1 /* 2 * linux/kernel/irq/manage.c 3 * 4 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar 5 * Copyright (C) 2005-2006 Thomas Gleixner 6 * 7 * This file contains driver APIs to the irq subsystem. 8 */ 9 10 #define pr_fmt(fmt) "genirq: " fmt 11 12 #include <linux/irq.h> 13 #include <linux/kthread.h> 14 #include <linux/module.h> 15 #include <linux/random.h> 16 #include <linux/interrupt.h> 17 #include <linux/slab.h> 18 #include <linux/sched.h> 19 #include <linux/sched/rt.h> 20 #include <linux/task_work.h> 21 22 #include "internals.h" 23 24 #ifdef CONFIG_IRQ_FORCED_THREADING 25 __read_mostly bool force_irqthreads; 26 27 static int __init setup_forced_irqthreads(char *arg) 28 { 29 force_irqthreads = true; 30 return 0; 31 } 32 early_param("threadirqs", setup_forced_irqthreads); 33 #endif 34 35 static void __synchronize_hardirq(struct irq_desc *desc) 36 { 37 bool inprogress; 38 39 do { 40 unsigned long flags; 41 42 /* 43 * Wait until we're out of the critical section. This might 44 * give the wrong answer due to the lack of memory barriers. 45 */ 46 while (irqd_irq_inprogress(&desc->irq_data)) 47 cpu_relax(); 48 49 /* Ok, that indicated we're done: double-check carefully. */ 50 raw_spin_lock_irqsave(&desc->lock, flags); 51 inprogress = irqd_irq_inprogress(&desc->irq_data); 52 raw_spin_unlock_irqrestore(&desc->lock, flags); 53 54 /* Oops, that failed? */ 55 } while (inprogress); 56 } 57 58 /** 59 * synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs) 60 * @irq: interrupt number to wait for 61 * 62 * This function waits for any pending hard IRQ handlers for this 63 * interrupt to complete before returning. If you use this 64 * function while holding a resource the IRQ handler may need you 65 * will deadlock. It does not take associated threaded handlers 66 * into account. 67 * 68 * Do not use this for shutdown scenarios where you must be sure 69 * that all parts (hardirq and threaded handler) have completed. 70 * 71 * Returns: false if a threaded handler is active. 72 * 73 * This function may be called - with care - from IRQ context. 74 */ 75 bool synchronize_hardirq(unsigned int irq) 76 { 77 struct irq_desc *desc = irq_to_desc(irq); 78 79 if (desc) { 80 __synchronize_hardirq(desc); 81 return !atomic_read(&desc->threads_active); 82 } 83 84 return true; 85 } 86 EXPORT_SYMBOL(synchronize_hardirq); 87 88 /** 89 * synchronize_irq - wait for pending IRQ handlers (on other CPUs) 90 * @irq: interrupt number to wait for 91 * 92 * This function waits for any pending IRQ handlers for this interrupt 93 * to complete before returning. If you use this function while 94 * holding a resource the IRQ handler may need you will deadlock. 95 * 96 * This function may be called - with care - from IRQ context. 97 */ 98 void synchronize_irq(unsigned int irq) 99 { 100 struct irq_desc *desc = irq_to_desc(irq); 101 102 if (desc) { 103 __synchronize_hardirq(desc); 104 /* 105 * We made sure that no hardirq handler is 106 * running. Now verify that no threaded handlers are 107 * active. 108 */ 109 wait_event(desc->wait_for_threads, 110 !atomic_read(&desc->threads_active)); 111 } 112 } 113 EXPORT_SYMBOL(synchronize_irq); 114 115 #ifdef CONFIG_SMP 116 cpumask_var_t irq_default_affinity; 117 118 static int __irq_can_set_affinity(struct irq_desc *desc) 119 { 120 if (!desc || !irqd_can_balance(&desc->irq_data) || 121 !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity) 122 return 0; 123 return 1; 124 } 125 126 /** 127 * irq_can_set_affinity - Check if the affinity of a given irq can be set 128 * @irq: Interrupt to check 129 * 130 */ 131 int irq_can_set_affinity(unsigned int irq) 132 { 133 return __irq_can_set_affinity(irq_to_desc(irq)); 134 } 135 136 /** 137 * irq_set_thread_affinity - Notify irq threads to adjust affinity 138 * @desc: irq descriptor which has affitnity changed 139 * 140 * We just set IRQTF_AFFINITY and delegate the affinity setting 141 * to the interrupt thread itself. We can not call 142 * set_cpus_allowed_ptr() here as we hold desc->lock and this 143 * code can be called from hard interrupt context. 144 */ 145 void irq_set_thread_affinity(struct irq_desc *desc) 146 { 147 struct irqaction *action; 148 149 for_each_action_of_desc(desc, action) 150 if (action->thread) 151 set_bit(IRQTF_AFFINITY, &action->thread_flags); 152 } 153 154 #ifdef CONFIG_GENERIC_PENDING_IRQ 155 static inline bool irq_can_move_pcntxt(struct irq_data *data) 156 { 157 return irqd_can_move_in_process_context(data); 158 } 159 static inline bool irq_move_pending(struct irq_data *data) 160 { 161 return irqd_is_setaffinity_pending(data); 162 } 163 static inline void 164 irq_copy_pending(struct irq_desc *desc, const struct cpumask *mask) 165 { 166 cpumask_copy(desc->pending_mask, mask); 167 } 168 static inline void 169 irq_get_pending(struct cpumask *mask, struct irq_desc *desc) 170 { 171 cpumask_copy(mask, desc->pending_mask); 172 } 173 #else 174 static inline bool irq_can_move_pcntxt(struct irq_data *data) { return true; } 175 static inline bool irq_move_pending(struct irq_data *data) { return false; } 176 static inline void 177 irq_copy_pending(struct irq_desc *desc, const struct cpumask *mask) { } 178 static inline void 179 irq_get_pending(struct cpumask *mask, struct irq_desc *desc) { } 180 #endif 181 182 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask, 183 bool force) 184 { 185 struct irq_desc *desc = irq_data_to_desc(data); 186 struct irq_chip *chip = irq_data_get_irq_chip(data); 187 int ret; 188 189 ret = chip->irq_set_affinity(data, mask, force); 190 switch (ret) { 191 case IRQ_SET_MASK_OK: 192 case IRQ_SET_MASK_OK_DONE: 193 cpumask_copy(desc->irq_common_data.affinity, mask); 194 case IRQ_SET_MASK_OK_NOCOPY: 195 irq_set_thread_affinity(desc); 196 ret = 0; 197 } 198 199 return ret; 200 } 201 202 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask, 203 bool force) 204 { 205 struct irq_chip *chip = irq_data_get_irq_chip(data); 206 struct irq_desc *desc = irq_data_to_desc(data); 207 int ret = 0; 208 209 if (!chip || !chip->irq_set_affinity) 210 return -EINVAL; 211 212 if (irq_can_move_pcntxt(data)) { 213 ret = irq_do_set_affinity(data, mask, force); 214 } else { 215 irqd_set_move_pending(data); 216 irq_copy_pending(desc, mask); 217 } 218 219 if (desc->affinity_notify) { 220 kref_get(&desc->affinity_notify->kref); 221 schedule_work(&desc->affinity_notify->work); 222 } 223 irqd_set(data, IRQD_AFFINITY_SET); 224 225 return ret; 226 } 227 228 int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force) 229 { 230 struct irq_desc *desc = irq_to_desc(irq); 231 unsigned long flags; 232 int ret; 233 234 if (!desc) 235 return -EINVAL; 236 237 raw_spin_lock_irqsave(&desc->lock, flags); 238 ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force); 239 raw_spin_unlock_irqrestore(&desc->lock, flags); 240 return ret; 241 } 242 243 int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m) 244 { 245 unsigned long flags; 246 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 247 248 if (!desc) 249 return -EINVAL; 250 desc->affinity_hint = m; 251 irq_put_desc_unlock(desc, flags); 252 /* set the initial affinity to prevent every interrupt being on CPU0 */ 253 if (m) 254 __irq_set_affinity(irq, m, false); 255 return 0; 256 } 257 EXPORT_SYMBOL_GPL(irq_set_affinity_hint); 258 259 static void irq_affinity_notify(struct work_struct *work) 260 { 261 struct irq_affinity_notify *notify = 262 container_of(work, struct irq_affinity_notify, work); 263 struct irq_desc *desc = irq_to_desc(notify->irq); 264 cpumask_var_t cpumask; 265 unsigned long flags; 266 267 if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL)) 268 goto out; 269 270 raw_spin_lock_irqsave(&desc->lock, flags); 271 if (irq_move_pending(&desc->irq_data)) 272 irq_get_pending(cpumask, desc); 273 else 274 cpumask_copy(cpumask, desc->irq_common_data.affinity); 275 raw_spin_unlock_irqrestore(&desc->lock, flags); 276 277 notify->notify(notify, cpumask); 278 279 free_cpumask_var(cpumask); 280 out: 281 kref_put(¬ify->kref, notify->release); 282 } 283 284 /** 285 * irq_set_affinity_notifier - control notification of IRQ affinity changes 286 * @irq: Interrupt for which to enable/disable notification 287 * @notify: Context for notification, or %NULL to disable 288 * notification. Function pointers must be initialised; 289 * the other fields will be initialised by this function. 