xref: /openbmc/linux/kernel/irq/irqdesc.c (revision fca3aa16)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
4  * Copyright (C) 2005-2006, Thomas Gleixner, Russell King
5  *
6  * This file contains the interrupt descriptor management code. Detailed
7  * information is available in Documentation/core-api/genericirq.rst
8  *
9  */
10 #include <linux/irq.h>
11 #include <linux/slab.h>
12 #include <linux/export.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/radix-tree.h>
16 #include <linux/bitmap.h>
17 #include <linux/irqdomain.h>
18 #include <linux/sysfs.h>
19 
20 #include "internals.h"
21 
22 /*
23  * lockdep: we want to handle all irq_desc locks as a single lock-class:
24  */
25 static struct lock_class_key irq_desc_lock_class;
26 
27 #if defined(CONFIG_SMP)
28 static int __init irq_affinity_setup(char *str)
29 {
30 	alloc_bootmem_cpumask_var(&irq_default_affinity);
31 	cpulist_parse(str, irq_default_affinity);
32 	/*
33 	 * Set at least the boot cpu. We don't want to end up with
34 	 * bugreports caused by random comandline masks
35 	 */
36 	cpumask_set_cpu(smp_processor_id(), irq_default_affinity);
37 	return 1;
38 }
39 __setup("irqaffinity=", irq_affinity_setup);
40 
41 static void __init init_irq_default_affinity(void)
42 {
43 	if (!cpumask_available(irq_default_affinity))
44 		zalloc_cpumask_var(&irq_default_affinity, GFP_NOWAIT);
45 	if (cpumask_empty(irq_default_affinity))
46 		cpumask_setall(irq_default_affinity);
47 }
48 #else
49 static void __init init_irq_default_affinity(void)
50 {
51 }
52 #endif
53 
54 #ifdef CONFIG_SMP
55 static int alloc_masks(struct irq_desc *desc, int node)
56 {
57 	if (!zalloc_cpumask_var_node(&desc->irq_common_data.affinity,
58 				     GFP_KERNEL, node))
59 		return -ENOMEM;
60 
61 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
62 	if (!zalloc_cpumask_var_node(&desc->irq_common_data.effective_affinity,
63 				     GFP_KERNEL, node)) {
64 		free_cpumask_var(desc->irq_common_data.affinity);
65 		return -ENOMEM;
66 	}
67 #endif
68 
69 #ifdef CONFIG_GENERIC_PENDING_IRQ
70 	if (!zalloc_cpumask_var_node(&desc->pending_mask, GFP_KERNEL, node)) {
71 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
72 		free_cpumask_var(desc->irq_common_data.effective_affinity);
73 #endif
74 		free_cpumask_var(desc->irq_common_data.affinity);
75 		return -ENOMEM;
76 	}
77 #endif
78 	return 0;
79 }
80 
81 static void desc_smp_init(struct irq_desc *desc, int node,
82 			  const struct cpumask *affinity)
83 {
84 	if (!affinity)
85 		affinity = irq_default_affinity;
86 	cpumask_copy(desc->irq_common_data.affinity, affinity);
87 
88 #ifdef CONFIG_GENERIC_PENDING_IRQ
89 	cpumask_clear(desc->pending_mask);
90 #endif
91 #ifdef CONFIG_NUMA
92 	desc->irq_common_data.node = node;
93 #endif
94 }
95 
96 #else
97 static inline int
98 alloc_masks(struct irq_desc *desc, int node) { return 0; }
99 static inline void
100 desc_smp_init(struct irq_desc *desc, int node, const struct cpumask *affinity) { }
101 #endif
102 
103 static void desc_set_defaults(unsigned int irq, struct irq_desc *desc, int node,
