1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar 4 * Copyright (C) 2005-2006 Thomas Gleixner 5 * 6 * This file contains driver APIs to the irq subsystem. 7 */ 8 9 #define pr_fmt(fmt) "genirq: " fmt 10 11 #include <linux/irq.h> 12 #include <linux/kthread.h> 13 #include <linux/module.h> 14 #include <linux/random.h> 15 #include <linux/interrupt.h> 16 #include <linux/irqdomain.h> 17 #include <linux/slab.h> 18 #include <linux/sched.h> 19 #include <linux/sched/rt.h> 20 #include <linux/sched/task.h> 21 #include <linux/sched/isolation.h> 22 #include <uapi/linux/sched/types.h> 23 #include <linux/task_work.h> 24 25 #include "internals.h" 26 27 #if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT) 28 DEFINE_STATIC_KEY_FALSE(force_irqthreads_key); 29 30 static int __init setup_forced_irqthreads(char *arg) 31 { 32 static_branch_enable(&force_irqthreads_key); 33 return 0; 34 } 35 early_param("threadirqs", setup_forced_irqthreads); 36 #endif 37 38 static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip) 39 { 40 struct irq_data *irqd = irq_desc_get_irq_data(desc); 41 bool inprogress; 42 43 do { 44 unsigned long flags; 45 46 /* 47 * Wait until we're out of the critical section. This might 48 * give the wrong answer due to the lack of memory barriers. 49 */ 50 while (irqd_irq_inprogress(&desc->irq_data)) 51 cpu_relax(); 52 53 /* Ok, that indicated we're done: double-check carefully. */ 54 raw_spin_lock_irqsave(&desc->lock, flags); 55 inprogress = irqd_irq_inprogress(&desc->irq_data); 56 57 /* 58 * If requested and supported, check at the chip whether it 59 * is in flight at the hardware level, i.e. already pending 60 * in a CPU and waiting for service and acknowledge. 61 */ 62 if (!inprogress && sync_chip) { 63 /* 64 * Ignore the return code. inprogress is only updated 65 * when the chip supports it. 66 */ 67 __irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE, 68 &inprogress); 69 } 70 raw_spin_unlock_irqrestore(&desc->lock, flags); 71 72 /* Oops, that failed? */ 73 } while (inprogress); 74 } 75 76 /** 77 * synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs) 78 * @irq: interrupt number to wait for 79 * 80 * This function waits for any pending hard IRQ handlers for this 81 * interrupt to complete before returning. If you use this 82 * function while holding a resource the IRQ handler may need you 83 * will deadlock. It does not take associated threaded handlers 84 * into account. 85 * 86 * Do not use this for shutdown scenarios where you must be sure 87 * that all parts (hardirq and threaded handler) have completed. 88 * 89 * Returns: false if a threaded handler is active. 90 * 91 * This function may be called - with care - from IRQ context. 92 * 93 * It does not check whether there is an interrupt in flight at the 94 * hardware level, but not serviced yet, as this might deadlock when 95 * called with interrupts disabled and the target CPU of the interrupt 96 * is the current CPU. 97 */ 98 bool synchronize_hardirq(unsigned int irq) 99 { 100 struct irq_desc *desc = irq_to_desc(irq); 101 102 if (desc) { 103 __synchronize_hardirq(desc, false); 104 return !atomic_read(&desc->threads_active); 105 } 106 107 return true; 108 } 109 EXPORT_SYMBOL(synchronize_hardirq); 110 111 /** 112 * synchronize_irq - wait for pending IRQ handlers (on other CPUs) 113 * @irq: interrupt number to wait for 114 * 115 * This function waits for any pending IRQ handlers for this interrupt 116 * to complete before returning. If you use this function while 117 * holding a resource the IRQ handler may need you will deadlock. 118 * 119 * Can only be called from preemptible code as it might sleep when 120 * an interrupt thread is associated to @irq. 121 * 122 * It optionally makes sure (when the irq chip supports that method) 123 * that the interrupt is not pending in any CPU and waiting for 124 * service. 125 */ 126 void synchronize_irq(unsigned int irq) 127 { 128 struct irq_desc *desc = irq_to_desc(irq); 129 130 if (desc) { 131 __synchronize_hardirq(desc, true); 132 /* 133 * We made sure that no hardirq handler is 134 * running. Now verify that no threaded handlers are 135 * active. 136 */ 137 wait_event(desc->wait_for_threads, 138 !atomic_read(&desc->threads_active)); 139 } 140 } 141 EXPORT_SYMBOL(synchronize_irq); 142 143 #ifdef CONFIG_SMP 144 cpumask_var_t irq_default_affinity; 145 146 static bool __irq_can_set_affinity(struct irq_desc *desc) 147 { 148 if (!desc || !irqd_can_balance(&desc->irq_data) || 149 !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity) 150 return false; 151 return true; 152 } 153 154 /** 155 * irq_can_set_affinity - Check if the affinity of a given irq can be set 156 * @irq: Interrupt to check 157 * 158 */ 159 int irq_can_set_affinity(unsigned int irq) 160 { 161 return __irq_can_set_affinity(irq_to_desc(irq)); 162 } 163 164 /** 165 * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space 166 * @irq: Interrupt to check 167 * 168 * Like irq_can_set_affinity() above, but additionally checks for the 169 * AFFINITY_MANAGED flag. 170 */ 171 bool irq_can_set_affinity_usr(unsigned int irq) 172 { 173 struct irq_desc *desc = irq_to_desc(irq); 174 175 return __irq_can_set_affinity(desc) && 176 !irqd_affinity_is_managed(&desc->irq_data); 177 } 178 179 /** 180 * irq_set_thread_affinity - Notify irq threads to adjust affinity 181 * @desc: irq descriptor which has affinity changed 182 * 183 * We just set IRQTF_AFFINITY and delegate the affinity setting 184 * to the interrupt thread itself. We can not call 185 * set_cpus_allowed_ptr() here as we hold desc->lock and this 186 * code can be called from hard interrupt context. 187 */ 188 void irq_set_thread_affinity(struct irq_desc *desc) 189 { 190 struct irqaction *action; 191 192 for_each_action_of_desc(desc, action) 193 if (action->thread) 194 set_bit(IRQTF_AFFINITY, &action->thread_flags); 195 } 196 197 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK 198 static void irq_validate_effective_affinity(struct irq_data *data) 199 { 200 const struct cpumask *m = irq_data_get_effective_affinity_mask(data); 201 struct irq_chip *chip = irq_data_get_irq_chip(data); 202 203 if (!cpumask_empty(m)) 204 return; 205 pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n", 206 chip->name, data->irq); 207 } 208 #else 209 static inline void irq_validate_effective_affinity(struct irq_data *data) { } 210 #endif 211 212 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask, 213 bool force) 214 { 215 struct irq_desc *desc = irq_data_to_desc(data); 216 struct irq_chip *chip = irq_data_get_irq_chip(data); 217 const struct cpumask *prog_mask; 218 int ret; 219 220 static DEFINE_RAW_SPINLOCK(tmp_mask_lock); 221 static struct cpumask tmp_mask; 222 223 if (!chip || !chip->irq_set_affinity) 224 return -EINVAL; 225 226 raw_spin_lock(&tmp_mask_lock); 227 /* 228 * If this is a managed interrupt and housekeeping is enabled on 229 * it check whether the requested affinity mask intersects with 230 * a housekeeping CPU. If so, then remove the isolated CPUs from 231 * the mask and just keep the housekeeping CPU(s). This prevents 232 * the affinity setter from routing the interrupt to an isolated 233 * CPU to avoid that I/O submitted from a housekeeping CPU causes 234 * interrupts on an isolated one. 235 * 236 * If the masks do not intersect or include online CPU(s) then 237 * keep the requested mask. The isolated target CPUs are only 238 * receiving interrupts when the I/O operation was submitted 239 * directly from them. 240 * 241 * If all housekeeping CPUs in the affinity mask are offline, the 242 * interrupt will be migrated by the CPU hotplug code once a 243 * housekeeping CPU which belongs to the affinity mask comes 244 * online. 245 */ 246 if (irqd_affinity_is_managed(data) && 247 housekeeping_enabled(HK_TYPE_MANAGED_IRQ)) { 248 const struct cpumask *hk_mask; 249 250 hk_mask = housekeeping_cpumask(HK_TYPE_MANAGED_IRQ); 251 252 cpumask_and(&tmp_mask, mask, hk_mask); 253 if (!cpumask_intersects(&tmp_mask, cpu_online_mask)) 254 prog_mask = mask; 255 else 256 prog_mask = &tmp_mask; 257 } else { 258 prog_mask = mask; 259 } 260 261 /* 262 * Make sure we only provide online CPUs to the irqchip, 263 * unless we are being asked to force the affinity (in which 264 * case we do as we are told). 265 */ 266 cpumask_and(&tmp_mask, prog_mask, cpu_online_mask); 267 if (!force && !cpumask_empty(&tmp_mask)) 268 ret = chip->irq_set_affinity(data, &tmp_mask, force); 269 else if (force) 270 ret = chip->irq_set_affinity(data, mask, force); 271 else 272 ret = -EINVAL; 273 274 raw_spin_unlock(&tmp_mask_lock); 275 276 switch (ret) { 277 case IRQ_SET_MASK_OK: 278 case IRQ_SET_MASK_OK_DONE: 279 cpumask_copy(desc->irq_common_data.affinity, mask); 280 fallthrough; 281 case IRQ_SET_MASK_OK_NOCOPY: 282 irq_validate_effective_affinity(data); 283 irq_set_thread_affinity(desc); 284 ret = 0; 285 } 286 287 return ret; 288 } 289 290 #ifdef CONFIG_GENERIC_PENDING_IRQ 291 static inline int irq_set_affinity_pending(struct irq_data *data, 292 const struct cpumask *dest) 293 { 294 struct irq_desc *desc = irq_data_to_desc(data); 295 296 irqd_set_move_pending(data); 297 irq_copy_pending(desc, dest); 298 return 0; 299 } 300 #else 301 static inline int irq_set_affinity_pending(struct irq_data *data, 302 const struct cpumask *dest) 303 { 304 return -EBUSY; 305 } 306 #endif 307 308 static int irq_try_set_affinity(struct irq_data *data, 309 const struct cpumask *dest, bool force) 310 { 311 int ret = irq_do_set_affinity(data, dest, force); 312 313 /* 314 * In case that the underlying vector management is busy and the 315 * architecture supports the generic pending mechanism then utilize 316 * this to avoid returning an error to user space. 317 */ 318 if (ret == -EBUSY && !force) 319 ret = irq_set_affinity_pending(data, dest); 320 return ret; 321 } 322 323 static bool irq_set_affinity_deactivated(struct irq_data *data, 324 const struct cpumask *mask) 325 { 326 struct irq_desc *desc = irq_data_to_desc(data); 327 328 /* 329 * Handle irq chips which can handle affinity only in activated 330 * state correctly 331 * 332 * If the interrupt is not yet activated, just store the affinity 333 * mask and do not call the chip driver at all. On activation the 334 * driver has to make sure anyway that the interrupt is in a 335 * usable state so startup works. 