1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar 4 * Copyright (C) 2005-2006 Thomas Gleixner 5 * 6 * This file contains driver APIs to the irq subsystem. 7 */ 8 9 #define pr_fmt(fmt) "genirq: " fmt 10 11 #include <linux/irq.h> 12 #include <linux/kthread.h> 13 #include <linux/module.h> 14 #include <linux/random.h> 15 #include <linux/interrupt.h> 16 #include <linux/irqdomain.h> 17 #include <linux/slab.h> 18 #include <linux/sched.h> 19 #include <linux/sched/rt.h> 20 #include <linux/sched/task.h> 21 #include <linux/sched/isolation.h> 22 #include <uapi/linux/sched/types.h> 23 #include <linux/task_work.h> 24 25 #include "internals.h" 26 27 #if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT) 28 __read_mostly bool force_irqthreads; 29 EXPORT_SYMBOL_GPL(force_irqthreads); 30 31 static int __init setup_forced_irqthreads(char *arg) 32 { 33 force_irqthreads = true; 34 return 0; 35 } 36 early_param("threadirqs", setup_forced_irqthreads); 37 #endif 38 39 static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip) 40 { 41 struct irq_data *irqd = irq_desc_get_irq_data(desc); 42 bool inprogress; 43 44 do { 45 unsigned long flags; 46 47 /* 48 * Wait until we're out of the critical section. This might 49 * give the wrong answer due to the lack of memory barriers. 50 */ 51 while (irqd_irq_inprogress(&desc->irq_data)) 52 cpu_relax(); 53 54 /* Ok, that indicated we're done: double-check carefully. */ 55 raw_spin_lock_irqsave(&desc->lock, flags); 56 inprogress = irqd_irq_inprogress(&desc->irq_data); 57 58 /* 59 * If requested and supported, check at the chip whether it 60 * is in flight at the hardware level, i.e. already pending 61 * in a CPU and waiting for service and acknowledge. 62 */ 63 if (!inprogress && sync_chip) { 64 /* 65 * Ignore the return code. inprogress is only updated 66 * when the chip supports it. 67 */ 68 __irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE, 69 &inprogress); 70 } 71 raw_spin_unlock_irqrestore(&desc->lock, flags); 72 73 /* Oops, that failed? */ 74 } while (inprogress); 75 } 76 77 /** 78 * synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs) 79 * @irq: interrupt number to wait for 80 * 81 * This function waits for any pending hard IRQ handlers for this 82 * interrupt to complete before returning. If you use this 83 * function while holding a resource the IRQ handler may need you 84 * will deadlock. It does not take associated threaded handlers 85 * into account. 86 * 87 * Do not use this for shutdown scenarios where you must be sure 88 * that all parts (hardirq and threaded handler) have completed. 89 * 90 * Returns: false if a threaded handler is active. 91 * 92 * This function may be called - with care - from IRQ context. 93 * 94 * It does not check whether there is an interrupt in flight at the 95 * hardware level, but not serviced yet, as this might deadlock when 96 * called with interrupts disabled and the target CPU of the interrupt 97 * is the current CPU. 98 */ 99 bool synchronize_hardirq(unsigned int irq) 100 { 101 struct irq_desc *desc = irq_to_desc(irq); 102 103 if (desc) { 104 __synchronize_hardirq(desc, false); 105 return !atomic_read(&desc->threads_active); 106 } 107 108 return true; 109 } 110 EXPORT_SYMBOL(synchronize_hardirq); 111 112 /** 113 * synchronize_irq - wait for pending IRQ handlers (on other CPUs) 114 * @irq: interrupt number to wait for 115 * 116 * This function waits for any pending IRQ handlers for this interrupt 117 * to complete before returning. If you use this function while 118 * holding a resource the IRQ handler may need you will deadlock. 119 * 120 * Can only be called from preemptible code as it might sleep when 121 * an interrupt thread is associated to @irq. 122 * 123 * It optionally makes sure (when the irq chip supports that method) 124 * that the interrupt is not pending in any CPU and waiting for 125 * service. 126 */ 127 void synchronize_irq(unsigned int irq) 128 { 129 struct irq_desc *desc = irq_to_desc(irq); 130 131 if (desc) { 132 __synchronize_hardirq(desc, true); 133 /* 134 * We made sure that no hardirq handler is 135 * running. Now verify that no threaded handlers are 136 * active. 137 */ 138 wait_event(desc->wait_for_threads, 139 !atomic_read(&desc->threads_active)); 140 } 141 } 142 EXPORT_SYMBOL(synchronize_irq); 143 144 #ifdef CONFIG_SMP 145 cpumask_var_t irq_default_affinity; 146 147 static bool __irq_can_set_affinity(struct irq_desc *desc) 148 { 149 if (!desc || !irqd_can_balance(&desc->irq_data) || 150 !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity) 151 return false; 152 return true; 153 } 154 155 /** 156 * irq_can_set_affinity - Check if the affinity of a given irq can be set 157 * @irq: Interrupt to check 158 * 159 */ 160 int irq_can_set_affinity(unsigned int irq) 161 { 162 return __irq_can_set_affinity(irq_to_desc(irq)); 163 } 164 165 /** 166 * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space 167 * @irq: Interrupt to check 168 * 169 * Like irq_can_set_affinity() above, but additionally checks for the 170 * AFFINITY_MANAGED flag. 171 */ 172 bool irq_can_set_affinity_usr(unsigned int irq) 173 { 174 struct irq_desc *desc = irq_to_desc(irq); 175 176 return __irq_can_set_affinity(desc) && 177 !irqd_affinity_is_managed(&desc->irq_data); 178 } 179 180 /** 181 * irq_set_thread_affinity - Notify irq threads to adjust affinity 182 * @desc: irq descriptor which has affitnity changed 183 * 184 * We just set IRQTF_AFFINITY and delegate the affinity setting 185 * to the interrupt thread itself. We can not call 186 * set_cpus_allowed_ptr() here as we hold desc->lock and this 187 * code can be called from hard interrupt context. 188 */ 189 void irq_set_thread_affinity(struct irq_desc *desc) 190 { 191 struct irqaction *action; 192 193 for_each_action_of_desc(desc, action) 194 if (action->thread) 195 set_bit(IRQTF_AFFINITY, &action->thread_flags); 196 } 197 198 static void irq_validate_effective_affinity(struct irq_data *data) 199 { 200 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK 201 const struct cpumask *m = irq_data_get_effective_affinity_mask(data); 202 struct irq_chip *chip = irq_data_get_irq_chip(data); 203 204 if (!cpumask_empty(m)) 205 return; 206 pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n", 207 chip->name, data->irq); 208 #endif 209 } 210 211 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask, 212 bool force) 213 { 214 struct irq_desc *desc = irq_data_to_desc(data); 215 struct irq_chip *chip = irq_data_get_irq_chip(data); 216 int ret; 217 218 if (!chip || !chip->irq_set_affinity) 219 return -EINVAL; 220 221 /* 222 * If this is a managed interrupt and housekeeping is enabled on 223 * it check whether the requested affinity mask intersects with 224 * a housekeeping CPU. If so, then remove the isolated CPUs from 225 * the mask and just keep the housekeeping CPU(s). This prevents 226 * the affinity setter from routing the interrupt to an isolated 227 * CPU to avoid that I/O submitted from a housekeeping CPU causes 228 * interrupts on an isolated one. 229 * 230 * If the masks do not intersect or include online CPU(s) then 231 * keep the requested mask. The isolated target CPUs are only 232 * receiving interrupts when the I/O operation was submitted 233 * directly from them. 234 * 235 * If all housekeeping CPUs in the affinity mask are offline, the 236 * interrupt will be migrated by the CPU hotplug code once a 237 * housekeeping CPU which belongs to the affinity mask comes 238 * online. 239 */ 240 if (irqd_affinity_is_managed(data) && 241 housekeeping_enabled(HK_FLAG_MANAGED_IRQ)) { 242 const struct cpumask *hk_mask, *prog_mask; 243 244 static DEFINE_RAW_SPINLOCK(tmp_mask_lock); 245 static struct cpumask tmp_mask; 246 247 hk_mask = housekeeping_cpumask(HK_FLAG_MANAGED_IRQ); 248 249 raw_spin_lock(&tmp_mask_lock); 250 cpumask_and(&tmp_mask, mask, hk_mask); 251 if (!cpumask_intersects(&tmp_mask, cpu_online_mask)) 252 prog_mask = mask; 253 else 254 prog_mask = &tmp_mask; 255 ret = chip->irq_set_affinity(data, prog_mask, force); 256 raw_spin_unlock(&tmp_mask_lock); 257 } else { 258 ret = chip->irq_set_affinity(data, mask, force); 259 } 260 switch (ret) { 261 case IRQ_SET_MASK_OK: 262 case IRQ_SET_MASK_OK_DONE: 263 cpumask_copy(desc->irq_common_data.affinity, mask); 264 /* fall through */ 265 case IRQ_SET_MASK_OK_NOCOPY: 266 irq_validate_effective_affinity(data); 267 irq_set_thread_affinity(desc); 268 ret = 0; 269 } 270 271 return ret; 272 } 273 274 #ifdef CONFIG_GENERIC_PENDING_IRQ 275 static inline int irq_set_affinity_pending(struct irq_data *data, 276 const struct cpumask *dest) 277 { 278 struct irq_desc *desc = irq_data_to_desc(data); 279 280 irqd_set_move_pending(data); 281 irq_copy_pending(desc, dest); 282 return 0; 283 } 284 #else 285 static inline int irq_set_affinity_pending(struct irq_data *data, 286 const struct cpumask *dest) 287 { 288 return -EBUSY; 289 } 290 #endif 291 292 static int irq_try_set_affinity(struct irq_data *data, 293 const struct cpumask *dest, bool force) 294 { 295 int ret = irq_do_set_affinity(data, dest, force); 296 297 /* 298 * In case that the underlying vector management is busy and the 299 * architecture supports the generic pending mechanism then utilize 300 * this to avoid returning an error to user space. 