290 * 291 * Must be called in process context. Notification may only be enabled 292 * after the IRQ is allocated and must be disabled before the IRQ is 293 * freed using free_irq(). 294 */ 295 int 296 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify) 297 { 298 struct irq_desc *desc = irq_to_desc(irq); 299 struct irq_affinity_notify *old_notify; 300 unsigned long flags; 301 302 /* The release function is promised process context */ 303 might_sleep(); 304 305 if (!desc) 306 return -EINVAL; 307 308 /* Complete initialisation of *notify */ 309 if (notify) { 310 notify->irq = irq; 311 kref_init(¬ify->kref); 312 INIT_WORK(¬ify->work, irq_affinity_notify); 313 } 314 315 raw_spin_lock_irqsave(&desc->lock, flags); 316 old_notify = desc->affinity_notify; 317 desc->affinity_notify = notify; 318 raw_spin_unlock_irqrestore(&desc->lock, flags); 319 320 if (old_notify) 321 kref_put(&old_notify->kref, old_notify->release); 322 323 return 0; 324 } 325 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier); 326 327 #ifndef CONFIG_AUTO_IRQ_AFFINITY 328 /* 329 * Generic version of the affinity autoselector. 330 */ 331 static int setup_affinity(struct irq_desc *desc, struct cpumask *mask) 332 { 333 struct cpumask *set = irq_default_affinity; 334 int node = irq_desc_get_node(desc); 335 336 /* Excludes PER_CPU and NO_BALANCE interrupts */ 337 if (!__irq_can_set_affinity(desc)) 338 return 0; 339 340 /* 341 * Preserve an userspace affinity setup, but make sure that 342 * one of the targets is online. 343 */ 344 if (irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) { 345 if (cpumask_intersects(desc->irq_common_data.affinity, 346 cpu_online_mask)) 347 set = desc->irq_common_data.affinity; 348 else 349 irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET); 350 } 351 352 cpumask_and(mask, cpu_online_mask, set); 353 if (node != NUMA_NO_NODE) { 354 const struct cpumask *nodemask = cpumask_of_node(node); 355 356 /* make sure at least one of the cpus in nodemask is online */ 357 if (cpumask_intersects(mask, nodemask)) 358 cpumask_and(mask, mask, nodemask); 359 } 360 irq_do_set_affinity(&desc->irq_data, mask, false); 361 return 0; 362 } 363 #else 364 /* Wrapper for ALPHA specific affinity selector magic */ 365 static inline int setup_affinity(struct irq_desc *d, struct cpumask *mask) 366 { 367 return irq_select_affinity(irq_desc_get_irq(d)); 368 } 369 #endif 370 371 /* 372 * Called when affinity is set via /proc/irq 373 */ 374 int irq_select_affinity_usr(unsigned int irq, struct cpumask *mask) 375 { 376 struct irq_desc *desc = irq_to_desc(irq); 377 unsigned long flags; 378 int ret; 379 380 raw_spin_lock_irqsave(&desc->lock, flags); 381 ret = setup_affinity(desc, mask); 382 raw_spin_unlock_irqrestore(&desc->lock, flags); 383 return ret; 384 } 385 386 #else 387 static inline int 388 setup_affinity(struct irq_desc *desc, struct cpumask *mask) 389 { 390 return 0; 391 } 392 #endif 393 394 /** 395 * irq_set_vcpu_affinity - Set vcpu affinity for the interrupt 396 * @irq: interrupt number to set affinity 397 * @vcpu_info: vCPU specific data 398 * 399 * This function uses the vCPU specific data to set the vCPU 400 * affinity for an irq. The vCPU specific data is passed from 401 * outside, such as KVM. One example code path is as below: 402 * KVM -> IOMMU -> irq_set_vcpu_affinity(). 403 */ 404 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info) 405 { 406 unsigned long flags; 407 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 408 struct irq_data *data; 409 struct irq_chip *chip; 410 int ret = -ENOSYS; 411 412 if (!desc) 413 return -EINVAL; 414 415 data = irq_desc_get_irq_data(desc); 416 chip = irq_data_get_irq_chip(data); 417 if (chip && chip->irq_set_vcpu_affinity) 418 ret = chip->irq_set_vcpu_affinity(data, vcpu_info); 419 irq_put_desc_unlock(desc, flags); 420 421 return ret; 422 } 423 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity); 424 425 void __disable_irq(struct irq_desc *desc) 426 { 427 if (!desc->depth++) 428 irq_disable(desc); 429 } 430 431 static int __disable_irq_nosync(unsigned int irq) 432 { 433 unsigned long flags; 434 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 435 436 if (!desc) 437 return -EINVAL; 438 __disable_irq(desc); 439 irq_put_desc_busunlock(desc, flags); 440 return 0; 441 } 442 443 /** 444 * disable_irq_nosync - disable an irq without waiting 445 * @irq: Interrupt to disable 446 * 447 * Disable the selected interrupt line. Disables and Enables are 448 * nested. 449 * Unlike disable_irq(), this function does not ensure existing 450 * instances of the IRQ handler have completed before returning. 451 * 452 * This function may be called from IRQ context. 453 */ 454 void disable_irq_nosync(unsigned int irq) 455 { 456 __disable_irq_nosync(irq); 457 } 458 EXPORT_SYMBOL(disable_irq_nosync); 459 460 /** 461 * disable_irq - disable an irq and wait for completion 462 * @irq: Interrupt to disable 463 * 464 * Disable the selected interrupt line. Enables and Disables are 465 * nested. 466 * This function waits for any pending IRQ handlers for this interrupt 467 * to complete before returning. If you use this function while 468 * holding a resource the IRQ handler may need you will deadlock. 469 * 470 * This function may be called - with care - from IRQ context. 471 */ 472 void disable_irq(unsigned int irq) 473 { 474 if (!__disable_irq_nosync(irq)) 475 synchronize_irq(irq); 476 } 477 EXPORT_SYMBOL(disable_irq); 478 479 /** 480 * disable_hardirq - disables an irq and waits for hardirq completion 481 * @irq: Interrupt to disable 482 * 483 * Disable the selected interrupt line. Enables and Disables are 484 * nested. 485 * This function waits for any pending hard IRQ handlers for this 486 * interrupt to complete before returning. If you use this function while 487 * holding a resource the hard IRQ handler may need you will deadlock. 488 * 489 * When used to optimistically disable an interrupt from atomic context 490 * the return value must be checked. 491 * 492 * Returns: false if a threaded handler is active. 493 * 494 * This function may be called - with care - from IRQ context. 495 */ 496 bool disable_hardirq(unsigned int irq) 497 { 498 if (!