xref: /openbmc/linux/kernel/irq/irqdesc.c (revision cbdf59ad)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
4  * Copyright (C) 2005-2006, Thomas Gleixner, Russell King
5  *
6  * This file contains the interrupt descriptor management code. Detailed
7  * information is available in Documentation/core-api/genericirq.rst
8  *
9  */
10 #include <linux/irq.h>
11 #include <linux/slab.h>
12 #include <linux/export.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/radix-tree.h>
16 #include <linux/bitmap.h>
17 #include <linux/irqdomain.h>
18 #include <linux/sysfs.h>
19 
20 #include "internals.h"
21 
22 /*
23  * lockdep: we want to handle all irq_desc locks as a single lock-class:
24  */
25 static struct lock_class_key irq_desc_lock_class;
26 
27 #if defined(CONFIG_SMP)
28 static int __init irq_affinity_setup(char *str)
29 {
30 	alloc_bootmem_cpumask_var(&irq_default_affinity);
31 	cpulist_parse(str, irq_default_affinity);
32 	/*
33 	 * Set at least the boot cpu. We don't want to end up with
34 	 * bugreports caused by random comandline masks
35 	 */
36 	cpumask_set_cpu(smp_processor_id(), irq_default_affinity);
37 	return 1;
38 }
39 __setup("irqaffinity=", irq_affinity_setup);
40 
41 static void __init init_irq_default_affinity(void)
42 {
43 	if (!cpumask_available(irq_default_affinity))
44 		zalloc_cpumask_var(&irq_default_affinity, GFP_NOWAIT);
45 	if (cpumask_empty(irq_default_affinity))
46 		cpumask_setall(irq_default_affinity);
47 }
48 #else
49 static void __init init_irq_default_affinity(void)
50 {
51 }
52 #endif
53 
54 #ifdef CONFIG_SMP
55 static int alloc_masks(struct irq_desc *desc, int node)
56 {
57 	if (!zalloc_cpumask_var_node(&desc->irq_common_data.affinity,
58 				     GFP_KERNEL, node))
59 		return -ENOMEM;
60 
61 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
62 	if (!zalloc_cpumask_var_node(&desc->irq_common_data.effective_affinity,
63 				     GFP_KERNEL, node)) {
64 		free_cpumask_var(desc->irq_common_data.affinity);
65 		return -ENOMEM;
66 	}
67 #endif
68 
69 #ifdef CONFIG_GENERIC_PENDING_IRQ
70 	if (!zalloc_cpumask_var_node(&desc->pending_mask, GFP_KERNEL, node)) {
71 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
72 		free_cpumask_var(desc->irq_common_data.effective_affinity);
73 #endif
74 		free_cpumask_var(desc->irq_common_data.affinity);
75 		return -ENOMEM;
76 	}
77 #endif
78 	return 0;
79 }
80 
81 static void desc_smp_init(struct irq_desc *desc, int node,
82 			  const struct cpumask *affinity)
83 {
84 	if (!affinity)
85 		affinity = irq_default_affinity;
86 	cpumask_copy(desc->irq_common_data.affinity, affinity);
87 
88 #ifdef CONFIG_GENERIC_PENDING_IRQ
89 	cpumask_clear(desc->pending_mask);
90 #endif
91 #ifdef CONFIG_NUMA
92 	desc->irq_common_data.node = node;
93 #endif
94 }
95 
96 #else
97 static inline int
98 alloc_masks(struct irq_desc *desc, int node) { return 0; }
99 static inline void
100 desc_smp_init(struct irq_desc *desc, int node, const struct cpumask *affinity) { }
101 #endif
102 
103 static void desc_set_defaults(unsigned int irq, struct irq_desc *desc, int node,
104 			      const struct cpumask *affinity, struct module *owner)
105 {
106 	int cpu;
107 
108 	desc->irq_common_data.handler_data = NULL;
109 	desc->irq_common_data.msi_desc = NULL;
110 
111 	desc->irq_data.common = &desc->irq_common_data;
112 	desc->irq_data.irq = irq;
113 	desc->irq_data.chip = &no_irq_chip;
