1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar 4 * Copyright (C) 2005-2006, Thomas Gleixner, Russell King 5 * 6 * This file contains the interrupt descriptor management code. Detailed 7 * information is available in Documentation/core-api/genericirq.rst 8 * 9 */ 10 #include <linux/irq.h> 11 #include <linux/slab.h> 12 #include <linux/export.h> 13 #include <linux/interrupt.h> 14 #include <linux/kernel_stat.h> 15 #include <linux/radix-tree.h> 16 #include <linux/bitmap.h> 17 #include <linux/irqdomain.h> 18 #include <linux/sysfs.h> 19 20 #include "internals.h" 21 22 /* 23 * lockdep: we want to handle all irq_desc locks as a single lock-class: 24 */ 25 static struct lock_class_key irq_desc_lock_class; 26 27 #if defined(CONFIG_SMP) 28 static int __init irq_affinity_setup(char *str) 29 { 30 alloc_bootmem_cpumask_var(&irq_default_affinity); 31 cpulist_parse(str, irq_default_affinity); 32 /* 33 * Set at least the boot cpu. We don't want to end up with 34 * bugreports caused by random comandline masks 35 */ 36 cpumask_set_cpu(smp_processor_id(), irq_default_affinity); 37 return 1; 38 } 39 __setup("irqaffinity=", irq_affinity_setup); 40 41 static void __init init_irq_default_affinity(void) 42 { 43 if (!cpumask_available(irq_default_affinity)) 44 zalloc_cpumask_var(&irq_default_affinity, GFP_NOWAIT); 45 if (cpumask_empty(irq_default_affinity)) 46 cpumask_setall(irq_default_affinity); 47 } 48 #else 49 static void __init init_irq_default_affinity(void) 50 { 51 } 52 #endif 53 54 #ifdef CONFIG_SMP 55 static int alloc_masks(struct irq_desc *desc, int node) 56 { 57 if (!zalloc_cpumask_var_node(&desc->irq_common_data.affinity, 58 GFP_KERNEL, node)) 59 return -ENOMEM; 60 61 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK 62 if (!zalloc_cpumask_var_node(&desc->irq_common_data.effective_affinity, 63 GFP_KERNEL, node)) { 64 free_cpumask_var(desc->irq_common_data.affinity); 65 return -ENOMEM; 66 } 67 #endif 68 69 #ifdef CONFIG_GENERIC_PENDING_IRQ 70 if (!zalloc_cpumask_var_node(&desc->pending_mask, GFP_KERNEL, node)) { 71 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK 72 free_cpumask_var(desc->irq_common_data.effective_affinity); 73 #endif 74 free_cpumask_var(desc->irq_common_data.affinity); 75 return -ENOMEM; 76 } 77 #endif 78 return 0; 79 } 80 81 static void desc_smp_init(struct irq_desc *desc, int node, 82 const struct cpumask *affinity) 83 { 84 if (!affinity) 85 affinity = irq_default_affinity; 86 cpumask_copy(desc->irq_common_data.affinity, affinity); 87 88 #ifdef CONFIG_GENERIC_PENDING_IRQ 89 cpumask_clear(desc->pending_mask); 90 #endif 91 #ifdef CONFIG_NUMA 92 desc->irq_common_data.node = node; 93 #endif 94 } 95 96 #else 97 static inline int 98 alloc_masks(struct irq_desc *desc, int node) { return 0; } 99 static inline void 100 desc_smp_init(struct irq_desc *desc, int node, const struct cpumask *affinity) { } 101 #endif 102 103 static void desc_set_defaults(unsigned int irq, struct irq_desc *desc, int node, 104 const struct cpumask *affinity, struct module *owner) 105 { 106 int cpu; 107 108 desc->irq_common_data.handler_data = NULL; 109 desc->irq_common_data.msi_desc = NULL; 110 111 desc->irq_data.common = &desc->irq_common_data; 112 desc->irq_data.irq = irq; 113 desc->irq_data.chip = &no_irq_chip; 114 desc->irq_data.chip_data = NULL; 115 irq_settings_clr_and_set(desc, ~0, _IRQ_DEFAULT_INIT_FLAGS); 116 irqd_set(&desc->irq_data, IRQD_IRQ_DISABLED); 117 irqd_set(&desc->irq_data, IRQD_IRQ_MASKED); 118 desc->handle_irq = handle_bad_irq; 119 desc->depth = 1; 120 desc->irq_count = 0; 121 desc->irqs_unhandled = 0; 122 desc->tot_count = 0; 123 desc->name = NULL; 124 desc->owner = owner; 125 for_each_possible_cpu(cpu) 126 *per_cpu_ptr(desc->kstat_irqs, cpu) = 0; 127 desc_smp_init(desc, node, affinity); 128 } 129 130 int nr_irqs = NR_IRQS; 131 EXPORT_SYMBOL_GPL(nr_irqs); 132 133 static DEFINE_MUTEX(sparse_irq_lock); 134 static DECLARE_BITMAP(allocated_irqs, IRQ_BITMAP_BITS); 135 136 #ifdef CONFIG_SPARSE_IRQ 137 138 static void irq_kobj_release(struct kobject *kobj); 139 140 #ifdef CONFIG_SYSFS 141 static struct kobject *irq_kobj_base; 142 143 #define IRQ_ATTR_RO(_name) \ 144 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 145 146 static ssize_t per_cpu_count_show(struct kobject *kobj, 147 struct kobj_attribute *attr, char *buf) 148 { 149 struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj); 150 int cpu, irq = desc->irq_data.irq; 151 ssize_t ret = 0; 152 char *p = ""; 153 154 for_each_possible_cpu(cpu) { 155 unsigned int c = kstat_irqs_cpu(irq, cpu); 156 157 ret += scnprintf(buf + ret, PAGE_SIZE - ret, "%s%u", p, c); 158 p = ","; 159 } 160 161 ret += scnprintf(buf + ret, PAGE_SIZE - ret, "\n"); 162 return ret; 163 } 164 IRQ_ATTR_RO(per_cpu_count); 165 166 static ssize_t chip_name_show(struct kobject *kobj, 167 struct kobj_attribute *attr, char *buf) 168 { 169 struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj); 170 ssize_t ret = 0; 171 172 raw_spin_lock_irq(&desc->lock); 173 if (desc->irq_data.chip && desc->irq_data.chip->name) { 174 ret = scnprintf(buf, PAGE_SIZE, "%s\n", 175 desc->irq_data.chip->name); 176 } 177 raw_spin_unlock_irq(&desc->lock); 178 179 return ret; 180 } 181 IRQ_ATTR_RO(chip_name); 182 183 static ssize_t hwirq_show(struct kobject *kobj, 184 struct kobj_attribute *attr, char *buf) 185 { 186 struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj); 187 ssize_t ret = 0; 188 189 raw_spin_lock_irq(&desc->lock); 190 if (desc->irq_data.domain) 191 ret = sprintf(buf, "%d\n", (int)desc->irq_data.hwirq); 192 raw_spin_unlock_irq(&desc->lock); 193 194 return ret; 195 } 196 IRQ_ATTR_RO(hwirq); 197 198 static ssize_t type_show(struct kobject *kobj, 199 struct kobj_attribute *attr, char *buf) 200 { 201 struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj); 202 ssize_t ret = 0; 203 204 raw_spin_lock_irq(&desc->lock); 205 ret = sprintf(buf, "%s\n", 206 irqd_is_level_type(&desc->irq_data) ? "level" : "edge"); 207 raw_spin_unlock_irq(&desc->lock); 208 209 return ret; 210 211 } 212 IRQ_ATTR_RO(type); 213 214 static ssize_t wakeup_show(struct kobject *kobj, 215 struct kobj_attribute *attr, char *buf) 216 { 217 struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj); 218 ssize_t ret = 0; 219 220 raw_spin_lock_irq(&desc->lock); 221 ret = sprintf(buf, "%s\n", 222 irqd_is_wakeup_set(&desc->irq_data) ? "enabled" : "disabled"); 223 raw_spin_unlock_irq(&desc->lock); 224 225 return ret; 