xref: /openbmc/linux/kernel/irq/manage.c (revision 151f4e2b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
4  * Copyright (C) 2005-2006 Thomas Gleixner
5  *
6  * This file contains driver APIs to the irq subsystem.
7  */
8 
9 #define pr_fmt(fmt) "genirq: " fmt
10 
11 #include <linux/irq.h>
12 #include <linux/kthread.h>
13 #include <linux/module.h>
14 #include <linux/random.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/sched.h>
18 #include <linux/sched/rt.h>
19 #include <linux/sched/task.h>
20 #include <uapi/linux/sched/types.h>
21 #include <linux/task_work.h>
22 
23 #include "internals.h"
24 
25 #ifdef CONFIG_IRQ_FORCED_THREADING
26 __read_mostly bool force_irqthreads;
27 EXPORT_SYMBOL_GPL(force_irqthreads);
28 
29 static int __init setup_forced_irqthreads(char *arg)
30 {
31 	force_irqthreads = true;
32 	return 0;
33 }
34 early_param("threadirqs", setup_forced_irqthreads);
35 #endif
36 
37 static void __synchronize_hardirq(struct irq_desc *desc)
38 {
39 	bool inprogress;
40 
41 	do {
42 		unsigned long flags;
43 
44 		/*
45 		 * Wait until we're out of the critical section.  This might
46 		 * give the wrong answer due to the lack of memory barriers.
47 		 */
48 		while (irqd_irq_inprogress(&desc->irq_data))
49 			cpu_relax();
50 
51 		/* Ok, that indicated we're done: double-check carefully. */
52 		raw_spin_lock_irqsave(&desc->lock, flags);
53 		inprogress = irqd_irq_inprogress(&desc->irq_data);
54 		raw_spin_unlock_irqrestore(&desc->lock, flags);
55 
56 		/* Oops, that failed? */
57 	} while (inprogress);
58 }
59 
60 /**
61  *	synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
62  *	@irq: interrupt number to wait for
63  *
64  *	This function waits for any pending hard IRQ handlers for this
65  *	interrupt to complete before returning. If you use this
66  *	function while holding a resource the IRQ handler may need you
67  *	will deadlock. It does not take associated threaded handlers
68  *	into account.
69  *
70  *	Do not use this for shutdown scenarios where you must be sure
71  *	that all parts (hardirq and threaded handler) have completed.
72  *
73  *	Returns: false if a threaded handler is active.
74  *
75  *	This function may be called - with care - from IRQ context.
76  */
77 bool synchronize_hardirq(unsigned int irq)
78 {
79 	struct irq_desc *desc = irq_to_desc(irq);
80 
81 	if (desc) {
82 		__synchronize_hardirq(desc);
83 		return !atomic_read(&desc->threads_active);
84 	}
85 
86 	return true;
87 }
88 EXPORT_SYMBOL(synchronize_hardirq);
89 
90 /**
91  *	synchronize_irq - wait for pending IRQ handlers (on other CPUs)
92  *	@irq: interrupt number to wait for
93  *
94  *	This function waits for any pending IRQ handlers for this interrupt
95  *	to complete before returning. If you use this function while
96  *	holding a resource the IRQ handler may need you will deadlock.
97  *
98  *	This function may be called - with care - from IRQ context.
99  */
100 void synchronize_irq(unsigned int irq)
101 {
102 	struct irq_desc *desc = irq_to_desc(irq);
103 
104 	if (desc) {
105 		__synchronize_hardirq(desc);
106 		/*
107 		 * We made sure that no hardirq handler is
108 		 * running. Now verify that no threaded handlers are
109 		 * active.
110 		 */
111 		wait_event(desc->wait_for_threads,
112 			   !atomic_read(&desc->threads_active));
113 	}
114 }
115 EXPORT_SYMBOL(synchronize_irq);
116 
117 #ifdef CONFIG_SMP
118 cpumask_var_t irq_default_affinity;
119 
120 static bool __irq_can_set_affinity(struct irq_desc *desc)
121 {
122 	if (!desc || !irqd_can_balance(&desc->irq_data) ||
123 	    !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
124 		return false;
125 	return true;
126 }
127 
128 /**
129  *	irq_can_set_affinity - Check if the affinity of a given irq can be set
130  *	@irq:		Interrupt to check
131  *
132  */
133 int irq_can_set_affinity(unsigned int irq)
134 {
135 	return __irq_can_set_affinity(irq_to_desc(irq));
136 }
137 
138 /**
139  * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
140  * @irq:	Interrupt to check
141  *
142  * Like irq_can_set_affinity() above, but additionally checks for the
143  * AFFINITY_MANAGED flag.
144  */
145 bool irq_can_set_affinity_usr(unsigned int irq)
146 {
147 	struct irq_desc *desc = irq_to_desc(irq);
148 
149 	return __irq_can_set_affinity(desc) &&
150 		!irqd_affinity_is_managed(&desc->irq_data);
151 }
152 
153 /**
154  *	irq_set_thread_affinity - Notify irq threads to adjust affinity
155  *	@desc:		irq descriptor which has affitnity changed
156  *
157  *	We just set IRQTF_AFFINITY and delegate the affinity setting
158  *	to the interrupt thread itself. We can not call
159  *	set_cpus_allowed_ptr() here as we hold desc->lock and this
160  *	code can be called from hard interrupt context.
161  */
162 void irq_set_thread_affinity(struct irq_desc *desc)
163 {
164 	struct irqaction *action;
165 
166 	for_each_action_of_desc(desc, action)
167 		if (action->thread)
168 			set_bit(IRQTF_AFFINITY, &action->thread_flags);
169 }
170 
171 static void irq_validate_effective_affinity(struct irq_data *data)
172 {
173 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
174 	const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
175 	struct irq_chip *chip = irq_data_get_irq_chip(data);
176 
177 	if (!cpumask_empty(m))
178 		return;
179 	pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
180 		     chip->name, data->irq);
181 #endif
182 }
183 
184 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
185 			bool force)
186 {
187 	struct irq_desc *desc = irq_data_to_desc(data);
188 	struct irq_chip *chip = irq_data_get_irq_chip(data);
189 	int ret;
190 
191 	if (!chip || !chip->irq_set_affinity)
192 		return -EINVAL;
193 
194 	ret = chip->irq_set_affinity(data, mask, force);
195 	switch (ret) {
196 	case IRQ_SET_MASK_OK:
197 	case IRQ_SET_MASK_OK_DONE:
198 		cpumask_copy(desc->irq_common_data.affinity, mask);
199 		/* fall through */
200 	case IRQ_SET_MASK_OK_NOCOPY:
201 		irq_validate_effective_affinity(data);
202 		irq_set_thread_affinity(desc);
203 		ret = 0;
204 	}
205 
206 	return ret;
207 }
208 
209 #ifdef CONFIG_GENERIC_PENDING_IRQ
210 static inline int irq_set_affinity_pending(struct irq_data *data,
211 					   const struct cpumask *dest)
212 {
213 	struct irq_desc *desc = irq_data_to_desc(data);
214 
215 	irqd_set_move_pending(data);
216 	irq_copy_pending(desc, dest);
217 	return 0;
218 }
219 #else
220 static inline int irq_set_affinity_pending(struct irq_data *data,
221 					   const struct cpumask *dest)
222 {
223 	return -EBUSY;
224 }
225 #endif
226 
227 static int irq_try_set_affinity(struct irq_data *data,
228 				const struct cpumask *dest, bool force)
229 {
230 	int ret = irq_do_set_affinity(data, dest, force);
231 
232 	/*
233 	 * In case that the underlying vector management is busy and the
234 	 * architecture supports the generic pending mechanism then utilize
235 	 * this to avoid returning an error to user space.
236 	 */
237 	if (ret == -EBUSY && !force)
238 		ret = irq_set_affinity_pending(data, dest);
239 	return ret;
240 }
241 
242 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
243 			    bool force)
244 {
245 	struct irq_chip *chip = irq_data_get_irq_chip(data);
246 	struct irq_desc *desc = irq_data_to_desc(data);
247 	int ret = 0;
248 
249 	if (!chip || !chip->irq_set_affinity)
250 		return -EINVAL;
251 
252 	if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) {
253 		ret = irq_try_set_affinity(data, mask, force);
254 	} else {
255 		irqd_set_move_pending(data);
256 		irq_copy_pending(desc, mask);
257 	}
258 
259 	if (desc->affinity_notify) {
260 		kref_get(&desc->affinity_notify->kref);
261 		schedule_work(&desc->affinity_notify->work);
262 	}
263 	irqd_set(data, IRQD_AFFINITY_SET);
264 
265 	return ret;
266 }
267 
268 int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force)
269 {
270 	struct irq_desc *desc = irq_to_desc(irq);
271 	unsigned long flags;
272 	int ret;
273 
274 	if (!desc)
275 		return -EINVAL;
276 
277 	raw_spin_lock_irqsave(&desc->lock, flags);
278 	ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
279 	raw_spin_unlock_irqrestore(&desc->lock, flags);
280 	return ret;
281 }
282 
283 int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m)
284 {
285 	unsigned long flags;
286 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
287 
288 	if (!desc)
289 		return -EINVAL;
290 	desc->affinity_hint = m;
291 	irq_put_desc_unlock(desc, flags);
292 	/* set the initial affinity to prevent every interrupt being on CPU0 */
293 	if (m)
294 		__irq_set_affinity(irq, m, false);
295 	return 0;
296 }
297 EXPORT_SYMBOL_GPL(irq_set_affinity_hint);
298 
299 static void irq_affinity_notify(struct work_struct *work)
300 {
301 	struct irq_affinity_notify *notify =
302 		container_of(work, struct irq_affinity_notify, work);
303 	struct irq_desc *desc = irq_to_desc(notify->irq);
304 	cpumask_var_t cpumask;
305 	unsigned long flags;
306 
307 	if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
308 		goto out;
309 
310 	raw_spin_lock_irqsave(&desc->lock, flags);
311 	if (irq_move_pending(&desc->irq_data))
312 		irq_get_pending(cpumask, desc);
313 	else
314 		cpumask_copy(cpumask, desc->irq_common_data.affinity);
315 	raw_spin_unlock_irqrestore(&desc->lock, flags);
316 
317 	notify->notify(notify, cpumask);
318 
319 	free_cpumask_var(cpumask);
320 out:
321 	kref_put(&notify->kref, notify->release);
322 }
323 
324 /**
325  *	irq_set_affinity_notifier - control notification of IRQ affinity changes
326  *	@irq:		Interrupt for which to enable/disable notification
327  *	@notify:	Context for notification, or %NULL to disable
328  *			notification.  Function pointers must be initialised;
329  *			the other fields will be initialised by this function.
330  *
331  *	Must be called in process context.  Notification may only be enabled
332  *	after the IRQ is allocated and must be disabled before the IRQ is
333  *	freed using free_irq().