104 			      const struct cpumask *affinity, struct module *owner)
105 {
106 	int cpu;
107 
108 	desc->irq_common_data.handler_data = NULL;
109 	desc->irq_common_data.msi_desc = NULL;
110 
111 	desc->irq_data.common = &desc->irq_common_data;
112 	desc->irq_data.irq = irq;
113 	desc->irq_data.chip = &no_irq_chip;
114 	desc->irq_data.chip_data = NULL;
115 	irq_settings_clr_and_set(desc, ~0, _IRQ_DEFAULT_INIT_FLAGS);
116 	irqd_set(&desc->irq_data, IRQD_IRQ_DISABLED);
117 	irqd_set(&desc->irq_data, IRQD_IRQ_MASKED);
118 	desc->handle_irq = handle_bad_irq;
119 	desc->depth = 1;
120 	desc->irq_count = 0;
121 	desc->irqs_unhandled = 0;
122 	desc->name = NULL;
123 	desc->owner = owner;
124 	for_each_possible_cpu(cpu)
125 		*per_cpu_ptr(desc->kstat_irqs, cpu) = 0;
126 	desc_smp_init(desc, node, affinity);
127 }
128 
129 int nr_irqs = NR_IRQS;
130 EXPORT_SYMBOL_GPL(nr_irqs);
131 
132 static DEFINE_MUTEX(sparse_irq_lock);
133 static DECLARE_BITMAP(allocated_irqs, IRQ_BITMAP_BITS);
134 
135 #ifdef CONFIG_SPARSE_IRQ
136 
137 static void irq_kobj_release(struct kobject *kobj);
138 
139 #ifdef CONFIG_SYSFS
140 static struct kobject *irq_kobj_base;
141 
142 #define IRQ_ATTR_RO(_name) \
143 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
144 
145 static ssize_t per_cpu_count_show(struct kobject *kobj,
146 				  struct kobj_attribute *attr, char *buf)
147 {
148 	struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
149 	int cpu, irq = desc->irq_data.irq;
150 	ssize_t ret = 0;
151 	char *p = "";
152 
153 	for_each_possible_cpu(cpu) {
154 		unsigned int c = kstat_irqs_cpu(irq, cpu);
155 
156 		ret += scnprintf(buf + ret, PAGE_SIZE - ret, "%s%u", p, c);
157 		p = ",";
158 	}
159 
160 	ret += scnprintf(buf + ret, PAGE_SIZE - ret, "\n");
161 	return ret;
162 }
163 IRQ_ATTR_RO(per_cpu_count);
164 
165 static ssize_t chip_name_show(struct kobject *kobj,
166 			      struct kobj_attribute *attr, char *buf)
167 {
168 	struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
169 	ssize_t ret = 0;
170 
171 	raw_spin_lock_irq(&desc->lock);
172 	if (desc->irq_data.chip && desc->irq_data.chip->name) {
173 		ret = scnprintf(buf, PAGE_SIZE, "%s\n",
174 				desc->irq_data.chip->name);
175 	}
176 	raw_spin_unlock_irq(&desc->lock);
177 
178 	return ret;
179 }
180 IRQ_ATTR_RO(chip_name);
181 
182 static ssize_t hwirq_show(struct kobject *kobj,
183 			  struct kobj_attribute *attr, char *buf)
184 {
185 	struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
186 	ssize_t ret = 0;
187 
188 	raw_spin_lock_irq(&desc->lock);
189 	if (desc->irq_data.domain)
190 		ret = sprintf(buf, "%d\n", (int)desc->irq_data.hwirq);
191 	raw_spin_unlock_irq(&desc->lock);
192 
193 	return ret;
194 }
195 IRQ_ATTR_RO(hwirq);
196 
197 static ssize_t type_show(struct kobject *kobj,
198 			 struct kobj_attribute *attr, char *buf)
199 {
200 	struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
201 	ssize_t ret = 0;
202 
203 	raw_spin_lock_irq(&desc->lock);
204 	ret = sprintf(buf, "%s\n",
205 		      irqd_is_level_type(&desc->irq_data) ? "level" : "edge");
206 	raw_spin_unlock_irq(&desc->lock);
207 
208 	return ret;
209 
210 }