226 227 } 228 IRQ_ATTR_RO(wakeup); 229 230 static ssize_t name_show(struct kobject *kobj, 231 struct kobj_attribute *attr, char *buf) 232 { 233 struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj); 234 ssize_t ret = 0; 235 236 raw_spin_lock_irq(&desc->lock); 237 if (desc->name) 238 ret = scnprintf(buf, PAGE_SIZE, "%s\n", desc->name); 239 raw_spin_unlock_irq(&desc->lock); 240 241 return ret; 242 } 243 IRQ_ATTR_RO(name); 244 245 static ssize_t actions_show(struct kobject *kobj, 246 struct kobj_attribute *attr, char *buf) 247 { 248 struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj); 249 struct irqaction *action; 250 ssize_t ret = 0; 251 char *p = ""; 252 253 raw_spin_lock_irq(&desc->lock); 254 for (action = desc->action; action != NULL; action = action->next) { 255 ret += scnprintf(buf + ret, PAGE_SIZE - ret, "%s%s", 256 p, action->name); 257 p = ","; 258 } 259 raw_spin_unlock_irq(&desc->lock); 260 261 if (ret) 262 ret += scnprintf(buf + ret, PAGE_SIZE - ret, "\n"); 263 264 return ret; 265 } 266 IRQ_ATTR_RO(actions); 267 268 static struct attribute *irq_attrs[] = { 269 &per_cpu_count_attr.attr, 270 &chip_name_attr.attr, 271 &hwirq_attr.attr, 272 &type_attr.attr, 273 &wakeup_attr.attr, 274 &name_attr.attr, 275 &actions_attr.attr, 276 NULL 277 }; 278 ATTRIBUTE_GROUPS(irq); 279 280 static struct kobj_type irq_kobj_type = { 281 .release = irq_kobj_release, 282 .sysfs_ops = &kobj_sysfs_ops, 283 .default_groups = irq_groups, 284 }; 285 286 static void irq_sysfs_add(int irq, struct irq_desc *desc) 287 { 288 if (irq_kobj_base) { 289 /* 290 * Continue even in case of failure as this is nothing 291 * crucial. 292 */ 293 if (kobject_add(&desc->kobj, irq_kobj_base, "%d", irq)) 294 pr_warn("Failed to add kobject for irq %d\n", irq); 295 } 296 } 297 298 static void irq_sysfs_del(struct irq_desc *desc) 299 { 300 /* 301 * If irq_sysfs_init() has not yet been invoked (early boot), then 302 * irq_kobj_base is NULL and the descriptor was never added. 303 * kobject_del() complains about a object with no parent, so make 304 * it conditional. 305 */ 306 if (irq_kobj_base) 307 kobject_del(&desc->kobj); 308 } 309 310 static int __init irq_sysfs_init(void) 311 { 312 struct irq_desc *desc; 313 int irq; 314 315 /* Prevent concurrent irq alloc/free */ 316 irq_lock_sparse(); 317 318 irq_kobj_base = kobject_create_and_add("irq", kernel_kobj); 319 if (!irq_kobj_base) { 320 irq_unlock_sparse(); 321 return -ENOMEM; 322 } 323 324 /* Add the already allocated interrupts */ 325 for_each_irq_desc(irq, desc) 326 irq_sysfs_add(irq, desc); 327 irq_unlock_sparse(); 328 329 return 0; 330 } 331 postcore_initcall(irq_sysfs_init); 332 333 #else /* !CONFIG_SYSFS */ 334 335 static struct kobj_type irq_kobj_type = { 336 .release = irq_kobj_release, 337 }; 338 339 static void irq_sysfs_add(int irq, struct irq_desc *desc) {} 340 static void irq_sysfs_del(struct irq_desc *desc) {} 341 342 #endif /* CONFIG_SYSFS */ 343 344 static RADIX_TREE(irq_desc_tree, GFP_KERNEL); 345 346 static void irq_insert_desc(unsigned int irq, struct irq_desc *desc) 347 { 348 radix_tree_insert(&irq_desc_tree, irq, desc); 349 } 350 351 struct irq_desc *irq_to_desc(unsigned int irq) 352 { 353 return