc->affinity_notify) { 286 kref_get(&desc->affinity_notify->kref); 287 schedule_work(&desc->affinity_notify->work); 288 } 289 irqd_set(data, IRQD_AFFINITY_SET); 290 291 return ret; 292 } 293 294 int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force) 295 { 296 struct irq_desc *desc = irq_to_desc(irq); 297 unsigned long flags; 298 int ret; 299 300 if (!desc) 301 return -EINVAL; 302 303 raw_spin_lock_irqsave(&desc->lock, flags); 304 ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force); 305 raw_spin_unlock_irqrestore(&desc->lock, flags); 306 return ret; 307 } 308 309 int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m) 310 { 311 unsigned long flags; 312 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 313 314 if (!desc) 315 return -EINVAL; 316 desc->affinity_hint = m; 317 irq_put_desc_unlock(desc, flags); 318 /* set the initial affinity to prevent every interrupt being on CPU0 */ 319 if (m) 320 __irq_set_affinity(irq, m, false); 321 return 0; 322 } 323 EXPORT_SYMBOL_GPL(irq_set_affinity_hint); 324 325 static void irq_affinity_notify(struct work_struct *work) 326 { 327 struct irq_affinity_notify *notify = 328 container_of(work, struct irq_affinity_notify, work); 329 struct irq_desc *desc = irq_to_desc(notify->irq); 330 cpumask_var_t cpumask; 331 unsigned long flags; 332 333 if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL)) 334 goto out; 335 336 raw_spin_lock_irqsave(&desc->lock, flags); 337 if (irq_move_pending(&desc->irq_data)) 338 irq_get_pending(cpumask, desc); 339 else 340 cpumask_copy(cpumask, desc->irq_common_data.affinity); 341 raw_spin_unlock_irqrestore(&desc->lock, flags); 342 343 notify->notify(notify, cpumask); 344 345 free_cpumask_var(cpumask); 346 out: 347 kref_put(¬ify->kref, notify->release); 348 } 349 350 /** 351 * irq_set_affinity_notifier - control notification of IRQ affinity changes 352 * @irq: Interrupt for which to enable/disable notification 353 * @notify: Context for notification, or %NULL to disable 354 * notification. Function pointers must be initialised; 355 * the other fields will be initialised by this function. 356 * 357 * Must be called in process context. Notification may only be enabled 358 * after the IRQ is allocated and must be disabled before the IRQ is 359 * freed using free_irq(). 360 */ 361 int 362 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify) 363 { 364 struct irq_desc *desc = irq_to_desc(irq); 365 struct irq_affinity_notify *old_notify; 366 unsigned long flags; 367 368 /* The release function is promised process context */ 369 might_sleep(); 370 371 if (!desc || desc->istate & IRQS_NMI) 372 return -EINVAL; 373 374 /* Complete initialisation of *notify */ 375 if (notify) { 376 notify->irq = irq; 377 kref_init(¬ify->kref); 378 INIT_WORK(¬ify->work, irq_affinity_notify); 379 } 380 381 raw_spin_lock_irqsave(&desc->lock, flags); 382 old_notify = desc->affinity_notify; 383 desc->affinity_notify = notify; 384 raw_spin_unlock_irqrestore(&desc->lock, flags); 385 386 if (old_notify) { 387 cancel_work_sync(&old_notify->work); 388 kref_put(&old_notify->kref, old_notify->release); 389 } 390 391 return 0; 392 } 393 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier); 394 395 #ifndef CONFIG_AUTO_IRQ_AFFINITY 396 /* 397 * Generic version of the affinity autoselector. 398 */ 399 int irq_setup_affinity(struct irq_desc *desc) 400 { 401 struct cpumask *set = irq_default_affinity; 402 int ret, node = irq_desc_get_node(desc); 403 static DEFINE_RAW_SPINLOCK(mask_lock); 404 static struct cpumask mask; 405 406 /* Excludes PER_CPU and NO_BALANCE interrupts */ 407 if (!__irq_can_set_affinity(desc)) 408 return 0; 409 410 raw_spin_lock(&mask_lock); 411 /* 412 * Preserve the managed affinity setting and a userspace affinity 413 * setup, but make sure that one of the targets is online. 414 */ 415 if (irqd_affinity_is_managed(&desc->irq_data) || 416 irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) { 417 if (cpumask_intersects(desc->irq_common_data.affinity, 418 cpu_online_mask)) 419 set = desc->irq_common_data.affinity; 420 else 421 irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET); 422 } 423 424 cpumask_and(&mask, cpu_online_mask, set); 425 if (cpumask_empty(&mask)) 426 cpumask_copy(&mask, cpu_online_mask); 427 428 if (node != NUMA_NO_NODE) { 429 const struct cpumask *nodemask = cpumask_of_node(node); 430 431 /* make sure at least one of the cpus in nodemask is online */ 432 if (cpumask_intersects(&mask, nodemask)) 433 cpumask_and(&mask, &mask, nodemask); 434 } 435 ret = irq_do_set_affinity(&desc->irq_data, &mask, false); 436 raw_spin_unlock(&mask_lock); 437 return ret; 438 } 439 #else 440 /* Wrapper for ALPHA specific affinity selector magic */ 441 int irq_setup_affinity(struct irq_desc *desc) 442 { 443 return irq_select_affinity(irq_desc_get_irq(desc)); 444 } 445 #endif 446 447 /* 448 * Called when a bogus affinity is set via /proc/irq 449 */ 450 int irq_select_affinity_usr(unsigned int irq) 451 { 452 struct irq_desc *desc = irq_to_desc(irq); 453 unsigned long flags; 454 int ret; 455 456 raw_spin_lock_irqsave(&desc->lock, flags); 457 ret = irq_setup_affinity(desc); 458 raw_spin_unlock_irqrestore(&desc->lock, flags); 459 return ret; 460 } 461 #endif 462 463 /** 464 * irq_set_vcpu_affinity - Set vcpu affinity for the interrupt 465 * @irq: interrupt number to set affinity 466 * @vcpu_info: vCPU specific data or pointer to a percpu array of vCPU 467 * specific data for percpu_devid interrupts 468 * 469 * This function uses the vCPU specific data to set the vCPU 470 * affinity for an irq. The vCPU specific data is passed from 471 * outside, such as KVM. One example code path is as below: 472 * KVM -> IOMMU -> irq_set_vcpu_affinity(). 473 */ 474 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info) 475 { 476 unsigned long flags; 477 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 478 struct irq_data *data; 479 struct irq_chip *chip; 480 int ret = -ENOSYS; 481 482 if (!desc) 483 return -EINVAL; 484 485 data = irq_desc_get_irq_data(desc); 486 do { 487 chip = irq_data_get_irq_chip(data); 488 if (chip && chip->irq_set_vcpu_affinity) 489 break; 490 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 491 data = data->parent_data; 492 #else 493 data = NULL; 494 #endif 495 } while (data); 496 497 if (data) 498 ret = chip->irq_set_vcpu_affinity(data, vcpu_info); 499 irq_put_desc_unlock(desc, flags); 500 501 return ret; 502 } 503 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity); 504 505 void __disable_irq(struct irq_desc *desc) 506 { 507 if (!desc->depth++) 508 irq_disable(desc); 509 } 510 511 static int __disable_irq_nosync(unsigned int irq) 512 { 513 unsigned long flags; 514 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 515 516 if (!desc) 517 return -EINVAL; 518 __disable_irq(desc); 519 irq_put_desc_busunlock(desc, flags); 520 return 0; 521 } 522 523 /** 524 * disable_irq_nosync - disable an irq without waiting 525 * @irq: Interrupt to disable 526 * 527 * Disable the selected interrupt line. Disables and Enables are 528 * nested. 529 * Unlike disable_irq(), this function does not ensure existing 530 * instances of the IRQ handler have completed before returning. 531 * 532 * This function may be called from IRQ context. 533 */ 534 void disable_irq_nosync(unsigned int irq) 535 { 536 __disable_irq_nosync(irq); 537 } 538 EXPORT_SYMBOL(disable_irq_nosync); 539 540 /** 541 * disable_irq - disable an irq and wait for completion 542 * @irq: Interrupt to disable 543 * 544 * Disable the selected interrupt line. Enables and Disables are 545 * nested. 546 * This function waits for any pending IRQ handlers for this interrupt 547 * to complete before returning. If you use this function while 548 * holding a resource the IRQ handler may need you will deadlock. 549 * 550 * This function may be called - with care - from IRQ context. 551 */ 552 void disable_irq(unsigned int irq) 553 { 554 if (!__disable_irq_nosync(irq)) 555 synchronize_irq(irq); 556 } 557 EXPORT_SYMBOL(disable_irq); 558 559 /** 560 * disable_hardirq - disables an irq and waits for hardirq completion 561 * @irq: Interrupt to disable 562 * 563 * Disable the selected interrupt line. Enables and Disables are 564 * nested. 565 * This function waits for any pending hard IRQ handlers for this 566 * interrupt to complete before returning. If you use this function while 567 * holding a resource the hard IRQ handler may need you will deadlock. 568 * 569 * When used to optimistically disable an interrupt from atomic context 570 * the return value must be checked. 571 * 572 * Returns: false if a threaded handler is active. 573 * 574 * This function may be called - with care - from IRQ context. 575 */ 576 bool disable_hardirq(unsigned int irq) 577 { 578 if (!__disable_irq_nosync(irq)) 579 return synchronize_hardirq(irq); 580 581 return false; 582 } 583 EXPORT_SYMBOL_GPL(disable_hardirq); 584 585 /** 586 * disable_nmi_nosync - disable an nmi without waiting 587 * @irq: Interrupt to disable 588 * 589 * Disable the selected interrupt line. Disables and enables are 590 * nested. 