211 IRQ_ATTR_RO(type);
212 
213 static ssize_t wakeup_show(struct kobject *kobj,
214 			   struct kobj_attribute *attr, char *buf)
215 {
216 	struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
217 	ssize_t ret = 0;
218 
219 	raw_spin_lock_irq(&desc->lock);
220 	ret = sprintf(buf, "%s\n",
221 		      irqd_is_wakeup_set(&desc->irq_data) ? "enabled" : "disabled");
222 	raw_spin_unlock_irq(&desc->lock);
223 
224 	return ret;
225 
226 }
227 IRQ_ATTR_RO(wakeup);
228 
229 static ssize_t name_show(struct kobject *kobj,
230 			 struct kobj_attribute *attr, char *buf)
231 {
232 	struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
233 	ssize_t ret = 0;
234 
235 	raw_spin_lock_irq(&desc->lock);
236 	if (desc->name)
237 		ret = scnprintf(buf, PAGE_SIZE, "%s\n", desc->name);
238 	raw_spin_unlock_irq(&desc->lock);
239 
240 	return ret;
241 }
242 IRQ_ATTR_RO(name);
243 
244 static ssize_t actions_show(struct kobject *kobj,
245 			    struct kobj_attribute *attr, char *buf)
246 {
247 	struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
248 	struct irqaction *action;
249 	ssize_t ret = 0;
250 	char *p = "";
251 
252 	raw_spin_lock_irq(&desc->lock);
253 	for (action = desc->action; action != NULL; action = action->next) {
254 		ret += scnprintf(buf + ret, PAGE_SIZE - ret, "%s%s",
255 				 p, action->name);
256 		p = ",";
257 	}
258 	raw_spin_unlock_irq(&desc->lock);
259 
260 	if (ret)
261 		ret += scnprintf(buf + ret, PAGE_SIZE - ret, "\n");
262 
263 	return ret;
264 }
265 IRQ_ATTR_RO(actions);
266 
267 static struct attribute *irq_attrs[] = {
268 	&per_cpu_count_attr.attr,
269 	&chip_name_attr.attr,
270 	&hwirq_attr.attr,
271 	&type_attr.attr,
272 	&wakeup_attr.attr,
273 	&name_attr.attr,
274 	&actions_attr.attr,
275 	NULL
276 };
277 
278 static struct kobj_type irq_kobj_type = {
279 	.release	= irq_kobj_release,
280 	.sysfs_ops	= &kobj_sysfs_ops,
281 	.default_attrs	= irq_attrs,
282 };
283 
284 static void irq_sysfs_add(int irq, struct irq_desc *desc)
285 {
286 	if (irq_kobj_base) {
287 		/*
288 		 * Continue even in case of failure as this is nothing
289 		 * crucial.
290 		 */
291 		if (kobject_add(&desc->kobj, irq_kobj_base, "%d", irq))
292 			pr_warn("Failed to add kobject for irq %d\n", irq);
293 	}
294 }
295 
296 static int __init irq_sysfs_init(void)
297 {
298 	struct irq_desc *desc;
299 	int irq;
300 
301 	/* Prevent concurrent irq alloc/free */
302 	irq_lock_sparse();
303 
304 	irq_kobj_base = kobject_create_and_add("irq", kernel_kobj);
305 	if (!irq_kobj_base) {
306 		irq_unlock_sparse();
307 		return -ENOMEM;
308 	}
309 
310 	/* Add the already allocated interrupts */
311 	for_each_irq_desc(irq, desc)
312 		irq_sysfs_add(irq, desc);
313 	irq_unlock_sparse();
314 
315 	return 0;
316 }
317 postcore_initcall(irq_sysfs_init);
318 
319 #else /* !CONFIG_SYSFS */
320 
321 static struct kobj_type irq_kobj_type = {
322 	.release	= irq_kobj_release,
323 };
324 
325 static void irq_sysfs_add(int irq, struct irq_desc *desc) {}
326 
327 #endif /* CONFIG_SYSFS */
328 
329 static RADIX_TREE(irq_desc_tree, GFP_KERNEL);
330 