301 */ 302 if (ret == -EBUSY && !force) 303 ret = irq_set_affinity_pending(data, dest); 304 return ret; 305 } 306 307 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask, 308 bool force) 309 { 310 struct irq_chip *chip = irq_data_get_irq_chip(data); 311 struct irq_desc *desc = irq_data_to_desc(data); 312 int ret = 0; 313 314 if (!chip || !chip->irq_set_affinity) 315 return -EINVAL; 316 317 if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) { 318 ret = irq_try_set_affinity(data, mask, force); 319 } else { 320 irqd_set_move_pending(data); 321 irq_copy_pending(desc, mask); 322 } 323 324 if (desc->affinity_notify) { 325 kref_get(&desc->affinity_notify->kref); 326 schedule_work(&desc->affinity_notify->work); 327 } 328 irqd_set(data, IRQD_AFFINITY_SET); 329 330 return ret; 331 } 332 333 int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force) 334 { 335 struct irq_desc *desc = irq_to_desc(irq); 336 unsigned long flags; 337 int ret; 338 339 if (!desc) 340 return -EINVAL; 341 342 raw_spin_lock_irqsave(&desc->lock, flags); 343 ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force); 344 raw_spin_unlock_irqrestore(&desc->lock, flags); 345 return ret; 346 } 347 348 int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m) 349 { 350 unsigned long flags; 351 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 352 353 if (!desc) 354 return -EINVAL; 355 desc->affinity_hint = m; 356 irq_put_desc_unlock(desc, flags); 357 /* set the initial affinity to prevent every interrupt being on CPU0 */ 358 if (m) 359 __irq_set_affinity(irq, m, false); 360 return 0; 361 } 362 EXPORT_SYMBOL_GPL(irq_set_affinity_hint); 363 364 static void irq_affinity_notify(struct work_struct *work) 365 { 366 struct irq_affinity_notify *notify = 367 container_of(work, struct irq_affinity_notify, work); 368 struct irq_desc *desc = irq_to_desc(notify->irq); 369 cpumask_var_t cpumask; 370 unsigned long flags; 371 372 if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL)) 373 goto out; 374 375 raw_spin_lock_irqsave(&desc->lock, flags); 376 if (irq_move_pending(&desc->irq_data)) 377 irq_get_pending(cpumask, desc); 378 else 379 cpumask_copy(cpumask, desc->irq_common_data.affinity); 380 raw_spin_unlock_irqrestore(&desc->lock, flags); 381 382 notify->notify(notify, cpumask); 383 384 free_cpumask_var(cpumask); 385 out: 386 kref_put(¬ify->kref, notify->release); 387 } 388 389 /** 390 * irq_set_affinity_notifier - control notification of IRQ affinity changes 391 * @irq: Interrupt for which to enable/disable notification 392 * @notify: Context for notification, or %NULL to disable 393 * notification. Function pointers must be initialised; 394 * the other fields will be initialised by this function. 395 * 396 * Must be called in process context. Notification may only be enabled 397 * after the IRQ is allocated and must be disabled before the IRQ is 398 * freed using free_irq(). 399 */ 400 int 401 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify) 402 { 403 struct irq_desc *desc = irq_to_desc(irq); 404 struct irq_affinity_notify *old_notify; 405 unsigned long flags; 406 407 /* The release function is promised process context */ 408 might_sleep(); 409 410 if (!desc || desc->istate & IRQS_NMI) 411 return -EINVAL; 412 413 /* Complete initialisation of *notify */ 414 if (notify) { 415 notify->irq = irq; 416 kref_init(¬ify->kref); 417 INIT_WORK(¬ify->work, irq_affinity_notify); 418 } 419 420 raw_spin_lock_irqsave(&desc->lock, flags); 421 old_notify = desc->affinity_notify; 422 desc->affinity_notify = notify; 423 raw_spin_unlock_irqrestore(&desc->lock, flags); 424 425 if (old_notify) { 426 cancel_work_sync(&old_notify->work); 427 kref_put(&old_notify->kref, old_notify->release); 428 } 429 430 return 0; 431 } 432 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier); 433 434 #ifndef CONFIG_AUTO_IRQ_AFFINITY 435 /* 436 * Generic version of the affinity autoselector. 437 */ 438 int irq_setup_affinity(struct irq_desc *desc) 439 { 440 struct cpumask *set = irq_default_affinity; 441 int ret, node = irq_desc_get_node(desc); 442 static DEFINE_RAW_SPINLOCK(mask_lock); 443 static struct cpumask mask; 444 445 /* Excludes PER_CPU and NO_BALANCE interrupts */ 446 if (!__irq_can_set_affinity(desc)) 447 return 0; 448 449 raw_spin_lock(&mask_lock); 450 /* 451 * Preserve the managed affinity setting and a userspace affinity 452 * setup, but make sure that one of the targets is online. 453 */ 454 if (irqd_affinity_is_managed(&desc->irq_data) || 455 irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) { 456 if (cpumask_intersects(desc->irq_common_data.affinity, 457 cpu_online_mask)) 458 set = desc->irq_common_data.affinity; 459 else 460 irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET); 461 } 462 463 cpumask_and(&mask, cpu_online_mask, set); 464 if (cpumask_empty(&mask)) 465 cpumask_copy(&mask, cpu_online_mask); 466 467 if (node != NUMA_NO_NODE) { 468 const struct cpumask *nodemask = cpumask_of_node(node); 469 470 /* make sure at least one of the cpus in nodemask is online */ 471 if (cpumask_intersects(&mask, nodemask)) 472 cpumask_and(&mask, &mask, nodemask); 473 } 474 ret = irq_do_set_affinity(&desc->irq_data, &mask, false); 475 raw_spin_unlock(&mask_lock); 476 return ret; 477 } 478 #else 479 /* Wrapper for ALPHA specific affinity selector magic */ 480 int irq_setup_affinity(struct irq_desc *desc) 481 { 482 return irq_select_affinity(irq_desc_get_irq(desc)); 483 } 484 #endif 485 486 /* 487 * Called when a bogus affinity is set via /proc/irq 488 */ 489 int irq_select_affinity_usr(unsigned int irq) 490 { 491 struct irq_desc *desc = irq_to_desc(irq); 492 unsigned long flags; 493 int ret; 494 495 raw_spin_lock_irqsave(&desc->lock, flags); 496 ret = irq_setup_affinity(desc); 497 raw_spin_unlock_irqrestore(&desc->lock, flags); 498 return ret; 499 } 500 #endif 501 502 /** 503 * irq_set_vcpu_affinity - Set vcpu affinity for the interrupt 504 * @irq: interrupt number to set affinity 505 * @vcpu_info: vCPU specific data or pointer to a percpu array of vCPU 506 * specific data for percpu_devid interrupts 507 * 508 * This function uses the vCPU specific data to set the vCPU 509 * affinity for an irq. The vCPU specific data is passed from 510 * outside, such as KVM. One example code path is as below: 511 * KVM -> IOMMU -> irq_set_vcpu_affinity(). 512 */ 513 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info) 514 { 515 unsigned long flags; 516 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 517 struct irq_data *data; 518 struct irq_chip *chip; 519 int ret = -ENOSYS; 520 521 if (!desc) 522 return -EINVAL; 523 524 data = irq_desc_get_irq_data(desc); 525 do { 526 chip = irq_data_get_irq_chip(data); 527 if (chip && chip->irq_set_vcpu_affinity) 528 break; 529 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 530 data = data->parent_data; 531 #else 532 data = NULL; 533 #endif 534 } while (data); 535 536 if (data) 537 ret = chip->irq_set_vcpu_affinity(data, vcpu_info); 538 irq_put_desc_unlock(desc, flags); 539 540 return ret; 541 } 542 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity); 543 544 void __disable_irq(struct irq_desc *desc) 545 { 546 if (!desc->depth++) 547 irq_disable(desc); 548 } 549 550 static int __disable_irq_nosync(unsigned int irq) 551 { 552 unsigned long flags; 553 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 554 555 if (!desc) 556 return -EINVAL; 557 __disable_irq(desc); 558 irq_put_desc_busunlock(desc, flags); 559 return 0; 560 } 561 562 /** 563 * disable_irq_nosync - disable an irq without waiting 564 * @irq: Interrupt to disable 565 * 566 * Disable the selected interrupt line. Disables and Enables are 567 * nested. 568 * Unlike disable_irq(), this function does not ensure existing 569 * instances of the IRQ handler have completed before returning. 570 * 571 * This function may be called from IRQ context. 572 */ 573 void disable_irq_nosync(unsigned int irq) 574 { 575 __disable_irq_nosync(irq); 576 } 577 EXPORT_SYMBOL(disable_irq_nosync); 578 579 /** 580 * disable_irq - disable an irq and wait for completion 581 * @irq: Interrupt to disable 582 * 583 * Disable the selected interrupt line. Enables and Disables are 584 * nested. 585 * This function waits for any pending IRQ handlers for this interrupt 586 * to complete before returning. If you use this function while 587 * holding a resource the IRQ handler may need you will deadlock. 588 * 589 * This function may be called - with care - from IRQ context. 590 */ 591 void disable_irq(unsigned int irq) 592 { 593 if (!__disable_irq_nosync(irq)) 594 synchronize_irq(irq); 595 } 596 EXPORT_SYMBOL(disable_irq); 597 598 /** 599 * disable_hardirq - disables an irq and waits for hardirq completion 600 * @irq: Interrupt to disable 601 * 602 * Disable the selected interrupt line. Enables and Disables are 603 * nested. 604 * This function waits for any pending hard IRQ handlers for this 605 * interrupt to complete before returning. If you use this function while 606 * holding a resource the hard IRQ handler may need you will deadlock. 607 * 608 * When used to optimistically disable an interrupt from atomic context 609 * the return value must be checked. 610 * 611 * Returns: false if a threaded handler is active. 612 * 613 * This function may be called - with care - from IRQ context. 614 */ 615 bool disable_hardirq(unsigned int irq) 616 { 617 if (!__disable_irq_nosync(irq)) 618 return synchronize_hardirq(irq); 619 620 return false; 621 } 622 EXPORT_SYMBOL_GPL(disable_hardirq); 623 624 /** 625 * disable_nmi_nosync - disable an nmi without waiting 626 * @irq: Interrupt to disable 627 * 628 * Disable the selected interrupt line. Disables and enables are 629 * nested. 630 * The interrupt to disable must have been requested through request_nmi. 631 * Unlike disable_nmi(), this function does not ensure existing 632 * instances of the IRQ handler have completed before returning. 633 */ 634 void disable_nmi_nosync(unsigned int irq) 635 { 636 disable_irq_nosync(irq); 637 } 638 639 void __enable_irq(struct irq_desc *desc) 640 { 641 switch (desc->depth) { 642 case 0: 643 err_out: 644 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n", 645 irq_desc_get_irq(desc)); 646 break; 647 case 1: { 648 if (desc->istate & IRQS_SUSPENDED) 649 goto err_out; 650 /* Prevent probing on this irq: */ 651 irq_settings_set_noprobe(desc); 652 /* 653 * Call irq_startup() not irq_enable() here because the 654 * interrupt might be marked NOAUTOEN. So irq_startup() 655 * needs to be invoked when it gets enabled the first 656 * time. If it was already started up, then irq_startup() 657 * will invoke irq_enable() under the hood. 658 */ 659 irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE); 660 break; 661 } 662 default: 663 desc->depth--; 664 } 665 } 666 667 /** 668 * enable_irq - enable handling of an irq 669 * @irq: Interrupt to enable 670 * 671 * Undoes the effect of one call to disable_irq(). If this 672 * matches the last disable, processing of interrupts on this 673 * IRQ line is re-enabled. 674 * 675 * This function may be called from IRQ context only when 676 * desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL ! 