1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar 4 * Copyright (C) 2005-2006 Thomas Gleixner 5 * 6 * This file contains driver APIs to the irq subsystem. 7 */ 8 9 #define pr_fmt(fmt) "genirq: " fmt 10 11 #include <linux/irq.h> 12 #include <linux/kthread.h> 13 #include <linux/module.h> 14 #include <linux/random.h> 15 #include <linux/interrupt.h> 16 #include <linux/irqdomain.h> 17 #include <linux/slab.h> 18 #include <linux/sched.h> 19 #include <linux/sched/rt.h> 20 #include <linux/sched/task.h> 21 #include <linux/sched/isolation.h> 22 #include <uapi/linux/sched/types.h> 23 #include <linux/task_work.h> 24 25 #include "internals.h" 26 27 #if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT) 28 DEFINE_STATIC_KEY_FALSE(force_irqthreads_key); 29 30 static int __init setup_forced_irqthreads(char *arg) 31 { 32 static_branch_enable(&force_irqthreads_key); 33 return 0; 34 } 35 early_param("threadirqs", setup_forced_irqthreads); 36 #endif 37 38 static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip) 39 { 40 struct irq_data *irqd = irq_desc_get_irq_data(desc); 41 bool inprogress; 42 43 do { 44 unsigned long flags; 45 46 /* 47 * Wait until we're out of the critical section. This might 48 * give the wrong answer due to the lack of memory barriers. 49 */ 50 while (irqd_irq_inprogress(&desc->irq_data)) 51 cpu_relax(); 52 53 /* Ok, that indicated we're done: double-check carefully. */ 54 raw_spin_lock_irqsave(&desc->lock, flags); 55 inprogress = irqd_irq_inprogress(&desc->irq_data); 56 57 /* 58 * If requested and supported, check at the chip whether it 59 * is in flight at the hardware level, i.e. already pending 60 * in a CPU and waiting for service and acknowledge. 61 */ 62 if (!inprogress && sync_chip) { 63 /* 64 * Ignore the return code. inprogress is only updated 65 * when the chip supports it. 66 */ 67 __irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE, 68 &inprogress); 69 } 70 raw_spin_unlock_irqrestore(&desc->lock, flags); 71 72 /* Oops, that failed? */ 73 } while (inprogress); 74 } 75 76 /** 77 * synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs) 78 * @irq: interrupt number to wait for 79 * 80 * This function waits for any pending hard IRQ handlers for this 81 * interrupt to complete before returning. If you use this 82 * function while holding a resource the IRQ handler may need you 83 * will deadlock. It does not take associated threaded handlers 84 * into account. 85 * 86 * Do not use this for shutdown scenarios where you must be sure 87 * that all parts (hardirq and threaded handler) have completed. 88 * 89 * Returns: false if a threaded handler is active. 90 * 91 * This function may be called - with care - from IRQ context. 92 * 93 * It does not check whether there is an interrupt in flight at the 94 * hardware level, but not serviced yet, as this might deadlock when 95 * called with interrupts disabled and the target CPU of the interrupt 96 * is the current CPU. 97 */ 98 bool synchronize_hardirq(unsigned int irq) 99 { 100 struct irq_desc *desc = irq_to_desc(irq); 101 102 if (desc) { 103 __synchronize_hardirq(desc, false); 104 return !atomic_read(&desc->threads_active); 105 } 106 107 return true; 108 } 109 EXPORT_SYMBOL(synchronize_hardirq); 110 111 /** 112 * synchronize_irq - wait for pending IRQ handlers (on other CPUs) 113 * @irq: interrupt number to wait for 114 * 115 * This function waits for any pending IRQ handlers for this interrupt 116 * to complete before returning. If you use this function while 117 * holding a resource the IRQ handler may need you will deadlock. 118 * 119 * Can only be called from preemptible code as it might sleep when 120 * an interrupt thread is associated to @irq. 121 * 122 * It optionally makes sure (when the irq chip supports that method) 123 * that the interrupt is not pending in any CPU and waiting for 124 * service. 125 */ 126 void synchronize_irq(unsigned int irq) 127 { 128 struct irq_desc *desc = irq_to_desc(irq); 129 130 if (desc) { 131 __synchronize_hardirq(desc, true); 132 /* 133 * We made sure that no hardirq handler is 134 * running. Now verify that no threaded handlers are 135 * active. 136 */ 137 wait_event(desc->wait_for_threads, 138 !atomic_read(&desc->threads_active)); 139 } 140 } 141 EXPORT_SYMBOL(synchronize_irq); 142 143 #ifdef CONFIG_SMP 144 cpumask_var_t irq_default_affinity; 145 146 static bool __irq_can_set_affinity(struct irq_desc *desc) 147 { 148 if (!desc || !irqd_can_balance(&desc->irq_data) || 149 !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity) 150 return false; 151 return true; 152 } 153 154 /** 155 * irq_can_set_affinity - Check if the affinity of a given irq can be set 156 * @irq: Interrupt to check 157 * 158 */ 159 int irq_can_set_affinity(unsigned int irq) 160 { 161 return __irq_can_set_affinity(irq_to_desc(irq)); 162 } 163 164 /** 165 * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space 166 * @irq: Interrupt to check 167 * 168 * Like irq_can_set_affinity() above, but additionally checks for the 169 * AFFINITY_MANAGED flag. 170 */ 171 bool irq_can_set_affinity_usr(unsigned int irq) 172 { 173 struct irq_desc *desc = irq_to_desc(irq); 174 175 return __irq_can_set_affinity(desc) && 176 !irqd_affinity_is_managed(&desc->irq_data); 177 } 178 179 /** 180 * irq_set_thread_affinity - Notify irq threads to adjust affinity 181 * @desc: irq descriptor which has affinity changed 182 * 183 * We just set IRQTF_AFFINITY and delegate the affinity setting 184 * to the interrupt thread itself. We can not call 185 * set_cpus_allowed_ptr() here as we hold desc->lock and this 186 * code can be called from hard interrupt context. 187 */ 188 void irq_set_thread_affinity(struct irq_desc *desc) 189 { 190 struct irqaction *action; 191 192 for_each_action_of_desc(desc, action) 193 if (action->thread) 194 set_bit(IRQTF_AFFINITY, &action->thread_flags); 195 } 196 197 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK 198 static void irq_validate_effective_affinity(struct irq_data *data) 199 { 200 const struct cpumask *m = irq_data_get_effective_affinity_mask(data); 201 struct irq_chip *chip = irq_data_get_irq_chip(data); 202 203 if (!cpumask_empty(m)) 204 return; 205 pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n", 206 chip->name, data->irq); 207 } 208 #else 209 static inline void irq_validate_effective_affinity(struct irq_data *data) { } 210 #endif 211 212 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask, 213 bool force) 214 { 215 struct irq_desc *desc = irq_data_to_desc(data); 216 struct irq_chip *chip = irq_data_get_irq_chip(data); 217 const struct cpumask *prog_mask; 218 int ret; 219 220 static DEFINE_RAW_SPINLOCK(tmp_mask_lock); 221 static struct cpumask tmp_mask; 222 223 if (!chip || !chip->irq_set_affinity) 224 return -EINVAL; 225 226 raw_spin_lock(&tmp_mask_lock); 227 /* 228 * If this is a managed interrupt and housekeeping is enabled on 229 * it check whether the requested affinity mask intersects with 230 * a housekeeping CPU. If so, then remove the isolated CPUs from 231 * the mask and just keep the housekeeping CPU(s). This prevents 232 * the affinity setter from routing the interrupt to an isolated 233 * CPU to avoid that I/O submitted from a housekeeping CPU causes 234 * interrupts on an isolated one. 235 * 236 * If the masks do not intersect or include online CPU(s) then 237 * keep the requested mask. The isolated target CPUs are only 238 * receiving interrupts when the I/O operation was submitted 239 * directly from them. 240 * 241 * If all housekeeping CPUs in the affinity mask are offline, the 242 * interrupt will be migrated by the CPU hotplug code once a 243 * housekeeping CPU which belongs to the affinity mask comes 244 * online. 245 */ 246 if (irqd_affinity_is_managed(data) && 247 housekeeping_enabled(HK_TYPE_MANAGED_IRQ)) { 248 const struct cpumask *hk_mask; 249 250 hk_mask = housekeeping_cpumask(HK_TYPE_MANAGED_IRQ); 251 252 cpumask_and(&tmp_mask, mask, hk_mask); 253 if (!cpumask_intersects(&tmp_mask, cpu_online_mask)) 254 prog_mask = mask; 255 else 256 prog_mask = &tmp_mask; 257 } else { 258 prog_mask = mask; 259 } 260 261 /* 262 * Make sure we only provide online CPUs to the irqchip, 263 * unless we are being asked to force the affinity (in which 264 * case we do as we are told). 265 */ 266 cpumask_and(&tmp_mask, prog_mask, cpu_online_mask); 267 if (!force && !cpumask_empty(&tmp_mask)) 268 ret = chip->irq_set_affinity(data, &tmp_mask, force); 269 else if (force) 270 ret = chip->irq_set_affinity(data, mask, force); 271 else 272 ret = -EINVAL; 273 274 raw_spin_unlock(&tmp_mask_lock); 275 276 switch (ret) { 277 case IRQ_SET_MASK_OK: 278 case IRQ_SET_MASK_OK_DONE: 279 cpumask_copy(desc->irq_common_data.affinity, mask); 280 fallthrough; 281 case IRQ_SET_MASK_OK_NOCOPY: 282 irq_validate_effective_affinity(data); 283 irq_set_thread_affinity(desc); 284 ret = 0; 285 } 286 287 return ret; 288 } 289 290 #ifdef CONFIG_GENERIC_PENDING_IRQ 291 static inline int irq_set_affinity_pending(struct irq_data *data, 292 const struct cpumask *dest) 293 { 294 struct irq_desc *desc = irq_data_to_desc(data); 295 296 irqd_set_move_pending(data); 297 irq_copy_pending(desc, dest); 298 return 0; 299 } 300 #else 301 static inline int irq_set_affinity_pending(struct irq_data *data, 302 const struct cpumask *dest) 303 { 304 return -EBUSY; 305 } 306 #endif 307 308 static int irq_try_set_affinity(struct irq_data *data, 309 const struct cpumask *dest, bool force) 310 { 311 int ret = irq_do_set_affinity(data, dest, force); 312 313 /* 314 * In case that the underlying vector management is busy and the 315 * architecture supports the generic pending mechanism then utilize 316 * this to avoid returning an error to user space. 317 */ 318 if (ret == -EBUSY && !force) 319 ret = irq_set_affinity_pending(data, dest); 320 return ret; 321 } 322 323 static bool irq_set_affinity_deactivated(struct irq_data *data, 324 const struct cpumask *mask) 325 { 326 struct irq_desc *desc = irq_data_to_desc(data); 327 328 /* 329 * Handle irq chips which can handle affinity only in activated 330 * state correctly 331 * 332 * If the interrupt is not yet activated, just store the affinity 333 * mask and do not call the chip driver at all. On activation the 334 * driver has to make sure anyway that the interrupt is in a 335 * usable state so startup works. 