331 static void irq_insert_desc(unsigned int irq, struct irq_desc *desc)
332 {
333 	radix_tree_insert(&irq_desc_tree, irq, desc);
334 }
335 
336 struct irq_desc *irq_to_desc(unsigned int irq)
337 {
338 	return radix_tree_lookup(&irq_desc_tree, irq);
339 }
340 EXPORT_SYMBOL(irq_to_desc);
341 
342 static void delete_irq_desc(unsigned int irq)
343 {
344 	radix_tree_delete(&irq_desc_tree, irq);
345 }
346 
347 #ifdef CONFIG_SMP
348 static void free_masks(struct irq_desc *desc)
349 {
350 #ifdef CONFIG_GENERIC_PENDING_IRQ
351 	free_cpumask_var(desc->pending_mask);
352 #endif
353 	free_cpumask_var(desc->irq_common_data.affinity);
354 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
355 	free_cpumask_var(desc->irq_common_data.effective_affinity);
356 #endif
357 }
358 #else
359 static inline void free_masks(struct irq_desc *desc) { }
360 #endif
361 
362 void irq_lock_sparse(void)
363 {
364 	mutex_lock(&sparse_irq_lock);
365 }
366 
367 void irq_unlock_sparse(void)
368 {
369 	mutex_unlock(&sparse_irq_lock);
370 }
371 
372 static struct irq_desc *alloc_desc(int irq, int node, unsigned int flags,
373 				   const struct cpumask *affinity,
374 				   struct module *owner)
375 {
376 	struct irq_desc *desc;
377 
378 	desc = kzalloc_node(sizeof(*desc), GFP_KERNEL, node);
379 	if (!desc)
380 		return NULL;
381 	/* allocate based on nr_cpu_ids */
382 	desc->kstat_irqs = alloc_percpu(unsigned int);
383 	if (!desc->kstat_irqs)
384 		goto err_desc;
385 
386 	if (alloc_masks(desc, node))
387 		goto err_kstat;
388 
389 	raw_spin_lock_init(&desc->lock);
390 	lockdep_set_class(&desc->lock, &irq_desc_lock_class);
391 	mutex_init(&desc->request_mutex);
392 	init_rcu_head(&desc->rcu);
393 
394 	desc_set_defaults(irq, desc, node, affinity, owner);
395 	irqd_set(&desc->irq_data, flags);
396 	kobject_init(&desc->kobj, &irq_kobj_type);
397 
398 	return desc;
399 
400 err_kstat:
401 	free_percpu(desc->kstat_irqs);
402 err_desc:
403 	kfree(desc);
404 	return NULL;
405 }
406 
407 static void irq_kobj_release(struct kobject *kobj)
408 {
409 	struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
410 
411 	free_masks(desc);
412 	free_percpu(desc->kstat_irqs);
413 	kfree(desc);
414 }
415 
416 static void delayed_free_desc(struct rcu_head *rhp)
417 {
418 	struct irq_desc *desc = container_of(rhp, struct irq_desc, rcu);
419 
420 	kobject_put(&desc->kobj);
421 }
422 
423 static void free_desc(unsigned int irq)
424 {
425 	struct irq_desc *desc = irq_to_desc(irq);
426 
427 	irq_remove_debugfs_entry(desc);
428 	unregister_irq_proc(irq, desc);
429 
430 	/*
431 	 * sparse_irq_lock protects also show_interrupts() and
432 	 * kstat_irq_usr(). Once we deleted the descriptor from the
433 	 * sparse tree we can free it. Access in proc will fail to
434 	 * lookup the descriptor.
435 	 *
436 	 * The sysfs entry must be serialized against a concurrent
437 	 * irq_sysfs_init() as well.
438 	 */
439 	kobject_del(&desc->kobj);
440 	delete_irq_desc(irq);
441 
442 	/*
443 	 * We free the descriptor, masks and stat fields via RCU. That
444 	 * allows demultiplex interrupts to do rcu based management of
445 	 * the child interrupts.