334  */
335 int
336 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
337 {
338 	struct irq_desc *desc = irq_to_desc(irq);
339 	struct irq_affinity_notify *old_notify;
340 	unsigned long flags;
341 
342 	/* The release function is promised process context */
343 	might_sleep();
344 
345 	if (!desc || desc->istate & IRQS_NMI)
346 		return -EINVAL;
347 
348 	/* Complete initialisation of *notify */
349 	if (notify) {
350 		notify->irq = irq;
351 		kref_init(&notify->kref);
352 		INIT_WORK(&notify->work, irq_affinity_notify);
353 	}
354 
355 	raw_spin_lock_irqsave(&desc->lock, flags);
356 	old_notify = desc->affinity_notify;
357 	desc->affinity_notify = notify;
358 	raw_spin_unlock_irqrestore(&desc->lock, flags);
359 
360 	if (old_notify) {
361 		cancel_work_sync(&old_notify->work);
362 		kref_put(&old_notify->kref, old_notify->release);
363 	}
364 
365 	return 0;
366 }
367 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
368 
369 #ifndef CONFIG_AUTO_IRQ_AFFINITY
370 /*
371  * Generic version of the affinity autoselector.
372  */
373 int irq_setup_affinity(struct irq_desc *desc)
374 {
375 	struct cpumask *set = irq_default_affinity;
376 	int ret, node = irq_desc_get_node(desc);
377 	static DEFINE_RAW_SPINLOCK(mask_lock);
378 	static struct cpumask mask;
379 
380 	/* Excludes PER_CPU and NO_BALANCE interrupts */
381 	if (!__irq_can_set_affinity(desc))
382 		return 0;
383 
384 	raw_spin_lock(&mask_lock);
385 	/*
386 	 * Preserve the managed affinity setting and a userspace affinity
387 	 * setup, but make sure that one of the targets is online.
388 	 */
389 	if (irqd_affinity_is_managed(&desc->irq_data) ||
390 	    irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
391 		if (cpumask_intersects(desc->irq_common_data.affinity,
392 				       cpu_online_mask))
393 			set = desc->irq_common_data.affinity;
394 		else
395 			irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
396 	}
397 
398 	cpumask_and(&mask, cpu_online_mask, set);
399 	if (cpumask_empty(&mask))
400 		cpumask_copy(&mask, cpu_online_mask);
401 
402 	if (node != NUMA_NO_NODE) {
403 		const struct cpumask *nodemask = cpumask_of_node(node);
404 
405 		/* make sure at least one of the cpus in nodemask is online */
406 		if (cpumask_intersects(&mask, nodemask))
407 			cpumask_and(&mask, &mask, nodemask);
408 	}
409 	ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
410 	raw_spin_unlock(&mask_lock);
411 	return ret;
412 }
413 #else
414 /* Wrapper for ALPHA specific affinity selector magic */
415 int irq_setup_affinity(struct irq_desc *desc)
416 {
417 	return irq_select_affinity(irq_desc_get_irq(desc));
418 }
419 #endif
420 
421 /*
422  * Called when a bogus affinity is set via /proc/irq
423  */
424 int irq_select_affinity_usr(unsigned int irq)
425 {
426 	struct irq_desc *desc = irq_to_desc(irq);
427 	unsigned long flags;
428 	int ret;
429 
430 	raw_spin_lock_irqsave(&desc->lock, flags);
431 	ret = irq_setup_affinity(desc);
432 	raw_spin_unlock_irqrestore(&desc->lock, flags);
433 	return ret;
434 }
435 #endif
436 
437 /**
438  *	irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
439  *	@irq: interrupt number to set affinity
440  *	@vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
441  *	            specific data for percpu_devid interrupts
442  *
443  *	This function uses the vCPU specific data to set the vCPU
444  *	affinity for an irq. The vCPU specific data is passed from
445  *	outside, such as KVM. One example code path is as below:
446  *	KVM -> IOMMU -> irq_set_vcpu_affinity().
447  */
448 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
449 {
450 	unsigned long flags;
451 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
452 	struct irq_data *data;
453 	struct irq_chip *chip;
454 	int ret = -ENOSYS;
455 
456 	if (!desc)
457 		return -EINVAL;
458 
459 	data = irq_desc_get_irq_data(desc);
460 	do {
461 		chip = irq_data_get_irq_chip(data);
462 		if (chip && chip->irq_set_vcpu_affinity)
463 			break;
464 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
465 		data = data->parent_data;
466 #else
467 		data = NULL;
468 #endif
469 	} while (data);
470 
471 	if (data)
472 		ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
473 	irq_put_desc_unlock(desc, flags);
474 
475 	return ret;
476 }
477 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
478 
479 void __disable_irq(struct irq_desc *desc)
480 {
481 	if (!desc->depth++)
482 		irq_disable(desc);
483 }
484 
485 static int __disable_irq_nosync(unsigned int irq)
486 {
487 	unsigned long flags;
488 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
489 
490 	if (!desc)
491 		return -EINVAL;
492 	__disable_irq(desc);
493 	irq_put_desc_busunlock(desc, flags);
494 	return 0;
495 }
496 
497 /**
498  *	disable_irq_nosync - disable an irq without waiting
499  *	@irq: Interrupt to disable
500  *
501  *	Disable the selected interrupt line.  Disables and Enables are
502  *	nested.
503  *	Unlike disable_irq(), this function does not ensure existing
504  *	instances of the IRQ handler have completed before returning.
505  *
506  *	This function may be called from IRQ context.
507  */
508 void disable_irq_nosync(unsigned int irq)
509 {
510 	__disable_irq_nosync(irq);
511 }
512 EXPORT_SYMBOL(disable_irq_nosync);
513 
514 /**
515  *	disable_irq - disable an irq and wait for completion
516  *	@irq: Interrupt to disable
517  *
518  *	Disable the selected interrupt line.  Enables and Disables are
519  *	nested.
520  *	This function waits for any pending IRQ handlers for this interrupt
521  *	to complete before returning. If you use this function while
522  *	holding a resource the IRQ handler may need you will deadlock.
523  *
524  *	This function may be called - with care - from IRQ context.
525  */
526 void disable_irq(unsigned int irq)
527 {
528 	if (!__disable_irq_nosync(irq))
529 		synchronize_irq(irq);
530 }
531 EXPORT_SYMBOL(disable_irq);
532 
533 /**
534  *	disable_hardirq - disables an irq and waits for hardirq completion
535  *	@irq: Interrupt to disable
536  *
537  *	Disable the selected interrupt line.  Enables and Disables are
538  *	nested.
539  *	This function waits for any pending hard IRQ handlers for this
540  *	interrupt to complete before returning. If you use this function while
541  *	holding a resource the hard IRQ handler may need you will deadlock.
542  *
543  *	When used to optimistically disable an interrupt from atomic context
544  *	the return value must be checked.
545  *
546  *	Returns: false if a threaded handler is active.
547  *
548  *	This function may be called - with care - from IRQ context.
549  */
550 bool disable_hardirq(unsigned int irq)
551 {
552 	if (!__disable_irq_nosync(irq))
553 		return synchronize_hardirq(irq);
554 
555 	return false;
556 }
557 EXPORT_SYMBOL_GPL(disable_hardirq);
558 
559 /**
560  *	disable_nmi_nosync - disable an nmi without waiting
561  *	@irq: Interrupt to disable
562  *
563  *	Disable the selected interrupt line. Disables and enables are
564  *	nested.
565  *	The interrupt to disable must have been requested through request_nmi.
566  *	Unlike disable_nmi(), this function does not ensure existing
567  *	instances of the IRQ handler have completed before returning.
568  */
569 void disable_nmi_nosync(unsigned int irq)
570 {
571 	disable_irq_nosync(irq);
572 }
573 
574 void __enable_irq(struct irq_desc *desc)
575 {
576 	switch (desc->depth) {
577 	case 0:
578  err_out:
579 		WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
580 		     irq_desc_get_irq(desc));
581 		break;
582 	case 1: {
583 		if (desc->istate & IRQS_SUSPENDED)
584 			goto err_out;
585 		/* Prevent probing on this irq: */
586 		irq_settings_set_noprobe(desc);
587 		/*
588 		 * Call irq_startup() not irq_enable() here because the
589 		 * interrupt might be marked NOAUTOEN. So irq_startup()
590 		 * needs to be invoked when it gets enabled the first
591 		 * time. If it was already started up, then irq_startup()
592 		 * will invoke irq_enable() under the hood.
593 		 */
594 		irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
595 		break;
596 	}
597 	default:
598 		desc->depth--;
599 	}
600 }
601 
602 /**
603  *	enable_irq - enable handling of an irq
604  *	@irq: Interrupt to enable
605  *
606  *	Undoes the effect of one call to disable_irq().  If this
607  *	matches the last disable, processing of interrupts on this
608  *	IRQ line is re-enabled.
609  *
610  *	This function may be called from IRQ context only when
611  *	desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
612  */
613 void enable_irq(unsigned int irq)
614 {
615 	unsigned long flags;
616 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
617 
618 	if (!desc)
619 		return;
620 	if (WARN(!desc->irq_data.chip,
621 		 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
622 		goto out;
623 
624 	__enable_irq(desc);
625 out:
626 	irq_put_desc_busunlock(desc, flags);
627 }
628 EXPORT_SYMBOL(enable_irq);
629 
630 /**
631  *	enable_nmi - enable handling of an nmi
632  *	@irq: Interrupt to enable
633  *
634  *	The interrupt to enable must have been requested through request_nmi.
635  *	Undoes the effect of one call to disable_nmi(). If this
636  *	matches the last disable, processing of interrupts on this
637  *	IRQ line is re-enabled.
638  */
639 void enable_nmi(unsigned int irq)
640 {
641 	enable_irq(irq);
642 }
643 
644 static int set_irq_wake_real(unsigned int irq, unsigned int on)
645 {
646 	struct irq_desc *desc = irq_to_desc(irq);
647 	int ret = -ENXIO;
648 
649 	if (irq_desc_get_chip(desc)->flags &  IRQCHIP_SKIP_SET_WAKE)
650 		return 0;
651 
652 	if (desc->irq_data.chip->irq_set_wake)
653 		ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
654 
655 	return ret;
656 }
657 
658 /**
659  *	irq_set_irq_wake - control irq power management wakeup
660  *	@irq:	interrupt to control
661  *	@on:	enable/disable power management wakeup
662  *
663  *	Enable/disable power management wakeup mode, which is
664  *	disabled by default.  Enables and disables must match,
665  *	just as they match for non-wakeup mode support.
666  *
667  *	Wakeup mode lets this IRQ wake the system from sleep
668  *	states like "suspend to RAM".
669  */
670 int irq_set_irq_wake(unsigned int irq, unsigned int on)
671 {
672 	unsigned long flags;
673 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
674 	int ret = 0;
675 
676 	if (!desc)
677 		return -EINVAL;
678 
679 	/* Don't use NMIs as wake up interrupts please */
680 	if (desc->istate & IRQS_NMI) {
681 		ret = -EINVAL;
682 		goto out_unlock;
683 	}
684 
685 	/* wakeup-capable irqs can be shared between drivers that
686 	 * don't need to have the same sleep mode behaviors.