114 	desc->irq_data.chip_data = NULL;
115 	irq_settings_clr_and_set(desc, ~0, _IRQ_DEFAULT_INIT_FLAGS);
116 	irqd_set(&desc->irq_data, IRQD_IRQ_DISABLED);
117 	irqd_set(&desc->irq_data, IRQD_IRQ_MASKED);
118 	desc->handle_irq = handle_bad_irq;
119 	desc->depth = 1;
120 	desc->irq_count = 0;
121 	desc->irqs_unhandled = 0;
122 	desc->tot_count = 0;
123 	desc->name = NULL;
124 	desc->owner = owner;
125 	for_each_possible_cpu(cpu)
126 		*per_cpu_ptr(desc->kstat_irqs, cpu) = 0;
127 	desc_smp_init(desc, node, affinity);
128 }
129 
130 int nr_irqs = NR_IRQS;
131 EXPORT_SYMBOL_GPL(nr_irqs);
132 
133 static DEFINE_MUTEX(sparse_irq_lock);
134 static DECLARE_BITMAP(allocated_irqs, IRQ_BITMAP_BITS);
135 
136 #ifdef CONFIG_SPARSE_IRQ
137 
138 static void irq_kobj_release(struct kobject *kobj);
139 
140 #ifdef CONFIG_SYSFS
141 static struct kobject *irq_kobj_base;
142 
143 #define IRQ_ATTR_RO(_name) \
144 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
145 
146 static ssize_t per_cpu_count_show(struct kobject *kobj,
147 				  struct kobj_attribute *attr, char *buf)
148 {
149 	struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
150 	int cpu, irq = desc->irq_data.irq;
151 	ssize_t ret = 0;
152 	char *p = "";
153 
154 	for_each_possible_cpu(cpu) {
155 		unsigned int c = kstat_irqs_cpu(irq, cpu);
156 
157 		ret += scnprintf(buf + ret, PAGE_SIZE - ret, "%s%u", p, c);
158 		p = ",";
159 	}
160 
161 	ret += scnprintf(buf + ret, PAGE_SIZE - ret, "\n");
162 	return ret;
163 }
164 IRQ_ATTR_RO(per_cpu_count);
165 
166 static ssize_t chip_name_show(struct kobject *kobj,
167 			      struct kobj_attribute *attr, char *buf)
168 {
169 	struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
170 	ssize_t ret = 0;
171 
172 	raw_spin_lock_irq(&desc->lock);
173 	if (desc->irq_data.chip && desc->irq_data.chip->name) {
174 		ret = scnprintf(buf, PAGE_SIZE, "%s\n",
175 				desc->irq_data.chip->name);
176 	}
177 	raw_spin_unlock_irq(&desc->lock);
178 
179 	return ret;
180 }
181 IRQ_ATTR_RO(chip_name);
182 
183 static ssize_t hwirq_show(struct kobject *kobj,
184 			  struct kobj_attribute *attr, char *buf)
185 {
186 	struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
187 	ssize_t ret = 0;
188 
189 	raw_spin_lock_irq(&desc->lock);
190 	if (desc->irq_data.domain)
191 		ret = sprintf(buf, "%d\n", (int)desc->irq_data.hwirq);
192 	raw_spin_unlock_irq(&desc->lock);
193 
194 	return ret;
195 }
196 IRQ_ATTR_RO(hwirq);
197 
198 static ssize_t type_show(struct kobject *kobj,
199 			 struct kobj_attribute *attr, char *buf)
200 {
201 	struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
202 	ssize_t ret = 0;
203 
204 	raw_spin_lock_irq(&desc->lock);
205 	ret = sprintf(buf, "%s\n",
206 		      irqd_is_level_type(&desc->irq_data) ? "level" : "edge");
207 	raw_spin_unlock_irq(&desc->lock);
208 
209 	return ret;
210 
211 }
212 IRQ_ATTR_RO(type);
213 
214 static ssize_t wakeup_show(struct kobject *kobj,
215 			   struct kobj_attribute *attr, char *buf)
216 {
217 	struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
218 	ssize_t ret = 0;
219 
220 	raw_spin_lock_irq(&desc->lock);
221 	ret = sprintf(buf, "%s\n",
222 		      irqd_is_wakeup_set(&desc->irq_data) ? "enabled" : "disabled");
223 	raw_spin_unlock_irq(&desc->lock);
224 
225 	return ret;
226 
227 }
228 IRQ_ATTR_RO(wakeup);
229 
230 static ssize_t name_show(struct kobject *kobj,
231 			 struct kobj_attribute *attr, char *buf)