446 	 */
447 	call_rcu(&desc->rcu, delayed_free_desc);
448 }
449 
450 static int alloc_descs(unsigned int start, unsigned int cnt, int node,
451 		       const struct cpumask *affinity, struct module *owner)
452 {
453 	const struct cpumask *mask = NULL;
454 	struct irq_desc *desc;
455 	unsigned int flags;
456 	int i;
457 
458 	/* Validate affinity mask(s) */
459 	if (affinity) {
460 		for (i = 0, mask = affinity; i < cnt; i++, mask++) {
461 			if (cpumask_empty(mask))
462 				return -EINVAL;
463 		}
464 	}
465 
466 	flags = affinity ? IRQD_AFFINITY_MANAGED | IRQD_MANAGED_SHUTDOWN : 0;
467 	mask = NULL;
468 
469 	for (i = 0; i < cnt; i++) {
470 		if (affinity) {
471 			node = cpu_to_node(cpumask_first(affinity));
472 			mask = affinity;
473 			affinity++;
474 		}
475 		desc = alloc_desc(start + i, node, flags, mask, owner);
476 		if (!desc)
477 			goto err;
478 		irq_insert_desc(start + i, desc);
479 		irq_sysfs_add(start + i, desc);
480 		irq_add_debugfs_entry(start + i, desc);
481 	}
482 	bitmap_set(allocated_irqs, start, cnt);
483 	return start;
484 
485 err:
486 	for (i--; i >= 0; i--)
487 		free_desc(start + i);
488 	return -ENOMEM;
489 }
490 
491 static int irq_expand_nr_irqs(unsigned int nr)
492 {
493 	if (nr > IRQ_BITMAP_BITS)
494 		return -ENOMEM;
495 	nr_irqs = nr;
496 	return 0;
497 }
498 
499 int __init early_irq_init(void)
500 {
501 	int i, initcnt, node = first_online_node;
502 	struct irq_desc *desc;
503 
504 	init_irq_default_affinity();
505 
506 	/* Let arch update nr_irqs and return the nr of preallocated irqs */
507 	initcnt = arch_probe_nr_irqs();
508 	printk(KERN_INFO "NR_IRQS: %d, nr_irqs: %d, preallocated irqs: %d\n",
509 	       NR_IRQS, nr_irqs, initcnt);
510 
511 	if (WARN_ON(nr_irqs > IRQ_BITMAP_BITS))
512 		nr_irqs = IRQ_BITMAP_BITS;
513 
514 	if (WARN_ON(initcnt > IRQ_BITMAP_BITS))
515 		initcnt = IRQ_BITMAP_BITS;
516 
517 	if (initcnt > nr_irqs)
518 		nr_irqs = initcnt;
519 
520 	for (i = 0; i < initcnt; i++) {
521 		desc = alloc_desc(i, node, 0, NULL, NULL);
522 		set_bit(i, allocated_irqs);
523 		irq_insert_desc(i, desc);
524 	}
525 	return arch_early_irq_init();
526 }
527 
528 #else /* !CONFIG_SPARSE_IRQ */
529 
530 struct irq_desc irq_desc[NR_IRQS] __cacheline_aligned_in_smp = {
531 	[0 ... NR_IRQS-1] = {
532 		.handle_irq	= handle_bad_irq,
533 		.depth		= 1,
534 		.lock		= __RAW_SPIN_LOCK_UNLOCKED(irq_desc->lock),
535 	}
536 };
537 
538 int __init early_irq_init(void)
539 {
540 	int count, i, node = first_online_node;
541 	struct irq_desc *desc;
542 
543 	init_irq_default_affinity();
544 
545 	printk(KERN_INFO "NR_IRQS: %d\n", NR_IRQS);
546 
547 	desc = irq_desc;
548 	count = ARRAY_SIZE(irq_desc);
549 
550 	for (i = 0; i < count; i++) {
551 		desc[i].kstat_irqs = alloc_percpu(unsigned int);
552 		alloc_masks(&desc[i], node);
553 		raw_spin_lock_init(&desc[i].lock);
554 		lockdep_set_class(&desc[i].lock, &irq_desc_lock_class);
555 		desc_set_defaults(i, &desc[i], node, NULL, NULL);
556 	}
557 	return arch_early_irq_init();
558 }
559 
560 struct irq_desc *irq_to_desc(unsigned int irq)
561 {
562 	return (irq < NR_IRQS) ? irq_desc + irq : NULL;
563 }
564 EXPORT_SYMBOL(irq_to_desc);
565 
566 static void free_desc(unsigned int irq)
567 {
568 	struct irq_desc *desc = irq_to_desc(irq);
569 	unsigned long flags;
570 
571 	raw_spin_lock_irqsave(&desc->lock, flags);