radix_tree_lookup(&irq_desc_tree, irq); 354 } 355 EXPORT_SYMBOL(irq_to_desc); 356 357 static void delete_irq_desc(unsigned int irq) 358 { 359 radix_tree_delete(&irq_desc_tree, irq); 360 } 361 362 #ifdef CONFIG_SMP 363 static void free_masks(struct irq_desc *desc) 364 { 365 #ifdef CONFIG_GENERIC_PENDING_IRQ 366 free_cpumask_var(desc->pending_mask); 367 #endif 368 free_cpumask_var(desc->irq_common_data.affinity); 369 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK 370 free_cpumask_var(desc->irq_common_data.effective_affinity); 371 #endif 372 } 373 #else 374 static inline void free_masks(struct irq_desc *desc) { } 375 #endif 376 377 void irq_lock_sparse(void) 378 { 379 mutex_lock(&sparse_irq_lock); 380 } 381 382 void irq_unlock_sparse(void) 383 { 384 mutex_unlock(&sparse_irq_lock); 385 } 386 387 static struct irq_desc *alloc_desc(int irq, int node, unsigned int flags, 388 const struct cpumask *affinity, 389 struct module *owner) 390 { 391 struct irq_desc *desc; 392 393 desc = kzalloc_node(sizeof(*desc), GFP_KERNEL, node); 394 if (!desc) 395 return NULL; 396 /* allocate based on nr_cpu_ids */ 397 desc->kstat_irqs = alloc_percpu(unsigned int); 398 if (!desc->kstat_irqs) 399 goto err_desc; 400 401 if (alloc_masks(desc, node)) 402 goto err_kstat; 403 404 raw_spin_lock_init(&desc->lock); 405 lockdep_set_class(&desc->lock, &irq_desc_lock_class); 406 mutex_init(&desc->request_mutex); 407 init_rcu_head(&desc->rcu); 408 409 desc_set_defaults(irq, desc, node, affinity, owner); 410 irqd_set(&desc->irq_data, flags); 411 kobject_init(&desc->kobj, &irq_kobj_type); 412 413 return desc; 414 415 err_kstat: 416 free_percpu(desc->kstat_irqs); 417 err_desc: 418 kfree(desc); 419 return NULL; 420 } 421 422 static void irq_kobj_release(struct kobject *kobj) 423 { 424 struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj); 425 426 free_masks(desc); 427 free_percpu(desc->kstat_irqs); 428 kfree(desc); 429 } 430 431 static void delayed_free_desc(struct rcu_head *rhp) 432 { 433 struct irq_desc *desc = container_of(rhp, struct irq_desc, rcu); 434 435 kobject_put(&desc->kobj); 436 } 437 438 static void free_desc(unsigned int irq) 439 { 440 struct irq_desc *desc = irq_to_desc(irq); 441 442 irq_remove_debugfs_entry(desc); 443 unregister_irq_proc(irq, desc); 444 445 /* 446 * sparse_irq_lock protects also show_interrupts() and 447 * kstat_irq_usr(). Once we deleted the descriptor from the 448 * sparse tree we can free it. Access in proc will fail to 449 * lookup the descriptor. 450 * 451 * The sysfs entry must be serialized against a concurrent 452 * irq_sysfs_init() as well. 453 */ 454 irq_sysfs_del(desc); 455 delete_irq_desc(irq); 456 457 /* 458 * We free the descriptor, masks and stat fields via RCU. That 459 * allows demultiplex interrupts to do rcu based management of 460 * the child interrupts. 461 * This also allows us to use rcu in kstat_irqs_usr(). 