336 */ 337 if (!IS_ENABLED(CONFIG_IRQ_DOMAIN_HIERARCHY) || 338 irqd_is_activated(data) || !irqd_affinity_on_activate(data)) 339 return false; 340 341 cpumask_copy(desc->irq_common_data.affinity, mask); 342 irq_data_update_effective_affinity(data, mask); 343 irqd_set(data, IRQD_AFFINITY_SET); 344 return true; 345 } 346 347 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask, 348 bool force) 349 { 350 struct irq_chip *chip = irq_data_get_irq_chip(data); 351 struct irq_desc *desc = irq_data_to_desc(data); 352 int ret = 0; 353 354 if (!chip || !chip->irq_set_affinity) 355 return -EINVAL; 356 357 if (irq_set_affinity_deactivated(data, mask)) 358 return 0; 359 360 if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) { 361 ret = irq_try_set_affinity(data, mask, force); 362 } else { 363 irqd_set_move_pending(data); 364 irq_copy_pending(desc, mask); 365 } 366 367 if (desc->affinity_notify) { 368 kref_get(&desc->affinity_notify->kref); 369 if (!schedule_work(&desc->affinity_notify->work)) { 370 /* Work was already scheduled, drop our extra ref */ 371 kref_put(&desc->affinity_notify->kref, 372 desc->affinity_notify->release); 373 } 374 } 375 irqd_set(data, IRQD_AFFINITY_SET); 376 377 return ret; 378 } 379 380 /** 381 * irq_update_affinity_desc - Update affinity management for an interrupt 382 * @irq: The interrupt number to update 383 * @affinity: Pointer to the affinity descriptor 384 * 385 * This interface can be used to configure the affinity management of 386 * interrupts which have been allocated already. 387 * 388 * There are certain limitations on when it may be used - attempts to use it 389 * for when the kernel is configured for generic IRQ reservation mode (in 390 * config GENERIC_IRQ_RESERVATION_MODE) will fail, as it may conflict with 391 * managed/non-managed interrupt accounting. In addition, attempts to use it on 392 * an interrupt which is already started or which has already been configured 393 * as managed will also fail, as these mean invalid init state or double init. 394 */ 395 int irq_update_affinity_desc(unsigned int irq, 396 struct irq_affinity_desc *affinity) 397 { 398 struct irq_desc *desc; 399 unsigned long flags; 400 bool activated; 401 int ret = 0; 402 403 /* 404 * Supporting this with the reservation scheme used by x86 needs 405 * some more thought. Fail it for now. 406 */ 407 if (IS_ENABLED(CONFIG_GENERIC_IRQ_RESERVATION_MODE)) 408 return -EOPNOTSUPP; 409 410 desc = irq_get_desc_buslock(irq, &flags, 0); 411 if (!desc) 412 return -EINVAL; 413 414 /* Requires the interrupt to be shut down */ 415 if (irqd_is_started(&desc->irq_data)) { 416 ret = -EBUSY; 417 goto out_unlock; 418 } 419 420 /* Interrupts which are already managed cannot be modified */ 421 if (irqd_affinity_is_managed(&desc->irq_data)) { 422 ret = -EBUSY; 423 goto out_unlock; 424 } 425 426 /* 427 * Deactivate the interrupt. That's required to undo 428 * anything an earlier activation has established. 429 */ 430 activated = irqd_is_activated(&desc->irq_data); 431 if (activated) 432 irq_domain_deactivate_irq(&desc->irq_data); 433 434 if (affinity->is_managed) { 435 irqd_set(&desc->irq_data, IRQD_AFFINITY_MANAGED); 436 irqd_set(&desc->irq_data, IRQD_MANAGED_SHUTDOWN); 437 } 438 439 cpumask_copy(desc->irq_common_data.affinity, &affinity->mask); 440 441 /* Restore the activation state */ 442 if (activated) 443 irq_domain_activate_irq(&desc->irq_data, false); 444 445 out_unlock: 446 irq_put_desc_busunlock(desc, flags); 447 return ret; 448 } 449 450 static int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, 451 bool force) 452 { 453 struct irq_desc *desc = irq_to_desc(irq); 454 unsigned long flags; 455 int ret; 456 457 if (!desc) 458 return -EINVAL; 459 460 raw_spin_lock_irqsave(&desc->lock, flags); 461 ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force); 462 raw_spin_unlock_irqrestore(&desc->lock, flags); 463 return ret; 464 } 465 466 /** 467 * irq_set_affinity - Set the irq affinity of a given irq 468 * @irq: Interrupt to set affinity 469 * @cpumask: cpumask 470 * 471 * Fails if cpumask does not contain an online CPU 472 */ 473 int irq_set_affinity(unsigned int irq, const struct cpumask *cpumask) 474 { 475 return __irq_set_affinity(irq, cpumask, false); 476 } 477 EXPORT_SYMBOL_GPL(irq_set_affinity); 478 479 /** 480 * irq_force_affinity - Force the irq affinity of a given irq 481 * @irq: Interrupt to set affinity 482 * @cpumask: cpumask 483 * 484 * Same as irq_set_affinity, but without checking the mask against 485 * online cpus. 486 * 487 * Solely for low level cpu hotplug code, where we need to make per 488 * cpu interrupts affine before the cpu becomes online. 489 */ 490 int irq_force_affinity(unsigned int irq, const struct cpumask *cpumask) 491 { 492 return __irq_set_affinity(irq, cpumask, true); 493 } 494 EXPORT_SYMBOL_GPL(irq_force_affinity); 495 496 int __irq_apply_affinity_hint(unsigned int irq, const struct cpumask *m, 497 bool setaffinity) 498 { 499 unsigned long flags; 500 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 501 502 if (!desc) 503 return -EINVAL; 504 desc->affinity_hint = m; 505 irq_put_desc_unlock(desc, flags); 506 if (m && setaffinity) 507 __irq_set_affinity(irq, m, false); 508 return 0; 509 } 510 EXPORT_SYMBOL_GPL(__irq_apply_affinity_hint); 511 512 static void irq_affinity_notify(struct work_struct *work) 513 { 514 struct irq_affinity_notify *notify = 515 container_of(work, struct irq_affinity_notify, work); 516 struct irq_desc *desc = irq_to_desc(notify->irq); 517 cpumask_var_t cpumask; 518 unsigned long flags; 519 520 if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL)) 521 goto out; 522 523 raw_spin_lock_irqsave(&desc->lock, flags); 524 if (irq_move_pending(&desc->irq_data)) 525 irq_get_pending(cpumask, desc); 526 else 527 cpumask_copy(cpumask, desc->irq_common_data.affinity); 528 raw_spin_unlock_irqrestore(&desc->lock, flags); 529 530 notify->notify(notify, cpumask); 531 532 free_cpumask_var(cpumask); 533 out: 534 kref_put(¬ify->kref, notify->release); 535 } 536 537 /** 538 * irq_set_affinity_notifier - control notification of IRQ affinity changes 539 * @irq: Interrupt for which to enable/disable notification 540 * @notify: Context for notification, or %NULL to disable 541 * notification. Function pointers must be initialised; 542 * the other fields will be initialised by this function. 543 * 544 * Must be called in process context. Notification may only be enabled 545 * after the IRQ is allocated and must be disabled before the IRQ is 546 * freed using free_irq(). 547 */ 548 int 549 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify) 550 { 551 struct irq_desc *desc = irq_to_desc(irq); 552 struct irq_affinity_notify *old_notify; 553 unsigned long flags; 554 555 /* The release function is promised process context */ 556 might_sleep(); 557 558 if (!desc || desc->istate & IRQS_NMI) 559 return -EINVAL; 560 561 /* Complete initialisation of *notify */ 562 if (notify) { 563 notify->irq = irq; 564 kref_init(¬ify->kref); 565 INIT_WORK(¬ify->work, irq_affinity_notify); 566 } 567 568 raw_spin_lock_irqsave(&desc->lock, flags); 569 old_notify = desc->affinity_notify; 570 desc->affinity_notify = notify; 571 raw_spin_unlock_irqrestore(&desc->lock, flags); 572 573 if (old_notify) { 574 if (cancel_work_sync(&old_notify->work)) { 575 /* Pending work had a ref, put that one too */ 576 kref_put(&old_notify->kref, old_notify->release); 577 } 578 kref_put(&old_notify->kref, old_notify->release); 579 } 580 581 return 0; 582 } 583 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier); 584 585 #ifndef CONFIG_AUTO_IRQ_AFFINITY 586 /* 587 * Generic version of the affinity autoselector. 588 */ 589 int irq_setup_affinity(struct irq_desc *desc) 590 { 591 struct cpumask *set = irq_default_affinity; 592 int ret, node = irq_desc_get_node(desc); 593 static DEFINE_RAW_SPINLOCK(mask_lock); 594 static struct cpumask mask; 595 596 /* Excludes PER_CPU and NO_BALANCE interrupts */ 597 if (!__irq_can_set_affinity(desc)) 598 return 0; 599 600 raw_spin_lock(&mask_lock); 601 /* 602 * Preserve the managed affinity setting and a userspace affinity 603 * setup, but make sure that one of the targets is online. 604 */ 605 if (irqd_affinity_is_managed(&desc->irq_data) || 606 irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) { 607 if (cpumask_intersects(desc->irq_common_data.affinity, 608 cpu_online_mask)) 609 set = desc->irq_common_data.affinity; 610 else 611 irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET); 612 } 613 614 cpumask_and(&mask, cpu_online_mask, set); 615 if (cpumask_empty(&mask)) 616 cpumask_copy(&mask, cpu_online_mask); 617 618 if (node != NUMA_NO_NODE) { 619 const struct cpumask *nodemask = cpumask_of_node(node); 620 621 /* make sure at least one of the cpus in nodemask is online */ 622 if (cpumask_intersects(&mask, nodemask)) 623 cpumask_and(&mask, &mask, nodemask); 624 } 625 ret = irq_do_set_affinity(&desc->irq_data, &mask, false); 626 raw_spin_unlock(&mask_lock); 627 return ret; 628 } 629 #else 630 /* Wrapper for ALPHA specific affinity selector magic */ 631 int irq_setup_affinity(struct irq_desc *desc) 632 { 633 return irq_select_affinity(irq_desc_get_irq(desc)); 634 } 635 #endif /* CONFIG_AUTO_IRQ_AFFINITY */ 636 #endif /* CONFIG_SMP */ 637 638 639 /** 640 * irq_set_vcpu_affinity - Set vcpu affinity for the interrupt 641 * @irq: interrupt number to set affinity 642 * @vcpu_info: vCPU specific data or pointer to a percpu array of vCPU 643 * specific data for percpu_devid interrupts 644 * 645 * This function uses the vCPU specific data to set the vCPU 646 * affinity for an irq. The vCPU specific data is passed from 647 * outside, such as KVM. One example code path is as below: 648 * KVM -> IOMMU -> irq_set_vcpu_affinity(). 649 */ 650 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info) 651 { 652 unsigned long flags; 653 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 654 struct irq_data *data; 655 struct irq_chip *chip; 656 int ret = -ENOSYS; 657 658 if (!desc) 659 return -EINVAL; 660 661 data = irq_desc_get_irq_data(desc); 662 do { 663 chip = irq_data_get_irq_chip(data); 664 if (chip && chip->irq_set_vcpu_affinity) 665 break; 666 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 667 data = data->parent_data; 668 #else 669 data = NULL; 670 #endif 671 } while (data); 672 673 if (data) 674 ret = chip->irq_set_vcpu_affinity(data, vcpu_info); 675 irq_put_desc_unlock(desc, flags); 676 677 return ret; 678 } 679 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity); 680 681 void __disable_irq(struct irq_desc *desc) 682 { 683 if (!desc->depth++) 684 irq_disable(desc); 685 } 686 687 static int __disable_irq_nosync(unsigned int irq) 688 { 689 unsigned long flags; 690 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 691 692 if (!desc) 693 return -EINVAL; 694 __disable_irq(desc); 695 irq_put_desc_busunlock(desc, flags); 696 return 0; 697 } 698 699 /** 700 * disable_irq_nosync - disable an irq without waiting 701 * @irq: Interrupt to disable 702 * 703 * Disable the selected interrupt line. Disables and Enables are 704 * nested. 705 * Unlike disable_irq(), this function does not ensure existing 706 * instances of the IRQ handler have completed before returning. 707 * 708 * This function may be called from IRQ context. 709 */ 710 void disable_irq_nosync(unsigned int irq) 711 { 712 __disable_irq_nosync(irq); 713 } 714 EXPORT_SYMBOL(disable_irq_nosync); 715 716 /** 717 * disable_irq - disable an irq and wait for completion 718 * @irq: Interrupt to disable 719 * 720 * Disable the selected interrupt line. Enables and Disables are 721 * nested. 722 * This function waits for any pending IRQ handlers for this interrupt 723 * to complete before returning. If you use this function while 724 * holding a resource the IRQ handler may need you will deadlock. 