572 	desc_set_defaults(irq, desc, irq_desc_get_node(desc), NULL, NULL);
573 	raw_spin_unlock_irqrestore(&desc->lock, flags);
574 }
575 
576 static inline int alloc_descs(unsigned int start, unsigned int cnt, int node,
577 			      const struct cpumask *affinity,
578 			      struct module *owner)
579 {
580 	u32 i;
581 
582 	for (i = 0; i < cnt; i++) {
583 		struct irq_desc *desc = irq_to_desc(start + i);
584 
585 		desc->owner = owner;
586 	}
587 	bitmap_set(allocated_irqs, start, cnt);
588 	return start;
589 }
590 
591 static int irq_expand_nr_irqs(unsigned int nr)
592 {
593 	return -ENOMEM;
594 }
595 
596 void irq_mark_irq(unsigned int irq)
597 {
598 	mutex_lock(&sparse_irq_lock);
599 	bitmap_set(allocated_irqs, irq, 1);
600 	mutex_unlock(&sparse_irq_lock);
601 }
602 
603 #ifdef CONFIG_GENERIC_IRQ_LEGACY
604 void irq_init_desc(unsigned int irq)
605 {
606 	free_desc(irq);
607 }
608 #endif
609 
610 #endif /* !CONFIG_SPARSE_IRQ */
611 
612 /**
613  * generic_handle_irq - Invoke the handler for a particular irq
614  * @irq:	The irq number to handle
615  *
616  */
617 int generic_handle_irq(unsigned int irq)
618 {
619 	struct irq_desc *desc = irq_to_desc(irq);
620 
621 	if (!desc)
622 		return -EINVAL;
623 	generic_handle_irq_desc(desc);
624 	return 0;
625 }
626 EXPORT_SYMBOL_GPL(generic_handle_irq);
627 
628 #ifdef CONFIG_HANDLE_DOMAIN_IRQ
629 /**
630  * __handle_domain_irq - Invoke the handler for a HW irq belonging to a domain
631  * @domain:	The domain where to perform the lookup
632  * @hwirq:	The HW irq number to convert to a logical one
633  * @lookup:	Whether to perform the domain lookup or not
634  * @regs:	Register file coming from the low-level handling code
635  *
636  * Returns:	0 on success, or -EINVAL if conversion has failed
637  */
638 int __handle_domain_irq(struct irq_domain *domain, unsigned int hwirq,
639 			bool lookup, struct pt_regs *regs)
640 {
641 	struct pt_regs *old_regs = set_irq_regs(regs);
642 	unsigned int irq = hwirq;
643 	int ret = 0;
644 
645 	irq_enter();
646 
647 #ifdef CONFIG_IRQ_DOMAIN
648 	if (lookup)
649 		irq = irq_find_mapping(domain, hwirq);
650 #endif
651 
652 	/*
653 	 * Some hardware gives randomly wrong interrupts.  Rather
654 	 * than crashing, do something sensible.
655 	 */
656 	if (unlikely(!irq || irq >= nr_irqs)) {
657 		ack_bad_irq(irq);
658 		ret = -EINVAL;
659 	} else {
660 		generic_handle_irq(irq);
661 	}
662 
663 	irq_exit();
664 	set_irq_regs(old_regs);
665 	return ret;
666 }
667 #endif
668 
669 /* Dynamic interrupt handling */
670 
671 /**
672  * irq_free_descs - free irq descriptors
673  * @from:	Start of descriptor range
674  * @cnt:	Number of consecutive irqs to free
675  */
676 void irq_free_descs(unsigned int from, unsigned int cnt)
677 {
678 	int i;
679 
680 	if (from >= nr_irqs || (from + cnt) > nr_irqs)
681 		return;
682 
683 	mutex_lock(&sparse_irq_lock);
684 	for (i = 0; i < cnt; i++)
685 		free_desc(from + i);
686 
687 	bitmap_clear(allocated_irqs, from, cnt);
688 	mutex_unlock(&sparse_irq_lock);
689 }
690 EXPORT_SYMBOL_GPL(irq_free_descs);
691 
692 /**
693  * irq_alloc_descs - allocate and initialize a range of irq descriptors
694  * @irq:	Allocate for specific irq number if irq >= 0
695  * @from:	Start the search from this irq number
696  * @cnt:	Number of consecutive irqs to allocate.