677 */ 678 void enable_irq(unsigned int irq) 679 { 680 unsigned long flags; 681 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 682 683 if (!desc) 684 return; 685 if (WARN(!desc->irq_data.chip, 686 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq)) 687 goto out; 688 689 __enable_irq(desc); 690 out: 691 irq_put_desc_busunlock(desc, flags); 692 } 693 EXPORT_SYMBOL(enable_irq); 694 695 /** 696 * enable_nmi - enable handling of an nmi 697 * @irq: Interrupt to enable 698 * 699 * The interrupt to enable must have been requested through request_nmi. 700 * Undoes the effect of one call to disable_nmi(). If this 701 * matches the last disable, processing of interrupts on this 702 * IRQ line is re-enabled. 703 */ 704 void enable_nmi(unsigned int irq) 705 { 706 enable_irq(irq); 707 } 708 709 static int set_irq_wake_real(unsigned int irq, unsigned int on) 710 { 711 struct irq_desc *desc = irq_to_desc(irq); 712 int ret = -ENXIO; 713 714 if (irq_desc_get_chip(desc)->flags & IRQCHIP_SKIP_SET_WAKE) 715 return 0; 716 717 if (desc->irq_data.chip->irq_set_wake) 718 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on); 719 720 return ret; 721 } 722 723 /** 724 * irq_set_irq_wake - control irq power management wakeup 725 * @irq: interrupt to control 726 * @on: enable/disable power management wakeup 727 * 728 * Enable/disable power management wakeup mode, which is 729 * disabled by default. Enables and disables must match, 730 * just as they match for non-wakeup mode support. 731 * 732 * Wakeup mode lets this IRQ wake the system from sleep 733 * states like "suspend to RAM". 734 * 735 * Note: irq enable/disable state is completely orthogonal 736 * to the enable/disable state of irq wake. An irq can be 737 * disabled with disable_irq() and still wake the system as 738 * long as the irq has wake enabled. If this does not hold, 739 * then the underlying irq chip and the related driver need 740 * to be investigated. 741 */ 742 int irq_set_irq_wake(unsigned int irq, unsigned int on) 743 { 744 unsigned long flags; 745 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 746 int ret = 0; 747 748 if (!desc) 749 return -EINVAL; 750 751 /* Don't use NMIs as wake up interrupts please */ 752 if (desc->istate & IRQS_NMI) { 753 ret = -EINVAL; 754 goto out_unlock; 755 } 756 757 /* wakeup-capable irqs can be shared between drivers that 758 * don't need to have the same sleep mode behaviors. 759 */ 760 if (on) { 761 if (desc->wake_depth++ == 0) { 762 ret = set_irq_wake_real(irq, on); 763 if (ret) 764 desc->wake_depth = 0; 765 else 766 irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE); 767 } 768 } else { 769 if (desc->wake_depth == 0) { 770 WARN(1, "Unbalanced IRQ %d wake disable\n", irq); 771 } else if (--desc->wake_depth == 0) { 772 ret = set_irq_wake_real(irq, on); 773 if (ret) 774 desc->wake_depth = 1; 775 else 776 irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE); 777 } 778 } 779 780 out_unlock: 781 irq_put_desc_busunlock(desc, flags); 782 return ret; 783 } 784 EXPORT_SYMBOL(irq_set_irq_wake); 785 786 /* 787 * Internal function that tells the architecture code whether a 788 * particular irq has been exclusively allocated or is available 789 * for driver use. 790 */ 791 int can_request_irq(unsigned int irq, unsigned long irqflags) 792 { 793 unsigned long flags; 794 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 795 int canrequest = 0; 796 797 if (!desc) 798 return 0; 799 800 if (irq_settings_can_request(desc)) { 801 if (!desc->action || 802 irqflags & desc->action->flags & IRQF_SHARED) 803 canrequest = 1; 804 } 805 irq_put_desc_unlock(desc, flags); 806 return canrequest; 807 } 808 809 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags) 810 { 811 struct irq_chip *chip = desc->irq_data.chip; 812 int ret, unmask = 0; 813 814 if (!chip || !chip->irq_set_type) { 815 /* 816 * IRQF_TRIGGER_* but the PIC does not support multiple 817 * flow-types? 818 */ 819 pr_debug("No set_type function for IRQ %d (%s)\n", 820 irq_desc_get_irq(desc), 821 chip ? (chip->name ? : "unknown") : "unknown"); 822 return 0; 823 } 824 825 if (chip->flags & IRQCHIP_SET_TYPE_MASKED) { 826 if (!irqd_irq_masked(&desc->irq_data)) 827 mask_irq(desc); 828 if (!irqd_irq_disabled(&desc->irq_data)) 829 unmask = 1; 830 } 831 832 /* Mask all flags except trigger mode */ 833 flags &= IRQ_TYPE_SENSE_MASK; 834 ret = chip->irq_set_type(&desc->irq_data, flags); 835 836 switch (ret) { 837 case IRQ_SET_MASK_OK: 838 case IRQ_SET_MASK_OK_DONE: 839 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK); 840 irqd_set(&desc->irq_data, flags); 841 /* fall through */ 842 843 case IRQ_SET_MASK_OK_NOCOPY: 844 flags = irqd_get_trigger_type(&desc->irq_data); 845 irq_settings_set_trigger_mask(desc, flags); 846 irqd_clear(&desc->irq_data, IRQD_LEVEL); 847 irq_settings_clr_level(desc); 848 if (flags & IRQ_TYPE_LEVEL_MASK) { 849 irq_settings_set_level(desc); 850 irqd_set(&desc->irq_data, IRQD_LEVEL); 851 } 852 853 ret = 0; 854 break; 855 default: 856 pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n", 857 flags, irq_desc_get_irq(desc), chip->irq_set_type); 858 } 859 if (unmask) 860 unmask_irq(desc); 861 return ret; 862 } 863 864 #ifdef CONFIG_HARDIRQS_SW_RESEND 865 int irq_set_parent(int irq, int parent_irq) 866 { 867 unsigned long flags; 868 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 869 870 if (!desc) 871 return -EINVAL; 872 873 desc->parent_irq = parent_irq; 874 875 irq_put_desc_unlock(desc, flags); 876 return 0; 877 } 878 EXPORT_SYMBOL_GPL(irq_set_parent); 879 #endif 880 881 /* 882 * Default primary interrupt handler for threaded interrupts. Is 883 * assigned as primary handler when request_threaded_irq is called 884 * with handler == NULL. Useful for oneshot interrupts. 885 */ 886 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id) 887 { 888 return IRQ_WAKE_THREAD; 889 } 890 891 /* 892 * Primary handler for nested threaded interrupts. Should never be 893 * called. 894 */ 895 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id) 896 { 897 WARN(1, "Primary handler called for nested irq %d\n", irq); 898 return IRQ_NONE; 899 } 900 901 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id) 902 { 903 WARN(1, "Secondary action handler called for irq %d\n", irq); 904 return IRQ_NONE; 905 } 906 907 static int irq_wait_for_interrupt(struct irqaction *action) 908 { 909 for (;;) { 910 set_current_state(TASK_INTERRUPTIBLE); 911 912 if (kthread_should_stop()) { 913 /* may need to run one last time */ 914 if (test_and_clear_bit(IRQTF_RUNTHREAD, 915 &action->thread_flags)) { 916 __set_current_state(TASK_RUNNING); 917 return 0; 918 } 919 __set_current_state(TASK_RUNNING); 920 return -1; 921 } 922 923 if (test_and_clear_bit(IRQTF_RUNTHREAD, 924 &action->thread_flags)) { 925 __set_current_state(TASK_RUNNING); 926 return 0; 927 } 928 schedule(); 929 } 930 } 931 932 /* 933 * Oneshot interrupts keep the irq line masked until the threaded 934 * handler finished. unmask if the interrupt has not been disabled and 935 * is marked MASKED. 936 */ 937 static void irq_finalize_oneshot(struct irq_desc *desc, 938 struct irqaction *action) 939 { 940 if (!(desc->istate & IRQS_ONESHOT) || 941 action->handler == irq_forced_secondary_handler) 942 return; 943 again: 944 chip_bus_lock(desc); 945 raw_spin_lock_irq(&desc->lock); 946 947 /* 948 * Implausible though it may be we need to protect us against 949 * the following scenario: 950 * 951 * The thread is faster done than the hard interrupt handler 952 * on the other CPU. If we unmask the irq line then the 953 * interrupt can come in again and masks the line, leaves due 954 * to IRQS_INPROGRESS and the irq line is masked forever. 955 * 956 * This also serializes the state of shared oneshot handlers 957 * versus "desc->threads_onehsot |= action->thread_mask;" in 958 * irq_wake_thread(). See the comment there which explains the 959 * serialization. 960 */ 961 if (unlikely(irqd_irq_inprogress(&desc->irq_data))) { 962 raw_spin_unlock_irq(&desc->lock); 963 chip_bus_sync_unlock(desc); 964 cpu_relax(); 965 goto again; 966 } 967 968 /* 969 * Now check again, whether the thread should run. Otherwise 970 * we would clear the threads_oneshot bit of this thread which 971 * was just set. 972 */ 973 if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags)) 974 goto out_unlock; 975 976 desc->threads_oneshot &= ~action->thread_mask; 977 978 if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) && 979 irqd_irq_masked(&desc->irq_data)) 980 unmask_threaded_irq(desc); 981 982 out_unlock: 983 raw_spin_unlock_irq(&desc->lock); 984 chip_bus_sync_unlock(desc); 985 } 986 987 #ifdef CONFIG_SMP 988 /* 989 * Check whether we need to change the affinity of the interrupt thread. 990 */ 991 static void 992 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) 993 { 994 cpumask_var_t mask; 995 bool valid = true; 996 997 if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags)) 998 return; 999 1000 /* 1001 * In case we are out of memory we set IRQTF_AFFINITY again and 1002 * try again next time 1003 */ 1004 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) { 1005 set_bit(IRQTF_AFFINITY, &action->thread_flags); 1006 return; 1007 } 1008 1009 raw_spin_lock_irq(&desc->lock); 1010 /* 1011 * This code is triggered unconditionally. Check the affinity 1012 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out. 1013 */ 1014 if (cpumask_available(desc->irq_common_data.affinity)) { 1015 const struct cpumask *m; 1016 1017 m = irq_data_get_effective_affinity_mask(&desc->irq_data); 1018 cpumask_copy(mask, m); 1019 } else { 1020 valid = false; 1021 } 1022 raw_spin_unlock_irq(&desc->lock); 1023 1024 if (valid) 1025 set_cpus_allowed_ptr(current, mask); 1026 free_cpumask_var(mask); 1027 } 1028 #else 1029 static inline void 1030 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { } 1031 #endif 1032 1033 /* 1034 * Interrupts which are not explicitly requested as threaded 1035 * interrupts rely on the implicit bh/preempt disable of the hard irq 1036 * context. So we need to disable bh here to avoid deadlocks and other 1037 * side effects. 1038 */ 1039 static irqreturn_t 1040 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action) 1041 { 1042 irqreturn_t ret; 1043 1044 local_bh_disable(); 1045 ret = action->thread_fn(action->irq, action->dev_id); 1046 if (ret == IRQ_HANDLED) 1047 atomic_inc(&desc->threads_handled); 1048 1049 irq_finalize_oneshot(desc, action); 1050 local_bh_enable(); 1051 return ret; 1052 } 1053 1054 /* 1055 * Interrupts explicitly requested as threaded interrupts want to be 1056 * preemtible - many of them need to sleep and wait for slow busses to 1057 * complete. 