462 */ 463 call_rcu(&desc->rcu, delayed_free_desc); 464 } 465 466 static int alloc_descs(unsigned int start, unsigned int cnt, int node, 467 const struct irq_affinity_desc *affinity, 468 struct module *owner) 469 { 470 struct irq_desc *desc; 471 int i; 472 473 /* Validate affinity mask(s) */ 474 if (affinity) { 475 for (i = 0; i < cnt; i++) { 476 if (cpumask_empty(&affinity[i].mask)) 477 return -EINVAL; 478 } 479 } 480 481 for (i = 0; i < cnt; i++) { 482 const struct cpumask *mask = NULL; 483 unsigned int flags = 0; 484 485 if (affinity) { 486 if (affinity->is_managed) { 487 flags = IRQD_AFFINITY_MANAGED | 488 IRQD_MANAGED_SHUTDOWN; 489 } 490 mask = &affinity->mask; 491 node = cpu_to_node(cpumask_first(mask)); 492 affinity++; 493 } 494 495 desc = alloc_desc(start + i, node, flags, mask, owner); 496 if (!desc) 497 goto err; 498 irq_insert_desc(start + i, desc); 499 irq_sysfs_add(start + i, desc); 500 irq_add_debugfs_entry(start + i, desc); 501 } 502 bitmap_set(allocated_irqs, start, cnt); 503 return start; 504 505 err: 506 for (i--; i >= 0; i--) 507 free_desc(start + i); 508 return -ENOMEM; 509 } 510 511 static int irq_expand_nr_irqs(unsigned int nr) 512 { 513 if (nr > IRQ_BITMAP_BITS) 514 return -ENOMEM; 515 nr_irqs = nr; 516 return 0; 517 } 518 519 int __init early_irq_init(void) 520 { 521 int i, initcnt, node = first_online_node; 522 struct irq_desc *desc; 523 524 init_irq_default_affinity(); 525 526 /* Let arch update nr_irqs and return the nr of preallocated irqs */ 527 initcnt = arch_probe_nr_irqs(); 528 printk(KERN_INFO "NR_IRQS: %d, nr_irqs: %d, preallocated irqs: %d\n", 529 NR_IRQS, nr_irqs, initcnt); 530 531 if (WARN_ON(nr_irqs > IRQ_BITMAP_BITS)) 532 nr_irqs = IRQ_BITMAP_BITS; 533 534 if (WARN_ON(initcnt > IRQ_BITMAP_BITS)) 535 initcnt = IRQ_BITMAP_BITS; 536 537 if (initcnt > nr_irqs) 538 nr_irqs = initcnt; 539 540 for (i = 0; i < initcnt; i++) { 541 desc = alloc_desc(i, node, 0, NULL, NULL); 542 set_bit(i, allocated_irqs); 543 irq_insert_desc(i, desc); 544 } 545 return arch_early_irq_init(); 546 } 547 548 #else /* !CONFIG_SPARSE_IRQ */ 549 550 struct irq_desc irq_desc[NR_IRQS] __cacheline_aligned_in_smp = { 551 [0 ... NR_IRQS-1] = { 552 .handle_irq = handle_bad_irq, 553 .depth = 1, 554 .lock = __RAW_SPIN_LOCK_UNLOCKED(irq_desc->lock), 555 } 556 }; 557 558 int __init early_irq_init(void) 559 { 560 int count, i, node = first_online_node; 561 struct irq_desc *desc; 562 563 init_irq_default_affinity(); 564 565 printk(KERN_INFO "NR_IRQS: %d\n", NR_IRQS); 566 567 desc = irq_desc; 568 count = ARRAY_SIZE(irq_desc); 569 570 for (i = 0; i < count; i++) { 571 desc[i].kstat_irqs = alloc_percpu(unsigned int); 572 alloc_masks(&desc[i], node); 573 raw_spin_lock_init(&desc[i].lock); 574 lockdep_set_class(&desc[i].lock, &irq_desc_lock_class); 575 mutex_init(&desc[i].request_mutex); 576 desc_set_defaults(i, &desc[i], node, NULL, NULL); 577 } 578 return arch_early_irq_init(); 579 } 580 581 struct irq_desc *irq_to_desc(unsigned int irq) 582 { 583 return (irq < NR_IRQS) ? irq_desc + irq : NULL; 584 } 585 EXPORT_SYMBOL(irq_to_desc); 586 587 static void free_desc(unsigned int irq) 588 { 589 struct irq_desc *desc = irq_to_desc(irq); 590 unsigned long flags; 591 592 raw_spin_lock_irqsave(&desc->lock, flags); 593 desc_set_defaults(irq, desc, irq_desc_get_node(desc), NULL, NULL); 594 raw_spin_unlock_irqrestore(&desc->lock, flags); 595 } 596 597 static inline int alloc_descs(unsigned int start, unsigned int cnt, int node, 598 const struct irq_affinity_desc *affinity, 599 struct module *owner) 600 { 601 u32 i; 602 