725 * 726 * Can only be called from preemptible code as it might sleep when 727 * an interrupt thread is associated to @irq. 728 * 729 */ 730 void disable_irq(unsigned int irq) 731 { 732 might_sleep(); 733 if (!__disable_irq_nosync(irq)) 734 synchronize_irq(irq); 735 } 736 EXPORT_SYMBOL(disable_irq); 737 738 /** 739 * disable_hardirq - disables an irq and waits for hardirq completion 740 * @irq: Interrupt to disable 741 * 742 * Disable the selected interrupt line. Enables and Disables are 743 * nested. 744 * This function waits for any pending hard IRQ handlers for this 745 * interrupt to complete before returning. If you use this function while 746 * holding a resource the hard IRQ handler may need you will deadlock. 747 * 748 * When used to optimistically disable an interrupt from atomic context 749 * the return value must be checked. 750 * 751 * Returns: false if a threaded handler is active. 752 * 753 * This function may be called - with care - from IRQ context. 754 */ 755 bool disable_hardirq(unsigned int irq) 756 { 757 if (!__disable_irq_nosync(irq)) 758 return synchronize_hardirq(irq); 759 760 return false; 761 } 762 EXPORT_SYMBOL_GPL(disable_hardirq); 763 764 /** 765 * disable_nmi_nosync - disable an nmi without waiting 766 * @irq: Interrupt to disable 767 * 768 * Disable the selected interrupt line. Disables and enables are 769 * nested. 770 * The interrupt to disable must have been requested through request_nmi. 771 * Unlike disable_nmi(), this function does not ensure existing 772 * instances of the IRQ handler have completed before returning. 773 */ 774 void disable_nmi_nosync(unsigned int irq) 775 { 776 disable_irq_nosync(irq); 777 } 778 779 void __enable_irq(struct irq_desc *desc) 780 { 781 switch (desc->depth) { 782 case 0: 783 err_out: 784 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n", 785 irq_desc_get_irq(desc)); 786 break; 787 case 1: { 788 if (desc->istate & IRQS_SUSPENDED) 789 goto err_out; 790 /* Prevent probing on this irq: */ 791 irq_settings_set_noprobe(desc); 792 /* 793 * Call irq_startup() not irq_enable() here because the 794 * interrupt might be marked NOAUTOEN. So irq_startup() 795 * needs to be invoked when it gets enabled the first 796 * time. If it was already started up, then irq_startup() 797 * will invoke irq_enable() under the hood. 798 */ 799 irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE); 800 break; 801 } 802 default: 803 desc->depth--; 804 } 805 } 806 807 /** 808 * enable_irq - enable handling of an irq 809 * @irq: Interrupt to enable 810 * 811 * Undoes the effect of one call to disable_irq(). If this 812 * matches the last disable, processing of interrupts on this 813 * IRQ line is re-enabled. 814 * 815 * This function may be called from IRQ context only when 816 * desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL ! 817 */ 818 void enable_irq(unsigned int irq) 819 { 820 unsigned long flags; 821 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 822 823 if (!desc) 824 return; 825 if (WARN(!desc->irq_data.chip, 826 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq)) 827 goto out; 828 829 __enable_irq(desc); 830 out: 831 irq_put_desc_busunlock(desc, flags); 832 } 833 EXPORT_SYMBOL(enable_irq); 834 835 /** 836 * enable_nmi - enable handling of an nmi 837 * @irq: Interrupt to enable 838 * 839 * The interrupt to enable must have been requested through request_nmi. 840 * Undoes the effect of one call to disable_nmi(). If this 841 * matches the last disable, processing of interrupts on this 842 * IRQ line is re-enabled. 843 */ 844 void enable_nmi(unsigned int irq) 845 { 846 enable_irq(irq); 847 } 848 849 static int set_irq_wake_real(unsigned int irq, unsigned int on) 850 { 851 struct irq_desc *desc = irq_to_desc(irq); 852 int ret = -ENXIO; 853 854 if (irq_desc_get_chip(desc)->flags & IRQCHIP_SKIP_SET_WAKE) 855 return 0; 856 857 if (desc->irq_data.chip->irq_set_wake) 858 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on); 859 860 return ret; 861 } 862 863 /** 864 * irq_set_irq_wake - control irq power management wakeup 865 * @irq: interrupt to control 866 * @on: enable/disable power management wakeup 867 * 868 * Enable/disable power management wakeup mode, which is 869 * disabled by default. Enables and disables must match, 870 * just as they match for non-wakeup mode support. 871 * 872 * Wakeup mode lets this IRQ wake the system from sleep 873 * states like "suspend to RAM". 874 * 875 * Note: irq enable/disable state is completely orthogonal 876 * to the enable/disable state of irq wake. An irq can be 877 * disabled with disable_irq() and still wake the system as 878 * long as the irq has wake enabled. If this does not hold, 879 * then the underlying irq chip and the related driver need 880 * to be investigated. 881 */ 882 int irq_set_irq_wake(unsigned int irq, unsigned int on) 883 { 884 unsigned long flags; 885 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 886 int ret = 0; 887 888 if (!desc) 889 return -EINVAL; 890 891 /* Don't use NMIs as wake up interrupts please */ 892 if (desc->istate & IRQS_NMI) { 893 ret = -EINVAL; 894 goto out_unlock; 895 } 896 897 /* wakeup-capable irqs can be shared between drivers that 898 * don't need to have the same sleep mode behaviors. 899 */ 900 if (on) { 901 if (desc->wake_depth++ == 0) { 902 ret = set_irq_wake_real(irq, on); 903 if (ret) 904 desc->wake_depth = 0; 905 else 906 irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE); 907 } 908 } else { 909 if (desc->wake_depth == 0) { 910 WARN(1, "Unbalanced IRQ %d wake disable\n", irq); 911 } else if (--desc->wake_depth == 0) { 912 ret = set_irq_wake_real(irq, on); 913 if (ret) 914 desc->wake_depth = 1; 915 else 916 irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE); 917 } 918 } 919 920 out_unlock: 921 irq_put_desc_busunlock(desc, flags); 922 return ret; 923 } 924 EXPORT_SYMBOL(irq_set_irq_wake); 925 926 /* 927 * Internal function that tells the architecture code whether a 928 * particular irq has been exclusively allocated or is available 929 * for driver use. 930 */ 931 int can_request_irq(unsigned int irq, unsigned long irqflags) 932 { 933 unsigned long flags; 934 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 935 int canrequest = 0; 936 937 if (!desc) 938 return 0; 939 940 if (irq_settings_can_request(desc)) { 941 if (!desc->action || 942 irqflags & desc->action->flags & IRQF_SHARED) 943 canrequest = 1; 944 } 945 irq_put_desc_unlock(desc, flags); 946 return canrequest; 947 } 948 949 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags) 950 { 951 struct irq_chip *chip = desc->irq_data.chip; 952 int ret, unmask = 0; 953 954 if (!chip || !chip->irq_set_type) { 955 /* 956 * IRQF_TRIGGER_* but the PIC does not support multiple 957 * flow-types? 958 */ 959 pr_debug("No set_type function for IRQ %d (%s)\n", 960 irq_desc_get_irq(desc), 961 chip ? (chip->name ? : "unknown") : "unknown"); 962 return 0; 963 } 964 965 if (chip->flags & IRQCHIP_SET_TYPE_MASKED) { 966 if (!irqd_irq_masked(&desc->irq_data)) 967 mask_irq(desc); 968 if (!irqd_irq_disabled(&desc->irq_data)) 969 unmask = 1; 970 } 971 972 /* Mask all flags except trigger mode */ 973 flags &= IRQ_TYPE_SENSE_MASK; 974 ret = chip->irq_set_type(&desc->irq_data, flags); 975 976 switch (ret) { 977 case IRQ_SET_MASK_OK: 978 case IRQ_SET_MASK_OK_DONE: 979 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK); 980 irqd_set(&desc->irq_data, flags); 981 fallthrough; 982 983 case IRQ_SET_MASK_OK_NOCOPY: 984 flags = irqd_get_trigger_type(&desc->irq_data); 985 irq_settings_set_trigger_mask(desc, flags); 986 irqd_clear(&desc->irq_data, IRQD_LEVEL); 987 irq_settings_clr_level(desc); 988 if (flags & IRQ_TYPE_LEVEL_MASK) { 989 irq_settings_set_level(desc); 990 irqd_set(&desc->irq_data, IRQD_LEVEL); 991 } 992 993 ret = 0; 994 break; 995 default: 996 pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n", 997 flags, irq_desc_get_irq(desc), chip->irq_set_type); 998 } 999 if (unmask) 1000 unmask_irq(desc); 1001 return ret; 1002 } 1003 1004 #ifdef CONFIG_HARDIRQS_SW_RESEND 1005 int irq_set_parent(int irq, int parent_irq) 1006 { 1007 unsigned long flags; 1008 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 1009 1010 if (!desc) 1011 return -EINVAL; 1012 1013 desc->parent_irq = parent_irq; 1014 1015 irq_put_desc_unlock(desc, flags); 1016 return 0; 1017 } 1018 EXPORT_SYMBOL_GPL(irq_set_parent); 1019 #endif 1020 1021 /* 1022 * Default primary interrupt handler for threaded interrupts. Is 1023 * assigned as primary handler when request_threaded_irq is called 1024 * with handler == NULL. Useful for oneshot interrupts. 1025 */ 1026 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id) 1027 { 1028 return IRQ_WAKE_THREAD; 1029 } 1030 1031 /* 1032 * Primary handler for nested threaded interrupts. Should never be 1033 * called. 1034 */ 1035 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id) 1036 { 1037 WARN(1, "Primary handler called for nested irq %d\n", irq); 1038 return IRQ_NONE; 1039 } 1040 1041 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id) 1042 { 1043 WARN(1, "Secondary action handler called for irq %d\n", irq); 1044 return IRQ_NONE; 1045 } 1046 1047 static int irq_wait_for_interrupt(struct irqaction *action) 1048 { 1049 for (;;) { 1050 set_current_state(TASK_INTERRUPTIBLE); 1051 1052 if (kthread_should_stop()) { 1053 /* may need to run one last time */ 1054 if (test_and_clear_bit(IRQTF_RUNTHREAD, 1055 &action->thread_flags)) { 1056 __set_current_state(TASK_RUNNING); 1057 return 0; 1058 } 1059 __set_current_state(TASK_RUNNING); 1060 return -1; 1061 } 1062 1063 if (test_and_clear_bit(IRQTF_RUNTHREAD, 1064 &action->thread_flags)) { 1065 __set_current_state(TASK_RUNNING); 1066 return 0; 1067 } 1068 schedule(); 1069 } 1070 } 1071 1072 /* 1073 * Oneshot interrupts keep the irq line masked until the threaded 1074 * handler finished. unmask if the interrupt has not been disabled and 1075 * is marked MASKED. 1076 */ 1077 static void irq_finalize_oneshot(struct irq_desc *desc, 1078 struct irqaction *action) 1079 { 1080 if (!(desc->istate & IRQS_ONESHOT) || 1081 action->handler == irq_forced_secondary_handler) 1082 return; 1083 again: 1084 chip_bus_lock(desc); 1085 raw_spin_lock_irq(&desc->lock); 1086 1087 /* 1088 * Implausible though it may be we need to protect us against 1089 * the following scenario: 1090 * 1091 * The thread is faster done than the hard interrupt handler 1092 * on the other CPU. If we unmask the irq line then the 1093 * interrupt can come in again and masks the line, leaves due 1094 * to IRQS_INPROGRESS and the irq line is masked forever. 1095 * 1096 * This also serializes the state of shared oneshot handlers 1097 * versus "desc->threads_oneshot |= action->thread_mask;" in 1098 * irq_wake_thread(). See the comment there which explains the 1099 * serialization. 