__disable_irq_nosync(irq)) 499 return synchronize_hardirq(irq); 500 501 return false; 502 } 503 EXPORT_SYMBOL_GPL(disable_hardirq); 504 505 void __enable_irq(struct irq_desc *desc) 506 { 507 switch (desc->depth) { 508 case 0: 509 err_out: 510 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n", 511 irq_desc_get_irq(desc)); 512 break; 513 case 1: { 514 if (desc->istate & IRQS_SUSPENDED) 515 goto err_out; 516 /* Prevent probing on this irq: */ 517 irq_settings_set_noprobe(desc); 518 irq_enable(desc); 519 check_irq_resend(desc); 520 /* fall-through */ 521 } 522 default: 523 desc->depth--; 524 } 525 } 526 527 /** 528 * enable_irq - enable handling of an irq 529 * @irq: Interrupt to enable 530 * 531 * Undoes the effect of one call to disable_irq(). If this 532 * matches the last disable, processing of interrupts on this 533 * IRQ line is re-enabled. 534 * 535 * This function may be called from IRQ context only when 536 * desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL ! 537 */ 538 void enable_irq(unsigned int irq) 539 { 540 unsigned long flags; 541 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 542 543 if (!desc) 544 return; 545 if (WARN(!desc->irq_data.chip, 546 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq)) 547 goto out; 548 549 __enable_irq(desc); 550 out: 551 irq_put_desc_busunlock(desc, flags); 552 } 553 EXPORT_SYMBOL(enable_irq); 554 555 static int set_irq_wake_real(unsigned int irq, unsigned int on) 556 { 557 struct irq_desc *desc = irq_to_desc(irq); 558 int ret = -ENXIO; 559 560 if (irq_desc_get_chip(desc)->flags & IRQCHIP_SKIP_SET_WAKE) 561 return 0; 562 563 if (desc->irq_data.chip->irq_set_wake) 564 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on); 565 566 return ret; 567 } 568 569 /** 570 * irq_set_irq_wake - control irq power management wakeup 571 * @irq: interrupt to control 572 * @on: enable/disable power management wakeup 573 * 574 * Enable/disable power management wakeup mode, which is 575 * disabled by default. Enables and disables must match, 576 * just as they match for non-wakeup mode support. 577 * 578 * Wakeup mode lets this IRQ wake the system from sleep 579 * states like "suspend to RAM". 580 */ 581 int irq_set_irq_wake(unsigned int irq, unsigned int on) 582 { 583 unsigned long flags; 584 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 585 int ret = 0; 586 587 if (!desc) 588 return -EINVAL; 589 590 /* wakeup-capable irqs can be shared between drivers that 591 * don't need to have the same sleep mode behaviors. 592 */ 593 if (on) { 594 if (desc->wake_depth++ == 0) { 595 ret = set_irq_wake_real(irq, on); 596 if (ret) 597 desc->wake_depth = 0; 598 else 599 irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE); 600 } 601 } else { 602 if (desc->wake_depth == 0) { 603 WARN(1, "Unbalanced IRQ %d wake disable\n", irq); 604 } else if (--desc->wake_depth == 0) { 605 ret = set_irq_wake_real(irq, on); 606 if (ret) 607 desc->wake_depth = 1; 608 else 609 irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE); 610 } 611 } 612 irq_put_desc_busunlock(desc, flags); 613 return ret; 614 } 615 EXPORT_SYMBOL(irq_set_irq_wake); 616 617 /* 618 * Internal function that tells the architecture code whether a 619 * particular irq has been exclusively allocated or is available 620 * for driver use. 621 */ 622 int can_request_irq(unsigned int irq, unsigned long irqflags) 623 { 624 unsigned long flags; 625 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 626 int canrequest = 0; 627 628 if (!desc) 629 return 0; 630 631 if (irq_settings_can_request(desc)) { 632 if (!desc->action || 633 irqflags & desc->action->flags & IRQF_SHARED) 634 canrequest = 1; 635 } 636 irq_put_desc_unlock(desc, flags); 637 return canrequest; 638 } 639 640 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags) 641 { 642 struct irq_chip *chip = desc->irq_data.chip; 643 int ret, unmask = 0; 644 645 if (!chip || !chip->irq_set_type) { 646 /* 647 * IRQF_TRIGGER_* but the PIC does not support multiple 648 * flow-types? 649 */ 650 pr_debug("No set_type function for IRQ %d (%s)\n", 651 irq_desc_get_irq(desc), 652 chip ? (chip->name ? : "unknown") : "unknown"); 653 return 0; 654 } 655 656 flags &= IRQ_TYPE_SENSE_MASK; 657 658 if (chip->flags & IRQCHIP_SET_TYPE_MASKED) { 659 if (!irqd_irq_masked(&desc->irq_data)) 660 mask_irq(desc); 661 if (!irqd_irq_disabled(&desc->irq_data)) 662 unmask = 1; 663 } 664 665 /* caller masked out all except trigger mode flags */ 666 ret = chip->irq_set_type(&desc->irq_data, flags); 667 668 switch (ret) { 669 case IRQ_SET_MASK_OK: 670 case IRQ_SET_MASK_OK_DONE: 671 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK); 672 irqd_set(&desc->irq_data, flags); 673 674 case IRQ_SET_MASK_OK_NOCOPY: 675 flags = irqd_get_trigger_type(&desc->irq_data); 676 irq_settings_set_trigger_mask(desc, flags); 677 irqd_clear(&desc->irq_data, IRQD_LEVEL); 678 irq_settings_clr_level(desc); 679 if (flags & IRQ_TYPE_LEVEL_MASK) { 680 irq_settings_set_level(desc); 681 irqd_set(&desc->irq_data, IRQD_LEVEL); 682 } 683 684 ret = 0; 685 break; 686 default: 687 pr_err("Setting trigger mode %lu for irq %u failed (%pF)\n", 688 flags, irq_desc_get_irq(desc), chip->irq_set_type); 689 } 690 if (unmask) 691 unmask_irq(desc); 692 return ret; 693 } 694 695 #ifdef CONFIG_HARDIRQS_SW_RESEND 696 int irq_set_parent(int irq, int parent_irq) 697 { 698 unsigned long flags; 699 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 700 701 if (!desc) 702 return -EINVAL; 703 704 desc->parent_irq = parent_irq; 705 706 irq_put_desc_unlock(desc, flags); 707 return 0; 708 } 709 #endif 710 711 /* 712 * Default primary interrupt handler for threaded interrupts. Is 713 * assigned as primary handler when request_threaded_irq is called 714 * with handler == NULL. Useful for oneshot interrupts. 715 */ 716 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id) 717 { 718 return IRQ_WAKE_THREAD; 719 } 720 721 /* 722 * Primary handler for nested threaded interrupts. Should never be 723 * called. 724 */ 725 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id) 726 { 727 WARN(1, "Primary handler called for nested irq %d\n", irq); 728 return IRQ_NONE; 729 } 730 731 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id) 732 { 733 WARN(1, "Secondary action handler called for irq %d\n", irq); 734 return IRQ_NONE; 735 } 736 737 static int irq_wait_for_interrupt(struct irqaction *action) 738 { 739 set_current_state(TASK_INTERRUPTIBLE); 740 741 while (!kthread_should_stop()) { 742 743 if (test_and_clear_bit(IRQTF_RUNTHREAD, 744 &action->thread_flags)) { 745 __set_current_state(TASK_RUNNING); 746 return 0; 747 } 748 schedule(); 749 set_current_state(TASK_INTERRUPTIBLE); 750 } 751 __set_current_state(TASK_RUNNING); 752 return -1; 753 } 754 755 /* 756 * Oneshot interrupts keep the irq line masked until the threaded 757 * handler finished. unmask if the interrupt has not been disabled and 758 * is marked MASKED. 759 */ 760 static void irq_finalize_oneshot(struct irq_desc *desc, 761 struct irqaction *action) 762 { 763 if (!(desc->istate & IRQS_ONESHOT) || 764 action->handler == irq_forced_secondary_handler) 765 return; 766 again: 767 chip_bus_lock(desc); 768 raw_spin_lock_irq(&desc->lock); 769 770 /* 771 * Implausible though it may be we need to protect us against 772 * the following scenario: 773 * 774 * The thread is faster done than the hard interrupt handler 775 * on the other CPU. If we unmask the irq line then the 776 * interrupt can come in again and masks the line, leaves due 777 * to IRQS_INPROGRESS and the irq line is masked forever. 778 * 779 * This also serializes the state of shared oneshot handlers 780 * versus "desc->threads_onehsot |= action->thread_mask;" in 781 * irq_wake_thread(). See the comment there which explains the 782 * serialization. 