336 */ 337 if (!IS_ENABLED(CONFIG_IRQ_DOMAIN_HIERARCHY) || 338 irqd_is_activated(data) || !irqd_affinity_on_activate(data)) 339 return false; 340 341 cpumask_copy(desc->irq_common_data.affinity, mask); 342 irq_data_update_effective_affinity(data, mask); 343 irqd_set(data, IRQD_AFFINITY_SET); 344 return true; 345 } 346 347 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask, 348 bool force) 349 { 350 struct irq_chip *chip = irq_data_get_irq_chip(data); 351 struct irq_desc *desc = irq_data_to_desc(data); 352 int ret = 0; 353 354 if (!chip || !chip->irq_set_affinity) 355 return -EINVAL; 356 357 if (irq_set_affinity_deactivated(data, mask)) 358 return 0; 359 360 if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) { 361 ret = irq_try_set_affinity(data, mask, force); 362 } else { 363 irqd_set_move_pending(data); 364 irq_copy_pending(desc, mask); 365 } 366 367 if (desc->affinity_notify) { 368 kref_get(&desc->affinity_notify->kref); 369 if (!schedule_work(&desc->affinity_notify->work)) { 370 /* Work was already scheduled, drop our extra ref */ 371 kref_put(&desc->affinity_notify->kref, 372 desc->affinity_notify->release); 373 } 374 } 375 irqd_set(data, IRQD_AFFINITY_SET); 376 377 return ret; 378 } 379 380 /** 381 * irq_update_affinity_desc - Update affinity management for an interrupt 382 * @irq: The interrupt number to update 383 * @affinity: Pointer to the affinity descriptor 384 * 385 * This interface can be used to configure the affinity management of 386 * interrupts which have been allocated already. 387 * 388 * There are certain limitations on when it may be used - attempts to use it 389 * for when the kernel is configured for generic IRQ reservation mode (in 390 * config GENERIC_IRQ_RESERVATION_MODE) will fail, as it may conflict with 391 * managed/non-managed interrupt accounting. In addition, attempts to use it on 392 * an interrupt which is already started or which has already been configured 393 * as managed will also fail, as these mean invalid init state or double init. 394 */ 395 int irq_update_affinity_desc(unsigned int irq, 396 struct irq_affinity_desc *affinity) 397 { 398 struct irq_desc *desc; 399 unsigned long flags; 400 bool activated; 401 int ret = 0; 402 403 /* 404 * Supporting this with the reservation scheme used by x86 needs 405 * some more thought. Fail it for now. 406 */ 407 if (IS_ENABLED(CONFIG_GENERIC_IRQ_RESERVATION_MODE)) 408 return -EOPNOTSUPP; 409 410 desc = irq_get_desc_buslock(irq, &flags, 0); 411 if (!desc) 412 return -EINVAL; 413 414 /* Requires the interrupt to be shut down */ 415 if (irqd_is_started(&desc->irq_data)) { 416 ret = -EBUSY; 417 goto out_unlock; 418 } 419 420 /* Interrupts which are already managed cannot be modified */ 421 if (irqd_affinity_is_managed(&desc->irq_data)) { 422 ret = -EBUSY; 423 goto out_unlock; 424 } 425 426 /* 427 * Deactivate the interrupt. That's required to undo 428 * anything an earlier activation has established. 429 */ 430 activated = irqd_is_activated(&desc->irq_data); 431 if (activated) 432 irq_domain_deactivate_irq(&desc->irq_data); 433 434 if (affinity->is_managed) { 435 irqd_set(&desc->irq_data, IRQD_AFFINITY_MANAGED); 436 irqd_set(&desc->irq_data, IRQD_MANAGED_SHUTDOWN); 437 } 438 439 cpumask_copy(desc->irq_common_data.affinity, &affinity->mask); 440 441 /* Restore the activation state */ 442 if (activated) 443 irq_domain_activate_irq(&desc->irq_data, false); 444 445 out_unlock: 446 irq_put_desc_busunlock(desc, flags); 447 return ret; 448 } 449 450 static int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, 451 bool force) 452 { 453 struct irq_desc *desc = irq_to_desc(irq); 454 unsigned long flags; 455 int ret; 456 457 if (!desc) 458 return -EINVAL; 459 460 raw_spin_lock_irqsave(&desc->lock, flags); 461 ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force); 462 raw_spin_unlock_irqrestore(&desc->lock, flags); 463 return ret; 464 } 465 466 /** 467 * irq_set_affinity - Set the irq affinity of a given irq 468 * @irq: Interrupt to set affinity 469 * @cpumask: cpumask 470 * 471 * Fails if cpumask does not contain an online CPU 472 */ 473 int irq_set_affinity(unsigned int irq, const struct cpumask *cpumask) 474 { 475 return __irq_set_affinity(irq, cpumask, false); 476 } 477 EXPORT_SYMBOL_GPL(irq_set_affinity); 478 479 /** 480 * irq_force_affinity - Force the irq affinity of a given irq 481 * @irq: Interrupt to set affinity 482 * @cpumask: cpumask 483 * 484 * Same as irq_set_affinity, but without checking the mask against 485 * online cpus. 486 * 487 * Solely for low level cpu hotplug code, where we need to make per 488 * cpu interrupts affine before the cpu becomes online. 489 */ 490 int irq_force_affinity(unsigned int irq, const struct cpumask *cpumask) 491 { 492 return __irq_set_affinity(irq, cpumask, true); 493 } 494 EXPORT_SYMBOL_GPL(irq_force_affinity); 495 496 int __irq_apply_affinity_hint(unsigned int irq, const struct cpumask *m, 497 bool setaffinity) 498 { 499 unsigned long flags; 500 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 501 502 if (!desc) 503 return -EINVAL; 504 desc->affinity_hint = m; 505 irq_put_desc_unlock(desc, flags); 506 if (m && setaffinity) 507 __irq_set_affinity(irq, m, false); 508 return 0; 509 } 510 EXPORT_SYMBOL_GPL(__irq_apply_affinity_hint); 511 512 static void irq_affinity_notify(struct work_struct *work) 513 { 514 struct irq_affinity_notify *notify = 515 container_of(work, struct irq_affinity_notify, work); 516 struct irq_desc *desc = irq_to_desc(notify->irq); 517 cpumask_var_t cpumask; 518 unsigned long flags; 519 520 if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL)) 521 goto out; 522 523 raw_spin_lock_irqsave(&desc->lock, flags); 524 if (irq_move_pending(&desc->irq_data)) 525 irq_get_pending(cpumask, desc); 526 else 527 cpumask_copy(cpumask, desc->irq_common_data.affinity); 528 raw_spin_unlock_irqrestore(&desc->lock, flags); 529 530 notify->notify(notify, cpumask); 531 532 free_cpumask_var(cpumask); 533 out: 534 kref_put(¬ify->kref, notify->release); 535 } 536 537 /** 538 * irq_set_affinity_notifier - control notification of IRQ affinity changes 539 * @irq: Interrupt for which to enable/disable notification 540 * @notify: Context for notification, or %NULL to disable 541 * notification. Function pointers must be initialised; 542 * the other fields will be initialised by this function. 543 * 544 * Must be called in process context. Notification may only be enabled 545 * after the IRQ is allocated and must be disabled before the IRQ is 546 * freed using free_irq(). 547 */ 548 int 549 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify) 550 { 551 struct irq_desc *desc = irq_to_desc(irq); 552 struct irq_affinity_notify *old_notify; 553 unsigned long flags; 554 555 /* The release function is promised process context */ 556 might_sleep(); 557 558 if (!desc || desc->istate & IRQS_NMI) 559 return -EINVAL; 560 561 /* Complete initialisation of *notify */ 562 if (notify) { 563 notify->irq = irq; 564 kref_init(¬ify->kref); 565 INIT_WORK(¬ify->work, irq_affinity_notify); 566 } 567 568 raw_spin_lock_irqsave(&desc->lock, flags); 569 old_notify = desc->affinity_notify; 570 desc->affinity_notify = notify; 571 raw_spin_unlock_irqrestore(&desc->lock, flags); 572 573 if (old_notify) { 574 if (cancel_work_sync(&old_notify->work)) { 575 /* Pending work had a ref, put that one too */ 576 kref_put(&old_notify->kref, old_notify->release); 577 } 578 kref_put(&old_notify->kref, old_notify->release); 579 } 580 581 return 0; 582 } 583 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier); 584 585 #ifndef CONFIG_AUTO_IRQ_AFFINITY 586 /* 587 * Generic version of the affinity autoselector. 588 */ 589 int irq_setup_affinity(struct irq_desc *desc) 590 { 591 struct cpumask *set = irq_default_affinity; 592 int ret, node = irq_desc_get_node(desc); 593 static DEFINE_RAW_SPINLOCK(mask_lock); 594 static struct cpumask mask; 595 596 /* Excludes PER_CPU and NO_BALANCE interrupts */ 597 if (!__irq_can_set_affinity(desc)) 598 return 0; 599 600 raw_spin_lock(&mask_lock); 601 /* 602 * Preserve the managed affinity setting and a userspace affinity 603 * setup, but make sure that one of the targets is online. 604 */ 605 if (irqd_affinity_is_managed(&desc->irq_data) || 606 irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) { 607 if (cpumask_intersects(desc->irq_common_data.affinity, 608 cpu_online_mask)) 609 set = desc->irq_common_data.affinity; 610 else 611 irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET); 612 } 613 614 cpumask_and(&mask, cpu_online_mask, set); 615 if (cpumask_empty(&mask)) 616 cpumask_copy(&mask, cpu_online_mask); 617 618 if (node != NUMA_NO_NODE) { 619 const struct cpumask *nodemask = cpumask_of_node(node); 620 621 /* make sure at least one of the cpus in nodemask is online */ 622 if (cpumask_intersects(&mask, nodemask)) 623 cpumask_and(&mask, &mask, nodemask); 624 } 625 ret = irq_do_set_affinity(&desc->irq_data, &mask, false); 626 raw_spin_unlock(&mask_lock); 627 return ret; 628 } 629 #else 630 /* Wrapper for ALPHA specific affinity selector magic */ 631 int irq_setup_affinity(struct irq_desc *desc) 632 { 633 return irq_select_affinity(irq_desc_get_irq(desc)); 634 } 635 #endif /* CONFIG_AUTO_IRQ_AFFINITY */ 636 #endif /* CONFIG_SMP */ 637 638 639 /** 640 * irq_set_vcpu_affinity - Set vcpu affinity for the interrupt 641 * @irq: interrupt number to set affinity 642 * @vcpu_info: vCPU specific data or pointer to a percpu array of vCPU 643 * specific data for percpu_devid interrupts 644 * 645 * This function uses the vCPU specific data to set the vCPU 646 * affinity for an irq. The vCPU specific data is passed from 647 * outside, such as KVM. One example code path is as below: 648 * KVM -> IOMMU -> irq_set_vcpu_affinity(). 649 */ 650 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info) 651 { 652 unsigned long flags; 653 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 654 struct irq_data *data; 655 struct irq_chip *chip; 656 int ret = -ENOSYS; 657 658 if (!desc) 659 return -EINVAL; 660 661 data = irq_desc_get_irq_data(desc); 662 do { 663 chip = irq_data_get_irq_chip(data); 664 if (chip && chip->irq_set_vcpu_affinity) 665 break; 666 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 667 data = data->parent_data; 668 #else 669 data = NULL; 670 #endif 671 } while (data); 672 673 if (data) 674 ret = chip->irq_set_vcpu_affinity(data, vcpu_info); 675 irq_put_desc_unlock(desc, flags); 676 677 return ret; 678 } 679 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity); 680 681 void __disable_irq(struct irq_desc *desc) 682 { 683 if (!desc->depth++) 684 irq_disable(desc); 685 } 686 687 static int __disable_irq_nosync(unsigned int irq) 688 { 689 unsigned long flags; 690 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 691 692 if (!desc) 693 return -EINVAL; 694 __disable_irq(desc); 695 irq_put_desc_busunlock(desc, flags); 696 return 0; 697 } 698 699 /** 700 * disable_irq_nosync - disable an irq without waiting 701 * @irq: Interrupt to disable 702 * 703 * Disable the selected interrupt line. Disables and Enables are 704 * nested. 705 * Unlike disable_irq(), this function does not ensure existing 706 * instances of the IRQ handler have completed before returning. 707 * 708 * This function may be called from IRQ context. 709 */ 710 void disable_irq_nosync(unsigned int irq) 711 { 712 __disable_irq_nosync(irq); 713 } 714 EXPORT_SYMBOL(disable_irq_nosync); 715 716 /** 717 * disable_irq - disable an irq and wait for completion 718 * @irq: Interrupt to disable 719 * 720 * Disable the selected interrupt line. Enables and Disables are 721 * nested. 