687 	 */
688 	if (on) {
689 		if (desc->wake_depth++ == 0) {
690 			ret = set_irq_wake_real(irq, on);
691 			if (ret)
692 				desc->wake_depth = 0;
693 			else
694 				irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
695 		}
696 	} else {
697 		if (desc->wake_depth == 0) {
698 			WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
699 		} else if (--desc->wake_depth == 0) {
700 			ret = set_irq_wake_real(irq, on);
701 			if (ret)
702 				desc->wake_depth = 1;
703 			else
704 				irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
705 		}
706 	}
707 
708 out_unlock:
709 	irq_put_desc_busunlock(desc, flags);
710 	return ret;
711 }
712 EXPORT_SYMBOL(irq_set_irq_wake);
713 
714 /*
715  * Internal function that tells the architecture code whether a
716  * particular irq has been exclusively allocated or is available
717  * for driver use.
718  */
719 int can_request_irq(unsigned int irq, unsigned long irqflags)
720 {
721 	unsigned long flags;
722 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
723 	int canrequest = 0;
724 
725 	if (!desc)
726 		return 0;
727 
728 	if (irq_settings_can_request(desc)) {
729 		if (!desc->action ||
730 		    irqflags & desc->action->flags & IRQF_SHARED)
731 			canrequest = 1;
732 	}
733 	irq_put_desc_unlock(desc, flags);
734 	return canrequest;
735 }
736 
737 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
738 {
739 	struct irq_chip *chip = desc->irq_data.chip;
740 	int ret, unmask = 0;
741 
742 	if (!chip || !chip->irq_set_type) {
743 		/*
744 		 * IRQF_TRIGGER_* but the PIC does not support multiple
745 		 * flow-types?
746 		 */
747 		pr_debug("No set_type function for IRQ %d (%s)\n",
748 			 irq_desc_get_irq(desc),
749 			 chip ? (chip->name ? : "unknown") : "unknown");
750 		return 0;
751 	}
752 
753 	if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
754 		if (!irqd_irq_masked(&desc->irq_data))
755 			mask_irq(desc);
756 		if (!irqd_irq_disabled(&desc->irq_data))
757 			unmask = 1;
758 	}
759 
760 	/* Mask all flags except trigger mode */
761 	flags &= IRQ_TYPE_SENSE_MASK;
762 	ret = chip->irq_set_type(&desc->irq_data, flags);
763 
764 	switch (ret) {
765 	case IRQ_SET_MASK_OK:
766 	case IRQ_SET_MASK_OK_DONE:
767 		irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
768 		irqd_set(&desc->irq_data, flags);
769 		/* fall through */
770 
771 	case IRQ_SET_MASK_OK_NOCOPY:
772 		flags = irqd_get_trigger_type(&desc->irq_data);
773 		irq_settings_set_trigger_mask(desc, flags);
774 		irqd_clear(&desc->irq_data, IRQD_LEVEL);
775 		irq_settings_clr_level(desc);
776 		if (flags & IRQ_TYPE_LEVEL_MASK) {
777 			irq_settings_set_level(desc);
778 			irqd_set(&desc->irq_data, IRQD_LEVEL);
779 		}
780 
781 		ret = 0;
782 		break;
783 	default:
784 		pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n",
785 		       flags, irq_desc_get_irq(desc), chip->irq_set_type);
786 	}
787 	if (unmask)
788 		unmask_irq(desc);
789 	return ret;
790 }
791 
792 #ifdef CONFIG_HARDIRQS_SW_RESEND
793 int irq_set_parent(int irq, int parent_irq)
794 {
795 	unsigned long flags;
796 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
797 
798 	if (!desc)
799 		return -EINVAL;
800 
801 	desc->parent_irq = parent_irq;
802 
803 	irq_put_desc_unlock(desc, flags);
804 	return 0;
805 }
806 EXPORT_SYMBOL_GPL(irq_set_parent);
807 #endif
808 
809 /*
810  * Default primary interrupt handler for threaded interrupts. Is
811  * assigned as primary handler when request_threaded_irq is called
812  * with handler == NULL. Useful for oneshot interrupts.
813  */
814 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
815 {
816 	return IRQ_WAKE_THREAD;
817 }
818 
819 /*
820  * Primary handler for nested threaded interrupts. Should never be
821  * called.
822  */
823 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
824 {
825 	WARN(1, "Primary handler called for nested irq %d\n", irq);
826 	return IRQ_NONE;
827 }
828 
829 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
830 {
831 	WARN(1, "Secondary action handler called for irq %d\n", irq);
832 	return IRQ_NONE;
833 }
834 
835 static int irq_wait_for_interrupt(struct irqaction *action)
836 {
837 	for (;;) {
838 		set_current_state(TASK_INTERRUPTIBLE);
839 
840 		if (kthread_should_stop()) {
841 			/* may need to run one last time */
842 			if (test_and_clear_bit(IRQTF_RUNTHREAD,
843 					       &action->thread_flags)) {
844 				__set_current_state(TASK_RUNNING);
845 				return 0;
846 			}
847 			__set_current_state(TASK_RUNNING);
848 			return -1;
849 		}
850 
851 		if (test_and_clear_bit(IRQTF_RUNTHREAD,
852 				       &action->thread_flags)) {
853 			__set_current_state(TASK_RUNNING);
854 			return 0;
855 		}
856 		schedule();
857 	}
858 }
859 
860 /*
861  * Oneshot interrupts keep the irq line masked until the threaded
862  * handler finished. unmask if the interrupt has not been disabled and
863  * is marked MASKED.
864  */
865 static void irq_finalize_oneshot(struct irq_desc *desc,
866 				 struct irqaction *action)
867 {
868 	if (!(desc->istate & IRQS_ONESHOT) ||
869 	    action->handler == irq_forced_secondary_handler)
870 		return;
871 again:
872 	chip_bus_lock(desc);
873 	raw_spin_lock_irq(&desc->lock);
874 
875 	/*
876 	 * Implausible though it may be we need to protect us against
877 	 * the following scenario:
878 	 *
879 	 * The thread is faster done than the hard interrupt handler
880 	 * on the other CPU. If we unmask the irq line then the
881 	 * interrupt can come in again and masks the line, leaves due
882 	 * to IRQS_INPROGRESS and the irq line is masked forever.
883 	 *
884 	 * This also serializes the state of shared oneshot handlers
885 	 * versus "desc->threads_onehsot |= action->thread_mask;" in
886 	 * irq_wake_thread(). See the comment there which explains the
887 	 * serialization.
888 	 */
889 	if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
890 		raw_spin_unlock_irq(&desc->lock);
891 		chip_bus_sync_unlock(desc);
892 		cpu_relax();
893 		goto again;
894 	}
895 
896 	/*
897 	 * Now check again, whether the thread should run. Otherwise
898 	 * we would clear the threads_oneshot bit of this thread which
899 	 * was just set.
900 	 */
901 	if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
902 		goto out_unlock;
903 
904 	desc->threads_oneshot &= ~action->thread_mask;
905 
906 	if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
907 	    irqd_irq_masked(&desc->irq_data))
908 		unmask_threaded_irq(desc);
909 
910 out_unlock:
911 	raw_spin_unlock_irq(&desc->lock);
912 	chip_bus_sync_unlock(desc);
913 }
914 
915 #ifdef CONFIG_SMP
916 /*
917  * Check whether we need to change the affinity of the interrupt thread.
918  */
919 static void
920 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
921 {
922 	cpumask_var_t mask;
923 	bool valid = true;
924 
925 	if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
926 		return;
927 
928 	/*
929 	 * In case we are out of memory we set IRQTF_AFFINITY again and
930 	 * try again next time
931 	 */
932 	if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
933 		set_bit(IRQTF_AFFINITY, &action->thread_flags);
934 		return;
935 	}
936 
937 	raw_spin_lock_irq(&desc->lock);
938 	/*
939 	 * This code is triggered unconditionally. Check the affinity
940 	 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
941 	 */
942 	if (cpumask_available(desc->irq_common_data.affinity)) {
943 		const struct cpumask *m;
944 
945 		m = irq_data_get_effective_affinity_mask(&desc->irq_data);
946 		cpumask_copy(mask, m);
947 	} else {
948 		valid = false;
949 	}
950 	raw_spin_unlock_irq(&desc->lock);
951 
952 	if (valid)
953 		set_cpus_allowed_ptr(current, mask);
954 	free_cpumask_var(mask);
955 }
956 #else
957 static inline void
958 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
959 #endif
960 
961 /*
962  * Interrupts which are not explicitly requested as threaded
963  * interrupts rely on the implicit bh/preempt disable of the hard irq
964  * context. So we need to disable bh here to avoid deadlocks and other
965  * side effects.
966  */
967 static irqreturn_t
968 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
969 {
970 	irqreturn_t ret;
971 
972 	local_bh_disable();
973 	ret = action->thread_fn(action->irq, action->dev_id);
974 	if (ret == IRQ_HANDLED)
975 		atomic_inc(&desc->threads_handled);
976 
977 	irq_finalize_oneshot(desc, action);
978 	local_bh_enable();
979 	return ret;
980 }
981 
982 /*
983  * Interrupts explicitly requested as threaded interrupts want to be
984  * preemtible - many of them need to sleep and wait for slow busses to
985  * complete.
986  */
987 static irqreturn_t irq_thread_fn(struct irq_desc *desc,
988 		struct irqaction *action)
989 {
990 	irqreturn_t ret;
991 
992 	ret = action->thread_fn(action->irq, action->dev_id);
993 	if (ret == IRQ_HANDLED)
994 		atomic_inc(&desc->threads_handled);
995 
996 	irq_finalize_oneshot(desc, action);
997 	return ret;
998 }
999 
1000 static void wake_threads_waitq(struct irq_desc *desc)
1001 {
1002 	if (atomic_dec_and_test(&desc->threads_active))
1003 		wake_up(&desc->wait_for_threads);
1004 }
1005 
1006 static void irq_thread_dtor(struct callback_head *unused)
1007 {
1008 	struct task_struct *tsk = current;
1009 	struct irq_desc *desc;
1010 	struct irqaction *action;
1011 
1012 	if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
1013 		return;
1014 
1015 	action = kthread_data(tsk);
1016 
1017 	pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
1018 	       tsk->comm, tsk->pid, action->irq);
1019 
1020 
1021 	desc = irq_to_desc(action->irq);
1022 	/*
1023 	 * If IRQTF_RUNTHREAD is set, we need to decrement
1024 	 * desc->threads_active and wake possible waiters.
1025 	 */
1026 	if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1027 		wake_threads_waitq(desc);
1028 
1029 	/* Prevent a stale desc->threads_oneshot */
1030 	irq_finalize_oneshot(desc, action);
1031 }
1032 
1033 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
1034 {
1035 	struct irqaction *secondary = action->secondary;
1036 
1037 	if (WARN_ON_ONCE(!secondary))
1038 		return;
1039 
1040 	raw_spin_lock_irq(&desc->lock);
1041 	__irq_wake_thread(desc, secondary);
1042 	raw_spin_unlock_irq(&desc->lock);
1043 }
1044 
1045 /*
1046  * Interrupt handler thread
1047  */
1048 static int irq_thread(void *data)
1049 {
1050 	struct callback_head on_exit_work;
1051 	struct irqaction *action = data;
1052 	struct irq_desc *desc = irq_to_desc(action->irq);
1053 	irqreturn_t (*handler_fn)(struct irq_desc *desc,
1054 			struct irqaction *action);
1055 
1056 	if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD,
1057 					&action->thread_flags))
1058 		handler_fn = irq_forced_thread_fn;
1059 	else
1060 		handler_fn = irq_thread_fn;
1061 
1062 	init_task_work(&on_exit_work, irq_thread_dtor);
1063 	task_work_add(current, &on_exit_work, false);
1064 
1065 	irq_thread_check_affinity(desc, action);
1066 
1067 	while (!irq_wait_for_interrupt(action)) {
1068 		irqreturn_t action_ret;
1069 
1070 		irq_thread_check_affinity(desc, action);
1071 
1072 		action_ret = handler_fn(desc, action);
1073 		if (action_ret == IRQ_WAKE_THREAD)
1074 			irq_wake_secondary(desc, action);
1075 
1076 		wake_threads_waitq(desc);
1077 	}
1078 
1079 	/*
1080 	 * This is the regular exit path. __free_irq() is stopping the
1081 	 * thread via kthread_stop() after calling
1082 	 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the
1083 	 * oneshot mask bit can be set.