783 */ 784 if (unlikely(irqd_irq_inprogress(&desc->irq_data))) { 785 raw_spin_unlock_irq(&desc->lock); 786 chip_bus_sync_unlock(desc); 787 cpu_relax(); 788 goto again; 789 } 790 791 /* 792 * Now check again, whether the thread should run. Otherwise 793 * we would clear the threads_oneshot bit of this thread which 794 * was just set. 795 */ 796 if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags)) 797 goto out_unlock; 798 799 desc->threads_oneshot &= ~action->thread_mask; 800 801 if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) && 802 irqd_irq_masked(&desc->irq_data)) 803 unmask_threaded_irq(desc); 804 805 out_unlock: 806 raw_spin_unlock_irq(&desc->lock); 807 chip_bus_sync_unlock(desc); 808 } 809 810 #ifdef CONFIG_SMP 811 /* 812 * Check whether we need to change the affinity of the interrupt thread. 813 */ 814 static void 815 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) 816 { 817 cpumask_var_t mask; 818 bool valid = true; 819 820 if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags)) 821 return; 822 823 /* 824 * In case we are out of memory we set IRQTF_AFFINITY again and 825 * try again next time 826 */ 827 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) { 828 set_bit(IRQTF_AFFINITY, &action->thread_flags); 829 return; 830 } 831 832 raw_spin_lock_irq(&desc->lock); 833 /* 834 * This code is triggered unconditionally. Check the affinity 835 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out. 836 */ 837 if (desc->irq_common_data.affinity) 838 cpumask_copy(mask, desc->irq_common_data.affinity); 839 else 840 valid = false; 841 raw_spin_unlock_irq(&desc->lock); 842 843 if (valid) 844 set_cpus_allowed_ptr(current, mask); 845 free_cpumask_var(mask); 846 } 847 #else 848 static inline void 849 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { } 850 #endif 851 852 /* 853 * Interrupts which are not explicitely requested as threaded 854 * interrupts rely on the implicit bh/preempt disable of the hard irq 855 * context. So we need to disable bh here to avoid deadlocks and other 856 * side effects. 857 */ 858 static irqreturn_t 859 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action) 860 { 861 irqreturn_t ret; 862 863 local_bh_disable(); 864 ret = action->thread_fn(action->irq, action->dev_id); 865 irq_finalize_oneshot(desc, action); 866 local_bh_enable(); 867 return ret; 868 } 869 870 /* 871 * Interrupts explicitly requested as threaded interrupts want to be 872 * preemtible - many of them need to sleep and wait for slow busses to 873 * complete. 874 */ 875 static irqreturn_t irq_thread_fn(struct irq_desc *desc, 876 struct irqaction *action) 877 { 878 irqreturn_t ret; 879 880 ret = action->thread_fn(action->irq, action->dev_id); 881 irq_finalize_oneshot(desc, action); 882 return ret; 883 } 884 885 static void wake_threads_waitq(struct irq_desc *desc) 886 { 887 if (atomic_dec_and_test(&desc->threads_active)) 888 wake_up(&desc->wait_for_threads); 889 } 890 891 static void irq_thread_dtor(struct callback_head *unused) 892 { 893 struct task_struct *tsk = current; 894 struct irq_desc *desc; 895 struct irqaction *action; 896 897 if (WARN_ON_ONCE(!(current->flags & PF_EXITING))) 898 return; 899 900 action = kthread_data(tsk); 901 902 pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n", 903 tsk->comm, tsk->pid, action->irq); 904 905 906 desc = irq_to_desc(action->irq); 907 /* 908 * If IRQTF_RUNTHREAD is set, we need to decrement 909 * desc->threads_active and wake possible waiters. 910 */ 911 if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags)) 912 wake_threads_waitq(desc); 913 914 /* Prevent a stale desc->threads_oneshot */ 915 irq_finalize_oneshot(desc, action); 916 } 917 918 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action) 919 { 920 struct irqaction *secondary = action->secondary; 921 922 if (WARN_ON_ONCE(!secondary)) 923 return; 924 925 raw_spin_lock_irq(&desc->lock); 926 __irq_wake_thread(desc, secondary); 927 raw_spin_unlock_irq(&desc->lock); 928 } 929 930 /* 931 * Interrupt handler thread 932 */ 933 static int irq_thread(void *data) 934 { 935 struct callback_head on_exit_work; 936 struct irqaction *action = data; 937 struct irq_desc *desc = irq_to_desc(action->irq); 938 irqreturn_t (*handler_fn)(struct irq_desc *desc, 939 struct irqaction *action); 940 941 if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD, 942 &action->thread_flags)) 943 handler_fn = irq_forced_thread_fn; 944 else 945 handler_fn = irq_thread_fn; 946 947 init_task_work(&on_exit_work, irq_thread_dtor); 948 task_work_add(current, &on_exit_work, false); 949 950 irq_thread_check_affinity(desc, action); 951 952 while (!irq_wait_for_interrupt(action)) { 953 irqreturn_t action_ret; 954 955 irq_thread_check_affinity(desc, action); 956 957 action_ret = handler_fn(desc, action); 958 if (action_ret == IRQ_HANDLED) 959 atomic_inc(&desc->threads_handled); 960 if (action_ret == IRQ_WAKE_THREAD) 961 irq_wake_secondary(desc, action); 962 963 wake_threads_waitq(desc); 964 } 965 966 /* 967 * This is the regular exit path. __free_irq() is stopping the 968 * thread via kthread_stop() after calling 969 * synchronize_irq(). So neither IRQTF_RUNTHREAD nor the 970 * oneshot mask bit can be set. We cannot verify that as we 971 * cannot touch the oneshot mask at this point anymore as 972 * __setup_irq() might have given out currents thread_mask 973 * again. 974 */ 975 task_work_cancel(current, irq_thread_dtor); 976 return 0; 977 } 978 979 /** 980 * irq_wake_thread - wake the irq thread for the action identified by dev_id 981 * @irq: Interrupt line 982 * @dev_id: Device identity for which the thread should be woken 983 * 984 */ 985 void irq_wake_thread(unsigned int irq, void *dev_id) 986 { 987 struct irq_desc *desc = irq_to_desc(irq); 988 struct irqaction *action; 989 unsigned long flags; 990 991 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc))) 992 return; 993 994 raw_spin_lock_irqsave(&desc->lock, flags); 995 for_each_action_of_desc(desc, action) { 996 if (action->dev_id == dev_id) { 997 if (action->thread) 998 __irq_wake_thread(desc, action); 999 break; 1000 } 1001 } 1002 raw_spin_unlock_irqrestore(&desc->lock, flags); 1003 } 1004 EXPORT_SYMBOL_GPL(irq_wake_thread); 1005 1006 static int irq_setup_forced_threading(struct irqaction *new) 1007 { 1008 if (!force_irqthreads) 1009 return 0; 1010 if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT)) 1011 return 0; 1012 1013 new->flags |= IRQF_ONESHOT; 1014 1015 /* 1016 * Handle the case where we have a real primary handler and a 1017 * thread handler. We force thread them as well by creating a 1018 * secondary action. 1019 */ 1020 if (new->handler != irq_default_primary_handler && new->thread_fn) { 1021 /* Allocate the secondary action */ 1022 new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 1023 if (!new->secondary) 1024 return -ENOMEM; 1025 new->secondary->handler = irq_forced_secondary_handler; 1026 new->secondary->thread_fn = new->thread_fn; 1027 new->secondary->dev_id = new->dev_id; 1028 new->secondary->irq = new->irq; 1029 new->secondary->name = new->name; 1030 } 1031 /* Deal with the primary handler */ 1032 set_bit(IRQTF_FORCED_THREAD, &new->thread_flags); 1033 new->thread_fn = new->handler; 1034 new->handler = irq_default_primary_handler; 1035 return 0; 1036 } 1037 1038 static int irq_request_resources(struct irq_desc *desc) 1039 { 1040 struct irq_data *d = &desc->irq_data; 1041 struct irq_chip *c = d->chip; 1042 1043 return c->irq_request_resources ? c->irq_request_resources(d) : 0; 1044 } 1045 1046 static void irq_release_resources(struct irq_desc *desc) 1047 { 1048 struct irq_data *d = &desc->irq_data; 1049 struct irq_chip *c = d->chip; 1050 1051 if (c->irq_release_resources) 1052 c->irq_release_resources(d); 1053 } 1054 1055 static int 1056 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary) 1057 { 1058 struct task_struct *t; 1059 struct sched_param param = { 1060 .sched_priority = MAX_USER_RT_PRIO/2, 1061 }; 1062 1063 if (!secondary) { 1064 t = kthread_create(irq_thread, new, "irq/%d-%s", irq, 1065 new->name); 1066 } else { 1067 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq, 1068 new->name); 1069 param.sched_priority -= 1; 1070 } 1071 1072 if (IS_ERR(t)) 1073 return PTR_ERR(t); 1074 1075 sched_setscheduler_nocheck(t, SCHED_FIFO, ¶m); 1076 1077 /* 1078 * We keep the reference to the task struct even if 1079 * the thread dies to avoid that the interrupt code 1080 * references an already freed task_struct. 