232 {
233 	struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
234 	ssize_t ret = 0;
235 
236 	raw_spin_lock_irq(&desc->lock);
237 	if (desc->name)
238 		ret = scnprintf(buf, PAGE_SIZE, "%s\n", desc->name);
239 	raw_spin_unlock_irq(&desc->lock);
240 
241 	return ret;
242 }
243 IRQ_ATTR_RO(name);
244 
245 static ssize_t actions_show(struct kobject *kobj,
246 			    struct kobj_attribute *attr, char *buf)
247 {
248 	struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
249 	struct irqaction *action;
250 	ssize_t ret = 0;
251 	char *p = "";
252 
253 	raw_spin_lock_irq(&desc->lock);
254 	for (action = desc->action; action != NULL; action = action->next) {
255 		ret += scnprintf(buf + ret, PAGE_SIZE - ret, "%s%s",
256 				 p, action->name);
257 		p = ",";
258 	}
259 	raw_spin_unlock_irq(&desc->lock);
260 
261 	if (ret)
262 		ret += scnprintf(buf + ret, PAGE_SIZE - ret, "\n");
263 
264 	return ret;
265 }
266 IRQ_ATTR_RO(actions);
267 
268 static struct attribute *irq_attrs[] = {
269 	&per_cpu_count_attr.attr,
270 	&chip_name_attr.attr,
271 	&hwirq_attr.attr,
272 	&type_attr.attr,
273 	&wakeup_attr.attr,
274 	&name_attr.attr,
275 	&actions_attr.attr,
276 	NULL
277 };
278 ATTRIBUTE_GROUPS(irq);
279 
280 static struct kobj_type irq_kobj_type = {
281 	.release	= irq_kobj_release,
282 	.sysfs_ops	= &kobj_sysfs_ops,
283 	.default_groups = irq_groups,
284 };
285 
286 static void irq_sysfs_add(int irq, struct irq_desc *desc)
287 {
288 	if (irq_kobj_base) {
289 		/*
290 		 * Continue even in case of failure as this is nothing
291 		 * crucial.
292 		 */
293 		if (kobject_add(&desc->kobj, irq_kobj_base, "%d", irq))
294 			pr_warn("Failed to add kobject for irq %d\n", irq);
295 	}
296 }
297 
298 static int __init irq_sysfs_init(void)
299 {
300 	struct irq_desc *desc;
301 	int irq;
302 
303 	/* Prevent concurrent irq alloc/free */
304 	irq_lock_sparse();
305 
306 	irq_kobj_base = kobject_create_and_add("irq", kernel_kobj);
307 	if (!irq_kobj_base) {
308 		irq_unlock_sparse();
309 		return -ENOMEM;
310 	}
311 
312 	/* Add the already allocated interrupts */
313 	for_each_irq_desc(irq, desc)
314 		irq_sysfs_add(irq, desc);
315 	irq_unlock_sparse();
316 
317 	return 0;
318 }
319 postcore_initcall(irq_sysfs_init);
320 
321 #else /* !CONFIG_SYSFS */
322 
323 static struct kobj_type irq_kobj_type = {
324 	.release	= irq_kobj_release,
325 };
326 
327 static void irq_sysfs_add(int irq, struct irq_desc *desc) {}
328 
329 #endif /* CONFIG_SYSFS */
330 
331 static RADIX_TREE(irq_desc_tree, GFP_KERNEL);
332 
333 static void irq_insert_desc(unsigned int irq, struct irq_desc *desc)
334 {
335 	radix_tree_insert(&irq_desc_tree, irq, desc);
336 }
337 
338 struct irq_desc *irq_to_desc(unsigned int irq)
339 {
340 	return radix_tree_lookup(&irq_desc_tree, irq);
341 }
342 EXPORT_SYMBOL(irq_to_desc);
343 
344 static void delete_irq_desc(unsigned int irq)
345 {
346 	radix_tree_delete(&irq_desc_tree, irq);
347 }
348 
349 #ifdef CONFIG_SMP
350 static void free_masks(struct irq_desc *desc)
351 {
352 #ifdef CONFIG_GENERIC_PENDING_IRQ
353 	free_cpumask_var(desc->pending_mask);
354 #endif
355 	free_cpumask_var(desc->irq_common_data.affinity);
356 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
357 	free_cpumask_var(desc->irq_common_data.effective_affinity);
358 #endif
359 }
360 #else
361 static inline void free_masks(struct irq_desc *desc) { }
362 #endif