591 * The interrupt to disable must have been requested through request_nmi. 592 * Unlike disable_nmi(), this function does not ensure existing 593 * instances of the IRQ handler have completed before returning. 594 */ 595 void disable_nmi_nosync(unsigned int irq) 596 { 597 disable_irq_nosync(irq); 598 } 599 600 void __enable_irq(struct irq_desc *desc) 601 { 602 switch (desc->depth) { 603 case 0: 604 err_out: 605 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n", 606 irq_desc_get_irq(desc)); 607 break; 608 case 1: { 609 if (desc->istate & IRQS_SUSPENDED) 610 goto err_out; 611 /* Prevent probing on this irq: */ 612 irq_settings_set_noprobe(desc); 613 /* 614 * Call irq_startup() not irq_enable() here because the 615 * interrupt might be marked NOAUTOEN. So irq_startup() 616 * needs to be invoked when it gets enabled the first 617 * time. If it was already started up, then irq_startup() 618 * will invoke irq_enable() under the hood. 619 */ 620 irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE); 621 break; 622 } 623 default: 624 desc->depth--; 625 } 626 } 627 628 /** 629 * enable_irq - enable handling of an irq 630 * @irq: Interrupt to enable 631 * 632 * Undoes the effect of one call to disable_irq(). If this 633 * matches the last disable, processing of interrupts on this 634 * IRQ line is re-enabled. 635 * 636 * This function may be called from IRQ context only when 637 * desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL ! 638 */ 639 void enable_irq(unsigned int irq) 640 { 641 unsigned long flags; 642 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 643 644 if (!desc) 645 return; 646 if (WARN(!desc->irq_data.chip, 647 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq)) 648 goto out; 649 650 __enable_irq(desc); 651 out: 652 irq_put_desc_busunlock(desc, flags); 653 } 654 EXPORT_SYMBOL(enable_irq); 655 656 /** 657 * enable_nmi - enable handling of an nmi 658 * @irq: Interrupt to enable 659 * 660 * The interrupt to enable must have been requested through request_nmi. 661 * Undoes the effect of one call to disable_nmi(). If this 662 * matches the last disable, processing of interrupts on this 663 * IRQ line is re-enabled. 664 */ 665 void enable_nmi(unsigned int irq) 666 { 667 enable_irq(irq); 668 } 669 670 static int set_irq_wake_real(unsigned int irq, unsigned int on) 671 { 672 struct irq_desc *desc = irq_to_desc(irq); 673 int ret = -ENXIO; 674 675 if (irq_desc_get_chip(desc)->flags & IRQCHIP_SKIP_SET_WAKE) 676 return 0; 677 678 if (desc->irq_data.chip->irq_set_wake) 679 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on); 680 681 return ret; 682 } 683 684 /** 685 * irq_set_irq_wake - control irq power management wakeup 686 * @irq: interrupt to control 687 * @on: enable/disable power management wakeup 688 * 689 * Enable/disable power management wakeup mode, which is 690 * disabled by default. Enables and disables must match, 691 * just as they match for non-wakeup mode support. 692 * 693 * Wakeup mode lets this IRQ wake the system from sleep 694 * states like "suspend to RAM". 695 */ 696 int irq_set_irq_wake(unsigned int irq, unsigned int on) 697 { 698 unsigned long flags; 699 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 700 int ret = 0; 701 702 if (!desc) 703 return -EINVAL; 704 705 /* Don't use NMIs as wake up interrupts please */ 706 if (desc->istate & IRQS_NMI) { 707 ret = -EINVAL; 708 goto out_unlock; 709 } 710 711 /* wakeup-capable irqs can be shared between drivers that 712 * don't need to have the same sleep mode behaviors. 713 */ 714 if (on) { 715 if (desc->wake_depth++ == 0) { 716 ret = set_irq_wake_real(irq, on); 717 if (ret) 718 desc->wake_depth = 0; 719 else 720 irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE); 721 } 722 } else { 723 if (desc->wake_depth == 0) { 724 WARN(1, "Unbalanced IRQ %d wake disable\n", irq); 725 } else if (--desc->wake_depth == 0) { 726 ret = set_irq_wake_real(irq, on); 727 if (ret) 728 desc->wake_depth = 1; 729 else 730 irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE); 731 } 732 } 733 734 out_unlock: 735 irq_put_desc_busunlock(desc, flags); 736 return ret; 737 } 738 EXPORT_SYMBOL(irq_set_irq_wake); 739 740 /* 741 * Internal function that tells the architecture code whether a 742 * particular irq has been exclusively allocated or is available 743 * for driver use. 744 */ 745 int can_request_irq(unsigned int irq, unsigned long irqflags) 746 { 747 unsigned long flags; 748 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 749 int canrequest = 0; 750 751 if (!desc) 752 return 0; 753 754 if (irq_settings_can_request(desc)) { 755 if (!desc->action || 756 irqflags & desc->action->flags & IRQF_SHARED) 757 canrequest = 1; 758 } 759 irq_put_desc_unlock(desc, flags); 760 return canrequest; 761 } 762 763 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags) 764 { 765 struct irq_chip *chip = desc->irq_data.chip; 766 int ret, unmask = 0; 767 768 if (!chip || !chip->irq_set_type) { 769 /* 770 * IRQF_TRIGGER_* but the PIC does not support multiple 771 * flow-types? 772 */ 773 pr_debug("No set_type function for IRQ %d (%s)\n", 774 irq_desc_get_irq(desc), 775 chip ? (chip->name ? : "unknown") : "unknown"); 776 return 0; 777 } 778 779 if (chip->flags & IRQCHIP_SET_TYPE_MASKED) { 780 if (!irqd_irq_masked(&desc->irq_data)) 781 mask_irq(desc); 782 if (!irqd_irq_disabled(&desc->irq_data)) 783 unmask = 1; 784 } 785 786 /* Mask all flags except trigger mode */ 787 flags &= IRQ_TYPE_SENSE_MASK; 788 ret = chip->irq_set_type(&desc->irq_data, flags); 789 790 switch (ret) { 791 case IRQ_SET_MASK_OK: 792 case IRQ_SET_MASK_OK_DONE: 793 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK); 794 irqd_set(&desc->irq_data, flags); 795 /* fall through */ 796 797 case IRQ_SET_MASK_OK_NOCOPY: 798 flags = irqd_get_trigger_type(&desc->irq_data); 799 irq_settings_set_trigger_mask(desc, flags); 800 irqd_clear(&desc->irq_data, IRQD_LEVEL); 801 irq_settings_clr_level(desc); 802 if (flags & IRQ_TYPE_LEVEL_MASK) { 803 irq_settings_set_level(desc); 804 irqd_set(&desc->irq_data, IRQD_LEVEL); 805 } 806 807 ret = 0; 808 break; 809 default: 810 pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n", 811 flags, irq_desc_get_irq(desc), chip->irq_set_type); 812 } 813 if (unmask) 814 unmask_irq(desc); 815 return ret; 816 } 817 818 #ifdef CONFIG_HARDIRQS_SW_RESEND 819 int irq_set_parent(int irq, int parent_irq) 820 { 821 unsigned long flags; 822 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 823 824 if (!desc) 825 return -EINVAL; 826 827 desc->parent_irq = parent_irq; 828 829 irq_put_desc_unlock(desc, flags); 830 return 0; 831 } 832 EXPORT_SYMBOL_GPL(irq_set_parent); 833 #endif 834 835 /* 836 * Default primary interrupt handler for threaded interrupts. Is 837 * assigned as primary handler when request_threaded_irq is called 838 * with handler == NULL. Useful for oneshot interrupts. 839 */ 840 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id) 841 { 842 return IRQ_WAKE_THREAD; 843 } 844 845 /* 846 * Primary handler for nested threaded interrupts. Should never be 847 * called. 848 */ 849 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id) 850 { 851 WARN(1, "Primary handler called for nested irq %d\n", irq); 852 return IRQ_NONE; 853 } 854 855 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id) 856 { 857 WARN(1, "Secondary action handler called for irq %d\n", irq); 858 return IRQ_NONE; 859 } 860 861 static int irq_wait_for_interrupt(struct irqaction *action) 862 { 863 for (;;) { 864 set_current_state(TASK_INTERRUPTIBLE); 865 866 if (kthread_should_stop()) { 867 /* may need to run one last time */ 868 if (test_and_clear_bit(IRQTF_RUNTHREAD, 869 &action->thread_flags)) { 870 __set_current_state(TASK_RUNNING); 871 return 0; 872 } 873 __set_current_state(TASK_RUNNING); 874 return -1; 875 } 876 877 if (test_and_clear_bit(IRQTF_RUNTHREAD, 878 &action->thread_flags)) { 879 __set_current_state(TASK_RUNNING); 880 return 0; 881 } 882 schedule(); 883 } 884 } 885 886 /* 887 * Oneshot interrupts keep the irq line masked until the threaded 888 * handler finished. unmask if the interrupt has not been disabled and 889 * is marked MASKED. 890 */ 891 static void irq_finalize_oneshot(struct irq_desc *desc, 892 struct irqaction *action) 893 { 894 if (!(desc->istate & IRQS_ONESHOT) || 895 action->handler == irq_forced_secondary_handler) 896 return; 897 again: 898 chip_bus_lock(desc); 899 raw_spin_lock_irq(&desc->lock); 900 901 /* 902 * Implausible though it may be we need to protect us against 903 * the following scenario: 904 * 905 * The thread is faster done than the hard interrupt handler 906 * on the other CPU. If we unmask the irq line then the 907 * interrupt can come in again and masks the line, leaves due 908 * to IRQS_INPROGRESS and the irq line is masked forever. 909 * 910 * This also serializes the state of shared oneshot handlers 911 * versus "desc->threads_onehsot |= action->thread_mask;" in 912 * irq_wake_thread(). See the comment there which explains the 913 * serialization. 