1081 */ 1082 get_task_struct(t); 1083 new->thread = t; 1084 /* 1085 * Tell the thread to set its affinity. This is 1086 * important for shared interrupt handlers as we do 1087 * not invoke setup_affinity() for the secondary 1088 * handlers as everything is already set up. Even for 1089 * interrupts marked with IRQF_NO_BALANCE this is 1090 * correct as we want the thread to move to the cpu(s) 1091 * on which the requesting code placed the interrupt. 1092 */ 1093 set_bit(IRQTF_AFFINITY, &new->thread_flags); 1094 return 0; 1095 } 1096 1097 /* 1098 * Internal function to register an irqaction - typically used to 1099 * allocate special interrupts that are part of the architecture. 1100 */ 1101 static int 1102 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new) 1103 { 1104 struct irqaction *old, **old_ptr; 1105 unsigned long flags, thread_mask = 0; 1106 int ret, nested, shared = 0; 1107 cpumask_var_t mask; 1108 1109 if (!desc) 1110 return -EINVAL; 1111 1112 if (desc->irq_data.chip == &no_irq_chip) 1113 return -ENOSYS; 1114 if (!try_module_get(desc->owner)) 1115 return -ENODEV; 1116 1117 new->irq = irq; 1118 1119 /* 1120 * Check whether the interrupt nests into another interrupt 1121 * thread. 1122 */ 1123 nested = irq_settings_is_nested_thread(desc); 1124 if (nested) { 1125 if (!new->thread_fn) { 1126 ret = -EINVAL; 1127 goto out_mput; 1128 } 1129 /* 1130 * Replace the primary handler which was provided from 1131 * the driver for non nested interrupt handling by the 1132 * dummy function which warns when called. 1133 */ 1134 new->handler = irq_nested_primary_handler; 1135 } else { 1136 if (irq_settings_can_thread(desc)) { 1137 ret = irq_setup_forced_threading(new); 1138 if (ret) 1139 goto out_mput; 1140 } 1141 } 1142 1143 /* 1144 * Create a handler thread when a thread function is supplied 1145 * and the interrupt does not nest into another interrupt 1146 * thread. 1147 */ 1148 if (new->thread_fn && !nested) { 1149 ret = setup_irq_thread(new, irq, false); 1150 if (ret) 1151 goto out_mput; 1152 if (new->secondary) { 1153 ret = setup_irq_thread(new->secondary, irq, true); 1154 if (ret) 1155 goto out_thread; 1156 } 1157 } 1158 1159 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) { 1160 ret = -ENOMEM; 1161 goto out_thread; 1162 } 1163 1164 /* 1165 * Drivers are often written to work w/o knowledge about the 1166 * underlying irq chip implementation, so a request for a 1167 * threaded irq without a primary hard irq context handler 1168 * requires the ONESHOT flag to be set. Some irq chips like 1169 * MSI based interrupts are per se one shot safe. Check the 1170 * chip flags, so we can avoid the unmask dance at the end of 1171 * the threaded handler for those. 1172 */ 1173 if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE) 1174 new->flags &= ~IRQF_ONESHOT; 1175 1176 /* 1177 * The following block of code has to be executed atomically 1178 */ 1179 raw_spin_lock_irqsave(&desc->lock, flags); 1180 old_ptr = &desc->action; 1181 old = *old_ptr; 1182 if (old) { 1183 /* 1184 * Can't share interrupts unless both agree to and are 1185 * the same type (level, edge, polarity). So both flag 1186 * fields must have IRQF_SHARED set and the bits which 1187 * set the trigger type must match. Also all must 1188 * agree on ONESHOT. 1189 */ 1190 if (!((old->flags & new->flags) & IRQF_SHARED) || 1191 ((old->flags ^ new->flags) & IRQF_TRIGGER_MASK) || 1192 ((old->flags ^ new->flags) & IRQF_ONESHOT)) 1193 goto mismatch; 1194 1195 /* All handlers must agree on per-cpuness */ 1196 if ((old->flags & IRQF_PERCPU) != 1197 (new->flags & IRQF_PERCPU)) 1198 goto mismatch; 1199 1200 /* add new interrupt at end of irq queue */ 1201 do { 1202 /* 1203 * Or all existing action->thread_mask bits, 1204 * so we can find the next zero bit for this 1205 * new action. 1206 */ 1207 thread_mask |= old->thread_mask; 1208 old_ptr = &old->next; 1209 old = *old_ptr; 1210 } while (old); 1211 shared = 1; 1212 } 1213 1214 /* 1215 * Setup the thread mask for this irqaction for ONESHOT. For 1216 * !ONESHOT irqs the thread mask is 0 so we can avoid a 1217 * conditional in irq_wake_thread(). 1218 */ 1219 if (new->flags & IRQF_ONESHOT) { 1220 /* 1221 * Unlikely to have 32 resp 64 irqs sharing one line, 1222 * but who knows. 1223 */ 1224 if (thread_mask == ~0UL) { 1225 ret = -EBUSY; 1226 goto out_mask; 1227 } 1228 /* 1229 * The thread_mask for the action is or'ed to 1230 * desc->thread_active to indicate that the 1231 * IRQF_ONESHOT thread handler has been woken, but not 1232 * yet finished. The bit is cleared when a thread 1233 * completes. When all threads of a shared interrupt 1234 * line have completed desc->threads_active becomes 1235 * zero and the interrupt line is unmasked. See 1236 * handle.c:irq_wake_thread() for further information. 1237 * 1238 * If no thread is woken by primary (hard irq context) 1239 * interrupt handlers, then desc->threads_active is 1240 * also checked for zero to unmask the irq line in the 1241 * affected hard irq flow handlers 1242 * (handle_[fasteoi|level]_irq). 1243 * 1244 * The new action gets the first zero bit of 1245 * thread_mask assigned. See the loop above which or's 1246 * all existing action->thread_mask bits. 1247 */ 1248 new->thread_mask = 1 << ffz(thread_mask); 1249 1250 } else if (new->handler == irq_default_primary_handler && 1251 !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) { 1252 /* 1253 * The interrupt was requested with handler = NULL, so 1254 * we use the default primary handler for it. But it 1255 * does not have the oneshot flag set. In combination 1256 * with level interrupts this is deadly, because the 1257 * default primary handler just wakes the thread, then 1258 * the irq lines is reenabled, but the device still 1259 * has the level irq asserted. Rinse and repeat.... 