1084 	 */
1085 	task_work_cancel(current, irq_thread_dtor);
1086 	return 0;
1087 }
1088 
1089 /**
1090  *	irq_wake_thread - wake the irq thread for the action identified by dev_id
1091  *	@irq:		Interrupt line
1092  *	@dev_id:	Device identity for which the thread should be woken
1093  *
1094  */
1095 void irq_wake_thread(unsigned int irq, void *dev_id)
1096 {
1097 	struct irq_desc *desc = irq_to_desc(irq);
1098 	struct irqaction *action;
1099 	unsigned long flags;
1100 
1101 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1102 		return;
1103 
1104 	raw_spin_lock_irqsave(&desc->lock, flags);
1105 	for_each_action_of_desc(desc, action) {
1106 		if (action->dev_id == dev_id) {
1107 			if (action->thread)
1108 				__irq_wake_thread(desc, action);
1109 			break;
1110 		}
1111 	}
1112 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1113 }
1114 EXPORT_SYMBOL_GPL(irq_wake_thread);
1115 
1116 static int irq_setup_forced_threading(struct irqaction *new)
1117 {
1118 	if (!force_irqthreads)
1119 		return 0;
1120 	if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1121 		return 0;
1122 
1123 	/*
1124 	 * No further action required for interrupts which are requested as
1125 	 * threaded interrupts already
1126 	 */
1127 	if (new->handler == irq_default_primary_handler)
1128 		return 0;
1129 
1130 	new->flags |= IRQF_ONESHOT;
1131 
1132 	/*
1133 	 * Handle the case where we have a real primary handler and a
1134 	 * thread handler. We force thread them as well by creating a
1135 	 * secondary action.
1136 	 */
1137 	if (new->handler && new->thread_fn) {
1138 		/* Allocate the secondary action */
1139 		new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1140 		if (!new->secondary)
1141 			return -ENOMEM;
1142 		new->secondary->handler = irq_forced_secondary_handler;
1143 		new->secondary->thread_fn = new->thread_fn;
1144 		new->secondary->dev_id = new->dev_id;
1145 		new->secondary->irq = new->irq;
1146 		new->secondary->name = new->name;
1147 	}
1148 	/* Deal with the primary handler */
1149 	set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1150 	new->thread_fn = new->handler;
1151 	new->handler = irq_default_primary_handler;
1152 	return 0;
1153 }
1154 
1155 static int irq_request_resources(struct irq_desc *desc)
1156 {
1157 	struct irq_data *d = &desc->irq_data;
1158 	struct irq_chip *c = d->chip;
1159 
1160 	return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1161 }
1162 
1163 static void irq_release_resources(struct irq_desc *desc)
1164 {
1165 	struct irq_data *d = &desc->irq_data;
1166 	struct irq_chip *c = d->chip;
1167 
1168 	if (c->irq_release_resources)
1169 		c->irq_release_resources(d);
1170 }
1171 
1172 static bool irq_supports_nmi(struct irq_desc *desc)
1173 {
1174 	struct irq_data *d = irq_desc_get_irq_data(desc);
1175 
1176 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
1177 	/* Only IRQs directly managed by the root irqchip can be set as NMI */
1178 	if (d->parent_data)
1179 		return false;
1180 #endif
1181 	/* Don't support NMIs for chips behind a slow bus */
1182 	if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock)
1183 		return false;
1184 
1185 	return d->chip->flags & IRQCHIP_SUPPORTS_NMI;
1186 }
1187 
1188 static int irq_nmi_setup(struct irq_desc *desc)
1189 {
1190 	struct irq_data *d = irq_desc_get_irq_data(desc);
1191 	struct irq_chip *c = d->chip;
1192 
1193 	return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL;
1194 }
1195 
1196 static void irq_nmi_teardown(struct irq_desc *desc)
1197 {
1198 	struct irq_data *d = irq_desc_get_irq_data(desc);
1199 	struct irq_chip *c = d->chip;
1200 
1201 	if (c->irq_nmi_teardown)
1202 		c->irq_nmi_teardown(d);
1203 }
1204 
1205 static int
1206 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1207 {
1208 	struct task_struct *t;
1209 	struct sched_param param = {
1210 		.sched_priority = MAX_USER_RT_PRIO/2,
1211 	};
1212 
1213 	if (!secondary) {
1214 		t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1215 				   new->name);
1216 	} else {
1217 		t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1218 				   new->name);
1219 		param.sched_priority -= 1;
1220 	}
1221 
1222 	if (IS_ERR(t))
1223 		return PTR_ERR(t);
1224 
1225 	sched_setscheduler_nocheck(t, SCHED_FIFO, &param);
1226 
1227 	/*
1228 	 * We keep the reference to the task struct even if
1229 	 * the thread dies to avoid that the interrupt code
1230 	 * references an already freed task_struct.
1231 	 */
1232 	get_task_struct(t);
1233 	new->thread = t;
1234 	/*
1235 	 * Tell the thread to set its affinity. This is
1236 	 * important for shared interrupt handlers as we do
1237 	 * not invoke setup_affinity() for the secondary
1238 	 * handlers as everything is already set up. Even for
1239 	 * interrupts marked with IRQF_NO_BALANCE this is
1240 	 * correct as we want the thread to move to the cpu(s)
1241 	 * on which the requesting code placed the interrupt.
1242 	 */
1243 	set_bit(IRQTF_AFFINITY, &new->thread_flags);
1244 	return 0;
1245 }
1246 
1247 /*
1248  * Internal function to register an irqaction - typically used to
1249  * allocate special interrupts that are part of the architecture.
1250  *
1251  * Locking rules:
1252  *
1253  * desc->request_mutex	Provides serialization against a concurrent free_irq()
1254  *   chip_bus_lock	Provides serialization for slow bus operations
1255  *     desc->lock	Provides serialization against hard interrupts
1256  *
1257  * chip_bus_lock and desc->lock are sufficient for all other management and
1258  * interrupt related functions. desc->request_mutex solely serializes
1259  * request/free_irq().
1260  */
1261 static int
1262 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1263 {
1264 	struct irqaction *old, **old_ptr;
1265 	unsigned long flags, thread_mask = 0;
1266 	int ret, nested, shared = 0;
1267 
1268 	if (!desc)
1269 		return -EINVAL;
1270 
1271 	if (desc->irq_data.chip == &no_irq_chip)
1272 		return -ENOSYS;
1273 	if (!try_module_get(desc->owner))
1274 		return -ENODEV;
1275 
1276 	new->irq = irq;
1277 
1278 	/*
1279 	 * If the trigger type is not specified by the caller,
1280 	 * then use the default for this interrupt.
1281 	 */
1282 	if (!(new->flags & IRQF_TRIGGER_MASK))
1283 		new->flags |= irqd_get_trigger_type(&desc->irq_data);
1284 
1285 	/*
1286 	 * Check whether the interrupt nests into another interrupt
1287 	 * thread.
1288 	 */
1289 	nested = irq_settings_is_nested_thread(desc);
1290 	if (nested) {
1291 		if (!new->thread_fn) {
1292 			ret = -EINVAL;
1293 			goto out_mput;
1294 		}
1295 		/*
1296 		 * Replace the primary handler which was provided from
1297 		 * the driver for non nested interrupt handling by the
1298 		 * dummy function which warns when called.
1299 		 */
1300 		new->handler = irq_nested_primary_handler;
1301 	} else {
1302 		if (irq_settings_can_thread(desc)) {
1303 			ret = irq_setup_forced_threading(new);
1304 			if (ret)
1305 				goto out_mput;
1306 		}
1307 	}
1308 
1309 	/*
1310 	 * Create a handler thread when a thread function is supplied
1311 	 * and the interrupt does not nest into another interrupt
1312 	 * thread.
1313 	 */
1314 	if (new->thread_fn && !nested) {
1315 		ret = setup_irq_thread(new, irq, false);
1316 		if (ret)
1317 			goto out_mput;
1318 		if (new->secondary) {
1319 			ret = setup_irq_thread(new->secondary, irq, true);
1320 			if (ret)
1321 				goto out_thread;
1322 		}
1323 	}
1324 
1325 	/*
1326 	 * Drivers are often written to work w/o knowledge about the
1327 	 * underlying irq chip implementation, so a request for a
1328 	 * threaded irq without a primary hard irq context handler
1329 	 * requires the ONESHOT flag to be set. Some irq chips like
1330 	 * MSI based interrupts are per se one shot safe. Check the
1331 	 * chip flags, so we can avoid the unmask dance at the end of
1332 	 * the threaded handler for those.
1333 	 */
1334 	if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1335 		new->flags &= ~IRQF_ONESHOT;
1336 
1337 	/*
1338 	 * Protects against a concurrent __free_irq() call which might wait
1339 	 * for synchronize_hardirq() to complete without holding the optional
1340 	 * chip bus lock and desc->lock. Also protects against handing out
1341 	 * a recycled oneshot thread_mask bit while it's still in use by
1342 	 * its previous owner.
1343 	 */
1344 	mutex_lock(&desc->request_mutex);
1345 
1346 	/*
1347 	 * Acquire bus lock as the irq_request_resources() callback below
1348 	 * might rely on the serialization or the magic power management
1349 	 * functions which are abusing the irq_bus_lock() callback,
1350 	 */
1351 	chip_bus_lock(desc);
1352 
1353 	/* First installed action requests resources. */
1354 	if (!desc->action) {
1355 		ret = irq_request_resources(desc);
1356 		if (ret) {
1357 			pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1358 			       new->name, irq, desc->irq_data.chip->name);
1359 			goto out_bus_unlock;
1360 		}
1361 	}
1362 
1363 	/*
1364 	 * The following block of code has to be executed atomically
1365 	 * protected against a concurrent interrupt and any of the other
1366 	 * management calls which are not serialized via
1367 	 * desc->request_mutex or the optional bus lock.
1368 	 */
1369 	raw_spin_lock_irqsave(&desc->lock, flags);
1370 	old_ptr = &desc->action;
1371 	old = *old_ptr;
1372 	if (old) {
1373 		/*
1374 		 * Can't share interrupts unless both agree to and are
1375 		 * the same type (level, edge, polarity). So both flag
1376 		 * fields must have IRQF_SHARED set and the bits which
1377 		 * set the trigger type must match. Also all must
1378 		 * agree on ONESHOT.
1379 		 * Interrupt lines used for NMIs cannot be shared.