1058 */ 1059 static irqreturn_t irq_thread_fn(struct irq_desc *desc, 1060 struct irqaction *action) 1061 { 1062 irqreturn_t ret; 1063 1064 ret = action->thread_fn(action->irq, action->dev_id); 1065 if (ret == IRQ_HANDLED) 1066 atomic_inc(&desc->threads_handled); 1067 1068 irq_finalize_oneshot(desc, action); 1069 return ret; 1070 } 1071 1072 static void wake_threads_waitq(struct irq_desc *desc) 1073 { 1074 if (atomic_dec_and_test(&desc->threads_active)) 1075 wake_up(&desc->wait_for_threads); 1076 } 1077 1078 static void irq_thread_dtor(struct callback_head *unused) 1079 { 1080 struct task_struct *tsk = current; 1081 struct irq_desc *desc; 1082 struct irqaction *action; 1083 1084 if (WARN_ON_ONCE(!(current->flags & PF_EXITING))) 1085 return; 1086 1087 action = kthread_data(tsk); 1088 1089 pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n", 1090 tsk->comm, tsk->pid, action->irq); 1091 1092 1093 desc = irq_to_desc(action->irq); 1094 /* 1095 * If IRQTF_RUNTHREAD is set, we need to decrement 1096 * desc->threads_active and wake possible waiters. 1097 */ 1098 if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags)) 1099 wake_threads_waitq(desc); 1100 1101 /* Prevent a stale desc->threads_oneshot */ 1102 irq_finalize_oneshot(desc, action); 1103 } 1104 1105 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action) 1106 { 1107 struct irqaction *secondary = action->secondary; 1108 1109 if (WARN_ON_ONCE(!secondary)) 1110 return; 1111 1112 raw_spin_lock_irq(&desc->lock); 1113 __irq_wake_thread(desc, secondary); 1114 raw_spin_unlock_irq(&desc->lock); 1115 } 1116 1117 /* 1118 * Interrupt handler thread 1119 */ 1120 static int irq_thread(void *data) 1121 { 1122 struct callback_head on_exit_work; 1123 struct irqaction *action = data; 1124 struct irq_desc *desc = irq_to_desc(action->irq); 1125 irqreturn_t (*handler_fn)(struct irq_desc *desc, 1126 struct irqaction *action); 1127 1128 if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD, 1129 &action->thread_flags)) 1130 handler_fn = irq_forced_thread_fn; 1131 else 1132 handler_fn = irq_thread_fn; 1133 1134 init_task_work(&on_exit_work, irq_thread_dtor); 1135 task_work_add(current, &on_exit_work, false); 1136 1137 irq_thread_check_affinity(desc, action); 1138 1139 while (!irq_wait_for_interrupt(action)) { 1140 irqreturn_t action_ret; 1141 1142 irq_thread_check_affinity(desc, action); 1143 1144 action_ret = handler_fn(desc, action); 1145 if (action_ret == IRQ_WAKE_THREAD) 1146 irq_wake_secondary(desc, action); 1147 1148 wake_threads_waitq(desc); 1149 } 1150 1151 /* 1152 * This is the regular exit path. __free_irq() is stopping the 1153 * thread via kthread_stop() after calling 1154 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the 1155 * oneshot mask bit can be set. 1156 */ 1157 task_work_cancel(current, irq_thread_dtor); 1158 return 0; 1159 } 1160 1161 /** 1162 * irq_wake_thread - wake the irq thread for the action identified by dev_id 1163 * @irq: Interrupt line 1164 * @dev_id: Device identity for which the thread should be woken 1165 * 1166 */ 1167 void irq_wake_thread(unsigned int irq, void *dev_id) 1168 { 1169 struct irq_desc *desc = irq_to_desc(irq); 1170 struct irqaction *action; 1171 unsigned long flags; 1172 1173 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1174 return; 1175 1176 raw_spin_lock_irqsave(&desc->lock, flags); 1177 for_each_action_of_desc(desc, action) { 1178 if (action->dev_id == dev_id) { 1179 if (action->thread) 1180 __irq_wake_thread(desc, action); 1181 break; 1182 } 1183 } 1184 raw_spin_unlock_irqrestore(&desc->lock, flags); 1185 } 1186 EXPORT_SYMBOL_GPL(irq_wake_thread); 1187 1188 static int irq_setup_forced_threading(struct irqaction *new) 1189 { 1190 if (!force_irqthreads) 1191 return 0; 1192 if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT)) 1193 return 0; 1194 1195 /* 1196 * No further action required for interrupts which are requested as 1197 * threaded interrupts already 1198 */ 1199 if (new->handler == irq_default_primary_handler) 1200 return 0; 1201 1202 new->flags |= IRQF_ONESHOT; 1203 1204 /* 1205 * Handle the case where we have a real primary handler and a 1206 * thread handler. We force thread them as well by creating a 1207 * secondary action. 1208 */ 1209 if (new->handler && new->thread_fn) { 1210 /* Allocate the secondary action */ 1211 new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 1212 if (!new->secondary) 1213 return -ENOMEM; 1214 new->secondary->handler = irq_forced_secondary_handler; 1215 new->secondary->thread_fn = new->thread_fn; 1216 new->secondary->dev_id = new->dev_id; 1217 new->secondary->irq = new->irq; 1218 new->secondary->name = new->name; 1219 } 1220 /* Deal with the primary handler */ 1221 set_bit(IRQTF_FORCED_THREAD, &new->thread_flags); 1222 new->thread_fn = new->handler; 1223 new->handler = irq_default_primary_handler; 1224 return 0; 1225 } 1226 1227 static int irq_request_resources(struct irq_desc *desc) 1228 { 1229 struct irq_data *d = &desc->irq_data; 1230 struct irq_chip *c = d->chip; 1231 1232 return c->irq_request_resources ? c->irq_request_resources(d) : 0; 1233 } 1234 1235 static void irq_release_resources(struct irq_desc *desc) 1236 { 1237 struct irq_data *d = &desc->irq_data; 1238 struct irq_chip *c = d->chip; 1239 1240 if (c->irq_release_resources) 1241 c->irq_release_resources(d); 1242 } 1243 1244 static bool irq_supports_nmi(struct irq_desc *desc) 1245 { 1246 struct irq_data *d = irq_desc_get_irq_data(desc); 1247 1248 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 1249 /* Only IRQs directly managed by the root irqchip can be set as NMI */ 1250 if (d->parent_data) 1251 return false; 1252 #endif 1253 /* Don't support NMIs for chips behind a slow bus */ 1254 if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock) 1255 return false; 1256 1257 return d->chip->flags & IRQCHIP_SUPPORTS_NMI; 1258 } 1259 1260 static int irq_nmi_setup(struct irq_desc *desc) 1261 { 1262 struct irq_data *d = irq_desc_get_irq_data(desc); 1263 struct irq_chip *c = d->chip; 1264 1265 return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL; 1266 } 1267 1268 static void irq_nmi_teardown(struct irq_desc *desc) 1269 { 1270 struct irq_data *d = irq_desc_get_irq_data(desc); 1271 struct irq_chip *c = d->chip; 1272 1273 if (c->irq_nmi_teardown) 1274 c->irq_nmi_teardown(d); 1275 } 1276 1277 static int 1278 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary) 1279 { 1280 struct task_struct *t; 1281 struct sched_param param = { 1282 .sched_priority = MAX_USER_RT_PRIO/2, 1283 }; 1284 1285 if (!secondary) { 1286 t = kthread_create(irq_thread, new, "irq/%d-%s", irq, 1287 new->name); 1288 } else { 1289 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq, 1290 new->name); 1291 param.sched_priority -= 1; 1292 } 1293 1294 if (IS_ERR(t)) 1295 return PTR_ERR(t); 1296 1297 sched_setscheduler_nocheck(t, SCHED_FIFO, ¶m); 1298 1299 /* 1300 * We keep the reference to the task struct even if 1301 * the thread dies to avoid that the interrupt code 1302 * references an already freed task_struct. 1303 */ 1304 new->thread = get_task_struct(t); 1305 /* 1306 * Tell the thread to set its affinity. This is 1307 * important for shared interrupt handlers as we do 1308 * not invoke setup_affinity() for the secondary 1309 * handlers as everything is already set up. Even for 1310 * interrupts marked with IRQF_NO_BALANCE this is 1311 * correct as we want the thread to move to the cpu(s) 1312 * on which the requesting code placed the interrupt. 1313 */ 1314 set_bit(IRQTF_AFFINITY, &new->thread_flags); 1315 return 0; 1316 } 1317 1318 /* 1319 * Internal function to register an irqaction - typically used to 1320 * allocate special interrupts that are part of the architecture. 1321 * 1322 * Locking rules: 1323 * 1324 * desc->request_mutex Provides serialization against a concurrent free_irq() 1325 * chip_bus_lock Provides serialization for slow bus operations 1326 * desc->lock Provides serialization against hard interrupts 1327 * 1328 * chip_bus_lock and desc->lock are sufficient for all other management and 1329 * interrupt related functions. desc->request_mutex solely serializes 1330 * request/free_irq(). 1331 */ 1332 static int 1333 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new) 1334 { 1335 struct irqaction *old, **old_ptr; 1336 unsigned long flags, thread_mask = 0; 1337 int ret, nested, shared = 0; 1338 1339 if (!desc) 1340 return -EINVAL; 1341 1342 if (desc->irq_data.chip == &no_irq_chip) 1343 return -ENOSYS; 1344 if (!try_module_get(desc->owner)) 1345 return -ENODEV; 1346 1347 new->irq = irq; 1348 1349 /* 1350 * If the trigger type is not specified by the caller, 1351 * then use the default for this interrupt. 1352 */ 1353 if (!(new->flags & IRQF_TRIGGER_MASK)) 1354 new->flags |= irqd_get_trigger_type(&desc->irq_data); 1355 1356 /* 1357 * Check whether the interrupt nests into another interrupt 1358 * thread. 1359 */ 1360 nested = irq_settings_is_nested_thread(desc); 1361 if (nested) { 1362 if (!new->thread_fn) { 1363 ret = -EINVAL; 1364 goto out_mput; 1365 } 1366 /* 1367 * Replace the primary handler which was provided from 1368 * the driver for non nested interrupt handling by the 1369 * dummy function which warns when called. 1370 */ 1371 new->handler = irq_nested_primary_handler; 1372 } else { 1373 if (irq_settings_can_thread(desc)) { 1374 ret = irq_setup_forced_threading(new); 1375 if (ret) 1376 goto out_mput; 1377 } 1378 } 1379 1380 /* 1381 * Create a handler thread when a thread function is supplied 1382 * and the interrupt does not nest into another interrupt 1383 * thread. 1384 */ 1385 if (new->thread_fn && !nested) { 1386 ret = setup_irq_thread(new, irq, false); 1387 if (ret) 1388 goto out_mput; 1389 if (new->secondary) { 1390 ret = setup_irq_thread(new->secondary, irq, true); 1391 if (ret) 1392 goto out_thread; 1393 } 1394 } 1395 1396 /* 1397 * Drivers are often written to work w/o knowledge about the 1398 * underlying irq chip implementation, so a request for a 1399 * threaded irq without a primary hard irq context handler 1400 * requires the ONESHOT flag to be set. Some irq chips like 1401 * MSI based interrupts are per se one shot safe. Check the 1402 * chip flags, so we can avoid the unmask dance at the end of 1403 * the threaded handler for those. 