363 
364 void irq_lock_sparse(void)
365 {
366 	mutex_lock(&sparse_irq_lock);
367 }
368 
369 void irq_unlock_sparse(void)
370 {
371 	mutex_unlock(&sparse_irq_lock);
372 }
373 
374 static struct irq_desc *alloc_desc(int irq, int node, unsigned int flags,
375 				   const struct cpumask *affinity,
376 				   struct module *owner)
377 {
378 	struct irq_desc *desc;
379 
380 	desc = kzalloc_node(sizeof(*desc), GFP_KERNEL, node);
381 	if (!desc)
382 		return NULL;
383 	/* allocate based on nr_cpu_ids */
384 	desc->kstat_irqs = alloc_percpu(unsigned int);
385 	if (!desc->kstat_irqs)
386 		goto err_desc;
387 
388 	if (alloc_masks(desc, node))
389 		goto err_kstat;
390 
391 	raw_spin_lock_init(&desc->lock);
392 	lockdep_set_class(&desc->lock, &irq_desc_lock_class);
393 	mutex_init(&desc->request_mutex);
394 	init_rcu_head(&desc->rcu);
395 
396 	desc_set_defaults(irq, desc, node, affinity, owner);
397 	irqd_set(&desc->irq_data, flags);
398 	kobject_init(&desc->kobj, &irq_kobj_type);
399 
400 	return desc;
401 
402 err_kstat:
403 	free_percpu(desc->kstat_irqs);
404 err_desc:
405 	kfree(desc);
406 	return NULL;
407 }
408 
409 static void irq_kobj_release(struct kobject *kobj)
410 {
411 	struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
412 
413 	free_masks(desc);
414 	free_percpu(desc->kstat_irqs);
415 	kfree(desc);
416 }
417 
418 static void delayed_free_desc(struct rcu_head *rhp)
419 {
420 	struct irq_desc *desc = container_of(rhp, struct irq_desc, rcu);
421 
422 	kobject_put(&desc->kobj);
423 }
424 
425 static void free_desc(unsigned int irq)
426 {
427 	struct irq_desc *desc = irq_to_desc(irq);
428 
429 	irq_remove_debugfs_entry(desc);
430 	unregister_irq_proc(irq, desc);
431 
432 	/*
433 	 * sparse_irq_lock protects also show_interrupts() and
434 	 * kstat_irq_usr(). Once we deleted the descriptor from the
435 	 * sparse tree we can free it. Access in proc will fail to
436 	 * lookup the descriptor.
437 	 *
438 	 * The sysfs entry must be serialized against a concurrent
439 	 * irq_sysfs_init() as well.
440 	 */
441 	kobject_del(&desc->kobj);
442 	delete_irq_desc(irq);
443 
444 	/*
445 	 * We free the descriptor, masks and stat fields via RCU. That
446 	 * allows demultiplex interrupts to do rcu based management of
447 	 * the child interrupts.
448 	 * This also allows us to use rcu in kstat_irqs_usr().
449 	 */
450 	call_rcu(&desc->rcu, delayed_free_desc);
451 }
452 
453 static int alloc_descs(unsigned int start, unsigned int cnt, int node,
454 		       const struct irq_affinity_desc *affinity,
455 		       struct module *owner)
456 {
457 	struct irq_desc *desc;
458 	int i;
459 
460 	/* Validate affinity mask(s) */
461 	if (affinity) {
462 		for (i = 0; i < cnt; i++) {
463 			if (cpumask_empty(&affinity[i].mask))
464 				return -EINVAL;
465 		}
466 	}
467 
468 	for (i = 0; i < cnt; i++) {
469 		const struct cpumask *mask = NULL;
470 		unsigned int flags = 0;
471 
472 		if (affinity) {
473 			if (affinity->is_managed) {
474 				flags = IRQD_AFFINITY_MANAGED |
475 					IRQD_MANAGED_SHUTDOWN;
476 			}
477 			mask = &affinity->mask;
478 			node = cpu_to_node(cpumask_first(mask));
479 			affinity++;
480 		}
481 
482 		desc = alloc_desc(start + i, node, flags, mask, owner);
483 		if (!desc)
484 			goto err;
485 		irq_insert_desc(start + i, desc);
486 		irq_sysfs_add(start + i, desc);
487 		irq_add_debugfs_entry(start + i, desc);
488 	}