722 * This function waits for any pending IRQ handlers for this interrupt 723 * to complete before returning. If you use this function while 724 * holding a resource the IRQ handler may need you will deadlock. 725 * 726 * This function may be called - with care - from IRQ context. 727 */ 728 void disable_irq(unsigned int irq) 729 { 730 if (!__disable_irq_nosync(irq)) 731 synchronize_irq(irq); 732 } 733 EXPORT_SYMBOL(disable_irq); 734 735 /** 736 * disable_hardirq - disables an irq and waits for hardirq completion 737 * @irq: Interrupt to disable 738 * 739 * Disable the selected interrupt line. Enables and Disables are 740 * nested. 741 * This function waits for any pending hard IRQ handlers for this 742 * interrupt to complete before returning. If you use this function while 743 * holding a resource the hard IRQ handler may need you will deadlock. 744 * 745 * When used to optimistically disable an interrupt from atomic context 746 * the return value must be checked. 747 * 748 * Returns: false if a threaded handler is active. 749 * 750 * This function may be called - with care - from IRQ context. 751 */ 752 bool disable_hardirq(unsigned int irq) 753 { 754 if (!__disable_irq_nosync(irq)) 755 return synchronize_hardirq(irq); 756 757 return false; 758 } 759 EXPORT_SYMBOL_GPL(disable_hardirq); 760 761 /** 762 * disable_nmi_nosync - disable an nmi without waiting 763 * @irq: Interrupt to disable 764 * 765 * Disable the selected interrupt line. Disables and enables are 766 * nested. 767 * The interrupt to disable must have been requested through request_nmi. 768 * Unlike disable_nmi(), this function does not ensure existing 769 * instances of the IRQ handler have completed before returning. 770 */ 771 void disable_nmi_nosync(unsigned int irq) 772 { 773 disable_irq_nosync(irq); 774 } 775 776 void __enable_irq(struct irq_desc *desc) 777 { 778 switch (desc->depth) { 779 case 0: 780 err_out: 781 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n", 782 irq_desc_get_irq(desc)); 783 break; 784 case 1: { 785 if (desc->istate & IRQS_SUSPENDED) 786 goto err_out; 787 /* Prevent probing on this irq: */ 788 irq_settings_set_noprobe(desc); 789 /* 790 * Call irq_startup() not irq_enable() here because the 791 * interrupt might be marked NOAUTOEN. So irq_startup() 792 * needs to be invoked when it gets enabled the first 793 * time. If it was already started up, then irq_startup() 794 * will invoke irq_enable() under the hood. 795 */ 796 irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE); 797 break; 798 } 799 default: 800 desc->depth--; 801 } 802 } 803 804 /** 805 * enable_irq - enable handling of an irq 806 * @irq: Interrupt to enable 807 * 808 * Undoes the effect of one call to disable_irq(). If this 809 * matches the last disable, processing of interrupts on this 810 * IRQ line is re-enabled. 811 * 812 * This function may be called from IRQ context only when 813 * desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL ! 814 */ 815 void enable_irq(unsigned int irq) 816 { 817 unsigned long flags; 818 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 819 820 if (!desc) 821 return; 822 if (WARN(!desc->irq_data.chip, 823 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq)) 824 goto out; 825 826 __enable_irq(desc); 827 out: 828 irq_put_desc_busunlock(desc, flags); 829 } 830 EXPORT_SYMBOL(enable_irq); 831 832 /** 833 * enable_nmi - enable handling of an nmi 834 * @irq: Interrupt to enable 835 * 836 * The interrupt to enable must have been requested through request_nmi. 837 * Undoes the effect of one call to disable_nmi(). If this 838 * matches the last disable, processing of interrupts on this 839 * IRQ line is re-enabled. 840 */ 841 void enable_nmi(unsigned int irq) 842 { 843 enable_irq(irq); 844 } 845 846 static int set_irq_wake_real(unsigned int irq, unsigned int on) 847 { 848 struct irq_desc *desc = irq_to_desc(irq); 849 int ret = -ENXIO; 850 851 if (irq_desc_get_chip(desc)->flags & IRQCHIP_SKIP_SET_WAKE) 852 return 0; 853 854 if (desc->irq_data.chip->irq_set_wake) 855 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on); 856 857 return ret; 858 } 859 860 /** 861 * irq_set_irq_wake - control irq power management wakeup 862 * @irq: interrupt to control 863 * @on: enable/disable power management wakeup 864 * 865 * Enable/disable power management wakeup mode, which is 866 * disabled by default. Enables and disables must match, 867 * just as they match for non-wakeup mode support. 868 * 869 * Wakeup mode lets this IRQ wake the system from sleep 870 * states like "suspend to RAM". 871 * 872 * Note: irq enable/disable state is completely orthogonal 873 * to the enable/disable state of irq wake. An irq can be 874 * disabled with disable_irq() and still wake the system as 875 * long as the irq has wake enabled. If this does not hold, 876 * then the underlying irq chip and the related driver need 877 * to be investigated. 878 */ 879 int irq_set_irq_wake(unsigned int irq, unsigned int on) 880 { 881 unsigned long flags; 882 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 883 int ret = 0; 884 885 if (!desc) 886 return -EINVAL; 887 888 /* Don't use NMIs as wake up interrupts please */ 889 if (desc->istate & IRQS_NMI) { 890 ret = -EINVAL; 891 goto out_unlock; 892 } 893 894 /* wakeup-capable irqs can be shared between drivers that 895 * don't need to have the same sleep mode behaviors. 896 */ 897 if (on) { 898 if (desc->wake_depth++ == 0) { 899 ret = set_irq_wake_real(irq, on); 900 if (ret) 901 desc->wake_depth = 0; 902 else 903 irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE); 904 } 905 } else { 906 if (desc->wake_depth == 0) { 907 WARN(1, "Unbalanced IRQ %d wake disable\n", irq); 908 } else if (--desc->wake_depth == 0) { 909 ret = set_irq_wake_real(irq, on); 910 if (ret) 911 desc->wake_depth = 1; 912 else 913 irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE); 914 } 915 } 916 917 out_unlock: 918 irq_put_desc_busunlock(desc, flags); 919 return ret; 920 } 921 EXPORT_SYMBOL(irq_set_irq_wake); 922 923 /* 924 * Internal function that tells the architecture code whether a 925 * particular irq has been exclusively allocated or is available 926 * for driver use. 927 */ 928 int can_request_irq(unsigned int irq, unsigned long irqflags) 929 { 930 unsigned long flags; 931 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 932 int canrequest = 0; 933 934 if (!desc) 935 return 0; 936 937 if (irq_settings_can_request(desc)) { 938 if (!desc->action || 939 irqflags & desc->action->flags & IRQF_SHARED) 940 canrequest = 1; 941 } 942 irq_put_desc_unlock(desc, flags); 943 return canrequest; 944 } 945 946 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags) 947 { 948 struct irq_chip *chip = desc->irq_data.chip; 949 int ret, unmask = 0; 950 951 if (!chip || !chip->irq_set_type) { 952 /* 953 * IRQF_TRIGGER_* but the PIC does not support multiple 954 * flow-types? 955 */ 956 pr_debug("No set_type function for IRQ %d (%s)\n", 957 irq_desc_get_irq(desc), 958 chip ? (chip->name ? : "unknown") : "unknown"); 959 return 0; 960 } 961 962 if (chip->flags & IRQCHIP_SET_TYPE_MASKED) { 963 if (!irqd_irq_masked(&desc->irq_data)) 964 mask_irq(desc); 965 if (!irqd_irq_disabled(&desc->irq_data)) 966 unmask = 1; 967 } 968 969 /* Mask all flags except trigger mode */ 970 flags &= IRQ_TYPE_SENSE_MASK; 971 ret = chip->irq_set_type(&desc->irq_data, flags); 972 973 switch (ret) { 974 case IRQ_SET_MASK_OK: 975 case IRQ_SET_MASK_OK_DONE: 976 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK); 977 irqd_set(&desc->irq_data, flags); 978 fallthrough; 979 980 case IRQ_SET_MASK_OK_NOCOPY: 981 flags = irqd_get_trigger_type(&desc->irq_data); 982 irq_settings_set_trigger_mask(desc, flags); 983 irqd_clear(&desc->irq_data, IRQD_LEVEL); 984 irq_settings_clr_level(desc); 985 if (flags & IRQ_TYPE_LEVEL_MASK) { 986 irq_settings_set_level(desc); 987 irqd_set(&desc->irq_data, IRQD_LEVEL); 988 } 989 990 ret = 0; 991 break; 992 default: 993 pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n", 994 flags, irq_desc_get_irq(desc), chip->irq_set_type); 995 } 996 if (unmask) 997 unmask_irq(desc); 998 return ret; 999 } 1000 1001 #ifdef CONFIG_HARDIRQS_SW_RESEND 1002 int irq_set_parent(int irq, int parent_irq) 1003 { 1004 unsigned long flags; 1005 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 1006 1007 if (!desc) 1008 return -EINVAL; 1009 1010 desc->parent_irq = parent_irq; 1011 1012 irq_put_desc_unlock(desc, flags); 1013 return 0; 1014 } 1015 EXPORT_SYMBOL_GPL(irq_set_parent); 1016 #endif 1017 1018 /* 1019 * Default primary interrupt handler for threaded interrupts. Is 1020 * assigned as primary handler when request_threaded_irq is called 1021 * with handler == NULL. Useful for oneshot interrupts. 1022 */ 1023 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id) 1024 { 1025 return IRQ_WAKE_THREAD; 1026 } 1027 1028 /* 1029 * Primary handler for nested threaded interrupts. Should never be 1030 * called. 1031 */ 1032 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id) 1033 { 1034 WARN(1, "Primary handler called for nested irq %d\n", irq); 1035 return IRQ_NONE; 1036 } 1037 1038 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id) 1039 { 1040 WARN(1, "Secondary action handler called for irq %d\n", irq); 1041 return IRQ_NONE; 1042 } 1043 1044 static int irq_wait_for_interrupt(struct irqaction *action) 1045 { 1046 for (;;) { 1047 set_current_state(TASK_INTERRUPTIBLE); 1048 1049 if (kthread_should_stop()) { 1050 /* may need to run one last time */ 1051 if (test_and_clear_bit(IRQTF_RUNTHREAD, 1052 &action->thread_flags)) { 1053 __set_current_state(TASK_RUNNING); 1054 return 0; 1055 } 1056 __set_current_state(TASK_RUNNING); 1057 return -1; 1058 } 1059 1060 if (test_and_clear_bit(IRQTF_RUNTHREAD, 1061 &action->thread_flags)) { 1062 __set_current_state(TASK_RUNNING); 1063 return 0; 1064 } 1065 schedule(); 1066 } 1067 } 1068 1069 /* 1070 * Oneshot interrupts keep the irq line masked until the threaded 1071 * handler finished. unmask if the interrupt has not been disabled and 1072 * is marked MASKED. 1073 */ 1074 static void irq_finalize_oneshot(struct irq_desc *desc, 1075 struct irqaction *action) 1076 { 1077 if (!(desc->istate & IRQS_ONESHOT) || 1078 action->handler == irq_forced_secondary_handler) 1079 return; 1080 again: 1081 chip_bus_lock(desc); 1082 raw_spin_lock_irq(&desc->lock); 1083 1084 /* 1085 * Implausible though it may be we need to protect us against 1086 * the following scenario: 1087 * 1088 * The thread is faster done than the hard interrupt handler 1089 * on the other CPU. If we unmask the irq line then the 1090 * interrupt can come in again and masks the line, leaves due 1091 * to IRQS_INPROGRESS and the irq line is masked forever. 1092 * 1093 * This also serializes the state of shared oneshot handlers 1094 * versus "desc->threads_oneshot |= action->thread_mask;" in 1095 * irq_wake_thread(). See the comment there which explains the 1096 * serialization. 