1404 */ 1405 if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE) 1406 new->flags &= ~IRQF_ONESHOT; 1407 1408 /* 1409 * Protects against a concurrent __free_irq() call which might wait 1410 * for synchronize_hardirq() to complete without holding the optional 1411 * chip bus lock and desc->lock. Also protects against handing out 1412 * a recycled oneshot thread_mask bit while it's still in use by 1413 * its previous owner. 1414 */ 1415 mutex_lock(&desc->request_mutex); 1416 1417 /* 1418 * Acquire bus lock as the irq_request_resources() callback below 1419 * might rely on the serialization or the magic power management 1420 * functions which are abusing the irq_bus_lock() callback, 1421 */ 1422 chip_bus_lock(desc); 1423 1424 /* First installed action requests resources. */ 1425 if (!desc->action) { 1426 ret = irq_request_resources(desc); 1427 if (ret) { 1428 pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n", 1429 new->name, irq, desc->irq_data.chip->name); 1430 goto out_bus_unlock; 1431 } 1432 } 1433 1434 /* 1435 * The following block of code has to be executed atomically 1436 * protected against a concurrent interrupt and any of the other 1437 * management calls which are not serialized via 1438 * desc->request_mutex or the optional bus lock. 1439 */ 1440 raw_spin_lock_irqsave(&desc->lock, flags); 1441 old_ptr = &desc->action; 1442 old = *old_ptr; 1443 if (old) { 1444 /* 1445 * Can't share interrupts unless both agree to and are 1446 * the same type (level, edge, polarity). So both flag 1447 * fields must have IRQF_SHARED set and the bits which 1448 * set the trigger type must match. Also all must 1449 * agree on ONESHOT. 1450 * Interrupt lines used for NMIs cannot be shared. 1451 */ 1452 unsigned int oldtype; 1453 1454 if (desc->istate & IRQS_NMI) { 1455 pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n", 1456 new->name, irq, desc->irq_data.chip->name); 1457 ret = -EINVAL; 1458 goto out_unlock; 1459 } 1460 1461 /* 1462 * If nobody did set the configuration before, inherit 1463 * the one provided by the requester. 1464 */ 1465 if (irqd_trigger_type_was_set(&desc->irq_data)) { 1466 oldtype = irqd_get_trigger_type(&desc->irq_data); 1467 } else { 1468 oldtype = new->flags & IRQF_TRIGGER_MASK; 1469 irqd_set_trigger_type(&desc->irq_data, oldtype); 1470 } 1471 1472 if (!((old->flags & new->flags) & IRQF_SHARED) || 1473 (oldtype != (new->flags & IRQF_TRIGGER_MASK)) || 1474 ((old->flags ^ new->flags) & IRQF_ONESHOT)) 1475 goto mismatch; 1476 1477 /* All handlers must agree on per-cpuness */ 1478 if ((old->flags & IRQF_PERCPU) != 1479 (new->flags & IRQF_PERCPU)) 1480 goto mismatch; 1481 1482 /* add new interrupt at end of irq queue */ 1483 do { 1484 /* 1485 * Or all existing action->thread_mask bits, 1486 * so we can find the next zero bit for this 1487 * new action. 1488 */ 1489 thread_mask |= old->thread_mask; 1490 old_ptr = &old->next; 1491 old = *old_ptr; 1492 } while (old); 1493 shared = 1; 1494 } 1495 1496 /* 1497 * Setup the thread mask for this irqaction for ONESHOT. For 1498 * !ONESHOT irqs the thread mask is 0 so we can avoid a 1499 * conditional in irq_wake_thread(). 1500 */ 1501 if (new->flags & IRQF_ONESHOT) { 1502 /* 1503 * Unlikely to have 32 resp 64 irqs sharing one line, 1504 * but who knows. 1505 */ 1506 if (thread_mask == ~0UL) { 1507 ret = -EBUSY; 1508 goto out_unlock; 1509 } 1510 /* 1511 * The thread_mask for the action is or'ed to 1512 * desc->thread_active to indicate that the 1513 * IRQF_ONESHOT thread handler has been woken, but not 1514 * yet finished. The bit is cleared when a thread 1515 * completes. When all threads of a shared interrupt 1516 * line have completed desc->threads_active becomes 1517 * zero and the interrupt line is unmasked. See 1518 * handle.c:irq_wake_thread() for further information. 1519 * 1520 * If no thread is woken by primary (hard irq context) 1521 * interrupt handlers, then desc->threads_active is 1522 * also checked for zero to unmask the irq line in the 1523 * affected hard irq flow handlers 1524 * (handle_[fasteoi|level]_irq). 1525 * 1526 * The new action gets the first zero bit of 1527 * thread_mask assigned. See the loop above which or's 1528 * all existing action->thread_mask bits. 1529 */ 1530 new->thread_mask = 1UL << ffz(thread_mask); 1531 1532 } else if (new->handler == irq_default_primary_handler && 1533 !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) { 1534 /* 1535 * The interrupt was requested with handler = NULL, so 1536 * we use the default primary handler for it. But it 1537 * does not have the oneshot flag set. In combination 1538 * with level interrupts this is deadly, because the 1539 * default primary handler just wakes the thread, then 1540 * the irq lines is reenabled, but the device still 1541 * has the level irq asserted. Rinse and repeat.... 1542 * 1543 * While this works for edge type interrupts, we play 1544 * it safe and reject unconditionally because we can't 1545 * say for sure which type this interrupt really 1546 * has. The type flags are unreliable as the 1547 * underlying chip implementation can override them. 1548 */ 1549 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for %s (irq %d)\n", 1550 new->name, irq); 1551 ret = -EINVAL; 1552 goto out_unlock; 1553 } 1554 1555 if (!shared) { 1556 init_waitqueue_head(&desc->wait_for_threads); 1557 1558 /* Setup the type (level, edge polarity) if configured: */ 1559 if (new->flags & IRQF_TRIGGER_MASK) { 1560 ret = __irq_set_trigger(desc, 1561 new->flags & IRQF_TRIGGER_MASK); 1562 1563 if (ret) 1564 goto out_unlock; 1565 } 1566 1567 /* 1568 * Activate the interrupt. That activation must happen 1569 * independently of IRQ_NOAUTOEN. request_irq() can fail 1570 * and the callers are supposed to handle 1571 * that. enable_irq() of an interrupt requested with 1572 * IRQ_NOAUTOEN is not supposed to fail. The activation 1573 * keeps it in shutdown mode, it merily associates 1574 * resources if necessary and if that's not possible it 1575 * fails. Interrupts which are in managed shutdown mode 1576 * will simply ignore that activation request. 1577 */ 1578 ret = irq_activate(desc); 1579 if (ret) 1580 goto out_unlock; 1581 1582 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \ 1583 IRQS_ONESHOT | IRQS_WAITING); 1584 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS); 1585 1586 if (new->flags & IRQF_PERCPU) { 1587 irqd_set(&desc->irq_data, IRQD_PER_CPU); 1588 irq_settings_set_per_cpu(desc); 1589 } 1590 1591 if (new->flags & IRQF_ONESHOT) 1592 desc->istate |= IRQS_ONESHOT; 1593 1594 /* Exclude IRQ from balancing if requested */ 1595 if (new->flags & IRQF_NOBALANCING) { 1596 irq_settings_set_no_balancing(desc); 1597 irqd_set(&desc->irq_data, IRQD_NO_BALANCING); 1598 } 1599 1600 if (irq_settings_can_autoenable(desc)) { 1601 irq_startup(desc, IRQ_RESEND, IRQ_START_COND); 1602 } else { 1603 /* 1604 * Shared interrupts do not go well with disabling 1605 * auto enable. The sharing interrupt might request 1606 * it while it's still disabled and then wait for 1607 * interrupts forever. 1608 */ 1609 WARN_ON_ONCE(new->flags & IRQF_SHARED); 1610 /* Undo nested disables: */ 1611 desc->depth = 1; 1612 } 1613 1614 } else if (new->flags & IRQF_TRIGGER_MASK) { 1615 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK; 1616 unsigned int omsk = irqd_get_trigger_type(&desc->irq_data); 1617 1618 if (nmsk != omsk) 1619 /* hope the handler works with current trigger mode */ 1620 pr_warn("irq %d uses trigger mode %u; requested %u\n", 1621 irq, omsk, nmsk); 1622 } 1623 1624 *old_ptr = new; 1625 1626 irq_pm_install_action(desc, new); 1627 1628 /* Reset broken irq detection when installing new handler */ 1629 desc->irq_count = 0; 1630 desc->irqs_unhandled = 0; 1631 1632 /* 1633 * Check whether we disabled the irq via the spurious handler 1634 * before. Reenable it and give it another chance. 1635 */ 1636 if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) { 1637 desc->istate &= ~IRQS_SPURIOUS_DISABLED; 1638 __enable_irq(desc); 1639 } 1640 1641 raw_spin_unlock_irqrestore(&desc->lock, flags); 1642 chip_bus_sync_unlock(desc); 1643 mutex_unlock(&desc->request_mutex); 1644 1645 irq_setup_timings(desc, new); 1646 1647 /* 1648 * Strictly no need to wake it up, but hung_task complains 1649 * when no hard interrupt wakes the thread up. 1650 */ 1651 if (new->thread) 1652 wake_up_process(new->thread); 1653 if (new->secondary) 1654 wake_up_process(new->secondary->thread); 1655 1656 register_irq_proc(irq, desc); 1657 new->dir = NULL; 1658 register_handler_proc(irq, new); 1659 return 0; 1660 1661 mismatch: 1662 if (!(new->flags & IRQF_PROBE_SHARED)) { 1663 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n", 1664 irq, new->flags, new->name, old->flags, old->name); 1665 #ifdef CONFIG_DEBUG_SHIRQ 1666 dump_stack(); 1667 #endif 1668 } 1669 ret = -EBUSY; 1670 1671 out_unlock: 1672 raw_spin_unlock_irqrestore(&desc->lock, flags); 1673 1674 if (!desc->action) 1675 irq_release_resources(desc); 1676 out_bus_unlock: 1677 chip_bus_sync_unlock(desc); 1678 mutex_unlock(&desc->request_mutex); 1679 1680 out_thread: 1681 if (new->thread) { 1682 struct task_struct *t = new->thread; 1683 1684 new->thread = NULL; 1685 kthread_stop(t); 1686 put_task_struct(t); 1687 } 1688 if (new->secondary && new->secondary->thread) { 1689 struct task_struct *t = new->secondary->thread; 1690 1691 new->secondary->thread = NULL; 1692 kthread_stop(t); 1693 put_task_struct(t); 1694 } 1695 out_mput: 1696 module_put(desc->owner); 1697 return ret; 1698 } 1699 1700 /** 1701 * setup_irq - setup an interrupt 1702 * @irq: Interrupt line to setup 1703 * @act: irqaction for the interrupt 1704 * 1705 * Used to statically setup interrupts in the early boot process. 1706 */ 1707 int setup_irq(unsigned int irq, struct irqaction *act) 1708 { 1709 int retval; 1710 struct irq_desc *desc = irq_to_desc(irq); 1711 1712 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1713 return -EINVAL; 1714 1715 retval = irq_chip_pm_get(&desc->irq_data); 1716 if (retval < 0) 1717 return retval; 1718 1719 retval = __setup_irq(irq, desc, act); 1720 1721 if (retval) 1722 irq_chip_pm_put(&desc->irq_data); 1723 1724 return retval; 1725 } 1726 EXPORT_SYMBOL_GPL(setup_irq); 1727 1728 /* 1729 * Internal function to unregister an irqaction - used to free 1730 * regular and special interrupts that are part of the architecture. 