1380 		 */
1381 		unsigned int oldtype;
1382 
1383 		if (desc->istate & IRQS_NMI) {
1384 			pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n",
1385 				new->name, irq, desc->irq_data.chip->name);
1386 			ret = -EINVAL;
1387 			goto out_unlock;
1388 		}
1389 
1390 		/*
1391 		 * If nobody did set the configuration before, inherit
1392 		 * the one provided by the requester.
1393 		 */
1394 		if (irqd_trigger_type_was_set(&desc->irq_data)) {
1395 			oldtype = irqd_get_trigger_type(&desc->irq_data);
1396 		} else {
1397 			oldtype = new->flags & IRQF_TRIGGER_MASK;
1398 			irqd_set_trigger_type(&desc->irq_data, oldtype);
1399 		}
1400 
1401 		if (!((old->flags & new->flags) & IRQF_SHARED) ||
1402 		    (oldtype != (new->flags & IRQF_TRIGGER_MASK)) ||
1403 		    ((old->flags ^ new->flags) & IRQF_ONESHOT))
1404 			goto mismatch;
1405 
1406 		/* All handlers must agree on per-cpuness */
1407 		if ((old->flags & IRQF_PERCPU) !=
1408 		    (new->flags & IRQF_PERCPU))
1409 			goto mismatch;
1410 
1411 		/* add new interrupt at end of irq queue */
1412 		do {
1413 			/*
1414 			 * Or all existing action->thread_mask bits,
1415 			 * so we can find the next zero bit for this
1416 			 * new action.
1417 			 */
1418 			thread_mask |= old->thread_mask;
1419 			old_ptr = &old->next;
1420 			old = *old_ptr;
1421 		} while (old);
1422 		shared = 1;
1423 	}
1424 
1425 	/*
1426 	 * Setup the thread mask for this irqaction for ONESHOT. For
1427 	 * !ONESHOT irqs the thread mask is 0 so we can avoid a
1428 	 * conditional in irq_wake_thread().
1429 	 */
1430 	if (new->flags & IRQF_ONESHOT) {
1431 		/*
1432 		 * Unlikely to have 32 resp 64 irqs sharing one line,
1433 		 * but who knows.
1434 		 */
1435 		if (thread_mask == ~0UL) {
1436 			ret = -EBUSY;
1437 			goto out_unlock;
1438 		}
1439 		/*
1440 		 * The thread_mask for the action is or'ed to
1441 		 * desc->thread_active to indicate that the
1442 		 * IRQF_ONESHOT thread handler has been woken, but not
1443 		 * yet finished. The bit is cleared when a thread
1444 		 * completes. When all threads of a shared interrupt
1445 		 * line have completed desc->threads_active becomes
1446 		 * zero and the interrupt line is unmasked. See
1447 		 * handle.c:irq_wake_thread() for further information.
1448 		 *
1449 		 * If no thread is woken by primary (hard irq context)
1450 		 * interrupt handlers, then desc->threads_active is
1451 		 * also checked for zero to unmask the irq line in the
1452 		 * affected hard irq flow handlers
1453 		 * (handle_[fasteoi|level]_irq).
1454 		 *
1455 		 * The new action gets the first zero bit of
1456 		 * thread_mask assigned. See the loop above which or's
1457 		 * all existing action->thread_mask bits.
1458 		 */
1459 		new->thread_mask = 1UL << ffz(thread_mask);
1460 
1461 	} else if (new->handler == irq_default_primary_handler &&
1462 		   !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1463 		/*
1464 		 * The interrupt was requested with handler = NULL, so
1465 		 * we use the default primary handler for it. But it
1466 		 * does not have the oneshot flag set. In combination
1467 		 * with level interrupts this is deadly, because the
1468 		 * default primary handler just wakes the thread, then
1469 		 * the irq lines is reenabled, but the device still
1470 		 * has the level irq asserted. Rinse and repeat....
1471 		 *
1472 		 * While this works for edge type interrupts, we play
1473 		 * it safe and reject unconditionally because we can't
1474 		 * say for sure which type this interrupt really
1475 		 * has. The type flags are unreliable as the
1476 		 * underlying chip implementation can override them.
1477 		 */
1478 		pr_err("Threaded irq requested with handler=NULL and !ONESHOT for irq %d\n",
1479 		       irq);
1480 		ret = -EINVAL;
1481 		goto out_unlock;
1482 	}
1483 
1484 	if (!shared) {
1485 		init_waitqueue_head(&desc->wait_for_threads);
1486 
1487 		/* Setup the type (level, edge polarity) if configured: */
1488 		if (new->flags & IRQF_TRIGGER_MASK) {
1489 			ret = __irq_set_trigger(desc,
1490 						new->flags & IRQF_TRIGGER_MASK);
1491 
1492 			if (ret)
1493 				goto out_unlock;
1494 		}
1495 
1496 		/*
1497 		 * Activate the interrupt. That activation must happen
1498 		 * independently of IRQ_NOAUTOEN. request_irq() can fail
1499 		 * and the callers are supposed to handle
1500 		 * that. enable_irq() of an interrupt requested with
1501 		 * IRQ_NOAUTOEN is not supposed to fail. The activation
1502 		 * keeps it in shutdown mode, it merily associates
1503 		 * resources if necessary and if that's not possible it
1504 		 * fails. Interrupts which are in managed shutdown mode
1505 		 * will simply ignore that activation request.
1506 		 */
1507 		ret = irq_activate(desc);
1508 		if (ret)
1509 			goto out_unlock;
1510 
1511 		desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1512 				  IRQS_ONESHOT | IRQS_WAITING);
1513 		irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1514 
1515 		if (new->flags & IRQF_PERCPU) {
1516 			irqd_set(&desc->irq_data, IRQD_PER_CPU);
1517 			irq_settings_set_per_cpu(desc);
1518 		}
1519 
1520 		if (new->flags & IRQF_ONESHOT)
1521 			desc->istate |= IRQS_ONESHOT;
1522 
1523 		/* Exclude IRQ from balancing if requested */
1524 		if (new->flags & IRQF_NOBALANCING) {
1525 			irq_settings_set_no_balancing(desc);
1526 			irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1527 		}
1528 
1529 		if (irq_settings_can_autoenable(desc)) {
1530 			irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1531 		} else {
1532 			/*
1533 			 * Shared interrupts do not go well with disabling
1534 			 * auto enable. The sharing interrupt might request
1535 			 * it while it's still disabled and then wait for
1536 			 * interrupts forever.
1537 			 */
1538 			WARN_ON_ONCE(new->flags & IRQF_SHARED);
1539 			/* Undo nested disables: */
1540 			desc->depth = 1;
1541 		}
1542 
1543 	} else if (new->flags & IRQF_TRIGGER_MASK) {
1544 		unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1545 		unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1546 
1547 		if (nmsk != omsk)
1548 			/* hope the handler works with current  trigger mode */
1549 			pr_warn("irq %d uses trigger mode %u; requested %u\n",
1550 				irq, omsk, nmsk);
1551 	}
1552 
1553 	*old_ptr = new;
1554 
1555 	irq_pm_install_action(desc, new);
1556 
1557 	/* Reset broken irq detection when installing new handler */
1558 	desc->irq_count = 0;
1559 	desc->irqs_unhandled = 0;
1560 
1561 	/*
1562 	 * Check whether we disabled the irq via the spurious handler
1563 	 * before. Reenable it and give it another chance.
1564 	 */
1565 	if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1566 		desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1567 		__enable_irq(desc);
1568 	}
1569 
1570 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1571 	chip_bus_sync_unlock(desc);
1572 	mutex_unlock(&desc->request_mutex);
1573 
1574 	irq_setup_timings(desc, new);
1575 
1576 	/*
1577 	 * Strictly no need to wake it up, but hung_task complains
1578 	 * when no hard interrupt wakes the thread up.
1579 	 */
1580 	if (new->thread)
1581 		wake_up_process(new->thread);
1582 	if (new->secondary)
1583 		wake_up_process(new->secondary->thread);
1584 
1585 	register_irq_proc(irq, desc);
1586 	new->dir = NULL;
1587 	register_handler_proc(irq, new);
1588 	return 0;
1589 
1590 mismatch:
1591 	if (!(new->flags & IRQF_PROBE_SHARED)) {
1592 		pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1593 		       irq, new->flags, new->name, old->flags, old->name);
1594 #ifdef CONFIG_DEBUG_SHIRQ
1595 		dump_stack();
1596 #endif
1597 	}
1598 	ret = -EBUSY;
1599 
1600 out_unlock:
1601 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1602 
1603 	if (!desc->action)
1604 		irq_release_resources(desc);
1605 out_bus_unlock:
1606 	chip_bus_sync_unlock(desc);
1607 	mutex_unlock(&desc->request_mutex);
1608 
1609 out_thread:
1610 	if (new->thread) {
1611 		struct task_struct *t = new->thread;
1612 
1613 		new->thread = NULL;
1614 		kthread_stop(t);
1615 		put_task_struct(t);
1616 	}
1617 	if (new->secondary && new->secondary->thread) {
1618 		struct task_struct *t = new->secondary->thread;
1619 
1620 		new->secondary->thread = NULL;
1621 		kthread_stop(t);
1622 		put_task_struct(t);
1623 	}
1624 out_mput:
1625 	module_put(desc->owner);
1626 	return ret;
1627 }
1628 
1629 /**
1630  *	setup_irq - setup an interrupt
1631  *	@irq: Interrupt line to setup
1632  *	@act: irqaction for the interrupt
1633  *
1634  * Used to statically setup interrupts in the early boot process.
1635  */
1636 int setup_irq(unsigned int irq, struct irqaction *act)
1637 {
1638 	int retval;
1639 	struct irq_desc *desc = irq_to_desc(irq);
1640 
1641 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1642 		return -EINVAL;
1643 
1644 	retval = irq_chip_pm_get(&desc->irq_data);
1645 	if (retval < 0)
1646 		return retval;
1647 
1648 	retval = __setup_irq(irq, desc, act);
1649 
1650 	if (retval)
1651 		irq_chip_pm_put(&desc->irq_data);
1652 
1653 	return retval;
1654 }
1655 EXPORT_SYMBOL_GPL(setup_irq);
1656 
1657 /*
1658  * Internal function to unregister an irqaction - used to free
1659  * regular and special interrupts that are part of the architecture.
1660  */
1661 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1662 {
1663 	unsigned irq = desc->irq_data.irq;
1664 	struct irqaction *action, **action_ptr;
1665 	unsigned long flags;
1666 
1667 	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1668 
1669 	mutex_lock(&desc->request_mutex);
1670 	chip_bus_lock(desc);
1671 	raw_spin_lock_irqsave(&desc->lock, flags);
1672 
1673 	/*
1674 	 * There can be multiple actions per IRQ descriptor, find the right
1675 	 * one based on the dev_id:
1676 	 */
1677 	action_ptr = &desc->action;
1678 	for (;;) {
1679 		action = *action_ptr;
1680 
1681 		if (!action) {
1682 			WARN(1, "Trying to free already-free IRQ %d\n", irq);
1683 			raw_spin_unlock_irqrestore(&desc->lock, flags);
1684 			chip_bus_sync_unlock(desc);
1685 			mutex_unlock(&desc->request_mutex);
1686 			return NULL;
1687 		}
1688 
1689 		if (action->dev_id == dev_id)
1690 			break;
1691 		action_ptr = &action->next;
1692 	}
1693 
1694 	/* Found it - now remove it from the list of entries: */
1695 	*action_ptr = action->next;
1696 
1697 	irq_pm_remove_action(desc, action);
1698 
1699 	/* If this was the last handler, shut down the IRQ line: */
1700 	if (!desc->action) {
1701 		irq_settings_clr_disable_unlazy(desc);
1702 		irq_shutdown(desc);
1703 	}
1704 
1705 #ifdef CONFIG_SMP
1706 	/* make sure affinity_hint is cleaned up */
1707 	if (WARN_ON_ONCE(desc->affinity_hint))
1708 		desc->affinity_hint = NULL;
1709 #endif
1710 
1711 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1712 	/*
1713 	 * Drop bus_lock here so the changes which were done in the chip
1714 	 * callbacks above are synced out to the irq chips which hang
1715 	 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq().