914 */ 915 if (unlikely(irqd_irq_inprogress(&desc->irq_data))) { 916 raw_spin_unlock_irq(&desc->lock); 917 chip_bus_sync_unlock(desc); 918 cpu_relax(); 919 goto again; 920 } 921 922 /* 923 * Now check again, whether the thread should run. Otherwise 924 * we would clear the threads_oneshot bit of this thread which 925 * was just set. 926 */ 927 if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags)) 928 goto out_unlock; 929 930 desc->threads_oneshot &= ~action->thread_mask; 931 932 if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) && 933 irqd_irq_masked(&desc->irq_data)) 934 unmask_threaded_irq(desc); 935 936 out_unlock: 937 raw_spin_unlock_irq(&desc->lock); 938 chip_bus_sync_unlock(desc); 939 } 940 941 #ifdef CONFIG_SMP 942 /* 943 * Check whether we need to change the affinity of the interrupt thread. 944 */ 945 static void 946 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) 947 { 948 cpumask_var_t mask; 949 bool valid = true; 950 951 if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags)) 952 return; 953 954 /* 955 * In case we are out of memory we set IRQTF_AFFINITY again and 956 * try again next time 957 */ 958 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) { 959 set_bit(IRQTF_AFFINITY, &action->thread_flags); 960 return; 961 } 962 963 raw_spin_lock_irq(&desc->lock); 964 /* 965 * This code is triggered unconditionally. Check the affinity 966 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out. 967 */ 968 if (cpumask_available(desc->irq_common_data.affinity)) { 969 const struct cpumask *m; 970 971 m = irq_data_get_effective_affinity_mask(&desc->irq_data); 972 cpumask_copy(mask, m); 973 } else { 974 valid = false; 975 } 976 raw_spin_unlock_irq(&desc->lock); 977 978 if (valid) 979 set_cpus_allowed_ptr(current, mask); 980 free_cpumask_var(mask); 981 } 982 #else 983 static inline void 984 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { } 985 #endif 986 987 /* 988 * Interrupts which are not explicitly requested as threaded 989 * interrupts rely on the implicit bh/preempt disable of the hard irq 990 * context. So we need to disable bh here to avoid deadlocks and other 991 * side effects. 992 */ 993 static irqreturn_t 994 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action) 995 { 996 irqreturn_t ret; 997 998 local_bh_disable(); 999 ret = action->thread_fn(action->irq, action->dev_id); 1000 if (ret == IRQ_HANDLED) 1001 atomic_inc(&desc->threads_handled); 1002 1003 irq_finalize_oneshot(desc, action); 1004 local_bh_enable(); 1005 return ret; 1006 } 1007 1008 /* 1009 * Interrupts explicitly requested as threaded interrupts want to be 1010 * preemtible - many of them need to sleep and wait for slow busses to 1011 * complete. 1012 */ 1013 static irqreturn_t irq_thread_fn(struct irq_desc *desc, 1014 struct irqaction *action) 1015 { 1016 irqreturn_t ret; 1017 1018 ret = action->thread_fn(action->irq, action->dev_id); 1019 if (ret == IRQ_HANDLED) 1020 atomic_inc(&desc->threads_handled); 1021 1022 irq_finalize_oneshot(desc, action); 1023 return ret; 1024 } 1025 1026 static void wake_threads_waitq(struct irq_desc *desc) 1027 { 1028 if (atomic_dec_and_test(&desc->threads_active)) 1029 wake_up(&desc->wait_for_threads); 1030 } 1031 1032 static void irq_thread_dtor(struct callback_head *unused) 1033 { 1034 struct task_struct *tsk = current; 1035 struct irq_desc *desc; 1036 struct irqaction *action; 1037 1038 if (WARN_ON_ONCE(!(current->flags & PF_EXITING))) 1039 return; 1040 1041 action = kthread_data(tsk); 1042 1043 pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n", 1044 tsk->comm, tsk->pid, action->irq); 1045 1046 1047 desc = irq_to_desc(action->irq); 1048 /* 1049 * If IRQTF_RUNTHREAD is set, we need to decrement 1050 * desc->threads_active and wake possible waiters. 1051 */ 1052 if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags)) 1053 wake_threads_waitq(desc); 1054 1055 /* Prevent a stale desc->threads_oneshot */ 1056 irq_finalize_oneshot(desc, action); 1057 } 1058 1059 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action) 1060 { 1061 struct irqaction *secondary = action->secondary; 1062 1063 if (WARN_ON_ONCE(!secondary)) 1064 return; 1065 1066 raw_spin_lock_irq(&desc->lock); 1067 __irq_wake_thread(desc, secondary); 1068 raw_spin_unlock_irq(&desc->lock); 1069 } 1070 1071 /* 1072 * Interrupt handler thread 1073 */ 1074 static int irq_thread(void *data) 1075 { 1076 struct callback_head on_exit_work; 1077 struct irqaction *action = data; 1078 struct irq_desc *desc = irq_to_desc(action->irq); 1079 irqreturn_t (*handler_fn)(struct irq_desc *desc, 1080 struct irqaction *action); 1081 1082 if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD, 1083 &action->thread_flags)) 1084 handler_fn = irq_forced_thread_fn; 1085 else 1086 handler_fn = irq_thread_fn; 1087 1088 init_task_work(&on_exit_work, irq_thread_dtor); 1089 task_work_add(current, &on_exit_work, false); 1090 1091 irq_thread_check_affinity(desc, action); 1092 1093 while (!irq_wait_for_interrupt(action)) { 1094 irqreturn_t action_ret; 1095 1096 irq_thread_check_affinity(desc, action); 1097 1098 action_ret = handler_fn(desc, action); 1099 if (action_ret == IRQ_WAKE_THREAD) 1100 irq_wake_secondary(desc, action); 1101 1102 wake_threads_waitq(desc); 1103 } 1104 1105 /* 1106 * This is the regular exit path. __free_irq() is stopping the 1107 * thread via kthread_stop() after calling 1108 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the 1109 * oneshot mask bit can be set. 1110 */ 1111 task_work_cancel(current, irq_thread_dtor); 1112 return 0; 1113 } 1114 1115 /** 1116 * irq_wake_thread - wake the irq thread for the action identified by dev_id 1117 * @irq: Interrupt line 1118 * @dev_id: Device identity for which the thread should be woken 1119 * 1120 */ 1121 void irq_wake_thread(unsigned int irq, void *dev_id) 1122 { 1123 struct irq_desc *desc = irq_to_desc(irq); 1124 struct irqaction *action; 1125 unsigned long flags; 1126 1127 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1128 return; 1129 1130 raw_spin_lock_irqsave(&desc->lock, flags); 1131 for_each_action_of_desc(desc, action) { 1132 if (action->dev_id == dev_id) { 1133 if (action->thread) 1134 __irq_wake_thread(desc, action); 1135 break; 1136 } 1137 } 1138 raw_spin_unlock_irqrestore(&desc->lock, flags); 1139 } 1140 EXPORT_SYMBOL_GPL(irq_wake_thread); 1141 1142 static int irq_setup_forced_threading(struct irqaction *new) 1143 { 1144 if (!force_irqthreads) 1145 return 0; 1146 if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT)) 1147 return 0; 1148 1149 /* 1150 * No further action required for interrupts which are requested as 1151 * threaded interrupts already 1152 */ 1153 if (new->handler == irq_default_primary_handler) 1154 return 0; 1155 1156 new->flags |= IRQF_ONESHOT; 1157 1158 /* 1159 * Handle the case where we have a real primary handler and a 1160 * thread handler. We force thread them as well by creating a 1161 * secondary action. 1162 */ 1163 if (new->handler && new->thread_fn) { 1164 /* Allocate the secondary action */ 1165 new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 1166 if (!new->secondary) 1167 return -ENOMEM; 1168 new->secondary->handler = irq_forced_secondary_handler; 1169 new->secondary->thread_fn = new->thread_fn; 1170 new->secondary->dev_id = new->dev_id; 1171 new->secondary->irq = new->irq; 1172 new->secondary->name = new->name; 1173 } 1174 /* Deal with the primary handler */ 1175 set_bit(IRQTF_FORCED_THREAD, &new->thread_flags); 1176 new->thread_fn = new->handler; 1177 new->handler = irq_default_primary_handler; 1178 return 0; 1179 } 1180 1181 static int irq_request_resources(struct irq_desc *desc) 1182 { 1183 struct irq_data *d = &desc->irq_data; 1184 struct irq_chip *c = d->chip; 1185 1186 return c->irq_request_resources ? c->irq_request_resources(d) : 0; 1187 } 1188 1189 static void irq_release_resources(struct irq_desc *desc) 1190 { 1191 struct irq_data *d = &desc->irq_data; 1192 struct irq_chip *c = d->chip; 1193 1194 if (c->irq_release_resources) 1195 c->irq_release_resources(d); 1196 } 1197 1198 static bool irq_supports_nmi(struct irq_desc *desc) 1199 { 1200 struct irq_data *d = irq_desc_get_irq_data(desc); 1201 1202 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 1203 /* Only IRQs directly managed by the root irqchip can be set as NMI */ 1204 if (d->parent_data) 1205 return false; 1206 #endif 1207 /* Don't support NMIs for chips behind a slow bus */ 1208 if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock) 1209 return false; 1210 1211 return d->chip->flags & IRQCHIP_SUPPORTS_NMI; 1212 } 1213 1214 static int irq_nmi_setup(struct irq_desc *desc) 1215 { 1216 struct irq_data *d = irq_desc_get_irq_data(desc); 1217 struct irq_chip *c = d->chip; 1218 1219 return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL; 1220 } 1221 1222 static void irq_nmi_teardown(struct irq_desc *desc) 1223 { 1224 struct irq_data *d = irq_desc_get_irq_data(desc); 1225 struct irq_chip *c = d->chip; 1226 1227 if (c->irq_nmi_teardown) 1228 c->irq_nmi_teardown(d); 1229 } 1230 1231 static int 1232 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary) 1233 { 1234 struct task_struct *t; 1235 struct sched_param param = { 1236 .sched_priority = MAX_USER_RT_PRIO/2, 1237 }; 1238 1239 if (!secondary) { 1240 t = kthread_create(irq_thread, new, "irq/%d-%s", irq, 1241 new->name); 1242 } else { 1243 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq, 1244 new->name); 1245 param.sched_priority -= 1; 1246 } 1247 1248 if (IS_ERR(t)) 1249 return PTR_ERR(t); 1250 1251 sched_setscheduler_nocheck(t, SCHED_FIFO, ¶m); 1252 1253 /* 1254 * We keep the reference to the task struct even if 1255 * the thread dies to avoid that the interrupt code 1256 * references an already freed task_struct. 