1731 */ 1732 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id) 1733 { 1734 unsigned irq = desc->irq_data.irq; 1735 struct irqaction *action, **action_ptr; 1736 unsigned long flags; 1737 1738 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq); 1739 1740 mutex_lock(&desc->request_mutex); 1741 chip_bus_lock(desc); 1742 raw_spin_lock_irqsave(&desc->lock, flags); 1743 1744 /* 1745 * There can be multiple actions per IRQ descriptor, find the right 1746 * one based on the dev_id: 1747 */ 1748 action_ptr = &desc->action; 1749 for (;;) { 1750 action = *action_ptr; 1751 1752 if (!action) { 1753 WARN(1, "Trying to free already-free IRQ %d\n", irq); 1754 raw_spin_unlock_irqrestore(&desc->lock, flags); 1755 chip_bus_sync_unlock(desc); 1756 mutex_unlock(&desc->request_mutex); 1757 return NULL; 1758 } 1759 1760 if (action->dev_id == dev_id) 1761 break; 1762 action_ptr = &action->next; 1763 } 1764 1765 /* Found it - now remove it from the list of entries: */ 1766 *action_ptr = action->next; 1767 1768 irq_pm_remove_action(desc, action); 1769 1770 /* If this was the last handler, shut down the IRQ line: */ 1771 if (!desc->action) { 1772 irq_settings_clr_disable_unlazy(desc); 1773 /* Only shutdown. Deactivate after synchronize_hardirq() */ 1774 irq_shutdown(desc); 1775 } 1776 1777 #ifdef CONFIG_SMP 1778 /* make sure affinity_hint is cleaned up */ 1779 if (WARN_ON_ONCE(desc->affinity_hint)) 1780 desc->affinity_hint = NULL; 1781 #endif 1782 1783 raw_spin_unlock_irqrestore(&desc->lock, flags); 1784 /* 1785 * Drop bus_lock here so the changes which were done in the chip 1786 * callbacks above are synced out to the irq chips which hang 1787 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq(). 1788 * 1789 * Aside of that the bus_lock can also be taken from the threaded 1790 * handler in irq_finalize_oneshot() which results in a deadlock 1791 * because kthread_stop() would wait forever for the thread to 1792 * complete, which is blocked on the bus lock. 1793 * 1794 * The still held desc->request_mutex() protects against a 1795 * concurrent request_irq() of this irq so the release of resources 1796 * and timing data is properly serialized. 1797 */ 1798 chip_bus_sync_unlock(desc); 1799 1800 unregister_handler_proc(irq, action); 1801 1802 /* 1803 * Make sure it's not being used on another CPU and if the chip 1804 * supports it also make sure that there is no (not yet serviced) 1805 * interrupt in flight at the hardware level. 1806 */ 1807 __synchronize_hardirq(desc, true); 1808 1809 #ifdef CONFIG_DEBUG_SHIRQ 1810 /* 1811 * It's a shared IRQ -- the driver ought to be prepared for an IRQ 1812 * event to happen even now it's being freed, so let's make sure that 1813 * is so by doing an extra call to the handler .... 1814 * 1815 * ( We do this after actually deregistering it, to make sure that a 1816 * 'real' IRQ doesn't run in parallel with our fake. ) 1817 */ 1818 if (action->flags & IRQF_SHARED) { 1819 local_irq_save(flags); 1820 action->handler(irq, dev_id); 1821 local_irq_restore(flags); 1822 } 1823 #endif 1824 1825 /* 1826 * The action has already been removed above, but the thread writes 1827 * its oneshot mask bit when it completes. Though request_mutex is 1828 * held across this which prevents __setup_irq() from handing out 1829 * the same bit to a newly requested action. 1830 */ 1831 if (action->thread) { 1832 kthread_stop(action->thread); 1833 put_task_struct(action->thread); 1834 if (action->secondary && action->secondary->thread) { 1835 kthread_stop(action->secondary->thread); 1836 put_task_struct(action->secondary->thread); 1837 } 1838 } 1839 1840 /* Last action releases resources */ 1841 if (!desc->action) { 1842 /* 1843 * Reaquire bus lock as irq_release_resources() might 1844 * require it to deallocate resources over the slow bus. 1845 */ 1846 chip_bus_lock(desc); 1847 /* 1848 * There is no interrupt on the fly anymore. Deactivate it 1849 * completely. 1850 */ 1851 raw_spin_lock_irqsave(&desc->lock, flags); 1852 irq_domain_deactivate_irq(&desc->irq_data); 1853 raw_spin_unlock_irqrestore(&desc->lock, flags); 1854 1855 irq_release_resources(desc); 1856 chip_bus_sync_unlock(desc); 1857 irq_remove_timings(desc); 1858 } 1859 1860 mutex_unlock(&desc->request_mutex); 1861 1862 irq_chip_pm_put(&desc->irq_data); 1863 module_put(desc->owner); 1864 kfree(action->secondary); 1865 return action; 1866 } 1867 1868 /** 1869 * remove_irq - free an interrupt 1870 * @irq: Interrupt line to free 1871 * @act: irqaction for the interrupt 1872 * 1873 * Used to remove interrupts statically setup by the early boot process. 1874 */ 1875 void remove_irq(unsigned int irq, struct irqaction *act) 1876 { 1877 struct irq_desc *desc = irq_to_desc(irq); 1878 1879 if (desc && !WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1880 __free_irq(desc, act->dev_id); 1881 } 1882 EXPORT_SYMBOL_GPL(remove_irq); 1883 1884 /** 1885 * free_irq - free an interrupt allocated with request_irq 1886 * @irq: Interrupt line to free 1887 * @dev_id: Device identity to free 1888 * 1889 * Remove an interrupt handler. The handler is removed and if the 1890 * interrupt line is no longer in use by any driver it is disabled. 1891 * On a shared IRQ the caller must ensure the interrupt is disabled 1892 * on the card it drives before calling this function. The function 1893 * does not return until any executing interrupts for this IRQ 1894 * have completed. 1895 * 1896 * This function must not be called from interrupt context. 1897 * 1898 * Returns the devname argument passed to request_irq. 1899 */ 1900 const void *free_irq(unsigned int irq, void *dev_id) 1901 { 1902 struct irq_desc *desc = irq_to_desc(irq); 1903 struct irqaction *action; 1904 const char *devname; 1905 1906 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1907 return NULL; 1908 1909 #ifdef CONFIG_SMP 1910 if (WARN_ON(desc->affinity_notify)) 1911 desc->affinity_notify = NULL; 1912 #endif 1913 1914 action = __free_irq(desc, dev_id); 1915 1916 if (!action) 1917 return NULL; 1918 1919 devname = action->name; 1920 kfree(action); 1921 return devname; 1922 } 1923 EXPORT_SYMBOL(free_irq); 1924 1925 /* This function must be called with desc->lock held */ 1926 static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc) 1927 { 1928 const char *devname = NULL; 1929 1930 desc->istate &= ~IRQS_NMI; 1931 1932 if (!WARN_ON(desc->action == NULL)) { 1933 irq_pm_remove_action(desc, desc->action); 1934 devname = desc->action->name; 1935 unregister_handler_proc(irq, desc->action); 1936 1937 kfree(desc->action); 1938 desc->action = NULL; 1939 } 1940 1941 irq_settings_clr_disable_unlazy(desc); 1942 irq_shutdown_and_deactivate(desc); 1943 1944 irq_release_resources(desc); 1945 1946 irq_chip_pm_put(&desc->irq_data); 1947 module_put(desc->owner); 1948 1949 return devname; 1950 } 1951 1952 const void *free_nmi(unsigned int irq, void *dev_id) 1953 { 1954 struct irq_desc *desc = irq_to_desc(irq); 1955 unsigned long flags; 1956 const void *devname; 1957 1958 if (!desc || WARN_ON(!(desc->istate & IRQS_NMI))) 1959 return NULL; 1960 1961 if (WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1962 return NULL; 1963 1964 /* NMI still enabled */ 1965 if (WARN_ON(desc->depth == 0)) 1966 disable_nmi_nosync(irq); 1967 1968 raw_spin_lock_irqsave(&desc->lock, flags); 1969 1970 irq_nmi_teardown(desc); 1971 devname = __cleanup_nmi(irq, desc); 1972 1973 raw_spin_unlock_irqrestore(&desc->lock, flags); 1974 1975 return devname; 1976 } 1977 1978 /** 1979 * request_threaded_irq - allocate an interrupt line 1980 * @irq: Interrupt line to allocate 1981 * @handler: Function to be called when the IRQ occurs. 1982 * Primary handler for threaded interrupts 1983 * If NULL and thread_fn != NULL the default 1984 * primary handler is installed 1985 * @thread_fn: Function called from the irq handler thread 1986 * If NULL, no irq thread is created 1987 * @irqflags: Interrupt type flags 1988 * @devname: An ascii name for the claiming device 1989 * @dev_id: A cookie passed back to the handler function 1990 * 1991 * This call allocates interrupt resources and enables the 1992 * interrupt line and IRQ handling. From the point this 1993 * call is made your handler function may be invoked. Since 1994 * your handler function must clear any interrupt the board 1995 * raises, you must take care both to initialise your hardware 1996 * and to set up the interrupt handler in the right order. 1997 * 1998 * If you want to set up a threaded irq handler for your device 1999 * then you need to supply @handler and @thread_fn. @handler is 2000 * still called in hard interrupt context and has to check 2001 * whether the interrupt originates from the device. If yes it 2002 * needs to disable the interrupt on the device and return 2003 * IRQ_WAKE_THREAD which will wake up the handler thread and run 2004 * @thread_fn. This split handler design is necessary to support 2005 * shared interrupts. 2006 * 2007 * Dev_id must be globally unique. Normally the address of the 2008 * device data structure is used as the cookie. Since the handler 2009 * receives this value it makes sense to use it. 2010 * 2011 * If your interrupt is shared you must pass a non NULL dev_id 2012 * as this is required when freeing the interrupt. 2013 * 2014 * Flags: 2015 * 2016 * IRQF_SHARED Interrupt is shared 2017 * IRQF_TRIGGER_* Specify active edge(s) or level 2018 * 2019 */ 2020 int request_threaded_irq(unsigned int irq, irq_handler_t handler, 2021 irq_handler_t thread_fn, unsigned long irqflags, 2022 const char *devname, void *dev_id) 2023 { 2024 struct irqaction *action; 2025 struct irq_desc *desc; 2026 int retval; 2027 2028 if (irq == IRQ_NOTCONNECTED) 2029 return -ENOTCONN; 2030 2031 /* 2032 * Sanity-check: shared interrupts must pass in a real dev-ID, 2033 * otherwise we'll have trouble later trying to figure out 2034 * which interrupt is which (messes up the interrupt freeing 2035 * logic etc). 2036 * 2037 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and 2038 * it cannot be set along with IRQF_NO_SUSPEND. 