1097 */ 1098 if (unlikely(irqd_irq_inprogress(&desc->irq_data))) { 1099 raw_spin_unlock_irq(&desc->lock); 1100 chip_bus_sync_unlock(desc); 1101 cpu_relax(); 1102 goto again; 1103 } 1104 1105 /* 1106 * Now check again, whether the thread should run. Otherwise 1107 * we would clear the threads_oneshot bit of this thread which 1108 * was just set. 1109 */ 1110 if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags)) 1111 goto out_unlock; 1112 1113 desc->threads_oneshot &= ~action->thread_mask; 1114 1115 if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) && 1116 irqd_irq_masked(&desc->irq_data)) 1117 unmask_threaded_irq(desc); 1118 1119 out_unlock: 1120 raw_spin_unlock_irq(&desc->lock); 1121 chip_bus_sync_unlock(desc); 1122 } 1123 1124 #ifdef CONFIG_SMP 1125 /* 1126 * Check whether we need to change the affinity of the interrupt thread. 1127 */ 1128 static void 1129 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) 1130 { 1131 cpumask_var_t mask; 1132 bool valid = true; 1133 1134 if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags)) 1135 return; 1136 1137 /* 1138 * In case we are out of memory we set IRQTF_AFFINITY again and 1139 * try again next time 1140 */ 1141 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) { 1142 set_bit(IRQTF_AFFINITY, &action->thread_flags); 1143 return; 1144 } 1145 1146 raw_spin_lock_irq(&desc->lock); 1147 /* 1148 * This code is triggered unconditionally. Check the affinity 1149 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out. 1150 */ 1151 if (cpumask_available(desc->irq_common_data.affinity)) { 1152 const struct cpumask *m; 1153 1154 m = irq_data_get_effective_affinity_mask(&desc->irq_data); 1155 cpumask_copy(mask, m); 1156 } else { 1157 valid = false; 1158 } 1159 raw_spin_unlock_irq(&desc->lock); 1160 1161 if (valid) 1162 set_cpus_allowed_ptr(current, mask); 1163 free_cpumask_var(mask); 1164 } 1165 #else 1166 static inline void 1167 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { } 1168 #endif 1169 1170 /* 1171 * Interrupts which are not explicitly requested as threaded 1172 * interrupts rely on the implicit bh/preempt disable of the hard irq 1173 * context. So we need to disable bh here to avoid deadlocks and other 1174 * side effects. 1175 */ 1176 static irqreturn_t 1177 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action) 1178 { 1179 irqreturn_t ret; 1180 1181 local_bh_disable(); 1182 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 1183 local_irq_disable(); 1184 ret = action->thread_fn(action->irq, action->dev_id); 1185 if (ret == IRQ_HANDLED) 1186 atomic_inc(&desc->threads_handled); 1187 1188 irq_finalize_oneshot(desc, action); 1189 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 1190 local_irq_enable(); 1191 local_bh_enable(); 1192 return ret; 1193 } 1194 1195 /* 1196 * Interrupts explicitly requested as threaded interrupts want to be 1197 * preemptible - many of them need to sleep and wait for slow busses to 1198 * complete. 1199 */ 1200 static irqreturn_t irq_thread_fn(struct irq_desc *desc, 1201 struct irqaction *action) 1202 { 1203 irqreturn_t ret; 1204 1205 ret = action->thread_fn(action->irq, action->dev_id); 1206 if (ret == IRQ_HANDLED) 1207 atomic_inc(&desc->threads_handled); 1208 1209 irq_finalize_oneshot(desc, action); 1210 return ret; 1211 } 1212 1213 static void wake_threads_waitq(struct irq_desc *desc) 1214 { 1215 if (atomic_dec_and_test(&desc->threads_active)) 1216 wake_up(&desc->wait_for_threads); 1217 } 1218 1219 static void irq_thread_dtor(struct callback_head *unused) 1220 { 1221 struct task_struct *tsk = current; 1222 struct irq_desc *desc; 1223 struct irqaction *action; 1224 1225 if (WARN_ON_ONCE(!(current->flags & PF_EXITING))) 1226 return; 1227 1228 action = kthread_data(tsk); 1229 1230 pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n", 1231 tsk->comm, tsk->pid, action->irq); 1232 1233 1234 desc = irq_to_desc(action->irq); 1235 /* 1236 * If IRQTF_RUNTHREAD is set, we need to decrement 1237 * desc->threads_active and wake possible waiters. 1238 */ 1239 if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags)) 1240 wake_threads_waitq(desc); 1241 1242 /* Prevent a stale desc->threads_oneshot */ 1243 irq_finalize_oneshot(desc, action); 1244 } 1245 1246 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action) 1247 { 1248 struct irqaction *secondary = action->secondary; 1249 1250 if (WARN_ON_ONCE(!secondary)) 1251 return; 1252 1253 raw_spin_lock_irq(&desc->lock); 1254 __irq_wake_thread(desc, secondary); 1255 raw_spin_unlock_irq(&desc->lock); 1256 } 1257 1258 /* 1259 * Internal function to notify that a interrupt thread is ready. 1260 */ 1261 static void irq_thread_set_ready(struct irq_desc *desc, 1262 struct irqaction *action) 1263 { 1264 set_bit(IRQTF_READY, &action->thread_flags); 1265 wake_up(&desc->wait_for_threads); 1266 } 1267 1268 /* 1269 * Internal function to wake up a interrupt thread and wait until it is 1270 * ready. 1271 */ 1272 static void wake_up_and_wait_for_irq_thread_ready(struct irq_desc *desc, 1273 struct irqaction *action) 1274 { 1275 if (!action || !action->thread) 1276 return; 1277 1278 wake_up_process(action->thread); 1279 wait_event(desc->wait_for_threads, 1280 test_bit(IRQTF_READY, &action->thread_flags)); 1281 } 1282 1283 /* 1284 * Interrupt handler thread 1285 */ 1286 static int irq_thread(void *data) 1287 { 1288 struct callback_head on_exit_work; 1289 struct irqaction *action = data; 1290 struct irq_desc *desc = irq_to_desc(action->irq); 1291 irqreturn_t (*handler_fn)(struct irq_desc *desc, 1292 struct irqaction *action); 1293 1294 irq_thread_set_ready(desc, action); 1295 1296 sched_set_fifo(current); 1297 1298 if (force_irqthreads() && test_bit(IRQTF_FORCED_THREAD, 1299 &action->thread_flags)) 1300 handler_fn = irq_forced_thread_fn; 1301 else 1302 handler_fn = irq_thread_fn; 1303 1304 init_task_work(&on_exit_work, irq_thread_dtor); 1305 task_work_add(current, &on_exit_work, TWA_NONE); 1306 1307 irq_thread_check_affinity(desc, action); 1308 1309 while (!irq_wait_for_interrupt(action)) { 1310 irqreturn_t action_ret; 1311 1312 irq_thread_check_affinity(desc, action); 1313 1314 action_ret = handler_fn(desc, action); 1315 if (action_ret == IRQ_WAKE_THREAD) 1316 irq_wake_secondary(desc, action); 1317 1318 wake_threads_waitq(desc); 1319 } 1320 1321 /* 1322 * This is the regular exit path. __free_irq() is stopping the 1323 * thread via kthread_stop() after calling 1324 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the 1325 * oneshot mask bit can be set. 1326 */ 1327 task_work_cancel(current, irq_thread_dtor); 1328 return 0; 1329 } 1330 1331 /** 1332 * irq_wake_thread - wake the irq thread for the action identified by dev_id 1333 * @irq: Interrupt line 1334 * @dev_id: Device identity for which the thread should be woken 1335 * 1336 */ 1337 void irq_wake_thread(unsigned int irq, void *dev_id) 1338 { 1339 struct irq_desc *desc = irq_to_desc(irq); 1340 struct irqaction *action; 1341 unsigned long flags; 1342 1343 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1344 return; 1345 1346 raw_spin_lock_irqsave(&desc->lock, flags); 1347 for_each_action_of_desc(desc, action) { 1348 if (action->dev_id == dev_id) { 1349 if (action->thread) 1350 __irq_wake_thread(desc, action); 1351 break; 1352 } 1353 } 1354 raw_spin_unlock_irqrestore(&desc->lock, flags); 1355 } 1356 EXPORT_SYMBOL_GPL(irq_wake_thread); 1357 1358 static int irq_setup_forced_threading(struct irqaction *new) 1359 { 1360 if (!force_irqthreads()) 1361 return 0; 1362 if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT)) 1363 return 0; 1364 1365 /* 1366 * No further action required for interrupts which are requested as 1367 * threaded interrupts already 1368 */ 1369 if (new->handler == irq_default_primary_handler) 1370 return 0; 1371 1372 new->flags |= IRQF_ONESHOT; 1373 1374 /* 1375 * Handle the case where we have a real primary handler and a 1376 * thread handler. We force thread them as well by creating a 1377 * secondary action. 1378 */ 1379 if (new->handler && new->thread_fn) { 1380 /* Allocate the secondary action */ 1381 new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 1382 if (!new->secondary) 1383 return -ENOMEM; 1384 new->secondary->handler = irq_forced_secondary_handler; 1385 new->secondary->thread_fn = new->thread_fn; 1386 new->secondary->dev_id = new->dev_id; 1387 new->secondary->irq = new->irq; 1388 new->secondary->name = new->name; 1389 } 1390 /* Deal with the primary handler */ 1391 set_bit(IRQTF_FORCED_THREAD, &new->thread_flags); 1392 new->thread_fn = new->handler; 1393 new->handler = irq_default_primary_handler; 1394 return 0; 1395 } 1396 1397 static int irq_request_resources(struct irq_desc *desc) 1398 { 1399 struct irq_data *d = &desc->irq_data; 1400 struct irq_chip *c = d->chip; 1401 1402 return c->irq_request_resources ? c->irq_request_resources(d) : 0; 1403 } 1404 1405 static void irq_release_resources(struct irq_desc *desc) 1406 { 1407 struct irq_data *d = &desc->irq_data; 1408 struct irq_chip *c = d->chip; 1409 1410 if (c->irq_release_resources) 1411 c->irq_release_resources(d); 1412 } 1413 1414 static bool irq_supports_nmi(struct irq_desc *desc) 1415 { 1416 struct irq_data *d = irq_desc_get_irq_data(desc); 1417 1418 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 1419 /* Only IRQs directly managed by the root irqchip can be set as NMI */ 1420 if (d->parent_data) 1421 return false; 1422 #endif 1423 /* Don't support NMIs for chips behind a slow bus */ 1424 if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock) 1425 return false; 1426 1427 return d->chip->flags & IRQCHIP_SUPPORTS_NMI; 1428 } 1429 1430 static int irq_nmi_setup(struct irq_desc *desc) 1431 { 1432 struct irq_data *d = irq_desc_get_irq_data(desc); 1433 struct irq_chip *c = d->chip; 1434 1435 return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL; 1436 } 1437 1438 static void irq_nmi_teardown(struct irq_desc *desc) 1439 { 1440 struct irq_data *d = irq_desc_get_irq_data(desc); 1441 struct irq_chip *c = d->chip; 1442 1443 if (c->irq_nmi_teardown) 1444 c->irq_nmi_teardown(d); 1445 } 1446 1447 static int 1448 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary) 1449 { 1450 struct task_struct *t; 1451 1452 if (!secondary) { 1453 t = kthread_create(irq_thread, new, "irq/%d-%s", irq, 1454 new->name); 1455 } else { 1456 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq, 1457 new->name); 1458 } 1459 1460 if (IS_ERR(t)) 1461 return PTR_ERR(t); 1462 1463 /* 1464 * We keep the reference to the task struct even if 1465 * the thread dies to avoid that the interrupt code 1466 * references an already freed task_struct. 1467 */ 1468 new->thread = get_task_struct(t); 1469 /* 1470 * Tell the thread to set its affinity. This is 1471 * important for shared interrupt handlers as we do 1472 * not invoke setup_affinity() for the secondary 1473 * handlers as everything is already set up. Even for 1474 * interrupts marked with IRQF_NO_BALANCE this is 1475 * correct as we want the thread to move to the cpu(s) 1476 * on which the requesting code placed the interrupt. 