603 for (i = 0; i < cnt; i++) { 604 struct irq_desc *desc = irq_to_desc(start + i); 605 606 desc->owner = owner; 607 } 608 bitmap_set(allocated_irqs, start, cnt); 609 return start; 610 } 611 612 static int irq_expand_nr_irqs(unsigned int nr) 613 { 614 return -ENOMEM; 615 } 616 617 void irq_mark_irq(unsigned int irq) 618 { 619 mutex_lock(&sparse_irq_lock); 620 bitmap_set(allocated_irqs, irq, 1); 621 mutex_unlock(&sparse_irq_lock); 622 } 623 624 #ifdef CONFIG_GENERIC_IRQ_LEGACY 625 void irq_init_desc(unsigned int irq) 626 { 627 free_desc(irq); 628 } 629 #endif 630 631 #endif /* !CONFIG_SPARSE_IRQ */ 632 633 /** 634 * generic_handle_irq - Invoke the handler for a particular irq 635 * @irq: The irq number to handle 636 * 637 */ 638 int generic_handle_irq(unsigned int irq) 639 { 640 struct irq_desc *desc = irq_to_desc(irq); 641 struct irq_data *data; 642 643 if (!desc) 644 return -EINVAL; 645 646 data = irq_desc_get_irq_data(desc); 647 if (WARN_ON_ONCE(!in_irq() && handle_enforce_irqctx(data))) 648 return -EPERM; 649 650 generic_handle_irq_desc(desc); 651 return 0; 652 } 653 EXPORT_SYMBOL_GPL(generic_handle_irq); 654 655 #ifdef CONFIG_HANDLE_DOMAIN_IRQ 656 /** 657 * __handle_domain_irq - Invoke the handler for a HW irq belonging to a domain 658 * @domain: The domain where to perform the lookup 659 * @hwirq: The HW irq number to convert to a logical one 660 * @lookup: Whether to perform the domain lookup or not 661 * @regs: Register file coming from the low-level handling code 662 * 663 * Returns: 0 on success, or -EINVAL if conversion has failed 664 */ 665 int __handle_domain_irq(struct irq_domain *domain, unsigned int hwirq, 666 bool lookup, struct pt_regs *regs) 667 { 668 struct pt_regs *old_regs = set_irq_regs(regs); 669 unsigned int irq = hwirq; 670 int ret = 0; 671 672 irq_enter(); 673 674 #ifdef CONFIG_IRQ_DOMAIN 675 if (lookup) 676 irq = irq_find_mapping(domain, hwirq); 677 #endif 678 679 /* 680 * Some hardware gives randomly wrong interrupts. Rather 681 * than crashing, do something sensible. 682 */ 683 if (unlikely(!irq || irq >= nr_irqs)) { 684 ack_bad_irq(irq); 685 ret = -EINVAL; 686 } else { 687 generic_handle_irq(irq); 688 } 689 690 irq_exit(); 691 set_irq_regs(old_regs); 692 return ret; 693 } 694 695 #ifdef CONFIG_IRQ_DOMAIN 696 /** 697 * handle_domain_nmi - Invoke the handler for a HW irq belonging to a domain 698 * @domain: The domain where to perform the lookup 699 * @hwirq: The HW irq number to convert to a logical one 700 * @regs: Register file coming from the low-level handling code 701 * 702 * This function must be called from an NMI context. 703 * 704 * Returns: 0 on success, or -EINVAL if conversion has failed 705 */ 706 int handle_domain_nmi(struct irq_domain *domain, unsigned int hwirq, 707 struct pt_regs *regs) 708 { 709 struct pt_regs *old_regs = set_irq_regs(regs); 710 unsigned int irq; 711 int ret = 0; 712 713 /* 714 * NMI context needs to be setup earlier in order to deal with tracing. 715 */ 716 WARN_ON(!in_nmi()); 717 718 irq = irq_find_mapping(domain, hwirq); 719 720 /* 721 * ack_bad_irq is not NMI-safe, just report 722 * an invalid interrupt. 