1716 	 *
1717 	 * Aside of that the bus_lock can also be taken from the threaded
1718 	 * handler in irq_finalize_oneshot() which results in a deadlock
1719 	 * because kthread_stop() would wait forever for the thread to
1720 	 * complete, which is blocked on the bus lock.
1721 	 *
1722 	 * The still held desc->request_mutex() protects against a
1723 	 * concurrent request_irq() of this irq so the release of resources
1724 	 * and timing data is properly serialized.
1725 	 */
1726 	chip_bus_sync_unlock(desc);
1727 
1728 	unregister_handler_proc(irq, action);
1729 
1730 	/* Make sure it's not being used on another CPU: */
1731 	synchronize_hardirq(irq);
1732 
1733 #ifdef CONFIG_DEBUG_SHIRQ
1734 	/*
1735 	 * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1736 	 * event to happen even now it's being freed, so let's make sure that
1737 	 * is so by doing an extra call to the handler ....
1738 	 *
1739 	 * ( We do this after actually deregistering it, to make sure that a
1740 	 *   'real' IRQ doesn't run in parallel with our fake. )
1741 	 */
1742 	if (action->flags & IRQF_SHARED) {
1743 		local_irq_save(flags);
1744 		action->handler(irq, dev_id);
1745 		local_irq_restore(flags);
1746 	}
1747 #endif
1748 
1749 	/*
1750 	 * The action has already been removed above, but the thread writes
1751 	 * its oneshot mask bit when it completes. Though request_mutex is
1752 	 * held across this which prevents __setup_irq() from handing out
1753 	 * the same bit to a newly requested action.
1754 	 */
1755 	if (action->thread) {
1756 		kthread_stop(action->thread);
1757 		put_task_struct(action->thread);
1758 		if (action->secondary && action->secondary->thread) {
1759 			kthread_stop(action->secondary->thread);
1760 			put_task_struct(action->secondary->thread);
1761 		}
1762 	}
1763 
1764 	/* Last action releases resources */
1765 	if (!desc->action) {
1766 		/*
1767 		 * Reaquire bus lock as irq_release_resources() might
1768 		 * require it to deallocate resources over the slow bus.
1769 		 */
1770 		chip_bus_lock(desc);
1771 		irq_release_resources(desc);
1772 		chip_bus_sync_unlock(desc);
1773 		irq_remove_timings(desc);
1774 	}
1775 
1776 	mutex_unlock(&desc->request_mutex);
1777 
1778 	irq_chip_pm_put(&desc->irq_data);
1779 	module_put(desc->owner);
1780 	kfree(action->secondary);
1781 	return action;
1782 }
1783 
1784 /**
1785  *	remove_irq - free an interrupt
1786  *	@irq: Interrupt line to free
1787  *	@act: irqaction for the interrupt
1788  *
1789  * Used to remove interrupts statically setup by the early boot process.
1790  */
1791 void remove_irq(unsigned int irq, struct irqaction *act)
1792 {
1793 	struct irq_desc *desc = irq_to_desc(irq);
1794 
1795 	if (desc && !WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1796 		__free_irq(desc, act->dev_id);
1797 }
1798 EXPORT_SYMBOL_GPL(remove_irq);
1799 
1800 /**
1801  *	free_irq - free an interrupt allocated with request_irq
1802  *	@irq: Interrupt line to free
1803  *	@dev_id: Device identity to free
1804  *
1805  *	Remove an interrupt handler. The handler is removed and if the
1806  *	interrupt line is no longer in use by any driver it is disabled.
1807  *	On a shared IRQ the caller must ensure the interrupt is disabled
1808  *	on the card it drives before calling this function. The function
1809  *	does not return until any executing interrupts for this IRQ
1810  *	have completed.
1811  *
1812  *	This function must not be called from interrupt context.
1813  *
1814  *	Returns the devname argument passed to request_irq.
1815  */
1816 const void *free_irq(unsigned int irq, void *dev_id)
1817 {
1818 	struct irq_desc *desc = irq_to_desc(irq);
1819 	struct irqaction *action;
1820 	const char *devname;
1821 
1822 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1823 		return NULL;
1824 
1825 #ifdef CONFIG_SMP
1826 	if (WARN_ON(desc->affinity_notify))
1827 		desc->affinity_notify = NULL;
1828 #endif
1829 
1830 	action = __free_irq(desc, dev_id);
1831 
1832 	if (!action)
1833 		return NULL;
1834 
1835 	devname = action->name;
1836 	kfree(action);
1837 	return devname;
1838 }
1839 EXPORT_SYMBOL(free_irq);
1840 
1841 /* This function must be called with desc->lock held */
1842 static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc)
1843 {
1844 	const char *devname = NULL;
1845 
1846 	desc->istate &= ~IRQS_NMI;
1847 
1848 	if (!WARN_ON(desc->action == NULL)) {
1849 		irq_pm_remove_action(desc, desc->action);
1850 		devname = desc->action->name;
1851 		unregister_handler_proc(irq, desc->action);
1852 
1853 		kfree(desc->action);
1854 		desc->action = NULL;
1855 	}
1856 
1857 	irq_settings_clr_disable_unlazy(desc);
1858 	irq_shutdown(desc);
1859 
1860 	irq_release_resources(desc);
1861 
1862 	irq_chip_pm_put(&desc->irq_data);
1863 	module_put(desc->owner);
1864 
1865 	return devname;
1866 }
1867 
1868 const void *free_nmi(unsigned int irq, void *dev_id)
1869 {
1870 	struct irq_desc *desc = irq_to_desc(irq);
1871 	unsigned long flags;
1872 	const void *devname;
1873 
1874 	if (!desc || WARN_ON(!(desc->istate & IRQS_NMI)))
1875 		return NULL;
1876 
1877 	if (WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1878 		return NULL;
1879 
1880 	/* NMI still enabled */
1881 	if (WARN_ON(desc->depth == 0))
1882 		disable_nmi_nosync(irq);
1883 
1884 	raw_spin_lock_irqsave(&desc->lock, flags);
1885 
1886 	irq_nmi_teardown(desc);
1887 	devname = __cleanup_nmi(irq, desc);
1888 
1889 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1890 
1891 	return devname;
1892 }
1893 
1894 /**
1895  *	request_threaded_irq - allocate an interrupt line
1896  *	@irq: Interrupt line to allocate
1897  *	@handler: Function to be called when the IRQ occurs.
1898  *		  Primary handler for threaded interrupts
1899  *		  If NULL and thread_fn != NULL the default
1900  *		  primary handler is installed
1901  *	@thread_fn: Function called from the irq handler thread
1902  *		    If NULL, no irq thread is created
1903  *	@irqflags: Interrupt type flags
1904  *	@devname: An ascii name for the claiming device
1905  *	@dev_id: A cookie passed back to the handler function
1906  *
1907  *	This call allocates interrupt resources and enables the
1908  *	interrupt line and IRQ handling. From the point this
1909  *	call is made your handler function may be invoked. Since
1910  *	your handler function must clear any interrupt the board
1911  *	raises, you must take care both to initialise your hardware
1912  *	and to set up the interrupt handler in the right order.
1913  *
1914  *	If you want to set up a threaded irq handler for your device
1915  *	then you need to supply @handler and @thread_fn. @handler is
1916  *	still called in hard interrupt context and has to check
1917  *	whether the interrupt originates from the device. If yes it
1918  *	needs to disable the interrupt on the device and return
1919  *	IRQ_WAKE_THREAD which will wake up the handler thread and run
1920  *	@thread_fn. This split handler design is necessary to support
1921  *	shared interrupts.
1922  *
1923  *	Dev_id must be globally unique. Normally the address of the
1924  *	device data structure is used as the cookie. Since the handler
1925  *	receives this value it makes sense to use it.
1926  *
1927  *	If your interrupt is shared you must pass a non NULL dev_id
1928  *	as this is required when freeing the interrupt.
1929  *
1930  *	Flags:
1931  *
1932  *	IRQF_SHARED		Interrupt is shared
1933  *	IRQF_TRIGGER_*		Specify active edge(s) or level
1934  *
1935  */
1936 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
1937 			 irq_handler_t thread_fn, unsigned long irqflags,
1938 			 const char *devname, void *dev_id)
1939 {
1940 	struct irqaction *action;
1941 	struct irq_desc *desc;
1942 	int retval;
1943 
1944 	if (irq == IRQ_NOTCONNECTED)
1945 		return -ENOTCONN;
1946 
1947 	/*
1948 	 * Sanity-check: shared interrupts must pass in a real dev-ID,
1949 	 * otherwise we'll have trouble later trying to figure out
1950 	 * which interrupt is which (messes up the interrupt freeing
1951 	 * logic etc).
1952 	 *
1953 	 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
1954 	 * it cannot be set along with IRQF_NO_SUSPEND.
1955 	 */
1956 	if (((irqflags & IRQF_SHARED) && !dev_id) ||
1957 	    (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
1958 	    ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
1959 		return -EINVAL;
1960 
1961 	desc = irq_to_desc(irq);
1962 	if (!desc)
1963 		return -EINVAL;
1964 
1965 	if (!irq_settings_can_request(desc) ||
1966 	    WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1967 		return -EINVAL;
1968 
1969 	if (!handler) {
1970 		if (!thread_fn)
1971 			return -EINVAL;
1972 		handler = irq_default_primary_handler;
1973 	}
1974 
1975 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1976 	if (!action)
1977 		return -ENOMEM;
1978 
1979 	action->handler = handler;
1980 	action->thread_fn = thread_fn;
1981 	action->flags = irqflags;
1982 	action->name = devname;
1983 	action->dev_id = dev_id;
1984 
1985 	retval = irq_chip_pm_get(&desc->irq_data);
1986 	if (retval < 0) {
1987 		kfree(action);
1988 		return retval;
1989 	}
1990 
1991 	retval = __setup_irq(irq, desc, action);
1992 
1993 	if (retval) {
1994 		irq_chip_pm_put(&desc->irq_data);
1995 		kfree(action->secondary);
1996 		kfree(action);
1997 	}
1998 
1999 #ifdef CONFIG_DEBUG_SHIRQ_FIXME
2000 	if (!retval && (irqflags & IRQF_SHARED)) {
2001 		/*
2002 		 * It's a shared IRQ -- the driver ought to be prepared for it
2003 		 * to happen immediately, so let's make sure....