1477 */ 1478 set_bit(IRQTF_AFFINITY, &new->thread_flags); 1479 return 0; 1480 } 1481 1482 /* 1483 * Internal function to register an irqaction - typically used to 1484 * allocate special interrupts that are part of the architecture. 1485 * 1486 * Locking rules: 1487 * 1488 * desc->request_mutex Provides serialization against a concurrent free_irq() 1489 * chip_bus_lock Provides serialization for slow bus operations 1490 * desc->lock Provides serialization against hard interrupts 1491 * 1492 * chip_bus_lock and desc->lock are sufficient for all other management and 1493 * interrupt related functions. desc->request_mutex solely serializes 1494 * request/free_irq(). 1495 */ 1496 static int 1497 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new) 1498 { 1499 struct irqaction *old, **old_ptr; 1500 unsigned long flags, thread_mask = 0; 1501 int ret, nested, shared = 0; 1502 1503 if (!desc) 1504 return -EINVAL; 1505 1506 if (desc->irq_data.chip == &no_irq_chip) 1507 return -ENOSYS; 1508 if (!try_module_get(desc->owner)) 1509 return -ENODEV; 1510 1511 new->irq = irq; 1512 1513 /* 1514 * If the trigger type is not specified by the caller, 1515 * then use the default for this interrupt. 1516 */ 1517 if (!(new->flags & IRQF_TRIGGER_MASK)) 1518 new->flags |= irqd_get_trigger_type(&desc->irq_data); 1519 1520 /* 1521 * Check whether the interrupt nests into another interrupt 1522 * thread. 1523 */ 1524 nested = irq_settings_is_nested_thread(desc); 1525 if (nested) { 1526 if (!new->thread_fn) { 1527 ret = -EINVAL; 1528 goto out_mput; 1529 } 1530 /* 1531 * Replace the primary handler which was provided from 1532 * the driver for non nested interrupt handling by the 1533 * dummy function which warns when called. 1534 */ 1535 new->handler = irq_nested_primary_handler; 1536 } else { 1537 if (irq_settings_can_thread(desc)) { 1538 ret = irq_setup_forced_threading(new); 1539 if (ret) 1540 goto out_mput; 1541 } 1542 } 1543 1544 /* 1545 * Create a handler thread when a thread function is supplied 1546 * and the interrupt does not nest into another interrupt 1547 * thread. 1548 */ 1549 if (new->thread_fn && !nested) { 1550 ret = setup_irq_thread(new, irq, false); 1551 if (ret) 1552 goto out_mput; 1553 if (new->secondary) { 1554 ret = setup_irq_thread(new->secondary, irq, true); 1555 if (ret) 1556 goto out_thread; 1557 } 1558 } 1559 1560 /* 1561 * Drivers are often written to work w/o knowledge about the 1562 * underlying irq chip implementation, so a request for a 1563 * threaded irq without a primary hard irq context handler 1564 * requires the ONESHOT flag to be set. Some irq chips like 1565 * MSI based interrupts are per se one shot safe. Check the 1566 * chip flags, so we can avoid the unmask dance at the end of 1567 * the threaded handler for those. 1568 */ 1569 if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE) 1570 new->flags &= ~IRQF_ONESHOT; 1571 1572 /* 1573 * Protects against a concurrent __free_irq() call which might wait 1574 * for synchronize_hardirq() to complete without holding the optional 1575 * chip bus lock and desc->lock. Also protects against handing out 1576 * a recycled oneshot thread_mask bit while it's still in use by 1577 * its previous owner. 1578 */ 1579 mutex_lock(&desc->request_mutex); 1580 1581 /* 1582 * Acquire bus lock as the irq_request_resources() callback below 1583 * might rely on the serialization or the magic power management 1584 * functions which are abusing the irq_bus_lock() callback, 1585 */ 1586 chip_bus_lock(desc); 1587 1588 /* First installed action requests resources. */ 1589 if (!desc->action) { 1590 ret = irq_request_resources(desc); 1591 if (ret) { 1592 pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n", 1593 new->name, irq, desc->irq_data.chip->name); 1594 goto out_bus_unlock; 1595 } 1596 } 1597 1598 /* 1599 * The following block of code has to be executed atomically 1600 * protected against a concurrent interrupt and any of the other 1601 * management calls which are not serialized via 1602 * desc->request_mutex or the optional bus lock. 1603 */ 1604 raw_spin_lock_irqsave(&desc->lock, flags); 1605 old_ptr = &desc->action; 1606 old = *old_ptr; 1607 if (old) { 1608 /* 1609 * Can't share interrupts unless both agree to and are 1610 * the same type (level, edge, polarity). So both flag 1611 * fields must have IRQF_SHARED set and the bits which 1612 * set the trigger type must match. Also all must 1613 * agree on ONESHOT. 1614 * Interrupt lines used for NMIs cannot be shared. 1615 */ 1616 unsigned int oldtype; 1617 1618 if (desc->istate & IRQS_NMI) { 1619 pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n", 1620 new->name, irq, desc->irq_data.chip->name); 1621 ret = -EINVAL; 1622 goto out_unlock; 1623 } 1624 1625 /* 1626 * If nobody did set the configuration before, inherit 1627 * the one provided by the requester. 1628 */ 1629 if (irqd_trigger_type_was_set(&desc->irq_data)) { 1630 oldtype = irqd_get_trigger_type(&desc->irq_data); 1631 } else { 1632 oldtype = new->flags & IRQF_TRIGGER_MASK; 1633 irqd_set_trigger_type(&desc->irq_data, oldtype); 1634 } 1635 1636 if (!((old->flags & new->flags) & IRQF_SHARED) || 1637 (oldtype != (new->flags & IRQF_TRIGGER_MASK)) || 1638 ((old->flags ^ new->flags) & IRQF_ONESHOT)) 1639 goto mismatch; 1640 1641 /* All handlers must agree on per-cpuness */ 1642 if ((old->flags & IRQF_PERCPU) != 1643 (new->flags & IRQF_PERCPU)) 1644 goto mismatch; 1645 1646 /* add new interrupt at end of irq queue */ 1647 do { 1648 /* 1649 * Or all existing action->thread_mask bits, 1650 * so we can find the next zero bit for this 1651 * new action. 1652 */ 1653 thread_mask |= old->thread_mask; 1654 old_ptr = &old->next; 1655 old = *old_ptr; 1656 } while (old); 1657 shared = 1; 1658 } 1659 1660 /* 1661 * Setup the thread mask for this irqaction for ONESHOT. For 1662 * !ONESHOT irqs the thread mask is 0 so we can avoid a 1663 * conditional in irq_wake_thread(). 1664 */ 1665 if (new->flags & IRQF_ONESHOT) { 1666 /* 1667 * Unlikely to have 32 resp 64 irqs sharing one line, 1668 * but who knows. 1669 */ 1670 if (thread_mask == ~0UL) { 1671 ret = -EBUSY; 1672 goto out_unlock; 1673 } 1674 /* 1675 * The thread_mask for the action is or'ed to 1676 * desc->thread_active to indicate that the 1677 * IRQF_ONESHOT thread handler has been woken, but not 1678 * yet finished. The bit is cleared when a thread 1679 * completes. When all threads of a shared interrupt 1680 * line have completed desc->threads_active becomes 1681 * zero and the interrupt line is unmasked. See 1682 * handle.c:irq_wake_thread() for further information. 1683 * 1684 * If no thread is woken by primary (hard irq context) 1685 * interrupt handlers, then desc->threads_active is 1686 * also checked for zero to unmask the irq line in the 1687 * affected hard irq flow handlers 1688 * (handle_[fasteoi|level]_irq). 1689 * 1690 * The new action gets the first zero bit of 1691 * thread_mask assigned. See the loop above which or's 1692 * all existing action->thread_mask bits. 1693 */ 1694 new->thread_mask = 1UL << ffz(thread_mask); 1695 1696 } else if (new->handler == irq_default_primary_handler && 1697 !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) { 1698 /* 1699 * The interrupt was requested with handler = NULL, so 1700 * we use the default primary handler for it. But it 1701 * does not have the oneshot flag set. In combination 1702 * with level interrupts this is deadly, because the 1703 * default primary handler just wakes the thread, then 1704 * the irq lines is reenabled, but the device still 1705 * has the level irq asserted. Rinse and repeat.... 1706 * 1707 * While this works for edge type interrupts, we play 1708 * it safe and reject unconditionally because we can't 1709 * say for sure which type this interrupt really 1710 * has. The type flags are unreliable as the 1711 * underlying chip implementation can override them. 1712 */ 1713 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for %s (irq %d)\n", 1714 new->name, irq); 1715 ret = -EINVAL; 1716 goto out_unlock; 1717 } 1718 1719 if (!shared) { 1720 /* Setup the type (level, edge polarity) if configured: */ 1721 if (new->flags & IRQF_TRIGGER_MASK) { 1722 ret = __irq_set_trigger(desc, 1723 new->flags & IRQF_TRIGGER_MASK); 1724 1725 if (ret) 1726 goto out_unlock; 1727 } 1728 1729 /* 1730 * Activate the interrupt. That activation must happen 1731 * independently of IRQ_NOAUTOEN. request_irq() can fail 1732 * and the callers are supposed to handle 1733 * that. enable_irq() of an interrupt requested with 1734 * IRQ_NOAUTOEN is not supposed to fail. The activation 1735 * keeps it in shutdown mode, it merily associates 1736 * resources if necessary and if that's not possible it 1737 * fails. Interrupts which are in managed shutdown mode 1738 * will simply ignore that activation request. 1739 */ 1740 ret = irq_activate(desc); 1741 if (ret) 1742 goto out_unlock; 1743 1744 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \ 1745 IRQS_ONESHOT | IRQS_WAITING); 1746 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS); 1747 1748 if (new->flags & IRQF_PERCPU) { 1749 irqd_set(&desc->irq_data, IRQD_PER_CPU); 1750 irq_settings_set_per_cpu(desc); 1751 if (new->flags & IRQF_NO_DEBUG) 1752 irq_settings_set_no_debug(desc); 1753 } 1754 1755 if (noirqdebug) 1756 irq_settings_set_no_debug(desc); 1757 1758 if (new->flags & IRQF_ONESHOT) 1759 desc->istate |= IRQS_ONESHOT; 1760 1761 /* Exclude IRQ from balancing if requested */ 1762 if (new->flags & IRQF_NOBALANCING) { 1763 irq_settings_set_no_balancing(desc); 1764 irqd_set(&desc->irq_data, IRQD_NO_BALANCING); 1765 } 1766 1767 if (!(new->flags & IRQF_NO_AUTOEN) && 1768 irq_settings_can_autoenable(desc)) { 1769 irq_startup(desc, IRQ_RESEND, IRQ_START_COND); 1770 } else { 1771 /* 1772 * Shared interrupts do not go well with disabling 1773 * auto enable. The sharing interrupt might request 1774 * it while it's still disabled and then wait for 1775 * interrupts forever. 1776 */ 1777 WARN_ON_ONCE(new->flags & IRQF_SHARED); 1778 /* Undo nested disables: */ 1779 desc->depth = 1; 1780 } 1781 1782 } else if (new->flags & IRQF_TRIGGER_MASK) { 1783 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK; 1784 unsigned int omsk = irqd_get_trigger_type(&desc->irq_data); 1785 1786 if (nmsk != omsk) 1787 /* hope the handler works with current trigger mode */ 1788 pr_warn("irq %d uses trigger mode %u; requested %u\n", 1789 irq, omsk, nmsk); 1790 } 1791 1792 *old_ptr = new; 1793 1794 irq_pm_install_action(desc, new); 1795 1796 /* Reset broken irq detection when installing new handler */ 1797 desc->irq_count = 0; 1798 desc->irqs_unhandled = 0; 1799 1800 /* 1801 * Check whether we disabled the irq via the spurious handler 1802 * before. Reenable it and give it another chance. 1803 */ 1804 if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) { 1805 desc->istate &= ~IRQS_SPURIOUS_DISABLED; 1806 __enable_irq(desc); 1807 } 1808 1809 raw_spin_unlock_irqrestore(&desc->lock, flags); 1810 chip_bus_sync_unlock(desc); 1811 mutex_unlock(&desc->request_mutex); 1812 1813 irq_setup_timings(desc, new); 1814 1815 wake_up_and_wait_for_irq_thread_ready(desc, new); 1816 wake_up_and_wait_for_irq_thread_ready(desc, new->secondary); 1817 1818 register_irq_proc(irq, desc); 1819 new->dir = NULL; 1820 register_handler_proc(irq, new); 1821 return 0; 1822 1823 mismatch: 1824 if (!