723 */ 724 if (likely(irq)) 725 generic_handle_irq(irq); 726 else 727 ret = -EINVAL; 728 729 set_irq_regs(old_regs); 730 return ret; 731 } 732 #endif 733 #endif 734 735 /* Dynamic interrupt handling */ 736 737 /** 738 * irq_free_descs - free irq descriptors 739 * @from: Start of descriptor range 740 * @cnt: Number of consecutive irqs to free 741 */ 742 void irq_free_descs(unsigned int from, unsigned int cnt) 743 { 744 int i; 745 746 if (from >= nr_irqs || (from + cnt) > nr_irqs) 747 return; 748 749 mutex_lock(&sparse_irq_lock); 750 for (i = 0; i < cnt; i++) 751 free_desc(from + i); 752 753 bitmap_clear(allocated_irqs, from, cnt); 754 mutex_unlock(&sparse_irq_lock); 755 } 756 EXPORT_SYMBOL_GPL(irq_free_descs); 757 758 /** 759 * __irq_alloc_descs - allocate and initialize a range of irq descriptors 760 * @irq: Allocate for specific irq number if irq >= 0 761 * @from: Start the search from this irq number 762 * @cnt: Number of consecutive irqs to allocate. 763 * @node: Preferred node on which the irq descriptor should be allocated 764 * @owner: Owning module (can be NULL) 765 * @affinity: Optional pointer to an affinity mask array of size @cnt which 766 * hints where the irq descriptors should be allocated and which 767 * default affinities to use 768 * 769 * Returns the first irq number or error code 770 */ 771 int __ref 772 __irq_alloc_descs(int irq, unsigned int from, unsigned int cnt, int node, 773 struct module *owner, const struct irq_affinity_desc *affinity) 774 { 775 int start, ret; 776 777 if (!cnt) 778 return -EINVAL; 779 780 if (irq >= 0) { 781 if (from > irq) 782 return -EINVAL; 783 from = irq; 784 } else { 785 /* 786 * For interrupts which are freely allocated the 787 * architecture can force a lower bound to the @from 788 * argument. x86 uses this to exclude the GSI space. 789 */ 790 from = arch_dynirq_lower_bound(from); 791 } 792 793 mutex_lock(&sparse_irq_lock); 794 795 start = bitmap_find_next_zero_area(allocated_irqs, IRQ_BITMAP_BITS, 796 from, cnt, 0); 797 ret = -EEXIST; 798 if (irq >=0 && start != irq) 799 goto unlock; 800 801 if (start + cnt > nr_irqs) { 802 ret = irq_expand_nr_irqs(start + cnt); 803 if (ret) 804 goto unlock; 805 } 806 ret = alloc_descs(start, cnt, node, affinity, owner); 807 unlock: 808 mutex_unlock(&sparse_irq_lock); 809 return ret; 810 } 811 EXPORT_SYMBOL_GPL(__irq_alloc_descs); 812 813 /** 814 * irq_get_next_irq - get next allocated irq number 815 * @offset: where to start the search 816 * 817 * Returns next irq number after offset or nr_irqs if none is found. 818 */ 819 unsigned int irq_get_next_irq(unsigned int offset) 820 { 821 return find_next_bit(allocated_irqs, nr_irqs, offset); 822 } 823 824 struct irq_desc * 825 __irq_get_desc_lock(unsigned int irq, unsigned long *flags, bool bus, 826 unsigned int check) 827 { 828 struct irq_desc *desc = irq_to_desc(irq); 829 830 if (desc) { 831 if (check & _IRQ_DESC_CHECK) { 832 if ((check & _IRQ_DESC_PERCPU) && 833 !irq_settings_is_per_cpu_devid(desc)) 834 return NULL; 835 836 if (!