1100 */ 1101 if (unlikely(irqd_irq_inprogress(&desc->irq_data))) { 1102 raw_spin_unlock_irq(&desc->lock); 1103 chip_bus_sync_unlock(desc); 1104 cpu_relax(); 1105 goto again; 1106 } 1107 1108 /* 1109 * Now check again, whether the thread should run. Otherwise 1110 * we would clear the threads_oneshot bit of this thread which 1111 * was just set. 1112 */ 1113 if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags)) 1114 goto out_unlock; 1115 1116 desc->threads_oneshot &= ~action->thread_mask; 1117 1118 if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) && 1119 irqd_irq_masked(&desc->irq_data)) 1120 unmask_threaded_irq(desc); 1121 1122 out_unlock: 1123 raw_spin_unlock_irq(&desc->lock); 1124 chip_bus_sync_unlock(desc); 1125 } 1126 1127 #ifdef CONFIG_SMP 1128 /* 1129 * Check whether we need to change the affinity of the interrupt thread. 1130 */ 1131 static void 1132 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) 1133 { 1134 cpumask_var_t mask; 1135 bool valid = true; 1136 1137 if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags)) 1138 return; 1139 1140 /* 1141 * In case we are out of memory we set IRQTF_AFFINITY again and 1142 * try again next time 1143 */ 1144 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) { 1145 set_bit(IRQTF_AFFINITY, &action->thread_flags); 1146 return; 1147 } 1148 1149 raw_spin_lock_irq(&desc->lock); 1150 /* 1151 * This code is triggered unconditionally. Check the affinity 1152 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out. 1153 */ 1154 if (cpumask_available(desc->irq_common_data.affinity)) { 1155 const struct cpumask *m; 1156 1157 m = irq_data_get_effective_affinity_mask(&desc->irq_data); 1158 cpumask_copy(mask, m); 1159 } else { 1160 valid = false; 1161 } 1162 raw_spin_unlock_irq(&desc->lock); 1163 1164 if (valid) 1165 set_cpus_allowed_ptr(current, mask); 1166 free_cpumask_var(mask); 1167 } 1168 #else 1169 static inline void 1170 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { } 1171 #endif 1172 1173 /* 1174 * Interrupts which are not explicitly requested as threaded 1175 * interrupts rely on the implicit bh/preempt disable of the hard irq 1176 * context. So we need to disable bh here to avoid deadlocks and other 1177 * side effects. 1178 */ 1179 static irqreturn_t 1180 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action) 1181 { 1182 irqreturn_t ret; 1183 1184 local_bh_disable(); 1185 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 1186 local_irq_disable(); 1187 ret = action->thread_fn(action->irq, action->dev_id); 1188 if (ret == IRQ_HANDLED) 1189 atomic_inc(&desc->threads_handled); 1190 1191 irq_finalize_oneshot(desc, action); 1192 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 1193 local_irq_enable(); 1194 local_bh_enable(); 1195 return ret; 1196 } 1197 1198 /* 1199 * Interrupts explicitly requested as threaded interrupts want to be 1200 * preemptible - many of them need to sleep and wait for slow busses to 1201 * complete. 1202 */ 1203 static irqreturn_t irq_thread_fn(struct irq_desc *desc, 1204 struct irqaction *action) 1205 { 1206 irqreturn_t ret; 1207 1208 ret = action->thread_fn(action->irq, action->dev_id); 1209 if (ret == IRQ_HANDLED) 1210 atomic_inc(&desc->threads_handled); 1211 1212 irq_finalize_oneshot(desc, action); 1213 return ret; 1214 } 1215 1216 static void wake_threads_waitq(struct irq_desc *desc) 1217 { 1218 if (atomic_dec_and_test(&desc->threads_active)) 1219 wake_up(&desc->wait_for_threads); 1220 } 1221 1222 static void irq_thread_dtor(struct callback_head *unused) 1223 { 1224 struct task_struct *tsk = current; 1225 struct irq_desc *desc; 1226 struct irqaction *action; 1227 1228 if (WARN_ON_ONCE(!(current->flags & PF_EXITING))) 1229 return; 1230 1231 action = kthread_data(tsk); 1232 1233 pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n", 1234 tsk->comm, tsk->pid, action->irq); 1235 1236 1237 desc = irq_to_desc(action->irq); 1238 /* 1239 * If IRQTF_RUNTHREAD is set, we need to decrement 1240 * desc->threads_active and wake possible waiters. 1241 */ 1242 if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags)) 1243 wake_threads_waitq(desc); 1244 1245 /* Prevent a stale desc->threads_oneshot */ 1246 irq_finalize_oneshot(desc, action); 1247 } 1248 1249 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action) 1250 { 1251 struct irqaction *secondary = action->secondary; 1252 1253 if (WARN_ON_ONCE(!secondary)) 1254 return; 1255 1256 raw_spin_lock_irq(&desc->lock); 1257 __irq_wake_thread(desc, secondary); 1258 raw_spin_unlock_irq(&desc->lock); 1259 } 1260 1261 /* 1262 * Internal function to notify that a interrupt thread is ready. 1263 */ 1264 static void irq_thread_set_ready(struct irq_desc *desc, 1265 struct irqaction *action) 1266 { 1267 set_bit(IRQTF_READY, &action->thread_flags); 1268 wake_up(&desc->wait_for_threads); 1269 } 1270 1271 /* 1272 * Internal function to wake up a interrupt thread and wait until it is 1273 * ready. 1274 */ 1275 static void wake_up_and_wait_for_irq_thread_ready(struct irq_desc *desc, 1276 struct irqaction *action) 1277 { 1278 if (!action || !action->thread) 1279 return; 1280 1281 wake_up_process(action->thread); 1282 wait_event(desc->wait_for_threads, 1283 test_bit(IRQTF_READY, &action->thread_flags)); 1284 } 1285 1286 /* 1287 * Interrupt handler thread 1288 */ 1289 static int irq_thread(void *data) 1290 { 1291 struct callback_head on_exit_work; 1292 struct irqaction *action = data; 1293 struct irq_desc *desc = irq_to_desc(action->irq); 1294 irqreturn_t (*handler_fn)(struct irq_desc *desc, 1295 struct irqaction *action); 1296 1297 irq_thread_set_ready(desc, action); 1298 1299 sched_set_fifo(current); 1300 1301 if (force_irqthreads() && test_bit(IRQTF_FORCED_THREAD, 1302 &action->thread_flags)) 1303 handler_fn = irq_forced_thread_fn; 1304 else 1305 handler_fn = irq_thread_fn; 1306 1307 init_task_work(&on_exit_work, irq_thread_dtor); 1308 task_work_add(current, &on_exit_work, TWA_NONE); 1309 1310 irq_thread_check_affinity(desc, action); 1311 1312 while (!irq_wait_for_interrupt(action)) { 1313 irqreturn_t action_ret; 1314 1315 irq_thread_check_affinity(desc, action); 1316 1317 action_ret = handler_fn(desc, action); 1318 if (action_ret == IRQ_WAKE_THREAD) 1319 irq_wake_secondary(desc, action); 1320 1321 wake_threads_waitq(desc); 1322 } 1323 1324 /* 1325 * This is the regular exit path. __free_irq() is stopping the 1326 * thread via kthread_stop() after calling 1327 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the 1328 * oneshot mask bit can be set. 1329 */ 1330 task_work_cancel(current, irq_thread_dtor); 1331 return 0; 1332 } 1333 1334 /** 1335 * irq_wake_thread - wake the irq thread for the action identified by dev_id 1336 * @irq: Interrupt line 1337 * @dev_id: Device identity for which the thread should be woken 1338 * 1339 */ 1340 void irq_wake_thread(unsigned int irq, void *dev_id) 1341 { 1342 struct irq_desc *desc = irq_to_desc(irq); 1343 struct irqaction *action; 1344 unsigned long flags; 1345 1346 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1347 return; 1348 1349 raw_spin_lock_irqsave(&desc->lock, flags); 1350 for_each_action_of_desc(desc, action) { 1351 if (action->dev_id == dev_id) { 1352 if (action->thread) 1353 __irq_wake_thread(desc, action); 1354 break; 1355 } 1356 } 1357 raw_spin_unlock_irqrestore(&desc->lock, flags); 1358 } 1359 EXPORT_SYMBOL_GPL(irq_wake_thread); 1360 1361 static int irq_setup_forced_threading(struct irqaction *new) 1362 { 1363 if (!force_irqthreads()) 1364 return 0; 1365 if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT)) 1366 return 0; 1367 1368 /* 1369 * No further action required for interrupts which are requested as 1370 * threaded interrupts already 1371 */ 1372 if (new->handler == irq_default_primary_handler) 1373 return 0; 1374 1375 new->flags |= IRQF_ONESHOT; 1376 1377 /* 1378 * Handle the case where we have a real primary handler and a 1379 * thread handler. We force thread them as well by creating a 1380 * secondary action. 1381 */ 1382 if (new->handler && new->thread_fn) { 1383 /* Allocate the secondary action */ 1384 new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 1385 if (!new->secondary) 1386 return -ENOMEM; 1387 new->secondary->handler = irq_forced_secondary_handler; 1388 new->secondary->thread_fn = new->thread_fn; 1389 new->secondary->dev_id = new->dev_id; 1390 new->secondary->irq = new->irq; 1391 new->secondary->name = new->name; 1392 } 1393 /* Deal with the primary handler */ 1394 set_bit(IRQTF_FORCED_THREAD, &new->thread_flags); 1395 new->thread_fn = new->handler; 1396 new->handler = irq_default_primary_handler; 1397 return 0; 1398 } 1399 1400 static int irq_request_resources(struct irq_desc *desc) 1401 { 1402 struct irq_data *d = &desc->irq_data; 1403 struct irq_chip *c = d->chip; 1404 1405 return c->irq_request_resources ? c->irq_request_resources(d) : 0; 1406 } 1407 1408 static void irq_release_resources(struct irq_desc *desc) 1409 { 1410 struct irq_data *d = &desc->irq_data; 1411 struct irq_chip *c = d->chip; 1412 1413 if (c->irq_release_resources) 1414 c->irq_release_resources(d); 1415 } 1416 1417 static bool irq_supports_nmi(struct irq_desc *desc) 1418 { 1419 struct irq_data *d = irq_desc_get_irq_data(desc); 1420 1421 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 1422 /* Only IRQs directly managed by the root irqchip can be set as NMI */ 1423 if (d->parent_data) 1424 return false; 1425 #endif 1426 /* Don't support NMIs for chips behind a slow bus */ 1427 if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock) 1428 return false; 1429 1430 return d->chip->flags & IRQCHIP_SUPPORTS_NMI; 1431 } 1432 1433 static int irq_nmi_setup(struct irq_desc *desc) 1434 { 1435 struct irq_data *d = irq_desc_get_irq_data(desc); 1436 struct irq_chip *c = d->chip; 1437 1438 return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL; 1439 } 1440 1441 static void irq_nmi_teardown(struct irq_desc *desc) 1442 { 1443 struct irq_data *d = irq_desc_get_irq_data(desc); 1444 struct irq_chip *c = d->chip; 1445 1446 if (c->irq_nmi_teardown) 1447 c->irq_nmi_teardown(d); 1448 } 1449 1450 static int 1451 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary) 1452 { 1453 struct task_struct *t; 1454 1455 if (!secondary) { 1456 t = kthread_create(irq_thread, new, "irq/%d-%s", irq, 1457 new->name); 1458 } else { 1459 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq, 1460 new->name); 1461 } 1462 1463 if (IS_ERR(t)) 1464 return PTR_ERR(t); 1465 1466 /* 1467 * We keep the reference to the task struct even if 1468 * the thread dies to avoid that the interrupt code 1469 * references an already freed task_struct. 1470 */ 1471 new->thread = get_task_struct(t); 1472 /* 1473 * Tell the thread to set its affinity. This is 1474 * important for shared interrupt handlers as we do 1475 * not invoke setup_affinity() for the secondary 1476 * handlers as everything is already set up. Even for 1477 * interrupts marked with IRQF_NO_BALANCE this is 1478 * correct as we want the thread to move to the cpu(s) 1479 * on which the requesting code placed the interrupt. 