(new->flags & IRQF_PROBE_SHARED)) { 1825 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n", 1826 irq, new->flags, new->name, old->flags, old->name); 1827 #ifdef CONFIG_DEBUG_SHIRQ 1828 dump_stack(); 1829 #endif 1830 } 1831 ret = -EBUSY; 1832 1833 out_unlock: 1834 raw_spin_unlock_irqrestore(&desc->lock, flags); 1835 1836 if (!desc->action) 1837 irq_release_resources(desc); 1838 out_bus_unlock: 1839 chip_bus_sync_unlock(desc); 1840 mutex_unlock(&desc->request_mutex); 1841 1842 out_thread: 1843 if (new->thread) { 1844 struct task_struct *t = new->thread; 1845 1846 new->thread = NULL; 1847 kthread_stop(t); 1848 put_task_struct(t); 1849 } 1850 if (new->secondary && new->secondary->thread) { 1851 struct task_struct *t = new->secondary->thread; 1852 1853 new->secondary->thread = NULL; 1854 kthread_stop(t); 1855 put_task_struct(t); 1856 } 1857 out_mput: 1858 module_put(desc->owner); 1859 return ret; 1860 } 1861 1862 /* 1863 * Internal function to unregister an irqaction - used to free 1864 * regular and special interrupts that are part of the architecture. 1865 */ 1866 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id) 1867 { 1868 unsigned irq = desc->irq_data.irq; 1869 struct irqaction *action, **action_ptr; 1870 unsigned long flags; 1871 1872 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq); 1873 1874 mutex_lock(&desc->request_mutex); 1875 chip_bus_lock(desc); 1876 raw_spin_lock_irqsave(&desc->lock, flags); 1877 1878 /* 1879 * There can be multiple actions per IRQ descriptor, find the right 1880 * one based on the dev_id: 1881 */ 1882 action_ptr = &desc->action; 1883 for (;;) { 1884 action = *action_ptr; 1885 1886 if (!action) { 1887 WARN(1, "Trying to free already-free IRQ %d\n", irq); 1888 raw_spin_unlock_irqrestore(&desc->lock, flags); 1889 chip_bus_sync_unlock(desc); 1890 mutex_unlock(&desc->request_mutex); 1891 return NULL; 1892 } 1893 1894 if (action->dev_id == dev_id) 1895 break; 1896 action_ptr = &action->next; 1897 } 1898 1899 /* Found it - now remove it from the list of entries: */ 1900 *action_ptr = action->next; 1901 1902 irq_pm_remove_action(desc, action); 1903 1904 /* If this was the last handler, shut down the IRQ line: */ 1905 if (!desc->action) { 1906 irq_settings_clr_disable_unlazy(desc); 1907 /* Only shutdown. Deactivate after synchronize_hardirq() */ 1908 irq_shutdown(desc); 1909 } 1910 1911 #ifdef CONFIG_SMP 1912 /* make sure affinity_hint is cleaned up */ 1913 if (WARN_ON_ONCE(desc->affinity_hint)) 1914 desc->affinity_hint = NULL; 1915 #endif 1916 1917 raw_spin_unlock_irqrestore(&desc->lock, flags); 1918 /* 1919 * Drop bus_lock here so the changes which were done in the chip 1920 * callbacks above are synced out to the irq chips which hang 1921 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq(). 1922 * 1923 * Aside of that the bus_lock can also be taken from the threaded 1924 * handler in irq_finalize_oneshot() which results in a deadlock 1925 * because kthread_stop() would wait forever for the thread to 1926 * complete, which is blocked on the bus lock. 1927 * 1928 * The still held desc->request_mutex() protects against a 1929 * concurrent request_irq() of this irq so the release of resources 1930 * and timing data is properly serialized. 1931 */ 1932 chip_bus_sync_unlock(desc); 1933 1934 unregister_handler_proc(irq, action); 1935 1936 /* 1937 * Make sure it's not being used on another CPU and if the chip 1938 * supports it also make sure that there is no (not yet serviced) 1939 * interrupt in flight at the hardware level. 1940 */ 1941 __synchronize_hardirq(desc, true); 1942 1943 #ifdef CONFIG_DEBUG_SHIRQ 1944 /* 1945 * It's a shared IRQ -- the driver ought to be prepared for an IRQ 1946 * event to happen even now it's being freed, so let's make sure that 1947 * is so by doing an extra call to the handler .... 1948 * 1949 * ( We do this after actually deregistering it, to make sure that a 1950 * 'real' IRQ doesn't run in parallel with our fake. ) 1951 */ 1952 if (action->flags & IRQF_SHARED) { 1953 local_irq_save(flags); 1954 action->handler(irq, dev_id); 1955 local_irq_restore(flags); 1956 } 1957 #endif 1958 1959 /* 1960 * The action has already been removed above, but the thread writes 1961 * its oneshot mask bit when it completes. Though request_mutex is 1962 * held across this which prevents __setup_irq() from handing out 1963 * the same bit to a newly requested action. 1964 */ 1965 if (action->thread) { 1966 kthread_stop(action->thread); 1967 put_task_struct(action->thread); 1968 if (action->secondary && action->secondary->thread) { 1969 kthread_stop(action->secondary->thread); 1970 put_task_struct(action->secondary->thread); 1971 } 1972 } 1973 1974 /* Last action releases resources */ 1975 if (!desc->action) { 1976 /* 1977 * Reacquire bus lock as irq_release_resources() might 1978 * require it to deallocate resources over the slow bus. 1979 */ 1980 chip_bus_lock(desc); 1981 /* 1982 * There is no interrupt on the fly anymore. Deactivate it 1983 * completely. 1984 */ 1985 raw_spin_lock_irqsave(&desc->lock, flags); 1986 irq_domain_deactivate_irq(&desc->irq_data); 1987 raw_spin_unlock_irqrestore(&desc->lock, flags); 1988 1989 irq_release_resources(desc); 1990 chip_bus_sync_unlock(desc); 1991 irq_remove_timings(desc); 1992 } 1993 1994 mutex_unlock(&desc->request_mutex); 1995 1996 irq_chip_pm_put(&desc->irq_data); 1997 module_put(desc->owner); 1998 kfree(action->secondary); 1999 return action; 2000 } 2001 2002 /** 2003 * free_irq - free an interrupt allocated with request_irq 2004 * @irq: Interrupt line to free 2005 * @dev_id: Device identity to free 2006 * 2007 * Remove an interrupt handler. The handler is removed and if the 2008 * interrupt line is no longer in use by any driver it is disabled. 2009 * On a shared IRQ the caller must ensure the interrupt is disabled 2010 * on the card it drives before calling this function. The function 2011 * does not return until any executing interrupts for this IRQ 2012 * have completed. 2013 * 2014 * This function must not be called from interrupt context. 2015 * 2016 * Returns the devname argument passed to request_irq. 2017 */ 2018 const void *free_irq(unsigned int irq, void *dev_id) 2019 { 2020 struct irq_desc *desc = irq_to_desc(irq); 2021 struct irqaction *action; 2022 const char *devname; 2023 2024 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc))) 2025 return NULL; 2026 2027 #ifdef CONFIG_SMP 2028 if (WARN_ON(desc->affinity_notify)) 2029 desc->affinity_notify = NULL; 2030 #endif 2031 2032 action = __free_irq(desc, dev_id); 2033 2034 if (!action) 2035 return NULL; 2036 2037 devname = action->name; 2038 kfree(action); 2039 return devname; 2040 } 2041 EXPORT_SYMBOL(free_irq); 2042 2043 /* This function must be called with desc->lock held */ 2044 static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc) 2045 { 2046 const char *devname = NULL; 2047 2048 desc->istate &= ~IRQS_NMI; 2049 2050 if (!WARN_ON(desc->action == NULL)) { 2051 irq_pm_remove_action(desc, desc->action); 2052 devname = desc->action->name; 2053 unregister_handler_proc(irq, desc->action); 2054 2055 kfree(desc->action); 2056 desc->action = NULL; 2057 } 2058 2059 irq_settings_clr_disable_unlazy(desc); 2060 irq_shutdown_and_deactivate(desc); 2061 2062 irq_release_resources(desc); 2063 2064 irq_chip_pm_put(&desc->irq_data); 2065 module_put(desc->owner); 2066 2067 return devname; 2068 } 2069 2070 const void *free_nmi(unsigned int irq, void *dev_id) 2071 { 2072 struct irq_desc *desc = irq_to_desc(irq); 2073 unsigned long flags; 2074 const void *devname; 2075 2076 if (!desc || WARN_ON(!(desc->istate & IRQS_NMI))) 2077 return NULL; 2078 2079 if (WARN_ON(irq_settings_is_per_cpu_devid(desc))) 2080 return NULL; 2081 2082 /* NMI still enabled */ 2083 if (WARN_ON(desc->depth == 0)) 2084 disable_nmi_nosync(irq); 2085 2086 raw_spin_lock_irqsave(&desc->lock, flags); 2087 2088 irq_nmi_teardown(desc); 2089 devname = __cleanup_nmi(irq, desc); 2090 2091 raw_spin_unlock_irqrestore(&desc->lock, flags); 2092 2093 return devname; 2094 } 2095 2096 /** 2097 * request_threaded_irq - allocate an interrupt line 2098 * @irq: Interrupt line to allocate 2099 * @handler: Function to be called when the IRQ occurs. 2100 * Primary handler for threaded interrupts. 2101 * If handler is NULL and thread_fn != NULL 2102 * the default primary handler is installed. 2103 * @thread_fn: Function called from the irq handler thread 2104 * If NULL, no irq thread is created 2105 * @irqflags: Interrupt type flags 2106 * @devname: An ascii name for the claiming device 2107 * @dev_id: A cookie passed back to the handler function 2108 * 2109 * This call allocates interrupt resources and enables the 2110 * interrupt line and IRQ handling. From the point this 2111 * call is made your handler function may be invoked. Since 2112 * your handler function must clear any interrupt the board 2113 * raises, you must take care both to initialise your hardware 2114 * and to set up the interrupt handler in the right order. 2115 * 2116 * If you want to set up a threaded irq handler for your device 2117 * then you need to supply @handler and @thread_fn. @handler is 2118 * still called in hard interrupt context and has to check 2119 * whether the interrupt originates from the device. If yes it 2120 * needs to disable the interrupt on the device and return 2121 * IRQ_WAKE_THREAD which will wake up the handler thread and run 2122 * @thread_fn. This split handler design is necessary to support 2123 * shared interrupts. 2124 * 2125 * Dev_id must be globally unique. Normally the address of the 2126 * device data structure is used as the cookie. Since the handler 2127 * receives this value it makes sense to use it. 2128 * 2129 * If your interrupt is shared you must pass a non NULL dev_id 2130 * as this is required when freeing the interrupt. 2131 * 2132 * Flags: 2133 * 2134 * IRQF_SHARED Interrupt is shared 2135 * IRQF_TRIGGER_* Specify active edge(s) or level 2136 * IRQF_ONESHOT Run thread_fn with interrupt line masked 2137 */ 2138 int request_threaded_irq(unsigned int irq, irq_handler_t handler, 2139 irq_handler_t thread_fn, unsigned long irqflags, 2140 const char *devname, void *dev_id) 2141 { 2142 struct irqaction *action; 2143 struct irq_desc *desc; 2144 int retval; 2145 2146 if (irq == IRQ_NOTCONNECTED) 2147 return -ENOTCONN; 2148 2149 /* 2150 * Sanity-check: shared interrupts must pass in a real dev-ID, 2151 * otherwise we'll have trouble later trying to figure out 2152 * which interrupt is which (messes up the interrupt freeing 2153 * logic etc). 2154 * 2155 * Also shared interrupts do not go well with disabling auto enable. 2156 * The sharing interrupt might request it while it's still disabled 2157 * and then wait for interrupts forever. 