1257 */ 1258 get_task_struct(t); 1259 new->thread = t; 1260 /* 1261 * Tell the thread to set its affinity. This is 1262 * important for shared interrupt handlers as we do 1263 * not invoke setup_affinity() for the secondary 1264 * handlers as everything is already set up. Even for 1265 * interrupts marked with IRQF_NO_BALANCE this is 1266 * correct as we want the thread to move to the cpu(s) 1267 * on which the requesting code placed the interrupt. 1268 */ 1269 set_bit(IRQTF_AFFINITY, &new->thread_flags); 1270 return 0; 1271 } 1272 1273 /* 1274 * Internal function to register an irqaction - typically used to 1275 * allocate special interrupts that are part of the architecture. 1276 * 1277 * Locking rules: 1278 * 1279 * desc->request_mutex Provides serialization against a concurrent free_irq() 1280 * chip_bus_lock Provides serialization for slow bus operations 1281 * desc->lock Provides serialization against hard interrupts 1282 * 1283 * chip_bus_lock and desc->lock are sufficient for all other management and 1284 * interrupt related functions. desc->request_mutex solely serializes 1285 * request/free_irq(). 1286 */ 1287 static int 1288 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new) 1289 { 1290 struct irqaction *old, **old_ptr; 1291 unsigned long flags, thread_mask = 0; 1292 int ret, nested, shared = 0; 1293 1294 if (!desc) 1295 return -EINVAL; 1296 1297 if (desc->irq_data.chip == &no_irq_chip) 1298 return -ENOSYS; 1299 if (!try_module_get(desc->owner)) 1300 return -ENODEV; 1301 1302 new->irq = irq; 1303 1304 /* 1305 * If the trigger type is not specified by the caller, 1306 * then use the default for this interrupt. 1307 */ 1308 if (!(new->flags & IRQF_TRIGGER_MASK)) 1309 new->flags |= irqd_get_trigger_type(&desc->irq_data); 1310 1311 /* 1312 * Check whether the interrupt nests into another interrupt 1313 * thread. 1314 */ 1315 nested = irq_settings_is_nested_thread(desc); 1316 if (nested) { 1317 if (!new->thread_fn) { 1318 ret = -EINVAL; 1319 goto out_mput; 1320 } 1321 /* 1322 * Replace the primary handler which was provided from 1323 * the driver for non nested interrupt handling by the 1324 * dummy function which warns when called. 1325 */ 1326 new->handler = irq_nested_primary_handler; 1327 } else { 1328 if (irq_settings_can_thread(desc)) { 1329 ret = irq_setup_forced_threading(new); 1330 if (ret) 1331 goto out_mput; 1332 } 1333 } 1334 1335 /* 1336 * Create a handler thread when a thread function is supplied 1337 * and the interrupt does not nest into another interrupt 1338 * thread. 1339 */ 1340 if (new->thread_fn && !nested) { 1341 ret = setup_irq_thread(new, irq, false); 1342 if (ret) 1343 goto out_mput; 1344 if (new->secondary) { 1345 ret = setup_irq_thread(new->secondary, irq, true); 1346 if (ret) 1347 goto out_thread; 1348 } 1349 } 1350 1351 /* 1352 * Drivers are often written to work w/o knowledge about the 1353 * underlying irq chip implementation, so a request for a 1354 * threaded irq without a primary hard irq context handler 1355 * requires the ONESHOT flag to be set. Some irq chips like 1356 * MSI based interrupts are per se one shot safe. Check the 1357 * chip flags, so we can avoid the unmask dance at the end of 1358 * the threaded handler for those. 1359 */ 1360 if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE) 1361 new->flags &= ~IRQF_ONESHOT; 1362 1363 /* 1364 * Protects against a concurrent __free_irq() call which might wait 1365 * for synchronize_hardirq() to complete without holding the optional 1366 * chip bus lock and desc->lock. Also protects against handing out 1367 * a recycled oneshot thread_mask bit while it's still in use by 1368 * its previous owner. 1369 */ 1370 mutex_lock(&desc->request_mutex); 1371 1372 /* 1373 * Acquire bus lock as the irq_request_resources() callback below 1374 * might rely on the serialization or the magic power management 1375 * functions which are abusing the irq_bus_lock() callback, 1376 */ 1377 chip_bus_lock(desc); 1378 1379 /* First installed action requests resources. */ 1380 if (!desc->action) { 1381 ret = irq_request_resources(desc); 1382 if (ret) { 1383 pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n", 1384 new->name, irq, desc->irq_data.chip->name); 1385 goto out_bus_unlock; 1386 } 1387 } 1388 1389 /* 1390 * The following block of code has to be executed atomically 1391 * protected against a concurrent interrupt and any of the other 1392 * management calls which are not serialized via 1393 * desc->request_mutex or the optional bus lock. 1394 */ 1395 raw_spin_lock_irqsave(&desc->lock, flags); 1396 old_ptr = &desc->action; 1397 old = *old_ptr; 1398 if (old) { 1399 /* 1400 * Can't share interrupts unless both agree to and are 1401 * the same type (level, edge, polarity). So both flag 1402 * fields must have IRQF_SHARED set and the bits which 1403 * set the trigger type must match. Also all must 1404 * agree on ONESHOT. 1405 * Interrupt lines used for NMIs cannot be shared. 1406 */ 1407 unsigned int oldtype; 1408 1409 if (desc->istate & IRQS_NMI) { 1410 pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n", 1411 new->name, irq, desc->irq_data.chip->name); 1412 ret = -EINVAL; 1413 goto out_unlock; 1414 } 1415 1416 /* 1417 * If nobody did set the configuration before, inherit 1418 * the one provided by the requester. 1419 */ 1420 if (irqd_trigger_type_was_set(&desc->irq_data)) { 1421 oldtype = irqd_get_trigger_type(&desc->irq_data); 1422 } else { 1423 oldtype = new->flags & IRQF_TRIGGER_MASK; 1424 irqd_set_trigger_type(&desc->irq_data, oldtype); 1425 } 1426 1427 if (!((old->flags & new->flags) & IRQF_SHARED) || 1428 (oldtype != (new->flags & IRQF_TRIGGER_MASK)) || 1429 ((old->flags ^ new->flags) & IRQF_ONESHOT)) 1430 goto mismatch; 1431 1432 /* All handlers must agree on per-cpuness */ 1433 if ((old->flags & IRQF_PERCPU) != 1434 (new->flags & IRQF_PERCPU)) 1435 goto mismatch; 1436 1437 /* add new interrupt at end of irq queue */ 1438 do { 1439 /* 1440 * Or all existing action->thread_mask bits, 1441 * so we can find the next zero bit for this 1442 * new action. 1443 */ 1444 thread_mask |= old->thread_mask; 1445 old_ptr = &old->next; 1446 old = *old_ptr; 1447 } while (old); 1448 shared = 1; 1449 } 1450 1451 /* 1452 * Setup the thread mask for this irqaction for ONESHOT. For 1453 * !ONESHOT irqs the thread mask is 0 so we can avoid a 1454 * conditional in irq_wake_thread(). 1455 */ 1456 if (new->flags & IRQF_ONESHOT) { 1457 /* 1458 * Unlikely to have 32 resp 64 irqs sharing one line, 1459 * but who knows. 1460 */ 1461 if (thread_mask == ~0UL) { 1462 ret = -EBUSY; 1463 goto out_unlock; 1464 } 1465 /* 1466 * The thread_mask for the action is or'ed to 1467 * desc->thread_active to indicate that the 1468 * IRQF_ONESHOT thread handler has been woken, but not 1469 * yet finished. The bit is cleared when a thread 1470 * completes. When all threads of a shared interrupt 1471 * line have completed desc->threads_active becomes 1472 * zero and the interrupt line is unmasked. See 1473 * handle.c:irq_wake_thread() for further information. 1474 * 1475 * If no thread is woken by primary (hard irq context) 1476 * interrupt handlers, then desc->threads_active is 1477 * also checked for zero to unmask the irq line in the 1478 * affected hard irq flow handlers 1479 * (handle_[fasteoi|level]_irq). 1480 * 1481 * The new action gets the first zero bit of 1482 * thread_mask assigned. See the loop above which or's 1483 * all existing action->thread_mask bits. 1484 */ 1485 new->thread_mask = 1UL << ffz(thread_mask); 1486 1487 } else if (new->handler == irq_default_primary_handler && 1488 !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) { 1489 /* 1490 * The interrupt was requested with handler = NULL, so 1491 * we use the default primary handler for it. But it 1492 * does not have the oneshot flag set. In combination 1493 * with level interrupts this is deadly, because the 1494 * default primary handler just wakes the thread, then 1495 * the irq lines is reenabled, but the device still 1496 * has the level irq asserted. Rinse and repeat.... 