1260 * 1261 * While this works for edge type interrupts, we play 1262 * it safe and reject unconditionally because we can't 1263 * say for sure which type this interrupt really 1264 * has. The type flags are unreliable as the 1265 * underlying chip implementation can override them. 1266 */ 1267 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for irq %d\n", 1268 irq); 1269 ret = -EINVAL; 1270 goto out_mask; 1271 } 1272 1273 if (!shared) { 1274 ret = irq_request_resources(desc); 1275 if (ret) { 1276 pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n", 1277 new->name, irq, desc->irq_data.chip->name); 1278 goto out_mask; 1279 } 1280 1281 init_waitqueue_head(&desc->wait_for_threads); 1282 1283 /* Setup the type (level, edge polarity) if configured: */ 1284 if (new->flags & IRQF_TRIGGER_MASK) { 1285 ret = __irq_set_trigger(desc, 1286 new->flags & IRQF_TRIGGER_MASK); 1287 1288 if (ret) 1289 goto out_mask; 1290 } 1291 1292 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \ 1293 IRQS_ONESHOT | IRQS_WAITING); 1294 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS); 1295 1296 if (new->flags & IRQF_PERCPU) { 1297 irqd_set(&desc->irq_data, IRQD_PER_CPU); 1298 irq_settings_set_per_cpu(desc); 1299 } 1300 1301 if (new->flags & IRQF_ONESHOT) 1302 desc->istate |= IRQS_ONESHOT; 1303 1304 if (irq_settings_can_autoenable(desc)) 1305 irq_startup(desc, true); 1306 else 1307 /* Undo nested disables: */ 1308 desc->depth = 1; 1309 1310 /* Exclude IRQ from balancing if requested */ 1311 if (new->flags & IRQF_NOBALANCING) { 1312 irq_settings_set_no_balancing(desc); 1313 irqd_set(&desc->irq_data, IRQD_NO_BALANCING); 1314 } 1315 1316 /* Set default affinity mask once everything is setup */ 1317 setup_affinity(desc, mask); 1318 1319 } else if (new->flags & IRQF_TRIGGER_MASK) { 1320 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK; 1321 unsigned int omsk = irq_settings_get_trigger_mask(desc); 1322 1323 if (nmsk != omsk) 1324 /* hope the handler works with current trigger mode */ 1325 pr_warn("irq %d uses trigger mode %u; requested %u\n", 1326 irq, nmsk, omsk); 1327 } 1328 1329 *old_ptr = new; 1330 1331 irq_pm_install_action(desc, new); 1332 1333 /* Reset broken irq detection when installing new handler */ 1334 desc->irq_count = 0; 1335 desc->irqs_unhandled = 0; 1336 1337 /* 1338 * Check whether we disabled the irq via the spurious handler 1339 * before. Reenable it and give it another chance. 1340 */ 1341 if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) { 1342 desc->istate &= ~IRQS_SPURIOUS_DISABLED; 1343 __enable_irq(desc); 1344 } 1345 1346 raw_spin_unlock_irqrestore(&desc->lock, flags); 1347 1348 /* 1349 * Strictly no need to wake it up, but hung_task complains 1350 * when no hard interrupt wakes the thread up. 1351 */ 1352 if (new->thread) 1353 wake_up_process(new->thread); 1354 if (new->secondary) 1355 wake_up_process(new->secondary->thread); 1356 1357 register_irq_proc(irq, desc); 1358 new->dir = NULL; 1359 register_handler_proc(irq, new); 1360 free_cpumask_var(mask); 1361 1362 return 0; 1363 1364 mismatch: 1365 if (!(new->flags & IRQF_PROBE_SHARED)) { 1366 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n", 1367 irq, new->flags, new->name, old->flags, old->name); 1368 #ifdef CONFIG_DEBUG_SHIRQ 1369 dump_stack(); 1370 #endif 1371 } 1372 ret = -EBUSY; 1373 1374 out_mask: 1375 raw_spin_unlock_irqrestore(&desc->lock, flags); 1376 free_cpumask_var(mask); 1377 1378 out_thread: 1379 if (new->thread) { 1380 struct task_struct *t = new->thread; 1381 1382 new->thread = NULL; 1383 kthread_stop(t); 1384 put_task_struct(t); 1385 } 1386 if (new->secondary && new->secondary->thread) { 1387 struct task_struct *t = new->secondary->thread; 1388 1389 new->secondary->thread = NULL; 1390 kthread_stop(t); 1391 put_task_struct(t); 1392 } 1393 out_mput: 1394 module_put(desc->owner); 1395 return ret; 1396 } 1397 1398 /** 1399 * setup_irq - setup an interrupt 1400 * @irq: Interrupt line to setup 1401 * @act: irqaction for the interrupt 1402 * 1403 * Used to statically setup interrupts in the early boot process. 1404 */ 1405 int setup_irq(unsigned int irq, struct irqaction *act) 1406 { 1407 int retval; 1408 struct irq_desc *desc = irq_to_desc(irq); 1409 1410 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1411 return -EINVAL; 1412 chip_bus_lock(desc); 1413 retval = __setup_irq(irq, desc, act); 1414 chip_bus_sync_unlock(desc); 1415 1416 return retval; 1417 } 1418 EXPORT_SYMBOL_GPL(setup_irq); 1419 1420 /* 1421 * Internal function to unregister an irqaction - used to free 1422 * regular and special interrupts that are part of the architecture. 1423 */ 1424 static struct irqaction *__free_irq(unsigned int irq, void *dev_id) 1425 { 1426 struct irq_desc *desc = irq_to_desc(irq); 1427 struct irqaction *action, **action_ptr; 1428 unsigned long flags; 1429 1430 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq); 1431 1432 if (!desc) 1433 return NULL; 1434 1435 chip_bus_lock(desc); 1436 raw_spin_lock_irqsave(&desc->lock, flags); 1437 1438 /* 1439 * There can be multiple actions per IRQ descriptor, find the right 1440 * one based on the dev_id: 1441 */ 1442 action_ptr = &desc->action; 1443 for (;;) { 1444 action = *action_ptr; 1445 1446 if (!action) { 1447 WARN(1, "Trying to free already-free IRQ %d\n", irq); 1448 raw_spin_unlock_irqrestore(&desc->lock, flags); 1449 chip_bus_sync_unlock(desc); 1450 return NULL; 1451 } 1452 1453 if (action->dev_id == dev_id) 1454 break; 1455 action_ptr = &action->next; 1456 } 1457 1458 /* Found it - now remove it from the list of entries: */ 1459 *action_ptr = action->next; 1460 1461 irq_pm_remove_action(desc, action); 1462 1463 /* If this was the last handler, shut down the IRQ line: */ 1464 if (!desc->action) { 1465 irq_settings_clr_disable_unlazy(desc); 1466 irq_shutdown(desc); 1467 irq_release_resources(desc); 1468 } 1469 1470 #ifdef CONFIG_SMP 1471 /* make sure affinity_hint is cleaned up */ 1472 if (WARN_ON_ONCE(desc->affinity_hint)) 1473 desc->affinity_hint = NULL; 1474 #endif 1475 1476 raw_spin_unlock_irqrestore(&desc->lock, flags); 1477 chip_bus_sync_unlock(desc); 1478 1479 unregister_handler_proc(irq, action); 1480 1481 /* Make sure it's not being used on another CPU: */ 1482 synchronize_irq(irq); 1483 1484 #ifdef CONFIG_DEBUG_SHIRQ 1485 /* 1486 * It's a shared IRQ -- the driver ought to be prepared for an IRQ 1487 * event to happen even now it's being freed, so let's make sure that 1488 * is so by doing an extra call to the handler .... 1489 * 1490 * ( We do this after actually deregistering it, to make sure that a 1491 * 'real' IRQ doesn't run in * parallel with our fake. ) 1492 */ 1493 if (action->flags & IRQF_SHARED) { 1494 local_irq_save(flags); 1495 action->handler(irq, dev_id); 1496 local_irq_restore(flags); 1497 } 1498 #endif 1499 1500 if (action->thread) { 1501 kthread_stop(action->thread); 1502 put_task_struct(action->thread); 1503 if (action->secondary && action->secondary->thread) { 1504 kthread_stop(action->secondary->thread); 1505 put_task_struct(action->secondary->thread); 1506 } 1507 } 1508 1509 module_put(desc->owner); 1510 kfree(action->secondary); 1511 return action; 1512 } 1513 1514 /** 1515 * remove_irq - free an interrupt 1516 * @irq: Interrupt line to free 1517 * @act: irqaction for the interrupt 1518 * 1519 * Used to remove interrupts statically setup by the early boot process. 1520 */ 1521 void remove_irq(unsigned int irq, struct irqaction *act) 1522 { 1523 struct irq_desc *desc = irq_to_desc(irq); 1524 1525 if (desc && !WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1526 __free_irq(irq, act->dev_id); 1527 } 1528 EXPORT_SYMBOL_GPL(remove_irq); 1529 1530 /** 1531 * free_irq - free an interrupt allocated with request_irq 1532 * @irq: Interrupt line to free 1533 * @dev_id: Device identity to free 1534 * 1535 * Remove an interrupt handler. The handler is removed and if the 1536 * interrupt line is no longer in use by any driver it is disabled. 1537 * On a shared IRQ the caller must ensure the interrupt is disabled 1538 * on the card it drives before calling this function. The function 1539 * does not return until any executing interrupts for this IRQ 1540 * have completed. 1541 * 1542 * This function must not be called from interrupt context. 