1480 */ 1481 set_bit(IRQTF_AFFINITY, &new->thread_flags); 1482 return 0; 1483 } 1484 1485 /* 1486 * Internal function to register an irqaction - typically used to 1487 * allocate special interrupts that are part of the architecture. 1488 * 1489 * Locking rules: 1490 * 1491 * desc->request_mutex Provides serialization against a concurrent free_irq() 1492 * chip_bus_lock Provides serialization for slow bus operations 1493 * desc->lock Provides serialization against hard interrupts 1494 * 1495 * chip_bus_lock and desc->lock are sufficient for all other management and 1496 * interrupt related functions. desc->request_mutex solely serializes 1497 * request/free_irq(). 1498 */ 1499 static int 1500 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new) 1501 { 1502 struct irqaction *old, **old_ptr; 1503 unsigned long flags, thread_mask = 0; 1504 int ret, nested, shared = 0; 1505 1506 if (!desc) 1507 return -EINVAL; 1508 1509 if (desc->irq_data.chip == &no_irq_chip) 1510 return -ENOSYS; 1511 if (!try_module_get(desc->owner)) 1512 return -ENODEV; 1513 1514 new->irq = irq; 1515 1516 /* 1517 * If the trigger type is not specified by the caller, 1518 * then use the default for this interrupt. 1519 */ 1520 if (!(new->flags & IRQF_TRIGGER_MASK)) 1521 new->flags |= irqd_get_trigger_type(&desc->irq_data); 1522 1523 /* 1524 * Check whether the interrupt nests into another interrupt 1525 * thread. 1526 */ 1527 nested = irq_settings_is_nested_thread(desc); 1528 if (nested) { 1529 if (!new->thread_fn) { 1530 ret = -EINVAL; 1531 goto out_mput; 1532 } 1533 /* 1534 * Replace the primary handler which was provided from 1535 * the driver for non nested interrupt handling by the 1536 * dummy function which warns when called. 1537 */ 1538 new->handler = irq_nested_primary_handler; 1539 } else { 1540 if (irq_settings_can_thread(desc)) { 1541 ret = irq_setup_forced_threading(new); 1542 if (ret) 1543 goto out_mput; 1544 } 1545 } 1546 1547 /* 1548 * Create a handler thread when a thread function is supplied 1549 * and the interrupt does not nest into another interrupt 1550 * thread. 1551 */ 1552 if (new->thread_fn && !nested) { 1553 ret = setup_irq_thread(new, irq, false); 1554 if (ret) 1555 goto out_mput; 1556 if (new->secondary) { 1557 ret = setup_irq_thread(new->secondary, irq, true); 1558 if (ret) 1559 goto out_thread; 1560 } 1561 } 1562 1563 /* 1564 * Drivers are often written to work w/o knowledge about the 1565 * underlying irq chip implementation, so a request for a 1566 * threaded irq without a primary hard irq context handler 1567 * requires the ONESHOT flag to be set. Some irq chips like 1568 * MSI based interrupts are per se one shot safe. Check the 1569 * chip flags, so we can avoid the unmask dance at the end of 1570 * the threaded handler for those. 1571 */ 1572 if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE) 1573 new->flags &= ~IRQF_ONESHOT; 1574 1575 /* 1576 * Protects against a concurrent __free_irq() call which might wait 1577 * for synchronize_hardirq() to complete without holding the optional 1578 * chip bus lock and desc->lock. Also protects against handing out 1579 * a recycled oneshot thread_mask bit while it's still in use by 1580 * its previous owner. 1581 */ 1582 mutex_lock(&desc->request_mutex); 1583 1584 /* 1585 * Acquire bus lock as the irq_request_resources() callback below 1586 * might rely on the serialization or the magic power management 1587 * functions which are abusing the irq_bus_lock() callback, 1588 */ 1589 chip_bus_lock(desc); 1590 1591 /* First installed action requests resources. */ 1592 if (!desc->action) { 1593 ret = irq_request_resources(desc); 1594 if (ret) { 1595 pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n", 1596 new->name, irq, desc->irq_data.chip->name); 1597 goto out_bus_unlock; 1598 } 1599 } 1600 1601 /* 1602 * The following block of code has to be executed atomically 1603 * protected against a concurrent interrupt and any of the other 1604 * management calls which are not serialized via 1605 * desc->request_mutex or the optional bus lock. 1606 */ 1607 raw_spin_lock_irqsave(&desc->lock, flags); 1608 old_ptr = &desc->action; 1609 old = *old_ptr; 1610 if (old) { 1611 /* 1612 * Can't share interrupts unless both agree to and are 1613 * the same type (level, edge, polarity). So both flag 1614 * fields must have IRQF_SHARED set and the bits which 1615 * set the trigger type must match. Also all must 1616 * agree on ONESHOT. 1617 * Interrupt lines used for NMIs cannot be shared. 1618 */ 1619 unsigned int oldtype; 1620 1621 if (desc->istate & IRQS_NMI) { 1622 pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n", 1623 new->name, irq, desc->irq_data.chip->name); 1624 ret = -EINVAL; 1625 goto out_unlock; 1626 } 1627 1628 /* 1629 * If nobody did set the configuration before, inherit 1630 * the one provided by the requester. 1631 */ 1632 if (irqd_trigger_type_was_set(&desc->irq_data)) { 1633 oldtype = irqd_get_trigger_type(&desc->irq_data); 1634 } else { 1635 oldtype = new->flags & IRQF_TRIGGER_MASK; 1636 irqd_set_trigger_type(&desc->irq_data, oldtype); 1637 } 1638 1639 if (!((old->flags & new->flags) & IRQF_SHARED) || 1640 (oldtype != (new->flags & IRQF_TRIGGER_MASK)) || 1641 ((old->flags ^ new->flags) & IRQF_ONESHOT)) 1642 goto mismatch; 1643 1644 /* All handlers must agree on per-cpuness */ 1645 if ((old->flags & IRQF_PERCPU) != 1646 (new->flags & IRQF_PERCPU)) 1647 goto mismatch; 1648 1649 /* add new interrupt at end of irq queue */ 1650 do { 1651 /* 1652 * Or all existing action->thread_mask bits, 1653 * so we can find the next zero bit for this 1654 * new action. 1655 */ 1656 thread_mask |= old->thread_mask; 1657 old_ptr = &old->next; 1658 old = *old_ptr; 1659 } while (old); 1660 shared = 1; 1661 } 1662 1663 /* 1664 * Setup the thread mask for this irqaction for ONESHOT. For 1665 * !ONESHOT irqs the thread mask is 0 so we can avoid a 1666 * conditional in irq_wake_thread(). 1667 */ 1668 if (new->flags & IRQF_ONESHOT) { 1669 /* 1670 * Unlikely to have 32 resp 64 irqs sharing one line, 1671 * but who knows. 1672 */ 1673 if (thread_mask == ~0UL) { 1674 ret = -EBUSY; 1675 goto out_unlock; 1676 } 1677 /* 1678 * The thread_mask for the action is or'ed to 1679 * desc->thread_active to indicate that the 1680 * IRQF_ONESHOT thread handler has been woken, but not 1681 * yet finished. The bit is cleared when a thread 1682 * completes. When all threads of a shared interrupt 1683 * line have completed desc->threads_active becomes 1684 * zero and the interrupt line is unmasked. See 1685 * handle.c:irq_wake_thread() for further information. 1686 * 1687 * If no thread is woken by primary (hard irq context) 1688 * interrupt handlers, then desc->threads_active is 1689 * also checked for zero to unmask the irq line in the 1690 * affected hard irq flow handlers 1691 * (handle_[fasteoi|level]_irq). 1692 * 1693 * The new action gets the first zero bit of 1694 * thread_mask assigned. See the loop above which or's 1695 * all existing action->thread_mask bits. 1696 */ 1697 new->thread_mask = 1UL << ffz(thread_mask); 1698 1699 } else if (new->handler == irq_default_primary_handler && 1700 !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) { 1701 /* 1702 * The interrupt was requested with handler = NULL, so 1703 * we use the default primary handler for it. But it 1704 * does not have the oneshot flag set. In combination 1705 * with level interrupts this is deadly, because the 1706 * default primary handler just wakes the thread, then 1707 * the irq lines is reenabled, but the device still 1708 * has the level irq asserted. Rinse and repeat.... 1709 * 1710 * While this works for edge type interrupts, we play 1711 * it safe and reject unconditionally because we can't 1712 * say for sure which type this interrupt really 1713 * has. The type flags are unreliable as the 1714 * underlying chip implementation can override them. 1715 */ 1716 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for %s (irq %d)\n", 1717 new->name, irq); 1718 ret = -EINVAL; 1719 goto out_unlock; 1720 } 1721 1722 if (!shared) { 1723 /* Setup the type (level, edge polarity) if configured: */ 1724 if (new->flags & IRQF_TRIGGER_MASK) { 1725 ret = __irq_set_trigger(desc, 1726 new->flags & IRQF_TRIGGER_MASK); 1727 1728 if (ret) 1729 goto out_unlock; 1730 } 1731 1732 /* 1733 * Activate the interrupt. That activation must happen 1734 * independently of IRQ_NOAUTOEN. request_irq() can fail 1735 * and the callers are supposed to handle 1736 * that. enable_irq() of an interrupt requested with 1737 * IRQ_NOAUTOEN is not supposed to fail. The activation 1738 * keeps it in shutdown mode, it merily associates 1739 * resources if necessary and if that's not possible it 1740 * fails. Interrupts which are in managed shutdown mode 1741 * will simply ignore that activation request. 1742 */ 1743 ret = irq_activate(desc); 1744 if (ret) 1745 goto out_unlock; 1746 1747 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \ 1748 IRQS_ONESHOT | IRQS_WAITING); 1749 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS); 1750 1751 if (new->flags & IRQF_PERCPU) { 1752 irqd_set(&desc->irq_data, IRQD_PER_CPU); 1753 irq_settings_set_per_cpu(desc); 1754 if (new->flags & IRQF_NO_DEBUG) 1755 irq_settings_set_no_debug(desc); 1756 } 1757 1758 if (noirqdebug) 1759 irq_settings_set_no_debug(desc); 1760 1761 if (new->flags & IRQF_ONESHOT) 1762 desc->istate |= IRQS_ONESHOT; 1763 1764 /* Exclude IRQ from balancing if requested */ 1765 if (new->flags & IRQF_NOBALANCING) { 1766 irq_settings_set_no_balancing(desc); 1767 irqd_set(&desc->irq_data, IRQD_NO_BALANCING); 1768 } 1769 1770 if (!(new->flags & IRQF_NO_AUTOEN) && 1771 irq_settings_can_autoenable(desc)) { 1772 irq_startup(desc, IRQ_RESEND, IRQ_START_COND); 1773 } else { 1774 /* 1775 * Shared interrupts do not go well with disabling 1776 * auto enable. The sharing interrupt might request 1777 * it while it's still disabled and then wait for 1778 * interrupts forever. 1779 */ 1780 WARN_ON_ONCE(new->flags & IRQF_SHARED); 1781 /* Undo nested disables: */ 1782 desc->depth = 1; 1783 } 1784 1785 } else if (new->flags & IRQF_TRIGGER_MASK) { 1786 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK; 1787 unsigned int omsk = irqd_get_trigger_type(&desc->irq_data); 1788 1789 if (nmsk != omsk) 1790 /* hope the handler works with current trigger mode */ 1791 pr_warn("irq %d uses trigger mode %u; requested %u\n", 1792 irq, omsk, nmsk); 1793 } 1794 1795 *old_ptr = new; 1796 1797 irq_pm_install_action(desc, new); 1798 1799 /* Reset broken irq detection when installing new handler */ 1800 desc->irq_count = 0; 1801 desc->irqs_unhandled = 0; 1802 1803 /* 1804 * Check whether we disabled the irq via the spurious handler 1805 * before. Reenable it and give it another chance. 1806 */ 1807 if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) { 1808 desc->istate &= ~IRQS_SPURIOUS_DISABLED; 1809 __enable_irq(desc); 1810 } 1811 1812 raw_spin_unlock_irqrestore(&desc->lock, flags); 1813 chip_bus_sync_unlock(desc); 1814 mutex_unlock(&desc->request_mutex); 1815 1816 irq_setup_timings(desc, new); 1817 1818 wake_up_and_wait_for_irq_thread_ready(desc, new); 1819 wake_up_and_wait_for_irq_thread_ready(desc, new->secondary); 1820 1821 register_irq_proc(irq, desc); 1822 new->dir = NULL; 1823 register_handler_proc(irq, new); 1824 return 0; 1825 1826 mismatch: 1827 if (!