489 	bitmap_set(allocated_irqs, start, cnt);
490 	return start;
491 
492 err:
493 	for (i--; i >= 0; i--)
494 		free_desc(start + i);
495 	return -ENOMEM;
496 }
497 
498 static int irq_expand_nr_irqs(unsigned int nr)
499 {
500 	if (nr > IRQ_BITMAP_BITS)
501 		return -ENOMEM;
502 	nr_irqs = nr;
503 	return 0;
504 }
505 
506 int __init early_irq_init(void)
507 {
508 	int i, initcnt, node = first_online_node;
509 	struct irq_desc *desc;
510 
511 	init_irq_default_affinity();
512 
513 	/* Let arch update nr_irqs and return the nr of preallocated irqs */
514 	initcnt = arch_probe_nr_irqs();
515 	printk(KERN_INFO "NR_IRQS: %d, nr_irqs: %d, preallocated irqs: %d\n",
516 	       NR_IRQS, nr_irqs, initcnt);
517 
518 	if (WARN_ON(nr_irqs > IRQ_BITMAP_BITS))
519 		nr_irqs = IRQ_BITMAP_BITS;
520 
521 	if (WARN_ON(initcnt > IRQ_BITMAP_BITS))
522 		initcnt = IRQ_BITMAP_BITS;
523 
524 	if (initcnt > nr_irqs)
525 		nr_irqs = initcnt;
526 
527 	for (i = 0; i < initcnt; i++) {
528 		desc = alloc_desc(i, node, 0, NULL, NULL);
529 		set_bit(i, allocated_irqs);
530 		irq_insert_desc(i, desc);
531 	}
532 	return arch_early_irq_init();
533 }
534 
535 #else /* !CONFIG_SPARSE_IRQ */
536 
537 struct irq_desc irq_desc[NR_IRQS] __cacheline_aligned_in_smp = {
538 	[0 ... NR_IRQS-1] = {
539 		.handle_irq	= handle_bad_irq,
540 		.depth		= 1,
541 		.lock		= __RAW_SPIN_LOCK_UNLOCKED(irq_desc->lock),
542 	}
543 };
544 
545 int __init early_irq_init(void)
546 {
547 	int count, i, node = first_online_node;
548 	struct irq_desc *desc;
549 
550 	init_irq_default_affinity();
551 
552 	printk(KERN_INFO "NR_IRQS: %d\n", NR_IRQS);
553 
554 	desc = irq_desc;
555 	count = ARRAY_SIZE(irq_desc);
556 
557 	for (i = 0; i < count; i++) {
558 		desc[i].kstat_irqs = alloc_percpu(unsigned int);
559 		alloc_masks(&desc[i], node);
560 		raw_spin_lock_init(&desc[i].lock);
561 		lockdep_set_class(&desc[i].lock, &irq_desc_lock_class);
562 		mutex_init(&desc[i].request_mutex);
563 		desc_set_defaults(i, &desc[i], node, NULL, NULL);
564 	}
565 	return arch_early_irq_init();
566 }
567 
568 struct irq_desc *irq_to_desc(unsigned int irq)
569 {
570 	return (irq < NR_IRQS) ? irq_desc + irq : NULL;
571 }
572 EXPORT_SYMBOL(irq_to_desc);
573 
574 static void free_desc(unsigned int irq)
575 {
576 	struct irq_desc *desc = irq_to_desc(irq);
577 	unsigned long flags;
578 
579 	raw_spin_lock_irqsave(&desc->lock, flags);
580 	desc_set_defaults(irq, desc, irq_desc_get_node(desc), NULL, NULL);
581 	raw_spin_unlock_irqrestore(&desc->lock, flags);
582 }
583 
584 static inline int alloc_descs(unsigned int start, unsigned int cnt, int node,
585 			      const struct irq_affinity_desc *affinity,
586 			      struct module *owner)
587 {
588 	u32 i;
589 
590 	for (i = 0; i < cnt; i++) {
591 		struct irq_desc *desc = irq_to_desc(start + i);
592 
593 		desc->owner = owner;
594 	}
595 	bitmap_set(allocated_irqs, start, cnt);
596 	return start;
597 }
598 
599 static int irq_expand_nr_irqs(unsigned int nr)
600 {
601 	return -ENOMEM;
602 }
603 
604 void irq_mark_irq(unsigned int irq)
605 {
606 	mutex_lock(&sparse_irq_lock);
607 	bitmap_set(allocated_irqs, irq, 1);
608 	mutex_unlock(&sparse_irq_lock);
609 }
610 
611 #ifdef CONFIG_GENERIC_IRQ_LEGACY
612 void irq_init_desc(unsigned int irq)
613 {
614 	free_desc(irq);
615 }
616 #endif
617 
618 #endif /* !CONFIG_SPARSE_IRQ */
619 
620 /**
621  * generic_handle_irq - Invoke the handler for a particular irq