2039 */ 2040 if (((irqflags & IRQF_SHARED) && !dev_id) || 2041 (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) || 2042 ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND))) 2043 return -EINVAL; 2044 2045 desc = irq_to_desc(irq); 2046 if (!desc) 2047 return -EINVAL; 2048 2049 if (!irq_settings_can_request(desc) || 2050 WARN_ON(irq_settings_is_per_cpu_devid(desc))) 2051 return -EINVAL; 2052 2053 if (!handler) { 2054 if (!thread_fn) 2055 return -EINVAL; 2056 handler = irq_default_primary_handler; 2057 } 2058 2059 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2060 if (!action) 2061 return -ENOMEM; 2062 2063 action->handler = handler; 2064 action->thread_fn = thread_fn; 2065 action->flags = irqflags; 2066 action->name = devname; 2067 action->dev_id = dev_id; 2068 2069 retval = irq_chip_pm_get(&desc->irq_data); 2070 if (retval < 0) { 2071 kfree(action); 2072 return retval; 2073 } 2074 2075 retval = __setup_irq(irq, desc, action); 2076 2077 if (retval) { 2078 irq_chip_pm_put(&desc->irq_data); 2079 kfree(action->secondary); 2080 kfree(action); 2081 } 2082 2083 #ifdef CONFIG_DEBUG_SHIRQ_FIXME 2084 if (!retval && (irqflags & IRQF_SHARED)) { 2085 /* 2086 * It's a shared IRQ -- the driver ought to be prepared for it 2087 * to happen immediately, so let's make sure.... 2088 * We disable the irq to make sure that a 'real' IRQ doesn't 2089 * run in parallel with our fake. 2090 */ 2091 unsigned long flags; 2092 2093 disable_irq(irq); 2094 local_irq_save(flags); 2095 2096 handler(irq, dev_id); 2097 2098 local_irq_restore(flags); 2099 enable_irq(irq); 2100 } 2101 #endif 2102 return retval; 2103 } 2104 EXPORT_SYMBOL(request_threaded_irq); 2105 2106 /** 2107 * request_any_context_irq - allocate an interrupt line 2108 * @irq: Interrupt line to allocate 2109 * @handler: Function to be called when the IRQ occurs. 2110 * Threaded handler for threaded interrupts. 2111 * @flags: Interrupt type flags 2112 * @name: An ascii name for the claiming device 2113 * @dev_id: A cookie passed back to the handler function 2114 * 2115 * This call allocates interrupt resources and enables the 2116 * interrupt line and IRQ handling. It selects either a 2117 * hardirq or threaded handling method depending on the 2118 * context. 2119 * 2120 * On failure, it returns a negative value. On success, 2121 * it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED. 2122 */ 2123 int request_any_context_irq(unsigned int irq, irq_handler_t handler, 2124 unsigned long flags, const char *name, void *dev_id) 2125 { 2126 struct irq_desc *desc; 2127 int ret; 2128 2129 if (irq == IRQ_NOTCONNECTED) 2130 return -ENOTCONN; 2131 2132 desc = irq_to_desc(irq); 2133 if (!desc) 2134 return -EINVAL; 2135 2136 if (irq_settings_is_nested_thread(desc)) { 2137 ret = request_threaded_irq(irq, NULL, handler, 2138 flags, name, dev_id); 2139 return !ret ? IRQC_IS_NESTED : ret; 2140 } 2141 2142 ret = request_irq(irq, handler, flags, name, dev_id); 2143 return !ret ? IRQC_IS_HARDIRQ : ret; 2144 } 2145 EXPORT_SYMBOL_GPL(request_any_context_irq); 2146 2147 /** 2148 * request_nmi - allocate an interrupt line for NMI delivery 2149 * @irq: Interrupt line to allocate 2150 * @handler: Function to be called when the IRQ occurs. 2151 * Threaded handler for threaded interrupts. 2152 * @irqflags: Interrupt type flags 2153 * @name: An ascii name for the claiming device 2154 * @dev_id: A cookie passed back to the handler function 2155 * 2156 * This call allocates interrupt resources and enables the 2157 * interrupt line and IRQ handling. It sets up the IRQ line 2158 * to be handled as an NMI. 2159 * 2160 * An interrupt line delivering NMIs cannot be shared and IRQ handling 2161 * cannot be threaded. 2162 * 2163 * Interrupt lines requested for NMI delivering must produce per cpu 2164 * interrupts and have auto enabling setting disabled. 2165 * 2166 * Dev_id must be globally unique. Normally the address of the 2167 * device data structure is used as the cookie. Since the handler 2168 * receives this value it makes sense to use it. 2169 * 2170 * If the interrupt line cannot be used to deliver NMIs, function 2171 * will fail and return a negative value. 2172 */ 2173 int request_nmi(unsigned int irq, irq_handler_t handler, 2174 unsigned long irqflags, const char *name, void *dev_id) 2175 { 2176 struct irqaction *action; 2177 struct irq_desc *desc; 2178 unsigned long flags; 2179 int retval; 2180 2181 if (irq == IRQ_NOTCONNECTED) 2182 return -ENOTCONN; 2183 2184 /* NMI cannot be shared, used for Polling */ 2185 if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL)) 2186 return -EINVAL; 2187 2188 if (!(irqflags & IRQF_PERCPU)) 2189 return -EINVAL; 2190 2191 if (!handler) 2192 return -EINVAL; 2193 2194 desc = irq_to_desc(irq); 2195 2196 if (!desc || irq_settings_can_autoenable(desc) || 2197 !irq_settings_can_request(desc) || 2198 WARN_ON(irq_settings_is_per_cpu_devid(desc)) || 2199 !irq_supports_nmi(desc)) 2200 return -EINVAL; 2201 2202 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2203 if (!action) 2204 return -ENOMEM; 2205 2206 action->handler = handler; 2207 action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING; 2208 action->name = name; 2209 action->dev_id = dev_id; 2210 2211 retval = irq_chip_pm_get(&desc->irq_data); 2212 if (retval < 0) 2213 goto err_out; 2214 2215 retval = __setup_irq(irq, desc, action); 2216 if (retval) 2217 goto err_irq_setup; 2218 2219 raw_spin_lock_irqsave(&desc->lock, flags); 2220 2221 /* Setup NMI state */ 2222 desc->istate |= IRQS_NMI; 2223 retval = irq_nmi_setup(desc); 2224 if (retval) { 2225 __cleanup_nmi(irq, desc); 2226 raw_spin_unlock_irqrestore(&desc->lock, flags); 2227 return -EINVAL; 2228 } 2229 2230 raw_spin_unlock_irqrestore(&desc->lock, flags); 2231 2232 return 0; 2233 2234 err_irq_setup: 2235 irq_chip_pm_put(&desc->irq_data); 2236 err_out: 2237 kfree(action); 2238 2239 return retval; 2240 } 2241 2242 void enable_percpu_irq(unsigned int irq, unsigned int type) 2243 { 2244 unsigned int cpu = smp_processor_id(); 2245 unsigned long flags; 2246 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 2247 2248 if (!desc) 2249 return; 2250 2251 /* 2252 * If the trigger type is not specified by the caller, then 2253 * use the default for this interrupt. 2254 */ 2255 type &= IRQ_TYPE_SENSE_MASK; 2256 if (type == IRQ_TYPE_NONE) 2257 type = irqd_get_trigger_type(&desc->irq_data); 2258 2259 if (type != IRQ_TYPE_NONE) { 2260 int ret; 2261 2262 ret = __irq_set_trigger(desc, type); 2263 2264 if (ret) { 2265 WARN(1, "failed to set type for IRQ%d\n", irq); 2266 goto out; 2267 } 2268 } 2269 2270 irq_percpu_enable(desc, cpu); 2271 out: 2272 irq_put_desc_unlock(desc, flags); 2273 } 2274 EXPORT_SYMBOL_GPL(enable_percpu_irq); 2275 2276 void enable_percpu_nmi(unsigned int irq, unsigned int type) 2277 { 2278 enable_percpu_irq(irq, type); 2279 } 2280 2281 /** 2282 * irq_percpu_is_enabled - Check whether the per cpu irq is enabled 2283 * @irq: Linux irq number to check for 2284 * 2285 * Must be called from a non migratable context. Returns the enable 2286 * state of a per cpu interrupt on the current cpu. 2287 */ 2288 bool irq_percpu_is_enabled(unsigned int irq) 2289 { 2290 unsigned int cpu = smp_processor_id(); 2291 struct irq_desc *desc; 2292 unsigned long flags; 2293 bool is_enabled; 2294 2295 desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 2296 if (!desc) 2297 return false; 2298 2299 is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled); 2300 irq_put_desc_unlock(desc, flags); 2301 2302 return is_enabled; 2303 } 2304 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled); 2305 2306 void disable_percpu_irq(unsigned int irq) 2307 { 2308 unsigned int cpu = smp_processor_id(); 2309 unsigned long flags; 2310 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 2311 2312 if (!desc) 2313 return; 2314 2315 irq_percpu_disable(desc, cpu); 2316 irq_put_desc_unlock(desc, flags); 2317 } 2318 EXPORT_SYMBOL_GPL(disable_percpu_irq); 2319 2320 void disable_percpu_nmi(unsigned int irq) 2321 { 2322 disable_percpu_irq(irq); 2323 } 2324 2325 /* 2326 * Internal function to unregister a percpu irqaction. 2327 */ 2328 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id) 2329 { 2330 struct irq_desc *desc = irq_to_desc(irq); 2331 struct irqaction *action; 2332 unsigned long flags; 2333 2334 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq); 2335 2336 if (!desc) 2337 return NULL; 2338 2339 raw_spin_lock_irqsave(&desc->lock, flags); 2340 2341 action = desc->action; 2342 if (!action || action->percpu_dev_id != dev_id) { 2343 WARN(1, "Trying to free already-free IRQ %d\n", irq); 2344 goto bad; 2345 } 2346 2347 if (!cpumask_empty(desc->percpu_enabled)) { 2348 WARN(1, "percpu IRQ %d still enabled on CPU%d!\n", 2349 irq, cpumask_first(desc->percpu_enabled)); 2350 goto bad; 2351 } 2352 2353 /* Found it - now remove it from the list of entries: */ 2354 desc->action = NULL; 2355 2356 desc->istate &= ~IRQS_NMI; 2357 2358 raw_spin_unlock_irqrestore(&desc->lock, flags); 2359 2360 unregister_handler_proc(irq, action); 2361 2362 irq_chip_pm_put(&desc->irq_data); 2363 module_put(desc->owner); 2364 return action; 2365 2366 bad: 2367 raw_spin_unlock_irqrestore(&desc->lock, flags); 2368 return NULL; 2369 } 2370 2371 /** 2372 * remove_percpu_irq - free a per-cpu interrupt 2373 * @irq: Interrupt line to free 2374 * @act: irqaction for the interrupt 2375 * 2376 * Used to remove interrupts statically setup by the early boot process. 2377 */ 2378 void remove_percpu_irq(unsigned int irq, struct irqaction *act) 2379 { 2380 struct irq_desc *desc = irq_to_desc(irq); 2381 2382 if (desc && irq_settings_is_per_cpu_devid(desc)) 2383 __free_percpu_irq(irq, act->percpu_dev_id); 2384 } 2385 2386 /** 2387 * free_percpu_irq - free an interrupt allocated with request_percpu_irq 2388 * @irq: Interrupt line to free 2389 * @dev_id: Device identity to free 2390 * 2391 * Remove a percpu interrupt handler. The handler is removed, but 2392 * the interrupt line is not disabled. This must be done on each 2393 * CPU before calling this function. The function does not return 2394 * until any executing interrupts for this IRQ have completed. 2395 * 2396 * This function must not be called from interrupt context. 