(check & _IRQ_DESC_PERCPU) && 837 irq_settings_is_per_cpu_devid(desc)) 838 return NULL; 839 } 840 841 if (bus) 842 chip_bus_lock(desc); 843 raw_spin_lock_irqsave(&desc->lock, *flags); 844 } 845 return desc; 846 } 847 848 void __irq_put_desc_unlock(struct irq_desc *desc, unsigned long flags, bool bus) 849 __releases(&desc->lock) 850 { 851 raw_spin_unlock_irqrestore(&desc->lock, flags); 852 if (bus) 853 chip_bus_sync_unlock(desc); 854 } 855 856 int irq_set_percpu_devid_partition(unsigned int irq, 857 const struct cpumask *affinity) 858 { 859 struct irq_desc *desc = irq_to_desc(irq); 860 861 if (!desc) 862 return -EINVAL; 863 864 if (desc->percpu_enabled) 865 return -EINVAL; 866 867 desc->percpu_enabled = kzalloc(sizeof(*desc->percpu_enabled), GFP_KERNEL); 868 869 if (!desc->percpu_enabled) 870 return -ENOMEM; 871 872 if (affinity) 873 desc->percpu_affinity = affinity; 874 else 875 desc->percpu_affinity = cpu_possible_mask; 876 877 irq_set_percpu_devid_flags(irq); 878 return 0; 879 } 880 881 int irq_set_percpu_devid(unsigned int irq) 882 { 883 return irq_set_percpu_devid_partition(irq, NULL); 884 } 885 886 int irq_get_percpu_devid_partition(unsigned int irq, struct cpumask *affinity) 887 { 888 struct irq_desc *desc = irq_to_desc(irq); 889 890 if (!desc || !desc->percpu_enabled) 891 return -EINVAL; 892 893 if (affinity) 894 cpumask_copy(affinity, desc->percpu_affinity); 895 896 return 0; 897 } 898 EXPORT_SYMBOL_GPL(irq_get_percpu_devid_partition); 899 900 void kstat_incr_irq_this_cpu(unsigned int irq) 901 { 902 kstat_incr_irqs_this_cpu(irq_to_desc(irq)); 903 } 904 905 /** 906 * kstat_irqs_cpu - Get the statistics for an interrupt on a cpu 907 * @irq: The interrupt number 908 * @cpu: The cpu number 909 * 910 * Returns the sum of interrupt counts on @cpu since boot for 911 * @irq. The caller must ensure that the interrupt is not removed 912 * concurrently. 913 */ 914 unsigned int kstat_irqs_cpu(unsigned int irq, int cpu) 915 { 916 struct irq_desc *desc = irq_to_desc(irq); 917 918 return desc && desc->kstat_irqs ? 919 *per_cpu_ptr(desc->kstat_irqs, cpu) : 0; 920 } 921 922 static bool irq_is_nmi(struct irq_desc *desc) 923 { 924 return desc->istate & IRQS_NMI; 925 } 926 927 /** 928 * kstat_irqs - Get the statistics for an interrupt 929 * @irq: The interrupt number 930 * 931 * Returns the sum of interrupt counts on all cpus since boot for 932 * @irq. The caller must ensure that the interrupt is not removed 933 * concurrently. 934 */ 935 unsigned int kstat_irqs(unsigned int irq) 936 { 937 struct irq_desc *desc = irq_to_desc(irq); 938 unsigned int sum = 0; 939 int cpu; 940 941 if (!desc || !desc->kstat_irqs) 942 return 0; 943 if (!irq_settings_is_per_cpu_devid(desc) && 944 !irq_settings_is_per_cpu(desc) && 945 !irq_is_nmi(desc)) 946 return desc->tot_count; 947 948 for_each_possible_cpu(cpu) 949 sum += *per_cpu_ptr(desc->kstat_irqs, cpu); 950 return sum; 951 } 952 953 /** 954 * kstat_irqs_usr - Get the statistics for an interrupt 955 * @irq: The interrupt number 956 * 957 * Returns the sum of interrupt counts on all cpus since boot for @irq. 958 * Contrary to kstat_irqs() this can be called from any context. 959 * It uses rcu since a concurrent removal of an interrupt descriptor is 960 * observing an rcu grace period before delayed_free_desc()/irq_kobj_release(). 961 */ 962 unsigned int kstat_irqs_usr(unsigned int irq) 963 { 964 unsigned int sum; 965 966 rcu_read_lock(); 967 sum = kstat_irqs(irq); 968 rcu_read_unlock(); 969 return sum; 970 } 971