622  * @irq:	The irq number to handle
623  *
624  */
625 int generic_handle_irq(unsigned int irq)
626 {
627 	struct irq_desc *desc = irq_to_desc(irq);
628 
629 	if (!desc)
630 		return -EINVAL;
631 	generic_handle_irq_desc(desc);
632 	return 0;
633 }
634 EXPORT_SYMBOL_GPL(generic_handle_irq);
635 
636 #ifdef CONFIG_HANDLE_DOMAIN_IRQ
637 /**
638  * __handle_domain_irq - Invoke the handler for a HW irq belonging to a domain
639  * @domain:	The domain where to perform the lookup
640  * @hwirq:	The HW irq number to convert to a logical one
641  * @lookup:	Whether to perform the domain lookup or not
642  * @regs:	Register file coming from the low-level handling code
643  *
644  * Returns:	0 on success, or -EINVAL if conversion has failed
645  */
646 int __handle_domain_irq(struct irq_domain *domain, unsigned int hwirq,
647 			bool lookup, struct pt_regs *regs)
648 {
649 	struct pt_regs *old_regs = set_irq_regs(regs);
650 	unsigned int irq = hwirq;
651 	int ret = 0;
652 
653 	irq_enter();
654 
655 #ifdef CONFIG_IRQ_DOMAIN
656 	if (lookup)
657 		irq = irq_find_mapping(domain, hwirq);
658 #endif
659 
660 	/*
661 	 * Some hardware gives randomly wrong interrupts.  Rather
662 	 * than crashing, do something sensible.
663 	 */
664 	if (unlikely(!irq || irq >= nr_irqs)) {
665 		ack_bad_irq(irq);
666 		ret = -EINVAL;
667 	} else {
668 		generic_handle_irq(irq);
669 	}
670 
671 	irq_exit();
672 	set_irq_regs(old_regs);
673 	return ret;
674 }
675 
676 #ifdef CONFIG_IRQ_DOMAIN
677 /**
678  * handle_domain_nmi - Invoke the handler for a HW irq belonging to a domain
679  * @domain:	The domain where to perform the lookup
680  * @hwirq:	The HW irq number to convert to a logical one
681  * @regs:	Register file coming from the low-level handling code
682  *
683  *		This function must be called from an NMI context.
684  *
685  * Returns:	0 on success, or -EINVAL if conversion has failed
686  */
687 int handle_domain_nmi(struct irq_domain *domain, unsigned int hwirq,
688 		      struct pt_regs *regs)
689 {
690 	struct pt_regs *old_regs = set_irq_regs(regs);
691 	unsigned int irq;
692 	int ret = 0;
693 
694 	/*
695 	 * NMI context needs to be setup earlier in order to deal with tracing.
696 	 */
697 	WARN_ON(!in_nmi());
698 
699 	irq = irq_find_mapping(domain, hwirq);
700 
701 	/*
702 	 * ack_bad_irq is not NMI-safe, just report
703 	 * an invalid interrupt.
704 	 */
705 	if (likely(irq))
706 		generic_handle_irq(irq);
707 	else
708 		ret = -EINVAL;
709 
710 	set_irq_regs(old_regs);
711 	return ret;
712 }
713 #endif
714 #endif
715 
716 /* Dynamic interrupt handling */
717 
718 /**
719  * irq_free_descs - free irq descriptors
720  * @from:	Start of descriptor range
721  * @cnt:	Number of consecutive irqs to free
722  */
723 void irq_free_descs(unsigned int from, unsigned int cnt)
724 {
725 	int i;
726 
727 	if (from >= nr_irqs || (from + cnt) > nr_irqs)
728 		return;
729 
730 	mutex_lock(&sparse_irq_lock);
731 	for (i = 0; i < cnt; i++)
732 		free_desc(from + i);
733 
734 	bitmap_clear(allocated_irqs, from, cnt);
735 	mutex_unlock(&sparse_irq_lock);
736 }
737 EXPORT_SYMBOL_GPL(irq_free_descs);
738 
739 /**
740  * irq_alloc_descs - allocate and initialize a range of irq descriptors
741  * @irq:	Allocate for specific irq number if irq >= 0
742  * @from:	Start the search from this irq number
743  * @cnt:	Number of consecutive irqs to allocate.