1543 */ 1544 void free_irq(unsigned int irq, void *dev_id) 1545 { 1546 struct irq_desc *desc = irq_to_desc(irq); 1547 1548 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1549 return; 1550 1551 #ifdef CONFIG_SMP 1552 if (WARN_ON(desc->affinity_notify)) 1553 desc->affinity_notify = NULL; 1554 #endif 1555 1556 kfree(__free_irq(irq, dev_id)); 1557 } 1558 EXPORT_SYMBOL(free_irq); 1559 1560 /** 1561 * request_threaded_irq - allocate an interrupt line 1562 * @irq: Interrupt line to allocate 1563 * @handler: Function to be called when the IRQ occurs. 1564 * Primary handler for threaded interrupts 1565 * If NULL and thread_fn != NULL the default 1566 * primary handler is installed 1567 * @thread_fn: Function called from the irq handler thread 1568 * If NULL, no irq thread is created 1569 * @irqflags: Interrupt type flags 1570 * @devname: An ascii name for the claiming device 1571 * @dev_id: A cookie passed back to the handler function 1572 * 1573 * This call allocates interrupt resources and enables the 1574 * interrupt line and IRQ handling. From the point this 1575 * call is made your handler function may be invoked. Since 1576 * your handler function must clear any interrupt the board 1577 * raises, you must take care both to initialise your hardware 1578 * and to set up the interrupt handler in the right order. 1579 * 1580 * If you want to set up a threaded irq handler for your device 1581 * then you need to supply @handler and @thread_fn. @handler is 1582 * still called in hard interrupt context and has to check 1583 * whether the interrupt originates from the device. If yes it 1584 * needs to disable the interrupt on the device and return 1585 * IRQ_WAKE_THREAD which will wake up the handler thread and run 1586 * @thread_fn. This split handler design is necessary to support 1587 * shared interrupts. 1588 * 1589 * Dev_id must be globally unique. Normally the address of the 1590 * device data structure is used as the cookie. Since the handler 1591 * receives this value it makes sense to use it. 1592 * 1593 * If your interrupt is shared you must pass a non NULL dev_id 1594 * as this is required when freeing the interrupt. 1595 * 1596 * Flags: 1597 * 1598 * IRQF_SHARED Interrupt is shared 1599 * IRQF_TRIGGER_* Specify active edge(s) or level 1600 * 1601 */ 1602 int request_threaded_irq(unsigned int irq, irq_handler_t handler, 1603 irq_handler_t thread_fn, unsigned long irqflags, 1604 const char *devname, void *dev_id) 1605 { 1606 struct irqaction *action; 1607 struct irq_desc *desc; 1608 int retval; 1609 1610 if (irq == IRQ_NOTCONNECTED) 1611 return -ENOTCONN; 1612 1613 /* 1614 * Sanity-check: shared interrupts must pass in a real dev-ID, 1615 * otherwise we'll have trouble later trying to figure out 1616 * which interrupt is which (messes up the interrupt freeing 1617 * logic etc). 1618 * 1619 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and 1620 * it cannot be set along with IRQF_NO_SUSPEND. 1621 */ 1622 if (((irqflags & IRQF_SHARED) && !dev_id) || 1623 (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) || 1624 ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND))) 1625 return -EINVAL; 1626 1627 desc = irq_to_desc(irq); 1628 if (!desc) 1629 return -EINVAL; 1630 1631 if (!irq_settings_can_request(desc) || 1632 WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1633 return -EINVAL; 1634 1635 if (!handler) { 1636 if (!thread_fn) 1637 return -EINVAL; 1638 handler = irq_default_primary_handler; 1639 } 1640 1641 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 1642 if (!action) 1643 return -ENOMEM; 1644 1645 action->handler = handler; 1646 action->thread_fn = thread_fn; 1647 action->flags = irqflags; 1648 action->name = devname; 1649 action->dev_id = dev_id; 1650 1651 chip_bus_lock(desc); 1652 retval = __setup_irq(irq, desc, action); 1653 chip_bus_sync_unlock(desc); 1654 1655 if (retval) { 1656 kfree(action->secondary); 1657 kfree(action); 1658 } 1659 1660 #ifdef CONFIG_DEBUG_SHIRQ_FIXME 1661 if (!retval && (irqflags & IRQF_SHARED)) { 1662 /* 1663 * It's a shared IRQ -- the driver ought to be prepared for it 1664 * to happen immediately, so let's make sure.... 1665 * We disable the irq to make sure that a 'real' IRQ doesn't 1666 * run in parallel with our fake. 1667 */ 1668 unsigned long flags; 1669 1670 disable_irq(irq); 1671 local_irq_save(flags); 1672 1673 handler(irq, dev_id); 1674 1675 local_irq_restore(flags); 1676 enable_irq(irq); 1677 } 1678 #endif 1679 return retval; 1680 } 1681 EXPORT_SYMBOL(request_threaded_irq); 1682 1683 /** 1684 * request_any_context_irq - allocate an interrupt line 1685 * @irq: Interrupt line to allocate 1686 * @handler: Function to be called when the IRQ occurs. 1687 * Threaded handler for threaded interrupts. 1688 * @flags: Interrupt type flags 1689 * @name: An ascii name for the claiming device 1690 * @dev_id: A cookie passed back to the handler function 1691 * 1692 * This call allocates interrupt resources and enables the 1693 * interrupt line and IRQ handling. It selects either a 1694 * hardirq or threaded handling method depending on the 1695 * context. 1696 * 1697 * On failure, it returns a negative value. On success, 1698 * it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED. 1699 */ 1700 int request_any_context_irq(unsigned int irq, irq_handler_t handler, 1701 unsigned long flags, const char *name, void *dev_id) 1702 { 1703 struct irq_desc *desc; 1704 int ret; 1705 1706 if (irq == IRQ_NOTCONNECTED) 1707 return -ENOTCONN; 1708 1709 desc = irq_to_desc(irq); 1710 if (!desc) 1711 return -EINVAL; 1712 1713 if (irq_settings_is_nested_thread(desc)) { 1714 ret = request_threaded_irq(irq, NULL, handler, 1715 flags, name, dev_id); 1716 return !ret ? IRQC_IS_NESTED : ret; 1717 } 1718 1719 ret = request_irq(irq, handler, flags, name, dev_id); 1720 return !ret ? IRQC_IS_HARDIRQ : ret; 1721 } 1722 EXPORT_SYMBOL_GPL(request_any_context_irq); 1723 1724 void enable_percpu_irq(unsigned int irq, unsigned int type) 1725 { 1726 unsigned int cpu = smp_processor_id(); 1727 unsigned long flags; 1728 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 1729 1730 if (!desc) 1731 return; 1732 1733 type &= IRQ_TYPE_SENSE_MASK; 1734 if (type != IRQ_TYPE_NONE) { 1735 int ret; 1736 1737 ret = __irq_set_trigger(desc, type); 1738 1739 if (ret) { 1740 WARN(1, "failed to set type for IRQ%d\n", irq); 1741 goto out; 1742 } 1743 } 1744 1745 irq_percpu_enable(desc, cpu); 1746 out: 1747 irq_put_desc_unlock(desc, flags); 1748 } 1749 EXPORT_SYMBOL_GPL(enable_percpu_irq); 1750 1751 /** 1752 * irq_percpu_is_enabled - Check whether the per cpu irq is enabled 1753 * @irq: Linux irq number to check for 1754 * 1755 * Must be called from a non migratable context. Returns the enable 1756 * state of a per cpu interrupt on the current cpu. 1757 */ 1758 bool irq_percpu_is_enabled(unsigned int irq) 1759 { 1760 unsigned int cpu = smp_processor_id(); 1761 struct irq_desc *desc; 1762 unsigned long flags; 1763 bool is_enabled; 1764 1765 desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 1766 if (!desc) 1767 return false; 1768 1769 is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled); 1770 irq_put_desc_unlock(desc, flags); 1771 1772 return is_enabled; 1773 } 1774 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled); 1775 1776 void disable_percpu_irq(unsigned int irq) 1777 { 1778 unsigned int cpu = smp_processor_id(); 1779 unsigned long flags; 1780 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 1781 1782 if (!desc) 1783 return; 1784 1785 irq_percpu_disable(desc, cpu); 1786 irq_put_desc_unlock(desc, flags); 1787 } 1788 EXPORT_SYMBOL_GPL(disable_percpu_irq); 1789 1790 /* 1791 * Internal function to unregister a percpu irqaction. 