(new->flags & IRQF_PROBE_SHARED)) { 1828 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n", 1829 irq, new->flags, new->name, old->flags, old->name); 1830 #ifdef CONFIG_DEBUG_SHIRQ 1831 dump_stack(); 1832 #endif 1833 } 1834 ret = -EBUSY; 1835 1836 out_unlock: 1837 raw_spin_unlock_irqrestore(&desc->lock, flags); 1838 1839 if (!desc->action) 1840 irq_release_resources(desc); 1841 out_bus_unlock: 1842 chip_bus_sync_unlock(desc); 1843 mutex_unlock(&desc->request_mutex); 1844 1845 out_thread: 1846 if (new->thread) { 1847 struct task_struct *t = new->thread; 1848 1849 new->thread = NULL; 1850 kthread_stop(t); 1851 put_task_struct(t); 1852 } 1853 if (new->secondary && new->secondary->thread) { 1854 struct task_struct *t = new->secondary->thread; 1855 1856 new->secondary->thread = NULL; 1857 kthread_stop(t); 1858 put_task_struct(t); 1859 } 1860 out_mput: 1861 module_put(desc->owner); 1862 return ret; 1863 } 1864 1865 /* 1866 * Internal function to unregister an irqaction - used to free 1867 * regular and special interrupts that are part of the architecture. 1868 */ 1869 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id) 1870 { 1871 unsigned irq = desc->irq_data.irq; 1872 struct irqaction *action, **action_ptr; 1873 unsigned long flags; 1874 1875 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq); 1876 1877 mutex_lock(&desc->request_mutex); 1878 chip_bus_lock(desc); 1879 raw_spin_lock_irqsave(&desc->lock, flags); 1880 1881 /* 1882 * There can be multiple actions per IRQ descriptor, find the right 1883 * one based on the dev_id: 1884 */ 1885 action_ptr = &desc->action; 1886 for (;;) { 1887 action = *action_ptr; 1888 1889 if (!action) { 1890 WARN(1, "Trying to free already-free IRQ %d\n", irq); 1891 raw_spin_unlock_irqrestore(&desc->lock, flags); 1892 chip_bus_sync_unlock(desc); 1893 mutex_unlock(&desc->request_mutex); 1894 return NULL; 1895 } 1896 1897 if (action->dev_id == dev_id) 1898 break; 1899 action_ptr = &action->next; 1900 } 1901 1902 /* Found it - now remove it from the list of entries: */ 1903 *action_ptr = action->next; 1904 1905 irq_pm_remove_action(desc, action); 1906 1907 /* If this was the last handler, shut down the IRQ line: */ 1908 if (!desc->action) { 1909 irq_settings_clr_disable_unlazy(desc); 1910 /* Only shutdown. Deactivate after synchronize_hardirq() */ 1911 irq_shutdown(desc); 1912 } 1913 1914 #ifdef CONFIG_SMP 1915 /* make sure affinity_hint is cleaned up */ 1916 if (WARN_ON_ONCE(desc->affinity_hint)) 1917 desc->affinity_hint = NULL; 1918 #endif 1919 1920 raw_spin_unlock_irqrestore(&desc->lock, flags); 1921 /* 1922 * Drop bus_lock here so the changes which were done in the chip 1923 * callbacks above are synced out to the irq chips which hang 1924 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq(). 1925 * 1926 * Aside of that the bus_lock can also be taken from the threaded 1927 * handler in irq_finalize_oneshot() which results in a deadlock 1928 * because kthread_stop() would wait forever for the thread to 1929 * complete, which is blocked on the bus lock. 1930 * 1931 * The still held desc->request_mutex() protects against a 1932 * concurrent request_irq() of this irq so the release of resources 1933 * and timing data is properly serialized. 1934 */ 1935 chip_bus_sync_unlock(desc); 1936 1937 unregister_handler_proc(irq, action); 1938 1939 /* 1940 * Make sure it's not being used on another CPU and if the chip 1941 * supports it also make sure that there is no (not yet serviced) 1942 * interrupt in flight at the hardware level. 1943 */ 1944 __synchronize_hardirq(desc, true); 1945 1946 #ifdef CONFIG_DEBUG_SHIRQ 1947 /* 1948 * It's a shared IRQ -- the driver ought to be prepared for an IRQ 1949 * event to happen even now it's being freed, so let's make sure that 1950 * is so by doing an extra call to the handler .... 1951 * 1952 * ( We do this after actually deregistering it, to make sure that a 1953 * 'real' IRQ doesn't run in parallel with our fake. ) 1954 */ 1955 if (action->flags & IRQF_SHARED) { 1956 local_irq_save(flags); 1957 action->handler(irq, dev_id); 1958 local_irq_restore(flags); 1959 } 1960 #endif 1961 1962 /* 1963 * The action has already been removed above, but the thread writes 1964 * its oneshot mask bit when it completes. Though request_mutex is 1965 * held across this which prevents __setup_irq() from handing out 1966 * the same bit to a newly requested action. 1967 */ 1968 if (action->thread) { 1969 kthread_stop(action->thread); 1970 put_task_struct(action->thread); 1971 if (action->secondary && action->secondary->thread) { 1972 kthread_stop(action->secondary->thread); 1973 put_task_struct(action->secondary->thread); 1974 } 1975 } 1976 1977 /* Last action releases resources */ 1978 if (!desc->action) { 1979 /* 1980 * Reacquire bus lock as irq_release_resources() might 1981 * require it to deallocate resources over the slow bus. 1982 */ 1983 chip_bus_lock(desc); 1984 /* 1985 * There is no interrupt on the fly anymore. Deactivate it 1986 * completely. 1987 */ 1988 raw_spin_lock_irqsave(&desc->lock, flags); 1989 irq_domain_deactivate_irq(&desc->irq_data); 1990 raw_spin_unlock_irqrestore(&desc->lock, flags); 1991 1992 irq_release_resources(desc); 1993 chip_bus_sync_unlock(desc); 1994 irq_remove_timings(desc); 1995 } 1996 1997 mutex_unlock(&desc->request_mutex); 1998 1999 irq_chip_pm_put(&desc->irq_data); 2000 module_put(desc->owner); 2001 kfree(action->secondary); 2002 return action; 2003 } 2004 2005 /** 2006 * free_irq - free an interrupt allocated with request_irq 2007 * @irq: Interrupt line to free 2008 * @dev_id: Device identity to free 2009 * 2010 * Remove an interrupt handler. The handler is removed and if the 2011 * interrupt line is no longer in use by any driver it is disabled. 2012 * On a shared IRQ the caller must ensure the interrupt is disabled 2013 * on the card it drives before calling this function. The function 2014 * does not return until any executing interrupts for this IRQ 2015 * have completed. 2016 * 2017 * This function must not be called from interrupt context. 2018 * 2019 * Returns the devname argument passed to request_irq. 2020 */ 2021 const void *free_irq(unsigned int irq, void *dev_id) 2022 { 2023 struct irq_desc *desc = irq_to_desc(irq); 2024 struct irqaction *action; 2025 const char *devname; 2026 2027 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc))) 2028 return NULL; 2029 2030 #ifdef CONFIG_SMP 2031 if (WARN_ON(desc->affinity_notify)) 2032 desc->affinity_notify = NULL; 2033 #endif 2034 2035 action = __free_irq(desc, dev_id); 2036 2037 if (!action) 2038 return NULL; 2039 2040 devname = action->name; 2041 kfree(action); 2042 return devname; 2043 } 2044 EXPORT_SYMBOL(free_irq); 2045 2046 /* This function must be called with desc->lock held */ 2047 static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc) 2048 { 2049 const char *devname = NULL; 2050 2051 desc->istate &= ~IRQS_NMI; 2052 2053 if (!WARN_ON(desc->action == NULL)) { 2054 irq_pm_remove_action(desc, desc->action); 2055 devname = desc->action->name; 2056 unregister_handler_proc(irq, desc->action); 2057 2058 kfree(desc->action); 2059 desc->action = NULL; 2060 } 2061 2062 irq_settings_clr_disable_unlazy(desc); 2063 irq_shutdown_and_deactivate(desc); 2064 2065 irq_release_resources(desc); 2066 2067 irq_chip_pm_put(&desc->irq_data); 2068 module_put(desc->owner); 2069 2070 return devname; 2071 } 2072 2073 const void *free_nmi(unsigned int irq, void *dev_id) 2074 { 2075 struct irq_desc *desc = irq_to_desc(irq); 2076 unsigned long flags; 2077 const void *devname; 2078 2079 if (!desc || WARN_ON(!(desc->istate & IRQS_NMI))) 2080 return NULL; 2081 2082 if (WARN_ON(irq_settings_is_per_cpu_devid(desc))) 2083 return NULL; 2084 2085 /* NMI still enabled */ 2086 if (WARN_ON(desc->depth == 0)) 2087 disable_nmi_nosync(irq); 2088 2089 raw_spin_lock_irqsave(&desc->lock, flags); 2090 2091 irq_nmi_teardown(desc); 2092 devname = __cleanup_nmi(irq, desc); 2093 2094 raw_spin_unlock_irqrestore(&desc->lock, flags); 2095 2096 return devname; 2097 } 2098 2099 /** 2100 * request_threaded_irq - allocate an interrupt line 2101 * @irq: Interrupt line to allocate 2102 * @handler: Function to be called when the IRQ occurs. 2103 * Primary handler for threaded interrupts. 2104 * If handler is NULL and thread_fn != NULL 2105 * the default primary handler is installed. 2106 * @thread_fn: Function called from the irq handler thread 2107 * If NULL, no irq thread is created 2108 * @irqflags: Interrupt type flags 2109 * @devname: An ascii name for the claiming device 2110 * @dev_id: A cookie passed back to the handler function 2111 * 2112 * This call allocates interrupt resources and enables the 2113 * interrupt line and IRQ handling. From the point this 2114 * call is made your handler function may be invoked. Since 2115 * your handler function must clear any interrupt the board 2116 * raises, you must take care both to initialise your hardware 2117 * and to set up the interrupt handler in the right order. 2118 * 2119 * If you want to set up a threaded irq handler for your device 2120 * then you need to supply @handler and @thread_fn. @handler is 2121 * still called in hard interrupt context and has to check 2122 * whether the interrupt originates from the device. If yes it 2123 * needs to disable the interrupt on the device and return 2124 * IRQ_WAKE_THREAD which will wake up the handler thread and run 2125 * @thread_fn. This split handler design is necessary to support 2126 * shared interrupts. 2127 * 2128 * Dev_id must be globally unique. Normally the address of the 2129 * device data structure is used as the cookie. Since the handler 2130 * receives this value it makes sense to use it. 2131 * 2132 * If your interrupt is shared you must pass a non NULL dev_id 2133 * as this is required when freeing the interrupt. 2134 * 2135 * Flags: 2136 * 2137 * IRQF_SHARED Interrupt is shared 2138 * IRQF_TRIGGER_* Specify active edge(s) or level 2139 * IRQF_ONESHOT Run thread_fn with interrupt line masked 2140 */ 2141 int request_threaded_irq(unsigned int irq, irq_handler_t handler, 2142 irq_handler_t thread_fn, unsigned long irqflags, 2143 const char *devname, void *dev_id) 2144 { 2145 struct irqaction *action; 2146 struct irq_desc *desc; 2147 int retval; 2148 2149 if (irq == IRQ_NOTCONNECTED) 2150 return -ENOTCONN; 2151 2152 /* 2153 * Sanity-check: shared interrupts must pass in a real dev-ID, 2154 * otherwise we'll have trouble later trying to figure out 2155 * which interrupt is which (messes up the interrupt freeing 2156 * logic etc). 2157 * 2158 * Also shared interrupts do not go well with disabling auto enable. 2159 * The sharing interrupt might request it while it's still disabled 2160 * and then wait for interrupts forever. 