2004 		 * We disable the irq to make sure that a 'real' IRQ doesn't
2005 		 * run in parallel with our fake.
2006 		 */
2007 		unsigned long flags;
2008 
2009 		disable_irq(irq);
2010 		local_irq_save(flags);
2011 
2012 		handler(irq, dev_id);
2013 
2014 		local_irq_restore(flags);
2015 		enable_irq(irq);
2016 	}
2017 #endif
2018 	return retval;
2019 }
2020 EXPORT_SYMBOL(request_threaded_irq);
2021 
2022 /**
2023  *	request_any_context_irq - allocate an interrupt line
2024  *	@irq: Interrupt line to allocate
2025  *	@handler: Function to be called when the IRQ occurs.
2026  *		  Threaded handler for threaded interrupts.
2027  *	@flags: Interrupt type flags
2028  *	@name: An ascii name for the claiming device
2029  *	@dev_id: A cookie passed back to the handler function
2030  *
2031  *	This call allocates interrupt resources and enables the
2032  *	interrupt line and IRQ handling. It selects either a
2033  *	hardirq or threaded handling method depending on the
2034  *	context.
2035  *
2036  *	On failure, it returns a negative value. On success,
2037  *	it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
2038  */
2039 int request_any_context_irq(unsigned int irq, irq_handler_t handler,
2040 			    unsigned long flags, const char *name, void *dev_id)
2041 {
2042 	struct irq_desc *desc;
2043 	int ret;
2044 
2045 	if (irq == IRQ_NOTCONNECTED)
2046 		return -ENOTCONN;
2047 
2048 	desc = irq_to_desc(irq);
2049 	if (!desc)
2050 		return -EINVAL;
2051 
2052 	if (irq_settings_is_nested_thread(desc)) {
2053 		ret = request_threaded_irq(irq, NULL, handler,
2054 					   flags, name, dev_id);
2055 		return !ret ? IRQC_IS_NESTED : ret;
2056 	}
2057 
2058 	ret = request_irq(irq, handler, flags, name, dev_id);
2059 	return !ret ? IRQC_IS_HARDIRQ : ret;
2060 }
2061 EXPORT_SYMBOL_GPL(request_any_context_irq);
2062 
2063 /**
2064  *	request_nmi - allocate an interrupt line for NMI delivery
2065  *	@irq: Interrupt line to allocate
2066  *	@handler: Function to be called when the IRQ occurs.
2067  *		  Threaded handler for threaded interrupts.
2068  *	@irqflags: Interrupt type flags
2069  *	@name: An ascii name for the claiming device
2070  *	@dev_id: A cookie passed back to the handler function
2071  *
2072  *	This call allocates interrupt resources and enables the
2073  *	interrupt line and IRQ handling. It sets up the IRQ line
2074  *	to be handled as an NMI.
2075  *
2076  *	An interrupt line delivering NMIs cannot be shared and IRQ handling
2077  *	cannot be threaded.
2078  *
2079  *	Interrupt lines requested for NMI delivering must produce per cpu
2080  *	interrupts and have auto enabling setting disabled.
2081  *
2082  *	Dev_id must be globally unique. Normally the address of the
2083  *	device data structure is used as the cookie. Since the handler
2084  *	receives this value it makes sense to use it.
2085  *
2086  *	If the interrupt line cannot be used to deliver NMIs, function
2087  *	will fail and return a negative value.
2088  */
2089 int request_nmi(unsigned int irq, irq_handler_t handler,
2090 		unsigned long irqflags, const char *name, void *dev_id)
2091 {
2092 	struct irqaction *action;
2093 	struct irq_desc *desc;
2094 	unsigned long flags;
2095 	int retval;
2096 
2097 	if (irq == IRQ_NOTCONNECTED)
2098 		return -ENOTCONN;
2099 
2100 	/* NMI cannot be shared, used for Polling */
2101 	if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL))
2102 		return -EINVAL;
2103 
2104 	if (!(irqflags & IRQF_PERCPU))
2105 		return -EINVAL;
2106 
2107 	if (!handler)
2108 		return -EINVAL;
2109 
2110 	desc = irq_to_desc(irq);
2111 
2112 	if (!desc || irq_settings_can_autoenable(desc) ||
2113 	    !irq_settings_can_request(desc) ||
2114 	    WARN_ON(irq_settings_is_per_cpu_devid(desc)) ||
2115 	    !irq_supports_nmi(desc))
2116 		return -EINVAL;
2117 
2118 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2119 	if (!action)
2120 		return -ENOMEM;
2121 
2122 	action->handler = handler;
2123 	action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING;
2124 	action->name = name;
2125 	action->dev_id = dev_id;
2126 
2127 	retval = irq_chip_pm_get(&desc->irq_data);
2128 	if (retval < 0)
2129 		goto err_out;
2130 
2131 	retval = __setup_irq(irq, desc, action);
2132 	if (retval)
2133 		goto err_irq_setup;
2134 
2135 	raw_spin_lock_irqsave(&desc->lock, flags);
2136 
2137 	/* Setup NMI state */
2138 	desc->istate |= IRQS_NMI;
2139 	retval = irq_nmi_setup(desc);
2140 	if (retval) {
2141 		__cleanup_nmi(irq, desc);
2142 		raw_spin_unlock_irqrestore(&desc->lock, flags);
2143 		return -EINVAL;
2144 	}
2145 
2146 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2147 
2148 	return 0;
2149 
2150 err_irq_setup:
2151 	irq_chip_pm_put(&desc->irq_data);
2152 err_out:
2153 	kfree(action);
2154 
2155 	return retval;
2156 }
2157 
2158 void enable_percpu_irq(unsigned int irq, unsigned int type)
2159 {
2160 	unsigned int cpu = smp_processor_id();
2161 	unsigned long flags;
2162 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2163 
2164 	if (!desc)
2165 		return;
2166 
2167 	/*
2168 	 * If the trigger type is not specified by the caller, then
2169 	 * use the default for this interrupt.
2170 	 */
2171 	type &= IRQ_TYPE_SENSE_MASK;
2172 	if (type == IRQ_TYPE_NONE)
2173 		type = irqd_get_trigger_type(&desc->irq_data);
2174 
2175 	if (type != IRQ_TYPE_NONE) {
2176 		int ret;
2177 
2178 		ret = __irq_set_trigger(desc, type);
2179 
2180 		if (ret) {
2181 			WARN(1, "failed to set type for IRQ%d\n", irq);
2182 			goto out;
2183 		}
2184 	}
2185 
2186 	irq_percpu_enable(desc, cpu);
2187 out:
2188 	irq_put_desc_unlock(desc, flags);
2189 }
2190 EXPORT_SYMBOL_GPL(enable_percpu_irq);
2191 
2192 void enable_percpu_nmi(unsigned int irq, unsigned int type)
2193 {
2194 	enable_percpu_irq(irq, type);
2195 }
2196 
2197 /**
2198  * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
2199  * @irq:	Linux irq number to check for
2200  *
2201  * Must be called from a non migratable context. Returns the enable
2202  * state of a per cpu interrupt on the current cpu.
2203  */
2204 bool irq_percpu_is_enabled(unsigned int irq)
2205 {
2206 	unsigned int cpu = smp_processor_id();
2207 	struct irq_desc *desc;
2208 	unsigned long flags;
2209 	bool is_enabled;
2210 
2211 	desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2212 	if (!desc)
2213 		return false;
2214 
2215 	is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
2216 	irq_put_desc_unlock(desc, flags);
2217 
2218 	return is_enabled;
2219 }
2220 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
2221 
2222 void disable_percpu_irq(unsigned int irq)
2223 {
2224 	unsigned int cpu = smp_processor_id();
2225 	unsigned long flags;
2226 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2227 
2228 	if (!desc)
2229 		return;
2230 
2231 	irq_percpu_disable(desc, cpu);
2232 	irq_put_desc_unlock(desc, flags);
2233 }
2234 EXPORT_SYMBOL_GPL(disable_percpu_irq);
2235 
2236 void disable_percpu_nmi(unsigned int irq)
2237 {
2238 	disable_percpu_irq(irq);
2239 }
2240 
2241 /*
2242  * Internal function to unregister a percpu irqaction.
2243  */
2244 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2245 {
2246 	struct irq_desc *desc = irq_to_desc(irq);
2247 	struct irqaction *action;
2248 	unsigned long flags;
2249 
2250 	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
2251 
2252 	if (!desc)
2253 		return NULL;
2254 
2255 	raw_spin_lock_irqsave(&desc->lock, flags);
2256 
2257 	action = desc->action;
2258 	if (!action || action->percpu_dev_id != dev_id) {
2259 		WARN(1, "Trying to free already-free IRQ %d\n", irq);
2260 		goto bad;
2261 	}
2262 
2263 	if (!cpumask_empty(desc->percpu_enabled)) {
2264 		WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
2265 		     irq, cpumask_first(desc->percpu_enabled));
2266 		goto bad;
2267 	}
2268 
2269 	/* Found it - now remove it from the list of entries: */
2270 	desc->action = NULL;
2271 
2272 	desc->istate &= ~IRQS_NMI;
2273 
2274 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2275 
2276 	unregister_handler_proc(irq, action);
2277 
2278 	irq_chip_pm_put(&desc->irq_data);
2279 	module_put(desc->owner);
2280 	return action;
2281 
2282 bad:
2283 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2284 	return NULL;
2285 }
2286 
2287 /**
2288  *	remove_percpu_irq - free a per-cpu interrupt
2289  *	@irq: Interrupt line to free
2290  *	@act: irqaction for the interrupt
2291  *
2292  * Used to remove interrupts statically setup by the early boot process.
2293  */
2294 void remove_percpu_irq(unsigned int irq, struct irqaction *act)
2295 {
2296 	struct irq_desc *desc = irq_to_desc(irq);
2297 
2298 	if (desc && irq_settings_is_per_cpu_devid(desc))
2299 	    __free_percpu_irq(irq, act->percpu_dev_id);
2300 }
2301 
2302 /**
2303  *	free_percpu_irq - free an interrupt allocated with request_percpu_irq
2304  *	@irq: Interrupt line to free
2305  *	@dev_id: Device identity to free
2306  *
2307  *	Remove a percpu interrupt handler. The handler is removed, but
2308  *	the interrupt line is not disabled. This must be done on each
2309  *	CPU before calling this function. The function does not return
2310  *	until any executing interrupts for this IRQ have completed.
2311  *
2312  *	This function must not be called from interrupt context.
2313  */
2314 void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2315 {
2316 	struct irq_desc *desc = irq_to_desc(irq);
2317 
2318 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2319 		return;
2320 
2321 	chip_bus_lock(desc);
2322 	kfree(__free_percpu_irq(irq, dev_id));
2323 	chip_bus_sync_unlock(desc);
2324 }
2325 EXPORT_SYMBOL_GPL(free_percpu_irq);
2326 
2327 void free_percpu_nmi(unsigned int irq, void __percpu *dev_id)
2328 {
2329 	struct irq_desc *desc = irq_to_desc(irq);
2330 
2331 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2332 		return;
2333 
2334 	if (WARN_ON(!(desc->istate & IRQS_NMI)))
2335 		return;
2336 
2337 	kfree(__free_percpu_irq(irq, dev_id));
2338 }
2339 
2340 /**
2341  *	setup_percpu_irq - setup a per-cpu interrupt
2342  *	@irq: Interrupt line to setup
2343  *	@act: irqaction for the interrupt
2344  *
2345  * Used to statically setup per-cpu interrupts in the early boot process.