2158 * 2159 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and 2160 * it cannot be set along with IRQF_NO_SUSPEND. 2161 */ 2162 if (((irqflags & IRQF_SHARED) && !dev_id) || 2163 ((irqflags & IRQF_SHARED) && (irqflags & IRQF_NO_AUTOEN)) || 2164 (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) || 2165 ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND))) 2166 return -EINVAL; 2167 2168 desc = irq_to_desc(irq); 2169 if (!desc) 2170 return -EINVAL; 2171 2172 if (!irq_settings_can_request(desc) || 2173 WARN_ON(irq_settings_is_per_cpu_devid(desc))) 2174 return -EINVAL; 2175 2176 if (!handler) { 2177 if (!thread_fn) 2178 return -EINVAL; 2179 handler = irq_default_primary_handler; 2180 } 2181 2182 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2183 if (!action) 2184 return -ENOMEM; 2185 2186 action->handler = handler; 2187 action->thread_fn = thread_fn; 2188 action->flags = irqflags; 2189 action->name = devname; 2190 action->dev_id = dev_id; 2191 2192 retval = irq_chip_pm_get(&desc->irq_data); 2193 if (retval < 0) { 2194 kfree(action); 2195 return retval; 2196 } 2197 2198 retval = __setup_irq(irq, desc, action); 2199 2200 if (retval) { 2201 irq_chip_pm_put(&desc->irq_data); 2202 kfree(action->secondary); 2203 kfree(action); 2204 } 2205 2206 #ifdef CONFIG_DEBUG_SHIRQ_FIXME 2207 if (!retval && (irqflags & IRQF_SHARED)) { 2208 /* 2209 * It's a shared IRQ -- the driver ought to be prepared for it 2210 * to happen immediately, so let's make sure.... 2211 * We disable the irq to make sure that a 'real' IRQ doesn't 2212 * run in parallel with our fake. 2213 */ 2214 unsigned long flags; 2215 2216 disable_irq(irq); 2217 local_irq_save(flags); 2218 2219 handler(irq, dev_id); 2220 2221 local_irq_restore(flags); 2222 enable_irq(irq); 2223 } 2224 #endif 2225 return retval; 2226 } 2227 EXPORT_SYMBOL(request_threaded_irq); 2228 2229 /** 2230 * request_any_context_irq - allocate an interrupt line 2231 * @irq: Interrupt line to allocate 2232 * @handler: Function to be called when the IRQ occurs. 2233 * Threaded handler for threaded interrupts. 2234 * @flags: Interrupt type flags 2235 * @name: An ascii name for the claiming device 2236 * @dev_id: A cookie passed back to the handler function 2237 * 2238 * This call allocates interrupt resources and enables the 2239 * interrupt line and IRQ handling. It selects either a 2240 * hardirq or threaded handling method depending on the 2241 * context. 2242 * 2243 * On failure, it returns a negative value. On success, 2244 * it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED. 2245 */ 2246 int request_any_context_irq(unsigned int irq, irq_handler_t handler, 2247 unsigned long flags, const char *name, void *dev_id) 2248 { 2249 struct irq_desc *desc; 2250 int ret; 2251 2252 if (irq == IRQ_NOTCONNECTED) 2253 return -ENOTCONN; 2254 2255 desc = irq_to_desc(irq); 2256 if (!desc) 2257 return -EINVAL; 2258 2259 if (irq_settings_is_nested_thread(desc)) { 2260 ret = request_threaded_irq(irq, NULL, handler, 2261 flags, name, dev_id); 2262 return !ret ? IRQC_IS_NESTED : ret; 2263 } 2264 2265 ret = request_irq(irq, handler, flags, name, dev_id); 2266 return !ret ? IRQC_IS_HARDIRQ : ret; 2267 } 2268 EXPORT_SYMBOL_GPL(request_any_context_irq); 2269 2270 /** 2271 * request_nmi - allocate an interrupt line for NMI delivery 2272 * @irq: Interrupt line to allocate 2273 * @handler: Function to be called when the IRQ occurs. 2274 * Threaded handler for threaded interrupts. 2275 * @irqflags: Interrupt type flags 2276 * @name: An ascii name for the claiming device 2277 * @dev_id: A cookie passed back to the handler function 2278 * 2279 * This call allocates interrupt resources and enables the 2280 * interrupt line and IRQ handling. It sets up the IRQ line 2281 * to be handled as an NMI. 2282 * 2283 * An interrupt line delivering NMIs cannot be shared and IRQ handling 2284 * cannot be threaded. 2285 * 2286 * Interrupt lines requested for NMI delivering must produce per cpu 2287 * interrupts and have auto enabling setting disabled. 2288 * 2289 * Dev_id must be globally unique. Normally the address of the 2290 * device data structure is used as the cookie. Since the handler 2291 * receives this value it makes sense to use it. 2292 * 2293 * If the interrupt line cannot be used to deliver NMIs, function 2294 * will fail and return a negative value. 2295 */ 2296 int request_nmi(unsigned int irq, irq_handler_t handler, 2297 unsigned long irqflags, const char *name, void *dev_id) 2298 { 2299 struct irqaction *action; 2300 struct irq_desc *desc; 2301 unsigned long flags; 2302 int retval; 2303 2304 if (irq == IRQ_NOTCONNECTED) 2305 return -ENOTCONN; 2306 2307 /* NMI cannot be shared, used for Polling */ 2308 if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL)) 2309 return -EINVAL; 2310 2311 if (!(irqflags & IRQF_PERCPU)) 2312 return -EINVAL; 2313 2314 if (!handler) 2315 return -EINVAL; 2316 2317 desc = irq_to_desc(irq); 2318 2319 if (!desc || (irq_settings_can_autoenable(desc) && 2320 !(irqflags & IRQF_NO_AUTOEN)) || 2321 !irq_settings_can_request(desc) || 2322 WARN_ON(irq_settings_is_per_cpu_devid(desc)) || 2323 !irq_supports_nmi(desc)) 2324 return -EINVAL; 2325 2326 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2327 if (!action) 2328 return -ENOMEM; 2329 2330 action->handler = handler; 2331 action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING; 2332 action->name = name; 2333 action->dev_id = dev_id; 2334 2335 retval = irq_chip_pm_get(&desc->irq_data); 2336 if (retval < 0) 2337 goto err_out; 2338 2339 retval = __setup_irq(irq, desc, action); 2340 if (retval) 2341 goto err_irq_setup; 2342 2343 raw_spin_lock_irqsave(&desc->lock, flags); 2344 2345 /* Setup NMI state */ 2346 desc->istate |= IRQS_NMI; 2347 retval = irq_nmi_setup(desc); 2348 if (retval) { 2349 __cleanup_nmi(irq, desc); 2350 raw_spin_unlock_irqrestore(&desc->lock, flags); 2351 return -EINVAL; 2352 } 2353 2354 raw_spin_unlock_irqrestore(&desc->lock, flags); 2355 2356 return 0; 2357 2358 err_irq_setup: 2359 irq_chip_pm_put(&desc->irq_data); 2360 err_out: 2361 kfree(action); 2362 2363 return retval; 2364 } 2365 2366 void enable_percpu_irq(unsigned int irq, unsigned int type) 2367 { 2368 unsigned int cpu = smp_processor_id(); 2369 unsigned long flags; 2370 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 2371 2372 if (!desc) 2373 return; 2374 2375 /* 2376 * If the trigger type is not specified by the caller, then 2377 * use the default for this interrupt. 2378 */ 2379 type &= IRQ_TYPE_SENSE_MASK; 2380 if (type == IRQ_TYPE_NONE) 2381 type = irqd_get_trigger_type(&desc->irq_data); 2382 2383 if (type != IRQ_TYPE_NONE) { 2384 int ret; 2385 2386 ret = __irq_set_trigger(desc, type); 2387 2388 if (ret) { 2389 WARN(1, "failed to set type for IRQ%d\n", irq); 2390 goto out; 2391 } 2392 } 2393 2394 irq_percpu_enable(desc, cpu); 2395 out: 2396 irq_put_desc_unlock(desc, flags); 2397 } 2398 EXPORT_SYMBOL_GPL(enable_percpu_irq); 2399 2400 void enable_percpu_nmi(unsigned int irq, unsigned int type) 2401 { 2402 enable_percpu_irq(irq, type); 2403 } 2404 2405 /** 2406 * irq_percpu_is_enabled - Check whether the per cpu irq is enabled 2407 * @irq: Linux irq number to check for 2408 * 2409 * Must be called from a non migratable context. Returns the enable 2410 * state of a per cpu interrupt on the current cpu. 2411 */ 2412 bool irq_percpu_is_enabled(unsigned int irq) 2413 { 2414 unsigned int cpu = smp_processor_id(); 2415 struct irq_desc *desc; 2416 unsigned long flags; 2417 bool is_enabled; 2418 2419 desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 2420 if (!desc) 2421 return false; 2422 2423 is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled); 2424 irq_put_desc_unlock(desc, flags); 2425 2426 return is_enabled; 2427 } 2428 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled); 2429 2430 void disable_percpu_irq(unsigned int irq) 2431 { 2432 unsigned int cpu = smp_processor_id(); 2433 unsigned long flags; 2434 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 2435 2436 if (!desc) 2437 return; 2438 2439 irq_percpu_disable(desc, cpu); 2440 irq_put_desc_unlock(desc, flags); 2441 } 2442 EXPORT_SYMBOL_GPL(disable_percpu_irq); 2443 2444 void disable_percpu_nmi(unsigned int irq) 2445 { 2446 disable_percpu_irq(irq); 2447 } 2448 2449 /* 2450 * Internal function to unregister a percpu irqaction. 2451 */ 2452 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id) 2453 { 2454 struct irq_desc *desc = irq_to_desc(irq); 2455 struct irqaction *action; 2456 unsigned long flags; 2457 2458 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq); 2459 2460 if (!desc) 2461 return NULL; 2462 2463 raw_spin_lock_irqsave(&desc->lock, flags); 2464 2465 action = desc->action; 2466 if (!action || action->percpu_dev_id != dev_id) { 2467 WARN(1, "Trying to free already-free IRQ %d\n", irq); 2468 goto bad; 2469 } 2470 2471 if (!cpumask_empty(desc->percpu_enabled)) { 2472 WARN(1, "percpu IRQ %d still enabled on CPU%d!\n", 2473 irq, cpumask_first(desc->percpu_enabled)); 2474 goto bad; 2475 } 2476 2477 /* Found it - now remove it from the list of entries: */ 2478 desc->action = NULL; 2479 2480 desc->istate &= ~IRQS_NMI; 2481 2482 raw_spin_unlock_irqrestore(&desc->lock, flags); 2483 2484 unregister_handler_proc(irq, action); 2485 2486 irq_chip_pm_put(&desc->irq_data); 2487 module_put(desc->owner); 2488 return action; 2489 2490 bad: 2491 raw_spin_unlock_irqrestore(&desc->lock, flags); 2492 return NULL; 2493 } 2494 2495 /** 2496 * remove_percpu_irq - free a per-cpu interrupt 2497 * @irq: Interrupt line to free 2498 * @act: irqaction for the interrupt 2499 * 2500 * Used to remove interrupts statically setup by the early boot process. 2501 */ 2502 void remove_percpu_irq(unsigned int irq, struct irqaction *act) 2503 { 2504 struct irq_desc *desc = irq_to_desc(irq); 2505 2506 if (desc && irq_settings_is_per_cpu_devid(desc)) 2507 __free_percpu_irq(irq, act->percpu_dev_id); 2508 } 2509 2510 /** 2511 * free_percpu_irq - free an interrupt allocated with request_percpu_irq 2512 * @irq: Interrupt line to free 2513 * @dev_id: Device identity to free 2514 * 2515 * Remove a percpu interrupt handler. The handler is removed, but 2516 * the interrupt line is not disabled. This must be done on each 2517 * CPU before calling this function. The function does not return 2518 * until any executing interrupts for this IRQ have completed. 2519 * 2520 * This function must not be called from interrupt context. 2521 */ 2522 void free_percpu_irq(unsigned int irq, void __percpu *dev_id) 2523 { 2524 struct irq_desc *desc = irq_to_desc(irq); 2525 2526 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2527 return; 2528 2529 chip_bus_lock(desc); 2530 kfree(__free_percpu_irq(irq, dev_id)); 2531 chip_bus_sync_unlock(desc); 2532 } 2533 EXPORT_SYMBOL_GPL(free_percpu_irq); 2534 2535 void free_percpu_nmi(unsigned int irq, void __percpu *dev_id) 2536 { 2537 struct irq_desc *desc = irq_to_desc(irq); 2538 2539 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2540 return; 2541 2542 if (WARN_ON(!