2161 * 2162 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and 2163 * it cannot be set along with IRQF_NO_SUSPEND. 2164 */ 2165 if (((irqflags & IRQF_SHARED) && !dev_id) || 2166 ((irqflags & IRQF_SHARED) && (irqflags & IRQF_NO_AUTOEN)) || 2167 (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) || 2168 ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND))) 2169 return -EINVAL; 2170 2171 desc = irq_to_desc(irq); 2172 if (!desc) 2173 return -EINVAL; 2174 2175 if (!irq_settings_can_request(desc) || 2176 WARN_ON(irq_settings_is_per_cpu_devid(desc))) 2177 return -EINVAL; 2178 2179 if (!handler) { 2180 if (!thread_fn) 2181 return -EINVAL; 2182 handler = irq_default_primary_handler; 2183 } 2184 2185 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2186 if (!action) 2187 return -ENOMEM; 2188 2189 action->handler = handler; 2190 action->thread_fn = thread_fn; 2191 action->flags = irqflags; 2192 action->name = devname; 2193 action->dev_id = dev_id; 2194 2195 retval = irq_chip_pm_get(&desc->irq_data); 2196 if (retval < 0) { 2197 kfree(action); 2198 return retval; 2199 } 2200 2201 retval = __setup_irq(irq, desc, action); 2202 2203 if (retval) { 2204 irq_chip_pm_put(&desc->irq_data); 2205 kfree(action->secondary); 2206 kfree(action); 2207 } 2208 2209 #ifdef CONFIG_DEBUG_SHIRQ_FIXME 2210 if (!retval && (irqflags & IRQF_SHARED)) { 2211 /* 2212 * It's a shared IRQ -- the driver ought to be prepared for it 2213 * to happen immediately, so let's make sure.... 2214 * We disable the irq to make sure that a 'real' IRQ doesn't 2215 * run in parallel with our fake. 2216 */ 2217 unsigned long flags; 2218 2219 disable_irq(irq); 2220 local_irq_save(flags); 2221 2222 handler(irq, dev_id); 2223 2224 local_irq_restore(flags); 2225 enable_irq(irq); 2226 } 2227 #endif 2228 return retval; 2229 } 2230 EXPORT_SYMBOL(request_threaded_irq); 2231 2232 /** 2233 * request_any_context_irq - allocate an interrupt line 2234 * @irq: Interrupt line to allocate 2235 * @handler: Function to be called when the IRQ occurs. 2236 * Threaded handler for threaded interrupts. 2237 * @flags: Interrupt type flags 2238 * @name: An ascii name for the claiming device 2239 * @dev_id: A cookie passed back to the handler function 2240 * 2241 * This call allocates interrupt resources and enables the 2242 * interrupt line and IRQ handling. It selects either a 2243 * hardirq or threaded handling method depending on the 2244 * context. 2245 * 2246 * On failure, it returns a negative value. On success, 2247 * it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED. 2248 */ 2249 int request_any_context_irq(unsigned int irq, irq_handler_t handler, 2250 unsigned long flags, const char *name, void *dev_id) 2251 { 2252 struct irq_desc *desc; 2253 int ret; 2254 2255 if (irq == IRQ_NOTCONNECTED) 2256 return -ENOTCONN; 2257 2258 desc = irq_to_desc(irq); 2259 if (!desc) 2260 return -EINVAL; 2261 2262 if (irq_settings_is_nested_thread(desc)) { 2263 ret = request_threaded_irq(irq, NULL, handler, 2264 flags, name, dev_id); 2265 return !ret ? IRQC_IS_NESTED : ret; 2266 } 2267 2268 ret = request_irq(irq, handler, flags, name, dev_id); 2269 return !ret ? IRQC_IS_HARDIRQ : ret; 2270 } 2271 EXPORT_SYMBOL_GPL(request_any_context_irq); 2272 2273 /** 2274 * request_nmi - allocate an interrupt line for NMI delivery 2275 * @irq: Interrupt line to allocate 2276 * @handler: Function to be called when the IRQ occurs. 2277 * Threaded handler for threaded interrupts. 2278 * @irqflags: Interrupt type flags 2279 * @name: An ascii name for the claiming device 2280 * @dev_id: A cookie passed back to the handler function 2281 * 2282 * This call allocates interrupt resources and enables the 2283 * interrupt line and IRQ handling. It sets up the IRQ line 2284 * to be handled as an NMI. 2285 * 2286 * An interrupt line delivering NMIs cannot be shared and IRQ handling 2287 * cannot be threaded. 2288 * 2289 * Interrupt lines requested for NMI delivering must produce per cpu 2290 * interrupts and have auto enabling setting disabled. 2291 * 2292 * Dev_id must be globally unique. Normally the address of the 2293 * device data structure is used as the cookie. Since the handler 2294 * receives this value it makes sense to use it. 2295 * 2296 * If the interrupt line cannot be used to deliver NMIs, function 2297 * will fail and return a negative value. 2298 */ 2299 int request_nmi(unsigned int irq, irq_handler_t handler, 2300 unsigned long irqflags, const char *name, void *dev_id) 2301 { 2302 struct irqaction *action; 2303 struct irq_desc *desc; 2304 unsigned long flags; 2305 int retval; 2306 2307 if (irq == IRQ_NOTCONNECTED) 2308 return -ENOTCONN; 2309 2310 /* NMI cannot be shared, used for Polling */ 2311 if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL)) 2312 return -EINVAL; 2313 2314 if (!(irqflags & IRQF_PERCPU)) 2315 return -EINVAL; 2316 2317 if (!handler) 2318 return -EINVAL; 2319 2320 desc = irq_to_desc(irq); 2321 2322 if (!desc || (irq_settings_can_autoenable(desc) && 2323 !(irqflags & IRQF_NO_AUTOEN)) || 2324 !irq_settings_can_request(desc) || 2325 WARN_ON(irq_settings_is_per_cpu_devid(desc)) || 2326 !irq_supports_nmi(desc)) 2327 return -EINVAL; 2328 2329 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2330 if (!action) 2331 return -ENOMEM; 2332 2333 action->handler = handler; 2334 action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING; 2335 action->name = name; 2336 action->dev_id = dev_id; 2337 2338 retval = irq_chip_pm_get(&desc->irq_data); 2339 if (retval < 0) 2340 goto err_out; 2341 2342 retval = __setup_irq(irq, desc, action); 2343 if (retval) 2344 goto err_irq_setup; 2345 2346 raw_spin_lock_irqsave(&desc->lock, flags); 2347 2348 /* Setup NMI state */ 2349 desc->istate |= IRQS_NMI; 2350 retval = irq_nmi_setup(desc); 2351 if (retval) { 2352 __cleanup_nmi(irq, desc); 2353 raw_spin_unlock_irqrestore(&desc->lock, flags); 2354 return -EINVAL; 2355 } 2356 2357 raw_spin_unlock_irqrestore(&desc->lock, flags); 2358 2359 return 0; 2360 2361 err_irq_setup: 2362 irq_chip_pm_put(&desc->irq_data); 2363 err_out: 2364 kfree(action); 2365 2366 return retval; 2367 } 2368 2369 void enable_percpu_irq(unsigned int irq, unsigned int type) 2370 { 2371 unsigned int cpu = smp_processor_id(); 2372 unsigned long flags; 2373 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 2374 2375 if (!desc) 2376 return; 2377 2378 /* 2379 * If the trigger type is not specified by the caller, then 2380 * use the default for this interrupt. 2381 */ 2382 type &= IRQ_TYPE_SENSE_MASK; 2383 if (type == IRQ_TYPE_NONE) 2384 type = irqd_get_trigger_type(&desc->irq_data); 2385 2386 if (type != IRQ_TYPE_NONE) { 2387 int ret; 2388 2389 ret = __irq_set_trigger(desc, type); 2390 2391 if (ret) { 2392 WARN(1, "failed to set type for IRQ%d\n", irq); 2393 goto out; 2394 } 2395 } 2396 2397 irq_percpu_enable(desc, cpu); 2398 out: 2399 irq_put_desc_unlock(desc, flags); 2400 } 2401 EXPORT_SYMBOL_GPL(enable_percpu_irq); 2402 2403 void enable_percpu_nmi(unsigned int irq, unsigned int type) 2404 { 2405 enable_percpu_irq(irq, type); 2406 } 2407 2408 /** 2409 * irq_percpu_is_enabled - Check whether the per cpu irq is enabled 2410 * @irq: Linux irq number to check for 2411 * 2412 * Must be called from a non migratable context. Returns the enable 2413 * state of a per cpu interrupt on the current cpu. 2414 */ 2415 bool irq_percpu_is_enabled(unsigned int irq) 2416 { 2417 unsigned int cpu = smp_processor_id(); 2418 struct irq_desc *desc; 2419 unsigned long flags; 2420 bool is_enabled; 2421 2422 desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 2423 if (!desc) 2424 return false; 2425 2426 is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled); 2427 irq_put_desc_unlock(desc, flags); 2428 2429 return is_enabled; 2430 } 2431 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled); 2432 2433 void disable_percpu_irq(unsigned int irq) 2434 { 2435 unsigned int cpu = smp_processor_id(); 2436 unsigned long flags; 2437 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 2438 2439 if (!desc) 2440 return; 2441 2442 irq_percpu_disable(desc, cpu); 2443 irq_put_desc_unlock(desc, flags); 2444 } 2445 EXPORT_SYMBOL_GPL(disable_percpu_irq); 2446 2447 void disable_percpu_nmi(unsigned int irq) 2448 { 2449 disable_percpu_irq(irq); 2450 } 2451 2452 /* 2453 * Internal function to unregister a percpu irqaction. 2454 */ 2455 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id) 2456 { 2457 struct irq_desc *desc = irq_to_desc(irq); 2458 struct irqaction *action; 2459 unsigned long flags; 2460 2461 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq); 2462 2463 if (!desc) 2464 return NULL; 2465 2466 raw_spin_lock_irqsave(&desc->lock, flags); 2467 2468 action = desc->action; 2469 if (!action || action->percpu_dev_id != dev_id) { 2470 WARN(1, "Trying to free already-free IRQ %d\n", irq); 2471 goto bad; 2472 } 2473 2474 if (!cpumask_empty(desc->percpu_enabled)) { 2475 WARN(1, "percpu IRQ %d still enabled on CPU%d!\n", 2476 irq, cpumask_first(desc->percpu_enabled)); 2477 goto bad; 2478 } 2479 2480 /* Found it - now remove it from the list of entries: */ 2481 desc->action = NULL; 2482 2483 desc->istate &= ~IRQS_NMI; 2484 2485 raw_spin_unlock_irqrestore(&desc->lock, flags); 2486 2487 unregister_handler_proc(irq, action); 2488 2489 irq_chip_pm_put(&desc->irq_data); 2490 module_put(desc->owner); 2491 return action; 2492 2493 bad: 2494 raw_spin_unlock_irqrestore(&desc->lock, flags); 2495 return NULL; 2496 } 2497 2498 /** 2499 * remove_percpu_irq - free a per-cpu interrupt 2500 * @irq: Interrupt line to free 2501 * @act: irqaction for the interrupt 2502 * 2503 * Used to remove interrupts statically setup by the early boot process. 2504 */ 2505 void remove_percpu_irq(unsigned int irq, struct irqaction *act) 2506 { 2507 struct irq_desc *desc = irq_to_desc(irq); 2508 2509 if (desc && irq_settings_is_per_cpu_devid(desc)) 2510 __free_percpu_irq(irq, act->percpu_dev_id); 2511 } 2512 2513 /** 2514 * free_percpu_irq - free an interrupt allocated with request_percpu_irq 2515 * @irq: Interrupt line to free 2516 * @dev_id: Device identity to free 2517 * 2518 * Remove a percpu interrupt handler. The handler is removed, but 2519 * the interrupt line is not disabled. This must be done on each 2520 * CPU before calling this function. The function does not return 2521 * until any executing interrupts for this IRQ have completed. 2522 * 2523 * This function must not be called from interrupt context. 2524 */ 2525 void free_percpu_irq(unsigned int irq, void __percpu *dev_id) 2526 { 2527 struct irq_desc *desc = irq_to_desc(irq); 2528 2529 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2530 return; 2531 2532 chip_bus_lock(desc); 2533 kfree(__free_percpu_irq(irq, dev_id)); 2534 chip_bus_sync_unlock(desc); 2535 } 2536 EXPORT_SYMBOL_GPL(free_percpu_irq); 2537 2538 void free_percpu_nmi(unsigned int irq, void __percpu *dev_id) 2539 { 2540 struct irq_desc *desc = irq_to_desc(irq); 2541 2542 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2543 return; 2544 2545 if (WARN_ON(!