2346  */
2347 int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2348 {
2349 	struct irq_desc *desc = irq_to_desc(irq);
2350 	int retval;
2351 
2352 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2353 		return -EINVAL;
2354 
2355 	retval = irq_chip_pm_get(&desc->irq_data);
2356 	if (retval < 0)
2357 		return retval;
2358 
2359 	retval = __setup_irq(irq, desc, act);
2360 
2361 	if (retval)
2362 		irq_chip_pm_put(&desc->irq_data);
2363 
2364 	return retval;
2365 }
2366 
2367 /**
2368  *	__request_percpu_irq - allocate a percpu interrupt line
2369  *	@irq: Interrupt line to allocate
2370  *	@handler: Function to be called when the IRQ occurs.
2371  *	@flags: Interrupt type flags (IRQF_TIMER only)
2372  *	@devname: An ascii name for the claiming device
2373  *	@dev_id: A percpu cookie passed back to the handler function
2374  *
2375  *	This call allocates interrupt resources and enables the
2376  *	interrupt on the local CPU. If the interrupt is supposed to be
2377  *	enabled on other CPUs, it has to be done on each CPU using
2378  *	enable_percpu_irq().
2379  *
2380  *	Dev_id must be globally unique. It is a per-cpu variable, and
2381  *	the handler gets called with the interrupted CPU's instance of
2382  *	that variable.
2383  */
2384 int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2385 			 unsigned long flags, const char *devname,
2386 			 void __percpu *dev_id)
2387 {
2388 	struct irqaction *action;
2389 	struct irq_desc *desc;
2390 	int retval;
2391 
2392 	if (!dev_id)
2393 		return -EINVAL;
2394 
2395 	desc = irq_to_desc(irq);
2396 	if (!desc || !irq_settings_can_request(desc) ||
2397 	    !irq_settings_is_per_cpu_devid(desc))
2398 		return -EINVAL;
2399 
2400 	if (flags && flags != IRQF_TIMER)
2401 		return -EINVAL;
2402 
2403 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2404 	if (!action)
2405 		return -ENOMEM;
2406 
2407 	action->handler = handler;
2408 	action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2409 	action->name = devname;
2410 	action->percpu_dev_id = dev_id;
2411 
2412 	retval = irq_chip_pm_get(&desc->irq_data);
2413 	if (retval < 0) {
2414 		kfree(action);
2415 		return retval;
2416 	}
2417 
2418 	retval = __setup_irq(irq, desc, action);
2419 
2420 	if (retval) {
2421 		irq_chip_pm_put(&desc->irq_data);
2422 		kfree(action);
2423 	}
2424 
2425 	return retval;
2426 }
2427 EXPORT_SYMBOL_GPL(__request_percpu_irq);
2428 
2429 /**
2430  *	request_percpu_nmi - allocate a percpu interrupt line for NMI delivery
2431  *	@irq: Interrupt line to allocate
2432  *	@handler: Function to be called when the IRQ occurs.
2433  *	@name: An ascii name for the claiming device
2434  *	@dev_id: A percpu cookie passed back to the handler function
2435  *
2436  *	This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs
2437  *	have to be setup on each CPU by calling prepare_percpu_nmi() before
2438  *	being enabled on the same CPU by using enable_percpu_nmi().
2439  *
2440  *	Dev_id must be globally unique. It is a per-cpu variable, and
2441  *	the handler gets called with the interrupted CPU's instance of
2442  *	that variable.
2443  *
2444  *	Interrupt lines requested for NMI delivering should have auto enabling
2445  *	setting disabled.
2446  *
2447  *	If the interrupt line cannot be used to deliver NMIs, function
2448  *	will fail returning a negative value.
2449  */
2450 int request_percpu_nmi(unsigned int irq, irq_handler_t handler,
2451 		       const char *name, void __percpu *dev_id)
2452 {
2453 	struct irqaction *action;
2454 	struct irq_desc *desc;
2455 	unsigned long flags;
2456 	int retval;
2457 
2458 	if (!handler)
2459 		return -EINVAL;
2460 
2461 	desc = irq_to_desc(irq);
2462 
2463 	if (!desc || !irq_settings_can_request(desc) ||
2464 	    !irq_settings_is_per_cpu_devid(desc) ||
2465 	    irq_settings_can_autoenable(desc) ||
2466 	    !irq_supports_nmi(desc))
2467 		return -EINVAL;
2468 
2469 	/* The line cannot already be NMI */
2470 	if (desc->istate & IRQS_NMI)
2471 		return -EINVAL;
2472 
2473 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2474 	if (!action)
2475 		return -ENOMEM;
2476 
2477 	action->handler = handler;
2478 	action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD
2479 		| IRQF_NOBALANCING;
2480 	action->name = name;
2481 	action->percpu_dev_id = dev_id;
2482 
2483 	retval = irq_chip_pm_get(&desc->irq_data);
2484 	if (retval < 0)
2485 		goto err_out;
2486 
2487 	retval = __setup_irq(irq, desc, action);
2488 	if (retval)
2489 		goto err_irq_setup;
2490 
2491 	raw_spin_lock_irqsave(&desc->lock, flags);
2492 	desc->istate |= IRQS_NMI;
2493 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2494 
2495 	return 0;
2496 
2497 err_irq_setup:
2498 	irq_chip_pm_put(&desc->irq_data);
2499 err_out:
2500 	kfree(action);
2501 
2502 	return retval;
2503 }
2504 
2505 /**
2506  *	prepare_percpu_nmi - performs CPU local setup for NMI delivery
2507  *	@irq: Interrupt line to prepare for NMI delivery
2508  *
2509  *	This call prepares an interrupt line to deliver NMI on the current CPU,
2510  *	before that interrupt line gets enabled with enable_percpu_nmi().
2511  *
2512  *	As a CPU local operation, this should be called from non-preemptible
2513  *	context.
2514  *
2515  *	If the interrupt line cannot be used to deliver NMIs, function
2516  *	will fail returning a negative value.
2517  */
2518 int prepare_percpu_nmi(unsigned int irq)
2519 {
2520 	unsigned long flags;
2521 	struct irq_desc *desc;
2522 	int ret = 0;
2523 
2524 	WARN_ON(preemptible());
2525 
2526 	desc = irq_get_desc_lock(irq, &flags,
2527 				 IRQ_GET_DESC_CHECK_PERCPU);
2528 	if (!desc)
2529 		return -EINVAL;
2530 
2531 	if (WARN(!(desc->istate & IRQS_NMI),
2532 		 KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n",
2533 		 irq)) {
2534 		ret = -EINVAL;
2535 		goto out;
2536 	}
2537 
2538 	ret = irq_nmi_setup(desc);
2539 	if (ret) {
2540 		pr_err("Failed to setup NMI delivery: irq %u\n", irq);
2541 		goto out;
2542 	}
2543 
2544 out:
2545 	irq_put_desc_unlock(desc, flags);
2546 	return ret;
2547 }
2548 
2549 /**
2550  *	teardown_percpu_nmi - undoes NMI setup of IRQ line
2551  *	@irq: Interrupt line from which CPU local NMI configuration should be
2552  *	      removed
2553  *
2554  *	This call undoes the setup done by prepare_percpu_nmi().
2555  *
2556  *	IRQ line should not be enabled for the current CPU.
2557  *
2558  *	As a CPU local operation, this should be called from non-preemptible
2559  *	context.
2560  */
2561 void teardown_percpu_nmi(unsigned int irq)
2562 {
2563 	unsigned long flags;
2564 	struct irq_desc *desc;
2565 
2566 	WARN_ON(preemptible());
2567 
2568 	desc = irq_get_desc_lock(irq, &flags,
2569 				 IRQ_GET_DESC_CHECK_PERCPU);
2570 	if (!desc)
2571 		return;
2572 
2573 	if (WARN_ON(!(desc->istate & IRQS_NMI)))
2574 		goto out;
2575 
2576 	irq_nmi_teardown(desc);
2577 out:
2578 	irq_put_desc_unlock(desc, flags);
2579 }
2580 
2581 /**
2582  *	irq_get_irqchip_state - returns the irqchip state of a interrupt.
2583  *	@irq: Interrupt line that is forwarded to a VM
2584  *	@which: One of IRQCHIP_STATE_* the caller wants to know about
2585  *	@state: a pointer to a boolean where the state is to be storeed
2586  *
2587  *	This call snapshots the internal irqchip state of an
2588  *	interrupt, returning into @state the bit corresponding to
2589  *	stage @which
2590  *
2591  *	This function should be called with preemption disabled if the
2592  *	interrupt controller has per-cpu registers.
2593  */
2594 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2595 			  bool *state)
2596 {
2597 	struct irq_desc *desc;
2598 	struct irq_data *data;
2599 	struct irq_chip *chip;
2600 	unsigned long flags;
2601 	int err = -EINVAL;
2602 
2603 	desc = irq_get_desc_buslock(irq, &flags, 0);
2604 	if (!desc)
2605 		return err;
2606 
2607 	data = irq_desc_get_irq_data(desc);
2608 
2609 	do {
2610 		chip = irq_data_get_irq_chip(data);
2611 		if (chip->irq_get_irqchip_state)
2612 			break;
2613 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2614 		data = data->parent_data;
2615 #else
2616 		data = NULL;
2617 #endif
2618 	} while (data);
2619 
2620 	if (data)
2621 		err = chip->irq_get_irqchip_state(data, which, state);
2622 
2623 	irq_put_desc_busunlock(desc, flags);
2624 	return err;
2625 }
2626 EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2627 
2628 /**
2629  *	irq_set_irqchip_state - set the state of a forwarded interrupt.
2630  *	@irq: Interrupt line that is forwarded to a VM
2631  *	@which: State to be restored (one of IRQCHIP_STATE_*)
2632  *	@val: Value corresponding to @which
2633  *
2634  *	This call sets the internal irqchip state of an interrupt,
2635  *	depending on the value of @which.
2636  *
2637  *	This function should be called with preemption disabled if the
2638  *	interrupt controller has per-cpu registers.
2639  */
2640 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2641 			  bool val)
2642 {
2643 	struct irq_desc *desc;
2644 	struct irq_data *data;
2645 	struct irq_chip *chip;
2646 	unsigned long flags;
2647 	int err = -EINVAL;
2648 
2649 	desc = irq_get_desc_buslock(irq, &flags, 0);
2650 	if (!desc)
2651 		return err;
2652 
2653 	data = irq_desc_get_irq_data(desc);
2654 
2655 	do {
2656 		chip = irq_data_get_irq_chip(data);
2657 		if (chip->irq_set_irqchip_state)
2658 			break;
2659 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2660 		data = data->parent_data;
2661 #else
2662 		data = NULL;
2663 #endif
2664 	} while (data);
2665 
2666 	if (data)
2667 		err = chip->irq_set_irqchip_state(data, which, val);
2668 
2669 	irq_put_desc_busunlock(desc, flags);
2670 	return err;
2671 }
2672 EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
2673