744  * @node:	Preferred node on which the irq descriptor should be allocated
745  * @owner:	Owning module (can be NULL)
746  * @affinity:	Optional pointer to an affinity mask array of size @cnt which
747  *		hints where the irq descriptors should be allocated and which
748  *		default affinities to use
749  *
750  * Returns the first irq number or error code
751  */
752 int __ref
753 __irq_alloc_descs(int irq, unsigned int from, unsigned int cnt, int node,
754 		  struct module *owner, const struct irq_affinity_desc *affinity)
755 {
756 	int start, ret;
757 
758 	if (!cnt)
759 		return -EINVAL;
760 
761 	if (irq >= 0) {
762 		if (from > irq)
763 			return -EINVAL;
764 		from = irq;
765 	} else {
766 		/*
767 		 * For interrupts which are freely allocated the
768 		 * architecture can force a lower bound to the @from
769 		 * argument. x86 uses this to exclude the GSI space.
770 		 */
771 		from = arch_dynirq_lower_bound(from);
772 	}
773 
774 	mutex_lock(&sparse_irq_lock);
775 
776 	start = bitmap_find_next_zero_area(allocated_irqs, IRQ_BITMAP_BITS,
777 					   from, cnt, 0);
778 	ret = -EEXIST;
779 	if (irq >=0 && start != irq)
780 		goto unlock;
781 
782 	if (start + cnt > nr_irqs) {
783 		ret = irq_expand_nr_irqs(start + cnt);
784 		if (ret)
785 			goto unlock;
786 	}
787 	ret = alloc_descs(start, cnt, node, affinity, owner);
788 unlock:
789 	mutex_unlock(&sparse_irq_lock);
790 	return ret;
791 }
792 EXPORT_SYMBOL_GPL(__irq_alloc_descs);
793 
794 #ifdef CONFIG_GENERIC_IRQ_LEGACY_ALLOC_HWIRQ
795 /**
796  * irq_alloc_hwirqs - Allocate an irq descriptor and initialize the hardware
797  * @cnt:	number of interrupts to allocate
798  * @node:	node on which to allocate
799  *
800  * Returns an interrupt number > 0 or 0, if the allocation fails.
801  */
802 unsigned int irq_alloc_hwirqs(int cnt, int node)
803 {
804 	int i, irq = __irq_alloc_descs(-1, 0, cnt, node, NULL, NULL);
805 
806 	if (irq < 0)
807 		return 0;
808 
809 	for (i = irq; cnt > 0; i++, cnt--) {
810 		if (arch_setup_hwirq(i, node))
811 			goto err;
812 		irq_clear_status_flags(i, _IRQ_NOREQUEST);
813 	}
814 	return irq;
815 
816 err:
817 	for (i--; i >= irq; i--) {
818 		irq_set_status_flags(i, _IRQ_NOREQUEST | _IRQ_NOPROBE);
819 		arch_teardown_hwirq(i);
820 	}
821 	irq_free_descs(irq, cnt);
822 	return 0;
823 }
824 EXPORT_SYMBOL_GPL(irq_alloc_hwirqs);
825 
826 /**
827  * irq_free_hwirqs - Free irq descriptor and cleanup the hardware
828  * @from:	Free from irq number
829  * @cnt:	number of interrupts to free
830  *
831  */
832 void irq_free_hwirqs(unsigned int from, int cnt)
833 {
834 	int i, j;
835 
836 	for (i = from, j = cnt; j > 0; i++, j--) {
837 		irq_set_status_flags(i, _IRQ_NOREQUEST | _IRQ_NOPROBE);
838 		arch_teardown_hwirq(i);
839 	}
840 	irq_free_descs(from, cnt);
841 }
842 EXPORT_SYMBOL_GPL(irq_free_hwirqs);
843 #endif
844 
845 /**
846  * irq_get_next_irq - get next allocated irq number
847  * @offset:	where to start the search
848  *
849  * Returns next irq number after offset or nr_irqs if none is found.