1792 */ 1793 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id) 1794 { 1795 struct irq_desc *desc = irq_to_desc(irq); 1796 struct irqaction *action; 1797 unsigned long flags; 1798 1799 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq); 1800 1801 if (!desc) 1802 return NULL; 1803 1804 raw_spin_lock_irqsave(&desc->lock, flags); 1805 1806 action = desc->action; 1807 if (!action || action->percpu_dev_id != dev_id) { 1808 WARN(1, "Trying to free already-free IRQ %d\n", irq); 1809 goto bad; 1810 } 1811 1812 if (!cpumask_empty(desc->percpu_enabled)) { 1813 WARN(1, "percpu IRQ %d still enabled on CPU%d!\n", 1814 irq, cpumask_first(desc->percpu_enabled)); 1815 goto bad; 1816 } 1817 1818 /* Found it - now remove it from the list of entries: */ 1819 desc->action = NULL; 1820 1821 raw_spin_unlock_irqrestore(&desc->lock, flags); 1822 1823 unregister_handler_proc(irq, action); 1824 1825 module_put(desc->owner); 1826 return action; 1827 1828 bad: 1829 raw_spin_unlock_irqrestore(&desc->lock, flags); 1830 return NULL; 1831 } 1832 1833 /** 1834 * remove_percpu_irq - free a per-cpu interrupt 1835 * @irq: Interrupt line to free 1836 * @act: irqaction for the interrupt 1837 * 1838 * Used to remove interrupts statically setup by the early boot process. 1839 */ 1840 void remove_percpu_irq(unsigned int irq, struct irqaction *act) 1841 { 1842 struct irq_desc *desc = irq_to_desc(irq); 1843 1844 if (desc && irq_settings_is_per_cpu_devid(desc)) 1845 __free_percpu_irq(irq, act->percpu_dev_id); 1846 } 1847 1848 /** 1849 * free_percpu_irq - free an interrupt allocated with request_percpu_irq 1850 * @irq: Interrupt line to free 1851 * @dev_id: Device identity to free 1852 * 1853 * Remove a percpu interrupt handler. The handler is removed, but 1854 * the interrupt line is not disabled. This must be done on each 1855 * CPU before calling this function. The function does not return 1856 * until any executing interrupts for this IRQ have completed. 1857 * 1858 * This function must not be called from interrupt context. 1859 */ 1860 void free_percpu_irq(unsigned int irq, void __percpu *dev_id) 1861 { 1862 struct irq_desc *desc = irq_to_desc(irq); 1863 1864 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 1865 return; 1866 1867 chip_bus_lock(desc); 1868 kfree(__free_percpu_irq(irq, dev_id)); 1869 chip_bus_sync_unlock(desc); 1870 } 1871 EXPORT_SYMBOL_GPL(free_percpu_irq); 1872 1873 /** 1874 * setup_percpu_irq - setup a per-cpu interrupt 1875 * @irq: Interrupt line to setup 1876 * @act: irqaction for the interrupt 1877 * 1878 * Used to statically setup per-cpu interrupts in the early boot process. 1879 */ 1880 int setup_percpu_irq(unsigned int irq, struct irqaction *act) 1881 { 1882 struct irq_desc *desc = irq_to_desc(irq); 1883 int retval; 1884 1885 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 1886 return -EINVAL; 1887 chip_bus_lock(desc); 1888 retval = __setup_irq(irq, desc, act); 1889 chip_bus_sync_unlock(desc); 1890 1891 return retval; 1892 } 1893 1894 /** 1895 * request_percpu_irq - allocate a percpu interrupt line 1896 * @irq: Interrupt line to allocate 1897 * @handler: Function to be called when the IRQ occurs. 1898 * @devname: An ascii name for the claiming device 1899 * @dev_id: A percpu cookie passed back to the handler function 1900 * 1901 * This call allocates interrupt resources and enables the 1902 * interrupt on the local CPU. If the interrupt is supposed to be 1903 * enabled on other CPUs, it has to be done on each CPU using 1904 * enable_percpu_irq(). 1905 * 1906 * Dev_id must be globally unique. It is a per-cpu variable, and 1907 * the handler gets called with the interrupted CPU's instance of 1908 * that variable. 1909 */ 1910 int request_percpu_irq(unsigned int irq, irq_handler_t handler, 1911 const char *devname, void __percpu *dev_id) 1912 { 1913 struct irqaction *action; 1914 struct irq_desc *desc; 1915 int retval; 1916 1917 if (!dev_id) 1918 return -EINVAL; 1919 1920 desc = irq_to_desc(irq); 1921 if (!desc || !irq_settings_can_request(desc) || 1922 !irq_settings_is_per_cpu_devid(desc)) 1923 return -EINVAL; 1924 1925 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 1926 if (!action) 1927 return -ENOMEM; 1928 1929 action->handler = handler; 1930 action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND; 1931 action->name = devname; 1932 action->percpu_dev_id = dev_id; 1933 1934 chip_bus_lock(desc); 1935 retval = __setup_irq(irq, desc, action); 1936 chip_bus_sync_unlock(desc); 1937 1938 if (retval) 1939 kfree(action); 1940 1941 return retval; 1942 } 1943 EXPORT_SYMBOL_GPL(request_percpu_irq); 1944 1945 /** 1946 * irq_get_irqchip_state - returns the irqchip state of a interrupt. 1947 * @irq: Interrupt line that is forwarded to a VM 1948 * @which: One of IRQCHIP_STATE_* the caller wants to know about 1949 * @state: a pointer to a boolean where the state is to be storeed 1950 * 1951 * This call snapshots the internal irqchip state of an 1952 * interrupt, returning into @state the bit corresponding to 1953 * stage @which 1954 * 1955 * This function should be called with preemption disabled if the 1956 * interrupt controller has per-cpu registers. 1957 */ 1958 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which, 1959 bool *state) 1960 { 1961 struct irq_desc *desc; 1962 struct irq_data *data; 1963 struct irq_chip *chip; 1964 unsigned long flags; 1965 int err = -EINVAL; 1966 1967 desc = irq_get_desc_buslock(irq, &flags, 0); 1968 if (!desc) 1969 return err; 1970 1971 data = irq_desc_get_irq_data(desc); 1972 1973 do { 1974 chip = irq_data_get_irq_chip(data); 1975 if (chip->irq_get_irqchip_state) 1976 break; 1977 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 1978 data = data->parent_data; 1979 #else 1980 data = NULL; 1981 #endif 1982 } while (data); 1983 1984 if (data) 1985 err = chip->irq_get_irqchip_state(data, which, state); 1986 1987 irq_put_desc_busunlock(desc, flags); 1988 return err; 1989 } 1990 EXPORT_SYMBOL_GPL(irq_get_irqchip_state); 1991 1992 /** 1993 * irq_set_irqchip_state - set the state of a forwarded interrupt. 1994 * @irq: Interrupt line that is forwarded to a VM 1995 * @which: State to be restored (one of IRQCHIP_STATE_*) 1996 * @val: Value corresponding to @which 1997 * 1998 * This call sets the internal irqchip state of an interrupt, 1999 * depending on the value of @which. 2000 * 2001 * This function should be called with preemption disabled if the 2002 * interrupt controller has per-cpu registers. 2003 */ 2004 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which, 2005 bool val) 2006 { 2007 struct irq_desc *desc; 2008 struct irq_data *data; 2009 struct irq_chip *chip; 2010 unsigned long flags; 2011 int err = -EINVAL; 2012 2013 desc = irq_get_desc_buslock(irq, &flags, 0); 2014 if (!desc) 2015 return err; 2016 2017 data = irq_desc_get_irq_data(desc); 2018 2019 do { 2020 chip = irq_data_get_irq_chip(data); 2021 if (chip->irq_set_irqchip_state) 2022 break; 2023 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 2024 data = data->parent_data; 2025 #else 2026 data = NULL; 2027 #endif 2028 } while (data); 2029 2030 if (data) 2031 err = chip->irq_set_irqchip_state(data, which, val); 2032 2033 irq_put_desc_busunlock(desc, flags); 2034 return err; 2035 } 2036 EXPORT_SYMBOL_GPL(irq_set_irqchip_state); 2037