1497 * 1498 * While this works for edge type interrupts, we play 1499 * it safe and reject unconditionally because we can't 1500 * say for sure which type this interrupt really 1501 * has. The type flags are unreliable as the 1502 * underlying chip implementation can override them. 1503 */ 1504 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for irq %d\n", 1505 irq); 1506 ret = -EINVAL; 1507 goto out_unlock; 1508 } 1509 1510 if (!shared) { 1511 init_waitqueue_head(&desc->wait_for_threads); 1512 1513 /* Setup the type (level, edge polarity) if configured: */ 1514 if (new->flags & IRQF_TRIGGER_MASK) { 1515 ret = __irq_set_trigger(desc, 1516 new->flags & IRQF_TRIGGER_MASK); 1517 1518 if (ret) 1519 goto out_unlock; 1520 } 1521 1522 /* 1523 * Activate the interrupt. That activation must happen 1524 * independently of IRQ_NOAUTOEN. request_irq() can fail 1525 * and the callers are supposed to handle 1526 * that. enable_irq() of an interrupt requested with 1527 * IRQ_NOAUTOEN is not supposed to fail. The activation 1528 * keeps it in shutdown mode, it merily associates 1529 * resources if necessary and if that's not possible it 1530 * fails. Interrupts which are in managed shutdown mode 1531 * will simply ignore that activation request. 1532 */ 1533 ret = irq_activate(desc); 1534 if (ret) 1535 goto out_unlock; 1536 1537 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \ 1538 IRQS_ONESHOT | IRQS_WAITING); 1539 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS); 1540 1541 if (new->flags & IRQF_PERCPU) { 1542 irqd_set(&desc->irq_data, IRQD_PER_CPU); 1543 irq_settings_set_per_cpu(desc); 1544 } 1545 1546 if (new->flags & IRQF_ONESHOT) 1547 desc->istate |= IRQS_ONESHOT; 1548 1549 /* Exclude IRQ from balancing if requested */ 1550 if (new->flags & IRQF_NOBALANCING) { 1551 irq_settings_set_no_balancing(desc); 1552 irqd_set(&desc->irq_data, IRQD_NO_BALANCING); 1553 } 1554 1555 if (irq_settings_can_autoenable(desc)) { 1556 irq_startup(desc, IRQ_RESEND, IRQ_START_COND); 1557 } else { 1558 /* 1559 * Shared interrupts do not go well with disabling 1560 * auto enable. The sharing interrupt might request 1561 * it while it's still disabled and then wait for 1562 * interrupts forever. 1563 */ 1564 WARN_ON_ONCE(new->flags & IRQF_SHARED); 1565 /* Undo nested disables: */ 1566 desc->depth = 1; 1567 } 1568 1569 } else if (new->flags & IRQF_TRIGGER_MASK) { 1570 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK; 1571 unsigned int omsk = irqd_get_trigger_type(&desc->irq_data); 1572 1573 if (nmsk != omsk) 1574 /* hope the handler works with current trigger mode */ 1575 pr_warn("irq %d uses trigger mode %u; requested %u\n", 1576 irq, omsk, nmsk); 1577 } 1578 1579 *old_ptr = new; 1580 1581 irq_pm_install_action(desc, new); 1582 1583 /* Reset broken irq detection when installing new handler */ 1584 desc->irq_count = 0; 1585 desc->irqs_unhandled = 0; 1586 1587 /* 1588 * Check whether we disabled the irq via the spurious handler 1589 * before. Reenable it and give it another chance. 1590 */ 1591 if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) { 1592 desc->istate &= ~IRQS_SPURIOUS_DISABLED; 1593 __enable_irq(desc); 1594 } 1595 1596 raw_spin_unlock_irqrestore(&desc->lock, flags); 1597 chip_bus_sync_unlock(desc); 1598 mutex_unlock(&desc->request_mutex); 1599 1600 irq_setup_timings(desc, new); 1601 1602 /* 1603 * Strictly no need to wake it up, but hung_task complains 1604 * when no hard interrupt wakes the thread up. 1605 */ 1606 if (new->thread) 1607 wake_up_process(new->thread); 1608 if (new->secondary) 1609 wake_up_process(new->secondary->thread); 1610 1611 register_irq_proc(irq, desc); 1612 new->dir = NULL; 1613 register_handler_proc(irq, new); 1614 return 0; 1615 1616 mismatch: 1617 if (!(new->flags & IRQF_PROBE_SHARED)) { 1618 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n", 1619 irq, new->flags, new->name, old->flags, old->name); 1620 #ifdef CONFIG_DEBUG_SHIRQ 1621 dump_stack(); 1622 #endif 1623 } 1624 ret = -EBUSY; 1625 1626 out_unlock: 1627 raw_spin_unlock_irqrestore(&desc->lock, flags); 1628 1629 if (!desc->action) 1630 irq_release_resources(desc); 1631 out_bus_unlock: 1632 chip_bus_sync_unlock(desc); 1633 mutex_unlock(&desc->request_mutex); 1634 1635 out_thread: 1636 if (new->thread) { 1637 struct task_struct *t = new->thread; 1638 1639 new->thread = NULL; 1640 kthread_stop(t); 1641 put_task_struct(t); 1642 } 1643 if (new->secondary && new->secondary->thread) { 1644 struct task_struct *t = new->secondary->thread; 1645 1646 new->secondary->thread = NULL; 1647 kthread_stop(t); 1648 put_task_struct(t); 1649 } 1650 out_mput: 1651 module_put(desc->owner); 1652 return ret; 1653 } 1654 1655 /** 1656 * setup_irq - setup an interrupt 1657 * @irq: Interrupt line to setup 1658 * @act: irqaction for the interrupt 1659 * 1660 * Used to statically setup interrupts in the early boot process. 1661 */ 1662 int setup_irq(unsigned int irq, struct irqaction *act) 1663 { 1664 int retval; 1665 struct irq_desc *desc = irq_to_desc(irq); 1666 1667 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1668 return -EINVAL; 1669 1670 retval = irq_chip_pm_get(&desc->irq_data); 1671 if (retval < 0) 1672 return retval; 1673 1674 retval = __setup_irq(irq, desc, act); 1675 1676 if (retval) 1677 irq_chip_pm_put(&desc->irq_data); 1678 1679 return retval; 1680 } 1681 EXPORT_SYMBOL_GPL(setup_irq); 1682 1683 /* 1684 * Internal function to unregister an irqaction - used to free 1685 * regular and special interrupts that are part of the architecture. 1686 */ 1687 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id) 1688 { 1689 unsigned irq = desc->irq_data.irq; 1690 struct irqaction *action, **action_ptr; 1691 unsigned long flags; 1692 1693 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq); 1694 1695 mutex_lock(&desc->request_mutex); 1696 chip_bus_lock(desc); 1697 raw_spin_lock_irqsave(&desc->lock, flags); 1698 1699 /* 1700 * There can be multiple actions per IRQ descriptor, find the right 1701 * one based on the dev_id: 1702 */ 1703 action_ptr = &desc->action; 1704 for (;;) { 1705 action = *action_ptr; 1706 1707 if (!action) { 1708 WARN(1, "Trying to free already-free IRQ %d\n", irq); 1709 raw_spin_unlock_irqrestore(&desc->lock, flags); 1710 chip_bus_sync_unlock(desc); 1711 mutex_unlock(&desc->request_mutex); 1712 return NULL; 1713 } 1714 1715 if (action->dev_id == dev_id) 1716 break; 1717 action_ptr = &action->next; 1718 } 1719 1720 /* Found it - now remove it from the list of entries: */ 1721 *action_ptr = action->next; 1722 1723 irq_pm_remove_action(desc, action); 1724 1725 /* If this was the last handler, shut down the IRQ line: */ 1726 if (!desc->action) { 1727 irq_settings_clr_disable_unlazy(desc); 1728 /* Only shutdown. Deactivate after synchronize_hardirq() */ 1729 irq_shutdown(desc); 1730 } 1731 1732 #ifdef CONFIG_SMP 1733 /* make sure affinity_hint is cleaned up */ 1734 if (WARN_ON_ONCE(desc->affinity_hint)) 1735 desc->affinity_hint = NULL; 1736 #endif 1737 1738 raw_spin_unlock_irqrestore(&desc->lock, flags); 1739 /* 1740 * Drop bus_lock here so the changes which were done in the chip 1741 * callbacks above are synced out to the irq chips which hang 1742 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq(). 1743 * 1744 * Aside of that the bus_lock can also be taken from the threaded 1745 * handler in irq_finalize_oneshot() which results in a deadlock 1746 * because kthread_stop() would wait forever for the thread to 1747 * complete, which is blocked on the bus lock. 1748 * 1749 * The still held desc->request_mutex() protects against a 1750 * concurrent request_irq() of this irq so the release of resources 1751 * and timing data is properly serialized. 1752 */ 1753 chip_bus_sync_unlock(desc); 1754 1755 unregister_handler_proc(irq, action); 1756 1757 /* 1758 * Make sure it's not being used on another CPU and if the chip 1759 * supports it also make sure that there is no (not yet serviced) 1760 * interrupt in flight at the hardware level. 1761 */ 1762 __synchronize_hardirq(desc, true); 1763 1764 #ifdef CONFIG_DEBUG_SHIRQ 1765 /* 1766 * It's a shared IRQ -- the driver ought to be prepared for an IRQ 1767 * event to happen even now it's being freed, so let's make sure that 1768 * is so by doing an extra call to the handler .... 1769 * 1770 * ( We do this after actually deregistering it, to make sure that a 1771 * 'real' IRQ doesn't run in parallel with our fake. ) 1772 */ 1773 if (action->flags & IRQF_SHARED) { 1774 local_irq_save(flags); 1775 action->handler(irq, dev_id); 1776 local_irq_restore(flags); 1777 } 1778 #endif 1779 1780 /* 1781 * The action has already been removed above, but the thread writes 1782 * its oneshot mask bit when it completes. Though request_mutex is 1783 * held across this which prevents __setup_irq() from handing out 1784 * the same bit to a newly requested action. 1785 */ 1786 if (action->thread) { 1787 kthread_stop(action->thread); 1788 put_task_struct(action->thread); 1789 if (action->secondary && action->secondary->thread) { 1790 kthread_stop(action->secondary->thread); 1791 put_task_struct(action->secondary->thread); 1792 } 1793 } 1794 1795 /* Last action releases resources */ 1796 if (!desc->action) { 1797 /* 1798 * Reaquire bus lock as irq_release_resources() might 1799 * require it to deallocate resources over the slow bus. 1800 */ 1801 chip_bus_lock(desc); 1802 /* 1803 * There is no interrupt on the fly anymore. Deactivate it 1804 * completely. 