850  */
851 unsigned int irq_get_next_irq(unsigned int offset)
852 {
853 	return find_next_bit(allocated_irqs, nr_irqs, offset);
854 }
855 
856 struct irq_desc *
857 __irq_get_desc_lock(unsigned int irq, unsigned long *flags, bool bus,
858 		    unsigned int check)
859 {
860 	struct irq_desc *desc = irq_to_desc(irq);
861 
862 	if (desc) {
863 		if (check & _IRQ_DESC_CHECK) {
864 			if ((check & _IRQ_DESC_PERCPU) &&
865 			    !irq_settings_is_per_cpu_devid(desc))
866 				return NULL;
867 
868 			if (!(check & _IRQ_DESC_PERCPU) &&
869 			    irq_settings_is_per_cpu_devid(desc))
870 				return NULL;
871 		}
872 
873 		if (bus)
874 			chip_bus_lock(desc);
875 		raw_spin_lock_irqsave(&desc->lock, *flags);
876 	}
877 	return desc;
878 }
879 
880 void __irq_put_desc_unlock(struct irq_desc *desc, unsigned long flags, bool bus)
881 {
882 	raw_spin_unlock_irqrestore(&desc->lock, flags);
883 	if (bus)
884 		chip_bus_sync_unlock(desc);
885 }
886 
887 int irq_set_percpu_devid_partition(unsigned int irq,
888 				   const struct cpumask *affinity)
889 {
890 	struct irq_desc *desc = irq_to_desc(irq);
891 
892 	if (!desc)
893 		return -EINVAL;
894 
895 	if (desc->percpu_enabled)
896 		return -EINVAL;
897 
898 	desc->percpu_enabled = kzalloc(sizeof(*desc->percpu_enabled), GFP_KERNEL);
899 
900 	if (!desc->percpu_enabled)
901 		return -ENOMEM;
902 
903 	if (affinity)
904 		desc->percpu_affinity = affinity;
905 	else
906 		desc->percpu_affinity = cpu_possible_mask;
907 
908 	irq_set_percpu_devid_flags(irq);
909 	return 0;
910 }
911 
912 int irq_set_percpu_devid(unsigned int irq)
913 {
914 	return irq_set_percpu_devid_partition(irq, NULL);
915 }
916 
917 int irq_get_percpu_devid_partition(unsigned int irq, struct cpumask *affinity)
918 {
919 	struct irq_desc *desc = irq_to_desc(irq);
920 
921 	if (!desc || !desc->percpu_enabled)
922 		return -EINVAL;
923 
924 	if (affinity)
925 		cpumask_copy(affinity, desc->percpu_affinity);
926 
927 	return 0;
928 }
929 EXPORT_SYMBOL_GPL(irq_get_percpu_devid_partition);
930 
931 void kstat_incr_irq_this_cpu(unsigned int irq)
932 {
933 	kstat_incr_irqs_this_cpu(irq_to_desc(irq));
934 }
935 
936 /**
937  * kstat_irqs_cpu - Get the statistics for an interrupt on a cpu
938  * @irq:	The interrupt number
939  * @cpu:	The cpu number
940  *
941  * Returns the sum of interrupt counts on @cpu since boot for
942  * @irq. The caller must ensure that the interrupt is not removed
943  * concurrently.
944  */
945 unsigned int kstat_irqs_cpu(unsigned int irq, int cpu)
946 {
947 	struct irq_desc *desc = irq_to_desc(irq);
948 
949 	return desc && desc->kstat_irqs ?
950 			*per_cpu_ptr(desc->kstat_irqs, cpu) : 0;
951 }
952 
953 static bool irq_is_nmi(struct irq_desc *desc)
954 {
955 	return desc->istate & IRQS_NMI;
956 }
957 
958 /**
959  * kstat_irqs - Get the statistics for an interrupt
960  * @irq:	The interrupt number
961  *
962  * Returns the sum of interrupt counts on all cpus since boot for
963  * @irq. The caller must ensure that the interrupt is not removed
964  * concurrently.
965  */
966 unsigned int kstat_irqs(unsigned int irq)
967 {
968 	struct irq_desc *desc = irq_to_desc(irq);
969 	unsigned int sum = 0;
970 	int cpu;
971 
972 	if (!desc || !desc->kstat_irqs)
973 		return 0;
974 	if (!irq_settings_is_per_cpu_devid(desc) &&
975 	    !irq_settings_is_per_cpu(desc) &&
976 	    !irq_is_nmi(desc))
977 	    return desc->tot_count;
978 
979 	for_each_possible_cpu(cpu)
980 		sum += *per_cpu_ptr(desc->kstat_irqs, cpu);
981 	return sum;
982 }
983 
984 /**
985  * kstat_irqs_usr - Get the statistics for an interrupt
986  * @irq:	The interrupt number
987  *
988  * Returns the sum of interrupt counts on all cpus since boot for @irq.
989  * Contrary to kstat_irqs() this can be called from any context.
990  * It uses rcu since a concurrent removal of an interrupt descriptor is
991  * observing an rcu grace period before delayed_free_desc()/irq_kobj_release().
992  */
993 unsigned int kstat_irqs_usr(unsigned int irq)
994 {
995 	unsigned int sum;
996 
997 	rcu_read_lock();
998 	sum = kstat_irqs(irq);
999 	rcu_read_unlock();
1000 	return sum;
1001 }
1002