(desc->istate & IRQS_NMI))) 2543 return; 2544 2545 kfree(__free_percpu_irq(irq, dev_id)); 2546 } 2547 2548 /** 2549 * setup_percpu_irq - setup a per-cpu interrupt 2550 * @irq: Interrupt line to setup 2551 * @act: irqaction for the interrupt 2552 * 2553 * Used to statically setup per-cpu interrupts in the early boot process. 2554 */ 2555 int setup_percpu_irq(unsigned int irq, struct irqaction *act) 2556 { 2557 struct irq_desc *desc = irq_to_desc(irq); 2558 int retval; 2559 2560 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2561 return -EINVAL; 2562 2563 retval = irq_chip_pm_get(&desc->irq_data); 2564 if (retval < 0) 2565 return retval; 2566 2567 retval = __setup_irq(irq, desc, act); 2568 2569 if (retval) 2570 irq_chip_pm_put(&desc->irq_data); 2571 2572 return retval; 2573 } 2574 2575 /** 2576 * __request_percpu_irq - allocate a percpu interrupt line 2577 * @irq: Interrupt line to allocate 2578 * @handler: Function to be called when the IRQ occurs. 2579 * @flags: Interrupt type flags (IRQF_TIMER only) 2580 * @devname: An ascii name for the claiming device 2581 * @dev_id: A percpu cookie passed back to the handler function 2582 * 2583 * This call allocates interrupt resources and enables the 2584 * interrupt on the local CPU. If the interrupt is supposed to be 2585 * enabled on other CPUs, it has to be done on each CPU using 2586 * enable_percpu_irq(). 2587 * 2588 * Dev_id must be globally unique. It is a per-cpu variable, and 2589 * the handler gets called with the interrupted CPU's instance of 2590 * that variable. 2591 */ 2592 int __request_percpu_irq(unsigned int irq, irq_handler_t handler, 2593 unsigned long flags, const char *devname, 2594 void __percpu *dev_id) 2595 { 2596 struct irqaction *action; 2597 struct irq_desc *desc; 2598 int retval; 2599 2600 if (!dev_id) 2601 return -EINVAL; 2602 2603 desc = irq_to_desc(irq); 2604 if (!desc || !irq_settings_can_request(desc) || 2605 !irq_settings_is_per_cpu_devid(desc)) 2606 return -EINVAL; 2607 2608 if (flags && flags != IRQF_TIMER) 2609 return -EINVAL; 2610 2611 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2612 if (!action) 2613 return -ENOMEM; 2614 2615 action->handler = handler; 2616 action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND; 2617 action->name = devname; 2618 action->percpu_dev_id = dev_id; 2619 2620 retval = irq_chip_pm_get(&desc->irq_data); 2621 if (retval < 0) { 2622 kfree(action); 2623 return retval; 2624 } 2625 2626 retval = __setup_irq(irq, desc, action); 2627 2628 if (retval) { 2629 irq_chip_pm_put(&desc->irq_data); 2630 kfree(action); 2631 } 2632 2633 return retval; 2634 } 2635 EXPORT_SYMBOL_GPL(__request_percpu_irq); 2636 2637 /** 2638 * request_percpu_nmi - allocate a percpu interrupt line for NMI delivery 2639 * @irq: Interrupt line to allocate 2640 * @handler: Function to be called when the IRQ occurs. 2641 * @name: An ascii name for the claiming device 2642 * @dev_id: A percpu cookie passed back to the handler function 2643 * 2644 * This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs 2645 * have to be setup on each CPU by calling prepare_percpu_nmi() before 2646 * being enabled on the same CPU by using enable_percpu_nmi(). 2647 * 2648 * Dev_id must be globally unique. It is a per-cpu variable, and 2649 * the handler gets called with the interrupted CPU's instance of 2650 * that variable. 2651 * 2652 * Interrupt lines requested for NMI delivering should have auto enabling 2653 * setting disabled. 2654 * 2655 * If the interrupt line cannot be used to deliver NMIs, function 2656 * will fail returning a negative value. 2657 */ 2658 int request_percpu_nmi(unsigned int irq, irq_handler_t handler, 2659 const char *name, void __percpu *dev_id) 2660 { 2661 struct irqaction *action; 2662 struct irq_desc *desc; 2663 unsigned long flags; 2664 int retval; 2665 2666 if (!handler) 2667 return -EINVAL; 2668 2669 desc = irq_to_desc(irq); 2670 2671 if (!desc || !irq_settings_can_request(desc) || 2672 !irq_settings_is_per_cpu_devid(desc) || 2673 irq_settings_can_autoenable(desc) || 2674 !irq_supports_nmi(desc)) 2675 return -EINVAL; 2676 2677 /* The line cannot already be NMI */ 2678 if (desc->istate & IRQS_NMI) 2679 return -EINVAL; 2680 2681 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2682 if (!action) 2683 return -ENOMEM; 2684 2685 action->handler = handler; 2686 action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD 2687 | IRQF_NOBALANCING; 2688 action->name = name; 2689 action->percpu_dev_id = dev_id; 2690 2691 retval = irq_chip_pm_get(&desc->irq_data); 2692 if (retval < 0) 2693 goto err_out; 2694 2695 retval = __setup_irq(irq, desc, action); 2696 if (retval) 2697 goto err_irq_setup; 2698 2699 raw_spin_lock_irqsave(&desc->lock, flags); 2700 desc->istate |= IRQS_NMI; 2701 raw_spin_unlock_irqrestore(&desc->lock, flags); 2702 2703 return 0; 2704 2705 err_irq_setup: 2706 irq_chip_pm_put(&desc->irq_data); 2707 err_out: 2708 kfree(action); 2709 2710 return retval; 2711 } 2712 2713 /** 2714 * prepare_percpu_nmi - performs CPU local setup for NMI delivery 2715 * @irq: Interrupt line to prepare for NMI delivery 2716 * 2717 * This call prepares an interrupt line to deliver NMI on the current CPU, 2718 * before that interrupt line gets enabled with enable_percpu_nmi(). 2719 * 2720 * As a CPU local operation, this should be called from non-preemptible 2721 * context. 2722 * 2723 * If the interrupt line cannot be used to deliver NMIs, function 2724 * will fail returning a negative value. 2725 */ 2726 int prepare_percpu_nmi(unsigned int irq) 2727 { 2728 unsigned long flags; 2729 struct irq_desc *desc; 2730 int ret = 0; 2731 2732 WARN_ON(preemptible()); 2733 2734 desc = irq_get_desc_lock(irq, &flags, 2735 IRQ_GET_DESC_CHECK_PERCPU); 2736 if (!desc) 2737 return -EINVAL; 2738 2739 if (WARN(!(desc->istate & IRQS_NMI), 2740 KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n", 2741 irq)) { 2742 ret = -EINVAL; 2743 goto out; 2744 } 2745 2746 ret = irq_nmi_setup(desc); 2747 if (ret) { 2748 pr_err("Failed to setup NMI delivery: irq %u\n", irq); 2749 goto out; 2750 } 2751 2752 out: 2753 irq_put_desc_unlock(desc, flags); 2754 return ret; 2755 } 2756 2757 /** 2758 * teardown_percpu_nmi - undoes NMI setup of IRQ line 2759 * @irq: Interrupt line from which CPU local NMI configuration should be 2760 * removed 2761 * 2762 * This call undoes the setup done by prepare_percpu_nmi(). 2763 * 2764 * IRQ line should not be enabled for the current CPU. 2765 * 2766 * As a CPU local operation, this should be called from non-preemptible 2767 * context. 2768 */ 2769 void teardown_percpu_nmi(unsigned int irq) 2770 { 2771 unsigned long flags; 2772 struct irq_desc *desc; 2773 2774 WARN_ON(preemptible()); 2775 2776 desc = irq_get_desc_lock(irq, &flags, 2777 IRQ_GET_DESC_CHECK_PERCPU); 2778 if (!desc) 2779 return; 2780 2781 if (WARN_ON(!(desc->istate & IRQS_NMI))) 2782 goto out; 2783 2784 irq_nmi_teardown(desc); 2785 out: 2786 irq_put_desc_unlock(desc, flags); 2787 } 2788 2789 int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which, 2790 bool *state) 2791 { 2792 struct irq_chip *chip; 2793 int err = -EINVAL; 2794 2795 do { 2796 chip = irq_data_get_irq_chip(data); 2797 if (WARN_ON_ONCE(!chip)) 2798 return -ENODEV; 2799 if (chip->irq_get_irqchip_state) 2800 break; 2801 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 2802 data = data->parent_data; 2803 #else 2804 data = NULL; 2805 #endif 2806 } while (data); 2807 2808 if (data) 2809 err = chip->irq_get_irqchip_state(data, which, state); 2810 return err; 2811 } 2812 2813 /** 2814 * irq_get_irqchip_state - returns the irqchip state of a interrupt. 2815 * @irq: Interrupt line that is forwarded to a VM 2816 * @which: One of IRQCHIP_STATE_* the caller wants to know about 2817 * @state: a pointer to a boolean where the state is to be stored 2818 * 2819 * This call snapshots the internal irqchip state of an 2820 * interrupt, returning into @state the bit corresponding to 2821 * stage @which 2822 * 2823 * This function should be called with preemption disabled if the 2824 * interrupt controller has per-cpu registers. 2825 */ 2826 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which, 2827 bool *state) 2828 { 2829 struct irq_desc *desc; 2830 struct irq_data *data; 2831 unsigned long flags; 2832 int err = -EINVAL; 2833 2834 desc = irq_get_desc_buslock(irq, &flags, 0); 2835 if (!desc) 2836 return err; 2837 2838 data = irq_desc_get_irq_data(desc); 2839 2840 err = __irq_get_irqchip_state(data, which, state); 2841 2842 irq_put_desc_busunlock(desc, flags); 2843 return err; 2844 } 2845 EXPORT_SYMBOL_GPL(irq_get_irqchip_state); 2846 2847 /** 2848 * irq_set_irqchip_state - set the state of a forwarded interrupt. 2849 * @irq: Interrupt line that is forwarded to a VM 2850 * @which: State to be restored (one of IRQCHIP_STATE_*) 2851 * @val: Value corresponding to @which 2852 * 2853 * This call sets the internal irqchip state of an interrupt, 2854 * depending on the value of @which. 2855 * 2856 * This function should be called with migration disabled if the 2857 * interrupt controller has per-cpu registers. 2858 */ 2859 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which, 2860 bool val) 2861 { 2862 struct irq_desc *desc; 2863 struct irq_data *data; 2864 struct irq_chip *chip; 2865 unsigned long flags; 2866 int err = -EINVAL; 2867 2868 desc = irq_get_desc_buslock(irq, &flags, 0); 2869 if (!desc) 2870 return err; 2871 2872 data = irq_desc_get_irq_data(desc); 2873 2874 do { 2875 chip = irq_data_get_irq_chip(data); 2876 if (WARN_ON_ONCE(!chip)) { 2877 err = -ENODEV; 2878 goto out_unlock; 2879 } 2880 if (chip->irq_set_irqchip_state) 2881 break; 2882 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 2883 data = data->parent_data; 2884 #else 2885 data = NULL; 2886 #endif 2887 } while (data); 2888 2889 if (data) 2890 err = chip->irq_set_irqchip_state(data, which, val); 2891 2892 out_unlock: 2893 irq_put_desc_busunlock(desc, flags); 2894 return err; 2895 } 2896 EXPORT_SYMBOL_GPL(irq_set_irqchip_state); 2897 2898 /** 2899 * irq_has_action - Check whether an interrupt is requested 2900 * @irq: The linux irq number 2901 * 2902 * Returns: A snapshot of the current state 2903 */ 2904 bool irq_has_action(unsigned int irq) 2905 { 2906 bool res; 2907 2908 rcu_read_lock(); 2909 res = irq_desc_has_action(irq_to_desc(irq)); 2910 rcu_read_unlock(); 2911 return res; 2912 } 2913 EXPORT_SYMBOL_GPL(irq_has_action); 2914 2915 /** 2916 * irq_check_status_bit - Check whether bits in the irq descriptor status are set 2917 * @irq: The linux irq number 2918 * @bitmask: The bitmask to evaluate 2919 * 2920 * Returns: True if one of the bits in @bitmask is set 2921 */ 2922 bool irq_check_status_bit(unsigned int irq, unsigned int bitmask) 2923 { 2924 struct irq_desc *desc; 2925 bool res = false; 2926 2927 rcu_read_lock(); 2928 desc = irq_to_desc(irq); 2929 if (desc) 2930 res = !!(desc->status_use_accessors & bitmask); 2931 rcu_read_unlock(); 2932 return res; 2933 } 2934 EXPORT_SYMBOL_GPL(irq_check_status_bit); 2935