2397 */ 2398 void free_percpu_irq(unsigned int irq, void __percpu *dev_id) 2399 { 2400 struct irq_desc *desc = irq_to_desc(irq); 2401 2402 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2403 return; 2404 2405 chip_bus_lock(desc); 2406 kfree(__free_percpu_irq(irq, dev_id)); 2407 chip_bus_sync_unlock(desc); 2408 } 2409 EXPORT_SYMBOL_GPL(free_percpu_irq); 2410 2411 void free_percpu_nmi(unsigned int irq, void __percpu *dev_id) 2412 { 2413 struct irq_desc *desc = irq_to_desc(irq); 2414 2415 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2416 return; 2417 2418 if (WARN_ON(!(desc->istate & IRQS_NMI))) 2419 return; 2420 2421 kfree(__free_percpu_irq(irq, dev_id)); 2422 } 2423 2424 /** 2425 * setup_percpu_irq - setup a per-cpu interrupt 2426 * @irq: Interrupt line to setup 2427 * @act: irqaction for the interrupt 2428 * 2429 * Used to statically setup per-cpu interrupts in the early boot process. 2430 */ 2431 int setup_percpu_irq(unsigned int irq, struct irqaction *act) 2432 { 2433 struct irq_desc *desc = irq_to_desc(irq); 2434 int retval; 2435 2436 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2437 return -EINVAL; 2438 2439 retval = irq_chip_pm_get(&desc->irq_data); 2440 if (retval < 0) 2441 return retval; 2442 2443 retval = __setup_irq(irq, desc, act); 2444 2445 if (retval) 2446 irq_chip_pm_put(&desc->irq_data); 2447 2448 return retval; 2449 } 2450 2451 /** 2452 * __request_percpu_irq - allocate a percpu interrupt line 2453 * @irq: Interrupt line to allocate 2454 * @handler: Function to be called when the IRQ occurs. 2455 * @flags: Interrupt type flags (IRQF_TIMER only) 2456 * @devname: An ascii name for the claiming device 2457 * @dev_id: A percpu cookie passed back to the handler function 2458 * 2459 * This call allocates interrupt resources and enables the 2460 * interrupt on the local CPU. If the interrupt is supposed to be 2461 * enabled on other CPUs, it has to be done on each CPU using 2462 * enable_percpu_irq(). 2463 * 2464 * Dev_id must be globally unique. It is a per-cpu variable, and 2465 * the handler gets called with the interrupted CPU's instance of 2466 * that variable. 2467 */ 2468 int __request_percpu_irq(unsigned int irq, irq_handler_t handler, 2469 unsigned long flags, const char *devname, 2470 void __percpu *dev_id) 2471 { 2472 struct irqaction *action; 2473 struct irq_desc *desc; 2474 int retval; 2475 2476 if (!dev_id) 2477 return -EINVAL; 2478 2479 desc = irq_to_desc(irq); 2480 if (!desc || !irq_settings_can_request(desc) || 2481 !irq_settings_is_per_cpu_devid(desc)) 2482 return -EINVAL; 2483 2484 if (flags && flags != IRQF_TIMER) 2485 return -EINVAL; 2486 2487 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2488 if (!action) 2489 return -ENOMEM; 2490 2491 action->handler = handler; 2492 action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND; 2493 action->name = devname; 2494 action->percpu_dev_id = dev_id; 2495 2496 retval = irq_chip_pm_get(&desc->irq_data); 2497 if (retval < 0) { 2498 kfree(action); 2499 return retval; 2500 } 2501 2502 retval = __setup_irq(irq, desc, action); 2503 2504 if (retval) { 2505 irq_chip_pm_put(&desc->irq_data); 2506 kfree(action); 2507 } 2508 2509 return retval; 2510 } 2511 EXPORT_SYMBOL_GPL(__request_percpu_irq); 2512 2513 /** 2514 * request_percpu_nmi - allocate a percpu interrupt line for NMI delivery 2515 * @irq: Interrupt line to allocate 2516 * @handler: Function to be called when the IRQ occurs. 2517 * @name: An ascii name for the claiming device 2518 * @dev_id: A percpu cookie passed back to the handler function 2519 * 2520 * This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs 2521 * have to be setup on each CPU by calling prepare_percpu_nmi() before 2522 * being enabled on the same CPU by using enable_percpu_nmi(). 2523 * 2524 * Dev_id must be globally unique. It is a per-cpu variable, and 2525 * the handler gets called with the interrupted CPU's instance of 2526 * that variable. 2527 * 2528 * Interrupt lines requested for NMI delivering should have auto enabling 2529 * setting disabled. 2530 * 2531 * If the interrupt line cannot be used to deliver NMIs, function 2532 * will fail returning a negative value. 2533 */ 2534 int request_percpu_nmi(unsigned int irq, irq_handler_t handler, 2535 const char *name, void __percpu *dev_id) 2536 { 2537 struct irqaction *action; 2538 struct irq_desc *desc; 2539 unsigned long flags; 2540 int retval; 2541 2542 if (!handler) 2543 return -EINVAL; 2544 2545 desc = irq_to_desc(irq); 2546 2547 if (!desc || !irq_settings_can_request(desc) || 2548 !irq_settings_is_per_cpu_devid(desc) || 2549 irq_settings_can_autoenable(desc) || 2550 !irq_supports_nmi(desc)) 2551 return -EINVAL; 2552 2553 /* The line cannot already be NMI */ 2554 if (desc->istate & IRQS_NMI) 2555 return -EINVAL; 2556 2557 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2558 if (!action) 2559 return -ENOMEM; 2560 2561 action->handler = handler; 2562 action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD 2563 | IRQF_NOBALANCING; 2564 action->name = name; 2565 action->percpu_dev_id = dev_id; 2566 2567 retval = irq_chip_pm_get(&desc->irq_data); 2568 if (retval < 0) 2569 goto err_out; 2570 2571 retval = __setup_irq(irq, desc, action); 2572 if (retval) 2573 goto err_irq_setup; 2574 2575 raw_spin_lock_irqsave(&desc->lock, flags); 2576 desc->istate |= IRQS_NMI; 2577 raw_spin_unlock_irqrestore(&desc->lock, flags); 2578 2579 return 0; 2580 2581 err_irq_setup: 2582 irq_chip_pm_put(&desc->irq_data); 2583 err_out: 2584 kfree(action); 2585 2586 return retval; 2587 } 2588 2589 /** 2590 * prepare_percpu_nmi - performs CPU local setup for NMI delivery 2591 * @irq: Interrupt line to prepare for NMI delivery 2592 * 2593 * This call prepares an interrupt line to deliver NMI on the current CPU, 2594 * before that interrupt line gets enabled with enable_percpu_nmi(). 2595 * 2596 * As a CPU local operation, this should be called from non-preemptible 2597 * context. 2598 * 2599 * If the interrupt line cannot be used to deliver NMIs, function 2600 * will fail returning a negative value. 2601 */ 2602 int prepare_percpu_nmi(unsigned int irq) 2603 { 2604 unsigned long flags; 2605 struct irq_desc *desc; 2606 int ret = 0; 2607 2608 WARN_ON(preemptible()); 2609 2610 desc = irq_get_desc_lock(irq, &flags, 2611 IRQ_GET_DESC_CHECK_PERCPU); 2612 if (!desc) 2613 return -EINVAL; 2614 2615 if (WARN(!(desc->istate & IRQS_NMI), 2616 KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n", 2617 irq)) { 2618 ret = -EINVAL; 2619 goto out; 2620 } 2621 2622 ret = irq_nmi_setup(desc); 2623 if (ret) { 2624 pr_err("Failed to setup NMI delivery: irq %u\n", irq); 2625 goto out; 2626 } 2627 2628 out: 2629 irq_put_desc_unlock(desc, flags); 2630 return ret; 2631 } 2632 2633 /** 2634 * teardown_percpu_nmi - undoes NMI setup of IRQ line 2635 * @irq: Interrupt line from which CPU local NMI configuration should be 2636 * removed 2637 * 2638 * This call undoes the setup done by prepare_percpu_nmi(). 2639 * 2640 * IRQ line should not be enabled for the current CPU. 2641 * 2642 * As a CPU local operation, this should be called from non-preemptible 2643 * context. 2644 */ 2645 void teardown_percpu_nmi(unsigned int irq) 2646 { 2647 unsigned long flags; 2648 struct irq_desc *desc; 2649 2650 WARN_ON(preemptible()); 2651 2652 desc = irq_get_desc_lock(irq, &flags, 2653 IRQ_GET_DESC_CHECK_PERCPU); 2654 if (!desc) 2655 return; 2656 2657 if (WARN_ON(!(desc->istate & IRQS_NMI))) 2658 goto out; 2659 2660 irq_nmi_teardown(desc); 2661 out: 2662 irq_put_desc_unlock(desc, flags); 2663 } 2664 2665 int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which, 2666 bool *state) 2667 { 2668 struct irq_chip *chip; 2669 int err = -EINVAL; 2670 2671 do { 2672 chip = irq_data_get_irq_chip(data); 2673 if (chip->irq_get_irqchip_state) 2674 break; 2675 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 2676 data = data->parent_data; 2677 #else 2678 data = NULL; 2679 #endif 2680 } while (data); 2681 2682 if (data) 2683 err = chip->irq_get_irqchip_state(data, which, state); 2684 return err; 2685 } 2686 2687 /** 2688 * irq_get_irqchip_state - returns the irqchip state of a interrupt. 2689 * @irq: Interrupt line that is forwarded to a VM 2690 * @which: One of IRQCHIP_STATE_* the caller wants to know about 2691 * @state: a pointer to a boolean where the state is to be storeed 2692 * 2693 * This call snapshots the internal irqchip state of an 2694 * interrupt, returning into @state the bit corresponding to 2695 * stage @which 2696 * 2697 * This function should be called with preemption disabled if the 2698 * interrupt controller has per-cpu registers. 2699 */ 2700 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which, 2701 bool *state) 2702 { 2703 struct irq_desc *desc; 2704 struct irq_data *data; 2705 unsigned long flags; 2706 int err = -EINVAL; 2707 2708 desc = irq_get_desc_buslock(irq, &flags, 0); 2709 if (!desc) 2710 return err; 2711 2712 data = irq_desc_get_irq_data(desc); 2713 2714 err = __irq_get_irqchip_state(data, which, state); 2715 2716 irq_put_desc_busunlock(desc, flags); 2717 return err; 2718 } 2719 EXPORT_SYMBOL_GPL(irq_get_irqchip_state); 2720 2721 /** 2722 * irq_set_irqchip_state - set the state of a forwarded interrupt. 2723 * @irq: Interrupt line that is forwarded to a VM 2724 * @which: State to be restored (one of IRQCHIP_STATE_*) 2725 * @val: Value corresponding to @which 2726 * 2727 * This call sets the internal irqchip state of an interrupt, 2728 * depending on the value of @which. 2729 * 2730 * This function should be called with preemption disabled if the 2731 * interrupt controller has per-cpu registers. 2732 */ 2733 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which, 2734 bool val) 2735 { 2736 struct irq_desc *desc; 2737 struct irq_data *data; 2738 struct irq_chip *chip; 2739 unsigned long flags; 2740 int err = -EINVAL; 2741 2742 desc = irq_get_desc_buslock(irq, &flags, 0); 2743 if (!desc) 2744 return err; 2745 2746 data = irq_desc_get_irq_data(desc); 2747 2748 do { 2749 chip = irq_data_get_irq_chip(data); 2750 if (chip->irq_set_irqchip_state) 2751 break; 2752 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 2753 data = data->parent_data; 2754 #else 2755 data = NULL; 2756 #endif 2757 } while (data); 2758 2759 if (data) 2760 err = chip->irq_set_irqchip_state(data, which, val); 2761 2762 irq_put_desc_busunlock(desc, flags); 2763 return err; 2764 } 2765 EXPORT_SYMBOL_GPL(irq_set_irqchip_state); 2766