1805 */ 1806 raw_spin_lock_irqsave(&desc->lock, flags); 1807 irq_domain_deactivate_irq(&desc->irq_data); 1808 raw_spin_unlock_irqrestore(&desc->lock, flags); 1809 1810 irq_release_resources(desc); 1811 chip_bus_sync_unlock(desc); 1812 irq_remove_timings(desc); 1813 } 1814 1815 mutex_unlock(&desc->request_mutex); 1816 1817 irq_chip_pm_put(&desc->irq_data); 1818 module_put(desc->owner); 1819 kfree(action->secondary); 1820 return action; 1821 } 1822 1823 /** 1824 * remove_irq - free an interrupt 1825 * @irq: Interrupt line to free 1826 * @act: irqaction for the interrupt 1827 * 1828 * Used to remove interrupts statically setup by the early boot process. 1829 */ 1830 void remove_irq(unsigned int irq, struct irqaction *act) 1831 { 1832 struct irq_desc *desc = irq_to_desc(irq); 1833 1834 if (desc && !WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1835 __free_irq(desc, act->dev_id); 1836 } 1837 EXPORT_SYMBOL_GPL(remove_irq); 1838 1839 /** 1840 * free_irq - free an interrupt allocated with request_irq 1841 * @irq: Interrupt line to free 1842 * @dev_id: Device identity to free 1843 * 1844 * Remove an interrupt handler. The handler is removed and if the 1845 * interrupt line is no longer in use by any driver it is disabled. 1846 * On a shared IRQ the caller must ensure the interrupt is disabled 1847 * on the card it drives before calling this function. The function 1848 * does not return until any executing interrupts for this IRQ 1849 * have completed. 1850 * 1851 * This function must not be called from interrupt context. 1852 * 1853 * Returns the devname argument passed to request_irq. 1854 */ 1855 const void *free_irq(unsigned int irq, void *dev_id) 1856 { 1857 struct irq_desc *desc = irq_to_desc(irq); 1858 struct irqaction *action; 1859 const char *devname; 1860 1861 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1862 return NULL; 1863 1864 #ifdef CONFIG_SMP 1865 if (WARN_ON(desc->affinity_notify)) 1866 desc->affinity_notify = NULL; 1867 #endif 1868 1869 action = __free_irq(desc, dev_id); 1870 1871 if (!action) 1872 return NULL; 1873 1874 devname = action->name; 1875 kfree(action); 1876 return devname; 1877 } 1878 EXPORT_SYMBOL(free_irq); 1879 1880 /* This function must be called with desc->lock held */ 1881 static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc) 1882 { 1883 const char *devname = NULL; 1884 1885 desc->istate &= ~IRQS_NMI; 1886 1887 if (!WARN_ON(desc->action == NULL)) { 1888 irq_pm_remove_action(desc, desc->action); 1889 devname = desc->action->name; 1890 unregister_handler_proc(irq, desc->action); 1891 1892 kfree(desc->action); 1893 desc->action = NULL; 1894 } 1895 1896 irq_settings_clr_disable_unlazy(desc); 1897 irq_shutdown_and_deactivate(desc); 1898 1899 irq_release_resources(desc); 1900 1901 irq_chip_pm_put(&desc->irq_data); 1902 module_put(desc->owner); 1903 1904 return devname; 1905 } 1906 1907 const void *free_nmi(unsigned int irq, void *dev_id) 1908 { 1909 struct irq_desc *desc = irq_to_desc(irq); 1910 unsigned long flags; 1911 const void *devname; 1912 1913 if (!desc || WARN_ON(!(desc->istate & IRQS_NMI))) 1914 return NULL; 1915 1916 if (WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1917 return NULL; 1918 1919 /* NMI still enabled */ 1920 if (WARN_ON(desc->depth == 0)) 1921 disable_nmi_nosync(irq); 1922 1923 raw_spin_lock_irqsave(&desc->lock, flags); 1924 1925 irq_nmi_teardown(desc); 1926 devname = __cleanup_nmi(irq, desc); 1927 1928 raw_spin_unlock_irqrestore(&desc->lock, flags); 1929 1930 return devname; 1931 } 1932 1933 /** 1934 * request_threaded_irq - allocate an interrupt line 1935 * @irq: Interrupt line to allocate 1936 * @handler: Function to be called when the IRQ occurs. 1937 * Primary handler for threaded interrupts 1938 * If NULL and thread_fn != NULL the default 1939 * primary handler is installed 1940 * @thread_fn: Function called from the irq handler thread 1941 * If NULL, no irq thread is created 1942 * @irqflags: Interrupt type flags 1943 * @devname: An ascii name for the claiming device 1944 * @dev_id: A cookie passed back to the handler function 1945 * 1946 * This call allocates interrupt resources and enables the 1947 * interrupt line and IRQ handling. From the point this 1948 * call is made your handler function may be invoked. Since 1949 * your handler function must clear any interrupt the board 1950 * raises, you must take care both to initialise your hardware 1951 * and to set up the interrupt handler in the right order. 1952 * 1953 * If you want to set up a threaded irq handler for your device 1954 * then you need to supply @handler and @thread_fn. @handler is 1955 * still called in hard interrupt context and has to check 1956 * whether the interrupt originates from the device. If yes it 1957 * needs to disable the interrupt on the device and return 1958 * IRQ_WAKE_THREAD which will wake up the handler thread and run 1959 * @thread_fn. This split handler design is necessary to support 1960 * shared interrupts. 1961 * 1962 * Dev_id must be globally unique. Normally the address of the 1963 * device data structure is used as the cookie. Since the handler 1964 * receives this value it makes sense to use it. 1965 * 1966 * If your interrupt is shared you must pass a non NULL dev_id 1967 * as this is required when freeing the interrupt. 1968 * 1969 * Flags: 1970 * 1971 * IRQF_SHARED Interrupt is shared 1972 * IRQF_TRIGGER_* Specify active edge(s) or level 1973 * 1974 */ 1975 int request_threaded_irq(unsigned int irq, irq_handler_t handler, 1976 irq_handler_t thread_fn, unsigned long irqflags, 1977 const char *devname, void *dev_id) 1978 { 1979 struct irqaction *action; 1980 struct irq_desc *desc; 1981 int retval; 1982 1983 if (irq == IRQ_NOTCONNECTED) 1984 return -ENOTCONN; 1985 1986 /* 1987 * Sanity-check: shared interrupts must pass in a real dev-ID, 1988 * otherwise we'll have trouble later trying to figure out 1989 * which interrupt is which (messes up the interrupt freeing 1990 * logic etc). 1991 * 1992 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and 1993 * it cannot be set along with IRQF_NO_SUSPEND. 1994 */ 1995 if (((irqflags & IRQF_SHARED) && !dev_id) || 1996 (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) || 1997 ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND))) 1998 return -EINVAL; 1999 2000 desc = irq_to_desc(irq); 2001 if (!desc) 2002 return -EINVAL; 2003 2004 if (!irq_settings_can_request(desc) || 2005 WARN_ON(irq_settings_is_per_cpu_devid(desc))) 2006 return -EINVAL; 2007 2008 if (!handler) { 2009 if (!thread_fn) 2010 return -EINVAL; 2011 handler = irq_default_primary_handler; 2012 } 2013 2014 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2015 if (!action) 2016 return -ENOMEM; 2017 2018 action->handler = handler; 2019 action->thread_fn = thread_fn; 2020 action->flags = irqflags; 2021 action->name = devname; 2022 action->dev_id = dev_id; 2023 2024 retval = irq_chip_pm_get(&desc->irq_data); 2025 if (retval < 0) { 2026 kfree(action); 2027 return retval; 2028 } 2029 2030 retval = __setup_irq(irq, desc, action); 2031 2032 if (retval) { 2033 irq_chip_pm_put(&desc->irq_data); 2034 kfree(action->secondary); 2035 kfree(action); 2036 } 2037 2038 #ifdef CONFIG_DEBUG_SHIRQ_FIXME 2039 if (!retval && (irqflags & IRQF_SHARED)) { 2040 /* 2041 * It's a shared IRQ -- the driver ought to be prepared for it 2042 * to happen immediately, so let's make sure.... 2043 * We disable the irq to make sure that a 'real' IRQ doesn't 2044 * run in parallel with our fake. 2045 */ 2046 unsigned long flags; 2047 2048 disable_irq(irq); 2049 local_irq_save(flags); 2050 2051 handler(irq, dev_id); 2052 2053 local_irq_restore(flags); 2054 enable_irq(irq); 2055 } 2056 #endif 2057 return retval; 2058 } 2059 EXPORT_SYMBOL(request_threaded_irq); 2060 2061 /** 2062 * request_any_context_irq - allocate an interrupt line 2063 * @irq: Interrupt line to allocate 2064 * @handler: Function to be called when the IRQ occurs. 2065 * Threaded handler for threaded interrupts. 2066 * @flags: Interrupt type flags 2067 * @name: An ascii name for the claiming device 2068 * @dev_id: A cookie passed back to the handler function 2069 * 2070 * This call allocates interrupt resources and enables the 2071 * interrupt line and IRQ handling. It selects either a 2072 * hardirq or threaded handling method depending on the 2073 * context. 