697  * @node:	Preferred node on which the irq descriptor should be allocated
698  * @owner:	Owning module (can be NULL)
699  * @affinity:	Optional pointer to an affinity mask array of size @cnt which
700  *		hints where the irq descriptors should be allocated and which
701  *		default affinities to use
702  *
703  * Returns the first irq number or error code
704  */
705 int __ref
706 __irq_alloc_descs(int irq, unsigned int from, unsigned int cnt, int node,
707 		  struct module *owner, const struct cpumask *affinity)
708 {
709 	int start, ret;
710 
711 	if (!cnt)
712 		return -EINVAL;
713 
714 	if (irq >= 0) {
715 		if (from > irq)
716 			return -EINVAL;
717 		from = irq;
718 	} else {
719 		/*
720 		 * For interrupts which are freely allocated the
721 		 * architecture can force a lower bound to the @from
722 		 * argument. x86 uses this to exclude the GSI space.
723 		 */
724 		from = arch_dynirq_lower_bound(from);
725 	}
726 
727 	mutex_lock(&sparse_irq_lock);
728 
729 	start = bitmap_find_next_zero_area(allocated_irqs, IRQ_BITMAP_BITS,
730 					   from, cnt, 0);
731 	ret = -EEXIST;
732 	if (irq >=0 && start != irq)
733 		goto unlock;
734 
735 	if (start + cnt > nr_irqs) {
736 		ret = irq_expand_nr_irqs(start + cnt);
737 		if (ret)
738 			goto unlock;
739 	}
740 	ret = alloc_descs(start, cnt, node, affinity, owner);
741 unlock:
742 	mutex_unlock(&sparse_irq_lock);
743 	return ret;
744 }
745 EXPORT_SYMBOL_GPL(__irq_alloc_descs);
746 
747 #ifdef CONFIG_GENERIC_IRQ_LEGACY_ALLOC_HWIRQ
748 /**
749  * irq_alloc_hwirqs - Allocate an irq descriptor and initialize the hardware
750  * @cnt:	number of interrupts to allocate
751  * @node:	node on which to allocate
752  *
753  * Returns an interrupt number > 0 or 0, if the allocation fails.
754  */
755 unsigned int irq_alloc_hwirqs(int cnt, int node)
756 {
757 	int i, irq = __irq_alloc_descs(-1, 0, cnt, node, NULL, NULL);
758 
759 	if (irq < 0)
760 		return 0;
761 
762 	for (i = irq; cnt > 0; i++, cnt--) {
763 		if (arch_setup_hwirq(i, node))
764 			goto err;
765 		irq_clear_status_flags(i, _IRQ_NOREQUEST);
766 	}
767 	return irq;
768 
769 err:
770 	for (i--; i >= irq; i--) {
771 		irq_set_status_flags(i, _IRQ_NOREQUEST | _IRQ_NOPROBE);
772 		arch_teardown_hwirq(i);
773 	}
774 	irq_free_descs(irq, cnt);
775 	return 0;
776 }
777 EXPORT_SYMBOL_GPL(irq_alloc_hwirqs);
778 
779 /**
780  * irq_free_hwirqs - Free irq descriptor and cleanup the hardware
781  * @from:	Free from irq number
782  * @cnt:	number of interrupts to free
783  *
784  */
785 void irq_free_hwirqs(unsigned int from, int cnt)
786 {
787 	int i, j;
788 
789 	for (i = from, j = cnt; j > 0; i++, j--) {
790 		irq_set_status_flags(i, _IRQ_NOREQUEST | _IRQ_NOPROBE);
791 		arch_teardown_hwirq(i);
792 	}
793 	irq_free_descs(from, cnt);
794 }
795 EXPORT_SYMBOL_GPL(irq_free_hwirqs);
796 #endif
797 
798 /**
799  * irq_get_next_irq - get next allocated irq number
800  * @offset:	where to start the search
801  *
802  * Returns next irq number after offset or nr_irqs if none is found.