(desc->istate & IRQS_NMI))) 2546 return; 2547 2548 kfree(__free_percpu_irq(irq, dev_id)); 2549 } 2550 2551 /** 2552 * setup_percpu_irq - setup a per-cpu interrupt 2553 * @irq: Interrupt line to setup 2554 * @act: irqaction for the interrupt 2555 * 2556 * Used to statically setup per-cpu interrupts in the early boot process. 2557 */ 2558 int setup_percpu_irq(unsigned int irq, struct irqaction *act) 2559 { 2560 struct irq_desc *desc = irq_to_desc(irq); 2561 int retval; 2562 2563 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2564 return -EINVAL; 2565 2566 retval = irq_chip_pm_get(&desc->irq_data); 2567 if (retval < 0) 2568 return retval; 2569 2570 retval = __setup_irq(irq, desc, act); 2571 2572 if (retval) 2573 irq_chip_pm_put(&desc->irq_data); 2574 2575 return retval; 2576 } 2577 2578 /** 2579 * __request_percpu_irq - allocate a percpu interrupt line 2580 * @irq: Interrupt line to allocate 2581 * @handler: Function to be called when the IRQ occurs. 2582 * @flags: Interrupt type flags (IRQF_TIMER only) 2583 * @devname: An ascii name for the claiming device 2584 * @dev_id: A percpu cookie passed back to the handler function 2585 * 2586 * This call allocates interrupt resources and enables the 2587 * interrupt on the local CPU. If the interrupt is supposed to be 2588 * enabled on other CPUs, it has to be done on each CPU using 2589 * enable_percpu_irq(). 2590 * 2591 * Dev_id must be globally unique. It is a per-cpu variable, and 2592 * the handler gets called with the interrupted CPU's instance of 2593 * that variable. 2594 */ 2595 int __request_percpu_irq(unsigned int irq, irq_handler_t handler, 2596 unsigned long flags, const char *devname, 2597 void __percpu *dev_id) 2598 { 2599 struct irqaction *action; 2600 struct irq_desc *desc; 2601 int retval; 2602 2603 if (!dev_id) 2604 return -EINVAL; 2605 2606 desc = irq_to_desc(irq); 2607 if (!desc || !irq_settings_can_request(desc) || 2608 !irq_settings_is_per_cpu_devid(desc)) 2609 return -EINVAL; 2610 2611 if (flags && flags != IRQF_TIMER) 2612 return -EINVAL; 2613 2614 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2615 if (!action) 2616 return -ENOMEM; 2617 2618 action->handler = handler; 2619 action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND; 2620 action->name = devname; 2621 action->percpu_dev_id = dev_id; 2622 2623 retval = irq_chip_pm_get(&desc->irq_data); 2624 if (retval < 0) { 2625 kfree(action); 2626 return retval; 2627 } 2628 2629 retval = __setup_irq(irq, desc, action); 2630 2631 if (retval) { 2632 irq_chip_pm_put(&desc->irq_data); 2633 kfree(action); 2634 } 2635 2636 return retval; 2637 } 2638 EXPORT_SYMBOL_GPL(__request_percpu_irq); 2639 2640 /** 2641 * request_percpu_nmi - allocate a percpu interrupt line for NMI delivery 2642 * @irq: Interrupt line to allocate 2643 * @handler: Function to be called when the IRQ occurs. 2644 * @name: An ascii name for the claiming device 2645 * @dev_id: A percpu cookie passed back to the handler function 2646 * 2647 * This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs 2648 * have to be setup on each CPU by calling prepare_percpu_nmi() before 2649 * being enabled on the same CPU by using enable_percpu_nmi(). 2650 * 2651 * Dev_id must be globally unique. It is a per-cpu variable, and 2652 * the handler gets called with the interrupted CPU's instance of 2653 * that variable. 2654 * 2655 * Interrupt lines requested for NMI delivering should have auto enabling 2656 * setting disabled. 2657 * 2658 * If the interrupt line cannot be used to deliver NMIs, function 2659 * will fail returning a negative value. 2660 */ 2661 int request_percpu_nmi(unsigned int irq, irq_handler_t handler, 2662 const char *name, void __percpu *dev_id) 2663 { 2664 struct irqaction *action; 2665 struct irq_desc *desc; 2666 unsigned long flags; 2667 int retval; 2668 2669 if (!handler) 2670 return -EINVAL; 2671 2672 desc = irq_to_desc(irq); 2673 2674 if (!desc || !irq_settings_can_request(desc) || 2675 !irq_settings_is_per_cpu_devid(desc) || 2676 irq_settings_can_autoenable(desc) || 2677 !irq_supports_nmi(desc)) 2678 return -EINVAL; 2679 2680 /* The line cannot already be NMI */ 2681 if (desc->istate & IRQS_NMI) 2682 return -EINVAL; 2683 2684 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2685 if (!action) 2686 return -ENOMEM; 2687 2688 action->handler = handler; 2689 action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD 2690 | IRQF_NOBALANCING; 2691 action->name = name; 2692 action->percpu_dev_id = dev_id; 2693 2694 retval = irq_chip_pm_get(&desc->irq_data); 2695 if (retval < 0) 2696 goto err_out; 2697 2698 retval = __setup_irq(irq, desc, action); 2699 if (retval) 2700 goto err_irq_setup; 2701 2702 raw_spin_lock_irqsave(&desc->lock, flags); 2703 desc->istate |= IRQS_NMI; 2704 raw_spin_unlock_irqrestore(&desc->lock, flags); 2705 2706 return 0; 2707 2708 err_irq_setup: 2709 irq_chip_pm_put(&desc->irq_data); 2710 err_out: 2711 kfree(action); 2712 2713 return retval; 2714 } 2715 2716 /** 2717 * prepare_percpu_nmi - performs CPU local setup for NMI delivery 2718 * @irq: Interrupt line to prepare for NMI delivery 2719 * 2720 * This call prepares an interrupt line to deliver NMI on the current CPU, 2721 * before that interrupt line gets enabled with enable_percpu_nmi(). 2722 * 2723 * As a CPU local operation, this should be called from non-preemptible 2724 * context. 2725 * 2726 * If the interrupt line cannot be used to deliver NMIs, function 2727 * will fail returning a negative value. 2728 */ 2729 int prepare_percpu_nmi(unsigned int irq) 2730 { 2731 unsigned long flags; 2732 struct irq_desc *desc; 2733 int ret = 0; 2734 2735 WARN_ON(preemptible()); 2736 2737 desc = irq_get_desc_lock(irq, &flags, 2738 IRQ_GET_DESC_CHECK_PERCPU); 2739 if (!desc) 2740 return -EINVAL; 2741 2742 if (WARN(!(desc->istate & IRQS_NMI), 2743 KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n", 2744 irq)) { 2745 ret = -EINVAL; 2746 goto out; 2747 } 2748 2749 ret = irq_nmi_setup(desc); 2750 if (ret) { 2751 pr_err("Failed to setup NMI delivery: irq %u\n", irq); 2752 goto out; 2753 } 2754 2755 out: 2756 irq_put_desc_unlock(desc, flags); 2757 return ret; 2758 } 2759 2760 /** 2761 * teardown_percpu_nmi - undoes NMI setup of IRQ line 2762 * @irq: Interrupt line from which CPU local NMI configuration should be 2763 * removed 2764 * 2765 * This call undoes the setup done by prepare_percpu_nmi(). 2766 * 2767 * IRQ line should not be enabled for the current CPU. 2768 * 2769 * As a CPU local operation, this should be called from non-preemptible 2770 * context. 2771 */ 2772 void teardown_percpu_nmi(unsigned int irq) 2773 { 2774 unsigned long flags; 2775 struct irq_desc *desc; 2776 2777 WARN_ON(preemptible()); 2778 2779 desc = irq_get_desc_lock(irq, &flags, 2780 IRQ_GET_DESC_CHECK_PERCPU); 2781 if (!desc) 2782 return; 2783 2784 if (WARN_ON(!(desc->istate & IRQS_NMI))) 2785 goto out; 2786 2787 irq_nmi_teardown(desc); 2788 out: 2789 irq_put_desc_unlock(desc, flags); 2790 } 2791 2792 int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which, 2793 bool *state) 2794 { 2795 struct irq_chip *chip; 2796 int err = -EINVAL; 2797 2798 do { 2799 chip = irq_data_get_irq_chip(data); 2800 if (WARN_ON_ONCE(!chip)) 2801 return -ENODEV; 2802 if (chip->irq_get_irqchip_state) 2803 break; 2804 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 2805 data = data->parent_data; 2806 #else 2807 data = NULL; 2808 #endif 2809 } while (data); 2810 2811 if (data) 2812 err = chip->irq_get_irqchip_state(data, which, state); 2813 return err; 2814 } 2815 2816 /** 2817 * irq_get_irqchip_state - returns the irqchip state of a interrupt. 2818 * @irq: Interrupt line that is forwarded to a VM 2819 * @which: One of IRQCHIP_STATE_* the caller wants to know about 2820 * @state: a pointer to a boolean where the state is to be stored 2821 * 2822 * This call snapshots the internal irqchip state of an 2823 * interrupt, returning into @state the bit corresponding to 2824 * stage @which 2825 * 2826 * This function should be called with preemption disabled if the 2827 * interrupt controller has per-cpu registers. 2828 */ 2829 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which, 2830 bool *state) 2831 { 2832 struct irq_desc *desc; 2833 struct irq_data *data; 2834 unsigned long flags; 2835 int err = -EINVAL; 2836 2837 desc = irq_get_desc_buslock(irq, &flags, 0); 2838 if (!desc) 2839 return err; 2840 2841 data = irq_desc_get_irq_data(desc); 2842 2843 err = __irq_get_irqchip_state(data, which, state); 2844 2845 irq_put_desc_busunlock(desc, flags); 2846 return err; 2847 } 2848 EXPORT_SYMBOL_GPL(irq_get_irqchip_state); 2849 2850 /** 2851 * irq_set_irqchip_state - set the state of a forwarded interrupt. 2852 * @irq: Interrupt line that is forwarded to a VM 2853 * @which: State to be restored (one of IRQCHIP_STATE_*) 2854 * @val: Value corresponding to @which 2855 * 2856 * This call sets the internal irqchip state of an interrupt, 2857 * depending on the value of @which. 2858 * 2859 * This function should be called with migration disabled if the 2860 * interrupt controller has per-cpu registers. 2861 */ 2862 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which, 2863 bool val) 2864 { 2865 struct irq_desc *desc; 2866 struct irq_data *data; 2867 struct irq_chip *chip; 2868 unsigned long flags; 2869 int err = -EINVAL; 2870 2871 desc = irq_get_desc_buslock(irq, &flags, 0); 2872 if (!desc) 2873 return err; 2874 2875 data = irq_desc_get_irq_data(desc); 2876 2877 do { 2878 chip = irq_data_get_irq_chip(data); 2879 if (WARN_ON_ONCE(!chip)) { 2880 err = -ENODEV; 2881 goto out_unlock; 2882 } 2883 if (chip->irq_set_irqchip_state) 2884 break; 2885 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 2886 data = data->parent_data; 2887 #else 2888 data = NULL; 2889 #endif 2890 } while (data); 2891 2892 if (data) 2893 err = chip->irq_set_irqchip_state(data, which, val); 2894 2895 out_unlock: 2896 irq_put_desc_busunlock(desc, flags); 2897 return err; 2898 } 2899 EXPORT_SYMBOL_GPL(irq_set_irqchip_state); 2900 2901 /** 2902 * irq_has_action - Check whether an interrupt is requested 2903 * @irq: The linux irq number 2904 * 2905 * Returns: A snapshot of the current state 2906 */ 2907 bool irq_has_action(unsigned int irq) 2908 { 2909 bool res; 2910 2911 rcu_read_lock(); 2912 res = irq_desc_has_action(irq_to_desc(irq)); 2913 rcu_read_unlock(); 2914 return res; 2915 } 2916 EXPORT_SYMBOL_GPL(irq_has_action); 2917 2918 /** 2919 * irq_check_status_bit - Check whether bits in the irq descriptor status are set 2920 * @irq: The linux irq number 2921 * @bitmask: The bitmask to evaluate 2922 * 2923 * Returns: True if one of the bits in @bitmask is set 2924 */ 2925 bool irq_check_status_bit(unsigned int irq, unsigned int bitmask) 2926 { 2927 struct irq_desc *desc; 2928 bool res = false; 2929 2930 rcu_read_lock(); 2931 desc = irq_to_desc(irq); 2932 if (desc) 2933 res = !!(desc->status_use_accessors & bitmask); 2934 rcu_read_unlock(); 2935 return res; 2936 } 2937 EXPORT_SYMBOL_GPL(irq_check_status_bit); 2938