2074 * 2075 * On failure, it returns a negative value. On success, 2076 * it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED. 2077 */ 2078 int request_any_context_irq(unsigned int irq, irq_handler_t handler, 2079 unsigned long flags, const char *name, void *dev_id) 2080 { 2081 struct irq_desc *desc; 2082 int ret; 2083 2084 if (irq == IRQ_NOTCONNECTED) 2085 return -ENOTCONN; 2086 2087 desc = irq_to_desc(irq); 2088 if (!desc) 2089 return -EINVAL; 2090 2091 if (irq_settings_is_nested_thread(desc)) { 2092 ret = request_threaded_irq(irq, NULL, handler, 2093 flags, name, dev_id); 2094 return !ret ? IRQC_IS_NESTED : ret; 2095 } 2096 2097 ret = request_irq(irq, handler, flags, name, dev_id); 2098 return !ret ? IRQC_IS_HARDIRQ : ret; 2099 } 2100 EXPORT_SYMBOL_GPL(request_any_context_irq); 2101 2102 /** 2103 * request_nmi - allocate an interrupt line for NMI delivery 2104 * @irq: Interrupt line to allocate 2105 * @handler: Function to be called when the IRQ occurs. 2106 * Threaded handler for threaded interrupts. 2107 * @irqflags: Interrupt type flags 2108 * @name: An ascii name for the claiming device 2109 * @dev_id: A cookie passed back to the handler function 2110 * 2111 * This call allocates interrupt resources and enables the 2112 * interrupt line and IRQ handling. It sets up the IRQ line 2113 * to be handled as an NMI. 2114 * 2115 * An interrupt line delivering NMIs cannot be shared and IRQ handling 2116 * cannot be threaded. 2117 * 2118 * Interrupt lines requested for NMI delivering must produce per cpu 2119 * interrupts and have auto enabling setting disabled. 2120 * 2121 * Dev_id must be globally unique. Normally the address of the 2122 * device data structure is used as the cookie. Since the handler 2123 * receives this value it makes sense to use it. 2124 * 2125 * If the interrupt line cannot be used to deliver NMIs, function 2126 * will fail and return a negative value. 2127 */ 2128 int request_nmi(unsigned int irq, irq_handler_t handler, 2129 unsigned long irqflags, const char *name, void *dev_id) 2130 { 2131 struct irqaction *action; 2132 struct irq_desc *desc; 2133 unsigned long flags; 2134 int retval; 2135 2136 if (irq == IRQ_NOTCONNECTED) 2137 return -ENOTCONN; 2138 2139 /* NMI cannot be shared, used for Polling */ 2140 if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL)) 2141 return -EINVAL; 2142 2143 if (!(irqflags & IRQF_PERCPU)) 2144 return -EINVAL; 2145 2146 if (!handler) 2147 return -EINVAL; 2148 2149 desc = irq_to_desc(irq); 2150 2151 if (!desc || irq_settings_can_autoenable(desc) || 2152 !irq_settings_can_request(desc) || 2153 WARN_ON(irq_settings_is_per_cpu_devid(desc)) || 2154 !irq_supports_nmi(desc)) 2155 return -EINVAL; 2156 2157 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2158 if (!action) 2159 return -ENOMEM; 2160 2161 action->handler = handler; 2162 action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING; 2163 action->name = name; 2164 action->dev_id = dev_id; 2165 2166 retval = irq_chip_pm_get(&desc->irq_data); 2167 if (retval < 0) 2168 goto err_out; 2169 2170 retval = __setup_irq(irq, desc, action); 2171 if (retval) 2172 goto err_irq_setup; 2173 2174 raw_spin_lock_irqsave(&desc->lock, flags); 2175 2176 /* Setup NMI state */ 2177 desc->istate |= IRQS_NMI; 2178 retval = irq_nmi_setup(desc); 2179 if (retval) { 2180 __cleanup_nmi(irq, desc); 2181 raw_spin_unlock_irqrestore(&desc->lock, flags); 2182 return -EINVAL; 2183 } 2184 2185 raw_spin_unlock_irqrestore(&desc->lock, flags); 2186 2187 return 0; 2188 2189 err_irq_setup: 2190 irq_chip_pm_put(&desc->irq_data); 2191 err_out: 2192 kfree(action); 2193 2194 return retval; 2195 } 2196 2197 void enable_percpu_irq(unsigned int irq, unsigned int type) 2198 { 2199 unsigned int cpu = smp_processor_id(); 2200 unsigned long flags; 2201 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 2202 2203 if (!desc) 2204 return; 2205 2206 /* 2207 * If the trigger type is not specified by the caller, then 2208 * use the default for this interrupt. 2209 */ 2210 type &= IRQ_TYPE_SENSE_MASK; 2211 if (type == IRQ_TYPE_NONE) 2212 type = irqd_get_trigger_type(&desc->irq_data); 2213 2214 if (type != IRQ_TYPE_NONE) { 2215 int ret; 2216 2217 ret = __irq_set_trigger(desc, type); 2218 2219 if (ret) { 2220 WARN(1, "failed to set type for IRQ%d\n", irq); 2221 goto out; 2222 } 2223 } 2224 2225 irq_percpu_enable(desc, cpu); 2226 out: 2227 irq_put_desc_unlock(desc, flags); 2228 } 2229 EXPORT_SYMBOL_GPL(enable_percpu_irq); 2230 2231 void enable_percpu_nmi(unsigned int irq, unsigned int type) 2232 { 2233 enable_percpu_irq(irq, type); 2234 } 2235 2236 /** 2237 * irq_percpu_is_enabled - Check whether the per cpu irq is enabled 2238 * @irq: Linux irq number to check for 2239 * 2240 * Must be called from a non migratable context. Returns the enable 2241 * state of a per cpu interrupt on the current cpu. 2242 */ 2243 bool irq_percpu_is_enabled(unsigned int irq) 2244 { 2245 unsigned int cpu = smp_processor_id(); 2246 struct irq_desc *desc; 2247 unsigned long flags; 2248 bool is_enabled; 2249 2250 desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 2251 if (!desc) 2252 return false; 2253 2254 is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled); 2255 irq_put_desc_unlock(desc, flags); 2256 2257 return is_enabled; 2258 } 2259 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled); 2260 2261 void disable_percpu_irq(unsigned int irq) 2262 { 2263 unsigned int cpu = smp_processor_id(); 2264 unsigned long flags; 2265 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 2266 2267 if (!desc) 2268 return; 2269 2270 irq_percpu_disable(desc, cpu); 2271 irq_put_desc_unlock(desc, flags); 2272 } 2273 EXPORT_SYMBOL_GPL(disable_percpu_irq); 2274 2275 void disable_percpu_nmi(unsigned int irq) 2276 { 2277 disable_percpu_irq(irq); 2278 } 2279 2280 /* 2281 * Internal function to unregister a percpu irqaction. 2282 */ 2283 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id) 2284 { 2285 struct irq_desc *desc = irq_to_desc(irq); 2286 struct irqaction *action; 2287 unsigned long flags; 2288 2289 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq); 2290 2291 if (!desc) 2292 return NULL; 2293 2294 raw_spin_lock_irqsave(&desc->lock, flags); 2295 2296 action = desc->action; 2297 if (!action || action->percpu_dev_id != dev_id) { 2298 WARN(1, "Trying to free already-free IRQ %d\n", irq); 2299 goto bad; 2300 } 2301 2302 if (!cpumask_empty(desc->percpu_enabled)) { 2303 WARN(1, "percpu IRQ %d still enabled on CPU%d!\n", 2304 irq, cpumask_first(desc->percpu_enabled)); 2305 goto bad; 2306 } 2307 2308 /* Found it - now remove it from the list of entries: */ 2309 desc->action = NULL; 2310 2311 desc->istate &= ~IRQS_NMI; 2312 2313 raw_spin_unlock_irqrestore(&desc->lock, flags); 2314 2315 unregister_handler_proc(irq, action); 2316 2317 irq_chip_pm_put(&desc->irq_data); 2318 module_put(desc->owner); 2319 return action; 2320 2321 bad: 2322 raw_spin_unlock_irqrestore(&desc->lock, flags); 2323 return NULL; 2324 } 2325 2326 /** 2327 * remove_percpu_irq - free a per-cpu interrupt 2328 * @irq: Interrupt line to free 2329 * @act: irqaction for the interrupt 2330 * 2331 * Used to remove interrupts statically setup by the early boot process. 2332 */ 2333 void remove_percpu_irq(unsigned int irq, struct irqaction *act) 2334 { 2335 struct irq_desc *desc = irq_to_desc(irq); 2336 2337 if (desc && irq_settings_is_per_cpu_devid(desc)) 2338 __free_percpu_irq(irq, act->percpu_dev_id); 2339 } 2340 2341 /** 2342 * free_percpu_irq - free an interrupt allocated with request_percpu_irq 2343 * @irq: Interrupt line to free 2344 * @dev_id: Device identity to free 2345 * 2346 * Remove a percpu interrupt handler. The handler is removed, but 2347 * the interrupt line is not disabled. This must be done on each 2348 * CPU before calling this function. The function does not return 2349 * until any executing interrupts for this IRQ have completed. 2350 * 2351 * This function must not be called from interrupt context. 2352 */ 2353 void free_percpu_irq(unsigned int irq, void __percpu *dev_id) 2354 { 2355 struct irq_desc *desc = irq_to_desc(irq); 2356 2357 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2358 return; 2359 2360 chip_bus_lock(desc); 2361 kfree(__free_percpu_irq(irq, dev_id)); 2362 chip_bus_sync_unlock(desc); 2363 } 2364 EXPORT_SYMBOL_GPL(free_percpu_irq); 2365 2366 void free_percpu_nmi(unsigned int irq, void __percpu *dev_id) 2367 { 2368 struct irq_desc *desc = irq_to_desc(irq); 2369 2370 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2371 return; 2372 2373 if (WARN_ON(!(desc->istate & IRQS_NMI))) 2374 return; 2375 2376 kfree(__free_percpu_irq(irq, dev_id)); 2377 } 2378 2379 /** 2380 * setup_percpu_irq - setup a per-cpu interrupt 2381 * @irq: Interrupt line to setup 2382 * @act: irqaction for the interrupt 2383 * 2384 * Used to statically setup per-cpu interrupts in the early boot process. 2385 */ 2386 int setup_percpu_irq(unsigned int irq, struct irqaction *act) 2387 { 2388 struct irq_desc *desc = irq_to_desc(irq); 2389 int retval; 2390 2391 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2392 return -EINVAL; 2393 2394 retval = irq_chip_pm_get(&desc->irq_data); 2395 if (retval < 0) 2396 return retval; 2397 2398 retval = __setup_irq(irq, desc, act); 2399 2400 if (retval) 2401 irq_chip_pm_put(&desc->irq_data); 2402 2403 return retval; 2404 } 2405 2406 /** 2407 * __request_percpu_irq - allocate a percpu interrupt line 2408 * @irq: Interrupt line to allocate 2409 * @handler: Function to be called when the IRQ occurs. 