803  */
804 unsigned int irq_get_next_irq(unsigned int offset)
805 {
806 	return find_next_bit(allocated_irqs, nr_irqs, offset);
807 }
808 
809 struct irq_desc *
810 __irq_get_desc_lock(unsigned int irq, unsigned long *flags, bool bus,
811 		    unsigned int check)
812 {
813 	struct irq_desc *desc = irq_to_desc(irq);
814 
815 	if (desc) {
816 		if (check & _IRQ_DESC_CHECK) {
817 			if ((check & _IRQ_DESC_PERCPU) &&
818 			    !irq_settings_is_per_cpu_devid(desc))
819 				return NULL;
820 
821 			if (!(check & _IRQ_DESC_PERCPU) &&
822 			    irq_settings_is_per_cpu_devid(desc))
823 				return NULL;
824 		}
825 
826 		if (bus)
827 			chip_bus_lock(desc);
828 		raw_spin_lock_irqsave(&desc->lock, *flags);
829 	}
830 	return desc;
831 }
832 
833 void __irq_put_desc_unlock(struct irq_desc *desc, unsigned long flags, bool bus)
834 {
835 	raw_spin_unlock_irqrestore(&desc->lock, flags);
836 	if (bus)
837 		chip_bus_sync_unlock(desc);
838 }
839 
840 int irq_set_percpu_devid_partition(unsigned int irq,
841 				   const struct cpumask *affinity)
842 {
843 	struct irq_desc *desc = irq_to_desc(irq);
844 
845 	if (!desc)
846 		return -EINVAL;
847 
848 	if (desc->percpu_enabled)
849 		return -EINVAL;
850 
851 	desc->percpu_enabled = kzalloc(sizeof(*desc->percpu_enabled), GFP_KERNEL);
852 
853 	if (!desc->percpu_enabled)
854 		return -ENOMEM;
855 
856 	if (affinity)
857 		desc->percpu_affinity = affinity;
858 	else
859 		desc->percpu_affinity = cpu_possible_mask;
860 
861 	irq_set_percpu_devid_flags(irq);
862 	return 0;
863 }
864 
865 int irq_set_percpu_devid(unsigned int irq)
866 {
867 	return irq_set_percpu_devid_partition(irq, NULL);
868 }
869 
870 int irq_get_percpu_devid_partition(unsigned int irq, struct cpumask *affinity)
871 {
872 	struct irq_desc *desc = irq_to_desc(irq);
873 
874 	if (!desc || !desc->percpu_enabled)
875 		return -EINVAL;
876 
877 	if (affinity)
878 		cpumask_copy(affinity, desc->percpu_affinity);
879 
880 	return 0;
881 }
882 EXPORT_SYMBOL_GPL(irq_get_percpu_devid_partition);
883 
884 void kstat_incr_irq_this_cpu(unsigned int irq)
885 {
886 	kstat_incr_irqs_this_cpu(irq_to_desc(irq));
887 }
888 
889 /**
890  * kstat_irqs_cpu - Get the statistics for an interrupt on a cpu
891  * @irq:	The interrupt number
892  * @cpu:	The cpu number
893  *
894  * Returns the sum of interrupt counts on @cpu since boot for
895  * @irq. The caller must ensure that the interrupt is not removed
896  * concurrently.
897  */
898 unsigned int kstat_irqs_cpu(unsigned int irq, int cpu)
899 {
900 	struct irq_desc *desc = irq_to_desc(irq);
901 
902 	return desc && desc->kstat_irqs ?
903 			*per_cpu_ptr(desc->kstat_irqs, cpu) : 0;
904 }
905 
906 /**
907  * kstat_irqs - Get the statistics for an interrupt
908  * @irq:	The interrupt number
909  *
910  * Returns the sum of interrupt counts on all cpus since boot for
911  * @irq. The caller must ensure that the interrupt is not removed
912  * concurrently.
913  */
914 unsigned int kstat_irqs(unsigned int irq)
915 {
916 	struct irq_desc *desc = irq_to_desc(irq);
917 	int cpu;
918 	unsigned int sum = 0;
919 
920 	if (!desc || !desc->kstat_irqs)
921 		return 0;
922 	for_each_possible_cpu(cpu)
923 		sum += *per_cpu_ptr(desc->kstat_irqs, cpu);
924 	return sum;
925 }
926 
927 /**
928  * kstat_irqs_usr - Get the statistics for an interrupt
929  * @irq:	The interrupt number
930  *
931  * Returns the sum of interrupt counts on all cpus since boot for
932  * @irq. Contrary to kstat_irqs() this can be called from any
933  * preemptible context. It's protected against concurrent removal of
934  * an interrupt descriptor when sparse irqs are enabled.
935  */
936 unsigned int kstat_irqs_usr(unsigned int irq)
937 {
938 	unsigned int sum;
939 
940 	irq_lock_sparse();
941 	sum = kstat_irqs(irq);
942 	irq_unlock_sparse();
943 	return sum;
944 }
945