2410 * @flags: Interrupt type flags (IRQF_TIMER only) 2411 * @devname: An ascii name for the claiming device 2412 * @dev_id: A percpu cookie passed back to the handler function 2413 * 2414 * This call allocates interrupt resources and enables the 2415 * interrupt on the local CPU. If the interrupt is supposed to be 2416 * enabled on other CPUs, it has to be done on each CPU using 2417 * enable_percpu_irq(). 2418 * 2419 * Dev_id must be globally unique. It is a per-cpu variable, and 2420 * the handler gets called with the interrupted CPU's instance of 2421 * that variable. 2422 */ 2423 int __request_percpu_irq(unsigned int irq, irq_handler_t handler, 2424 unsigned long flags, const char *devname, 2425 void __percpu *dev_id) 2426 { 2427 struct irqaction *action; 2428 struct irq_desc *desc; 2429 int retval; 2430 2431 if (!dev_id) 2432 return -EINVAL; 2433 2434 desc = irq_to_desc(irq); 2435 if (!desc || !irq_settings_can_request(desc) || 2436 !irq_settings_is_per_cpu_devid(desc)) 2437 return -EINVAL; 2438 2439 if (flags && flags != IRQF_TIMER) 2440 return -EINVAL; 2441 2442 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2443 if (!action) 2444 return -ENOMEM; 2445 2446 action->handler = handler; 2447 action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND; 2448 action->name = devname; 2449 action->percpu_dev_id = dev_id; 2450 2451 retval = irq_chip_pm_get(&desc->irq_data); 2452 if (retval < 0) { 2453 kfree(action); 2454 return retval; 2455 } 2456 2457 retval = __setup_irq(irq, desc, action); 2458 2459 if (retval) { 2460 irq_chip_pm_put(&desc->irq_data); 2461 kfree(action); 2462 } 2463 2464 return retval; 2465 } 2466 EXPORT_SYMBOL_GPL(__request_percpu_irq); 2467 2468 /** 2469 * request_percpu_nmi - allocate a percpu interrupt line for NMI delivery 2470 * @irq: Interrupt line to allocate 2471 * @handler: Function to be called when the IRQ occurs. 2472 * @name: An ascii name for the claiming device 2473 * @dev_id: A percpu cookie passed back to the handler function 2474 * 2475 * This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs 2476 * have to be setup on each CPU by calling prepare_percpu_nmi() before 2477 * being enabled on the same CPU by using enable_percpu_nmi(). 2478 * 2479 * Dev_id must be globally unique. It is a per-cpu variable, and 2480 * the handler gets called with the interrupted CPU's instance of 2481 * that variable. 2482 * 2483 * Interrupt lines requested for NMI delivering should have auto enabling 2484 * setting disabled. 2485 * 2486 * If the interrupt line cannot be used to deliver NMIs, function 2487 * will fail returning a negative value. 2488 */ 2489 int request_percpu_nmi(unsigned int irq, irq_handler_t handler, 2490 const char *name, void __percpu *dev_id) 2491 { 2492 struct irqaction *action; 2493 struct irq_desc *desc; 2494 unsigned long flags; 2495 int retval; 2496 2497 if (!handler) 2498 return -EINVAL; 2499 2500 desc = irq_to_desc(irq); 2501 2502 if (!desc || !irq_settings_can_request(desc) || 2503 !irq_settings_is_per_cpu_devid(desc) || 2504 irq_settings_can_autoenable(desc) || 2505 !irq_supports_nmi(desc)) 2506 return -EINVAL; 2507 2508 /* The line cannot already be NMI */ 2509 if (desc->istate & IRQS_NMI) 2510 return -EINVAL; 2511 2512 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2513 if (!action) 2514 return -ENOMEM; 2515 2516 action->handler = handler; 2517 action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD 2518 | IRQF_NOBALANCING; 2519 action->name = name; 2520 action->percpu_dev_id = dev_id; 2521 2522 retval = irq_chip_pm_get(&desc->irq_data); 2523 if (retval < 0) 2524 goto err_out; 2525 2526 retval = __setup_irq(irq, desc, action); 2527 if (retval) 2528 goto err_irq_setup; 2529 2530 raw_spin_lock_irqsave(&desc->lock, flags); 2531 desc->istate |= IRQS_NMI; 2532 raw_spin_unlock_irqrestore(&desc->lock, flags); 2533 2534 return 0; 2535 2536 err_irq_setup: 2537 irq_chip_pm_put(&desc->irq_data); 2538 err_out: 2539 kfree(action); 2540 2541 return retval; 2542 } 2543 2544 /** 2545 * prepare_percpu_nmi - performs CPU local setup for NMI delivery 2546 * @irq: Interrupt line to prepare for NMI delivery 2547 * 2548 * This call prepares an interrupt line to deliver NMI on the current CPU, 2549 * before that interrupt line gets enabled with enable_percpu_nmi(). 2550 * 2551 * As a CPU local operation, this should be called from non-preemptible 2552 * context. 2553 * 2554 * If the interrupt line cannot be used to deliver NMIs, function 2555 * will fail returning a negative value. 2556 */ 2557 int prepare_percpu_nmi(unsigned int irq) 2558 { 2559 unsigned long flags; 2560 struct irq_desc *desc; 2561 int ret = 0; 2562 2563 WARN_ON(preemptible()); 2564 2565 desc = irq_get_desc_lock(irq, &flags, 2566 IRQ_GET_DESC_CHECK_PERCPU); 2567 if (!desc) 2568 return -EINVAL; 2569 2570 if (WARN(!(desc->istate & IRQS_NMI), 2571 KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n", 2572 irq)) { 2573 ret = -EINVAL; 2574 goto out; 2575 } 2576 2577 ret = irq_nmi_setup(desc); 2578 if (ret) { 2579 pr_err("Failed to setup NMI delivery: irq %u\n", irq); 2580 goto out; 2581 } 2582 2583 out: 2584 irq_put_desc_unlock(desc, flags); 2585 return ret; 2586 } 2587 2588 /** 2589 * teardown_percpu_nmi - undoes NMI setup of IRQ line 2590 * @irq: Interrupt line from which CPU local NMI configuration should be 2591 * removed 2592 * 2593 * This call undoes the setup done by prepare_percpu_nmi(). 2594 * 2595 * IRQ line should not be enabled for the current CPU. 2596 * 2597 * As a CPU local operation, this should be called from non-preemptible 2598 * context. 2599 */ 2600 void teardown_percpu_nmi(unsigned int irq) 2601 { 2602 unsigned long flags; 2603 struct irq_desc *desc; 2604 2605 WARN_ON(preemptible()); 2606 2607 desc = irq_get_desc_lock(irq, &flags, 2608 IRQ_GET_DESC_CHECK_PERCPU); 2609 if (!desc) 2610 return; 2611 2612 if (WARN_ON(!(desc->istate & IRQS_NMI))) 2613 goto out; 2614 2615 irq_nmi_teardown(desc); 2616 out: 2617 irq_put_desc_unlock(desc, flags); 2618 } 2619 2620 int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which, 2621 bool *state) 2622 { 2623 struct irq_chip *chip; 2624 int err = -EINVAL; 2625 2626 do { 2627 chip = irq_data_get_irq_chip(data); 2628 if (chip->irq_get_irqchip_state) 2629 break; 2630 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 2631 data = data->parent_data; 2632 #else 2633 data = NULL; 2634 #endif 2635 } while (data); 2636 2637 if (data) 2638 err = chip->irq_get_irqchip_state(data, which, state); 2639 return err; 2640 } 2641 2642 /** 2643 * irq_get_irqchip_state - returns the irqchip state of a interrupt. 2644 * @irq: Interrupt line that is forwarded to a VM 2645 * @which: One of IRQCHIP_STATE_* the caller wants to know about 2646 * @state: a pointer to a boolean where the state is to be storeed 2647 * 2648 * This call snapshots the internal irqchip state of an 2649 * interrupt, returning into @state the bit corresponding to 2650 * stage @which 2651 * 2652 * This function should be called with preemption disabled if the 2653 * interrupt controller has per-cpu registers. 2654 */ 2655 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which, 2656 bool *state) 2657 { 2658 struct irq_desc *desc; 2659 struct irq_data *data; 2660 unsigned long flags; 2661 int err = -EINVAL; 2662 2663 desc = irq_get_desc_buslock(irq, &flags, 0); 2664 if (!desc) 2665 return err; 2666 2667 data = irq_desc_get_irq_data(desc); 2668 2669 err = __irq_get_irqchip_state(data, which, state); 2670 2671 irq_put_desc_busunlock(desc, flags); 2672 return err; 2673 } 2674 EXPORT_SYMBOL_GPL(irq_get_irqchip_state); 2675 2676 /** 2677 * irq_set_irqchip_state - set the state of a forwarded interrupt. 2678 * @irq: Interrupt line that is forwarded to a VM 2679 * @which: State to be restored (one of IRQCHIP_STATE_*) 2680 * @val: Value corresponding to @which 2681 * 2682 * This call sets the internal irqchip state of an interrupt, 2683 * depending on the value of @which. 2684 * 2685 * This function should be called with preemption disabled if the 2686 * interrupt controller has per-cpu registers. 2687 */ 2688 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which, 2689 bool val) 2690 { 2691 struct irq_desc *desc; 2692 struct irq_data *data; 2693 struct irq_chip *chip; 2694 unsigned long flags; 2695 int err = -EINVAL; 2696 2697 desc = irq_get_desc_buslock(irq, &flags, 0); 2698 if (!desc) 2699 return err; 2700 2701 data = irq_desc_get_irq_data(desc); 2702 2703 do { 2704 chip = irq_data_get_irq_chip(data); 2705 if (chip->irq_set_irqchip_state) 2706 break; 2707 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 2708 data = data->parent_data; 2709 #else 2710 data = NULL; 2711 #endif 2712 } while (data); 2713 2714 if (data) 2715 err = chip->irq_set_irqchip_state(data, which, val); 2716 2717 irq_put_desc_busunlock(desc, flags); 2718 return err; 2719 } 2720 EXPORT_SYMBOL_GPL(irq_set_irqchip_state); 2721