xref: /openbmc/linux/kernel/irq/irqdesc.c (revision b802fb99ae964681d1754428f67970911e0476e9)
1 /*
2  * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
3  * Copyright (C) 2005-2006, Thomas Gleixner, Russell King
4  *
5  * This file contains the interrupt descriptor management code
6  *
7  * Detailed information is available in Documentation/DocBook/genericirq
8  *
9  */
10 #include <linux/irq.h>
11 #include <linux/slab.h>
12 #include <linux/export.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/radix-tree.h>
16 #include <linux/bitmap.h>
17 #include <linux/irqdomain.h>
18 
19 #include "internals.h"
20 
21 /*
22  * lockdep: we want to handle all irq_desc locks as a single lock-class:
23  */
24 static struct lock_class_key irq_desc_lock_class;
25 
26 #if defined(CONFIG_SMP)
27 static void __init init_irq_default_affinity(void)
28 {
29 	alloc_cpumask_var(&irq_default_affinity, GFP_NOWAIT);
30 	cpumask_setall(irq_default_affinity);
31 }
32 #else
33 static void __init init_irq_default_affinity(void)
34 {
35 }
36 #endif
37 
38 #ifdef CONFIG_SMP
39 static int alloc_masks(struct irq_desc *desc, gfp_t gfp, int node)
40 {
41 	if (!zalloc_cpumask_var_node(&desc->irq_common_data.affinity,
42 				     gfp, node))
43 		return -ENOMEM;
44 
45 #ifdef CONFIG_GENERIC_PENDING_IRQ
46 	if (!zalloc_cpumask_var_node(&desc->pending_mask, gfp, node)) {
47 		free_cpumask_var(desc->irq_common_data.affinity);
48 		return -ENOMEM;
49 	}
50 #endif
51 	return 0;
52 }
53 
54 static void desc_smp_init(struct irq_desc *desc, int node)
55 {
56 	cpumask_copy(desc->irq_common_data.affinity, irq_default_affinity);
57 #ifdef CONFIG_GENERIC_PENDING_IRQ
58 	cpumask_clear(desc->pending_mask);
59 #endif
60 #ifdef CONFIG_NUMA
61 	desc->irq_common_data.node = node;
62 #endif
63 }
64 
65 #else
66 static inline int
67 alloc_masks(struct irq_desc *desc, gfp_t gfp, int node) { return 0; }
68 static inline void desc_smp_init(struct irq_desc *desc, int node) { }
69 #endif
70 
71 static void desc_set_defaults(unsigned int irq, struct irq_desc *desc, int node,
72 		struct module *owner)
73 {
74 	int cpu;
75 
76 	desc->irq_common_data.handler_data = NULL;
77 	desc->irq_common_data.msi_desc = NULL;
78 
79 	desc->irq_data.common = &desc->irq_common_data;
80 	desc->irq_data.irq = irq;
81 	desc->irq_data.chip = &no_irq_chip;
82 	desc->irq_data.chip_data = NULL;
83 	irq_settings_clr_and_set(desc, ~0, _IRQ_DEFAULT_INIT_FLAGS);
84 	irqd_set(&desc->irq_data, IRQD_IRQ_DISABLED);
85 	desc->handle_irq = handle_bad_irq;
86 	desc->depth = 1;
87 	desc->irq_count = 0;
88 	desc->irqs_unhandled = 0;
89 	desc->name = NULL;
90 	desc->owner = owner;
91 	for_each_possible_cpu(cpu)
92 		*per_cpu_ptr(desc->kstat_irqs, cpu) = 0;
93 	desc_smp_init(desc, node);
94 }
95 
96 int nr_irqs = NR_IRQS;
97 EXPORT_SYMBOL_GPL(nr_irqs);
98 
99 static DEFINE_MUTEX(sparse_irq_lock);
100 static DECLARE_BITMAP(allocated_irqs, IRQ_BITMAP_BITS);
101 
102 #ifdef CONFIG_SPARSE_IRQ
103 
104 static RADIX_TREE(irq_desc_tree, GFP_KERNEL);
105 
106 static void irq_insert_desc(unsigned int irq, struct irq_desc *desc)
107 {
108 	radix_tree_insert(&irq_desc_tree, irq, desc);
109 }
110 
111 struct irq_desc *irq_to_desc(unsigned int irq)
112 {
113 	return radix_tree_lookup(&irq_desc_tree, irq);
114 }
115 EXPORT_SYMBOL(irq_to_desc);
116 
117 static void delete_irq_desc(unsigned int irq)
118 {
119 	radix_tree_delete(&irq_desc_tree, irq);
120 }
121 
122 #ifdef CONFIG_SMP
123 static void free_masks(struct irq_desc *desc)
124 {
125 #ifdef CONFIG_GENERIC_PENDING_IRQ
126 	free_cpumask_var(desc->pending_mask);
127 #endif
128 	free_cpumask_var(desc->irq_common_data.affinity);
129 }
130 #else
131 static inline void free_masks(struct irq_desc *desc) { }
132 #endif
133 
134 void irq_lock_sparse(void)
135 {
136 	mutex_lock(&sparse_irq_lock);
137 }
138 
139 void irq_unlock_sparse(void)
140 {
141 	mutex_unlock(&sparse_irq_lock);
142 }
143 
144 static struct irq_desc *alloc_desc(int irq, int node, struct module *owner)
145 {
146 	struct irq_desc *desc;
147 	gfp_t gfp = GFP_KERNEL;
148 
149 	desc = kzalloc_node(sizeof(*desc), gfp, node);
150 	if (!desc)
151 		return NULL;
152 	/* allocate based on nr_cpu_ids */
153 	desc->kstat_irqs = alloc_percpu(unsigned int);
154 	if (!desc->kstat_irqs)
155 		goto err_desc;
156 
157 	if (alloc_masks(desc, gfp, node))
158 		goto err_kstat;
159 
160 	raw_spin_lock_init(&desc->lock);
161 	lockdep_set_class(&desc->lock, &irq_desc_lock_class);
162 	init_rcu_head(&desc->rcu);
163 
164 	desc_set_defaults(irq, desc, node, owner);
165 
166 	return desc;
167 
168 err_kstat:
169 	free_percpu(desc->kstat_irqs);
170 err_desc:
171 	kfree(desc);
172 	return NULL;
173 }
174 
175 static void delayed_free_desc(struct rcu_head *rhp)
176 {
177 	struct irq_desc *desc = container_of(rhp, struct irq_desc, rcu);
178 
179 	free_masks(desc);
180 	free_percpu(desc->kstat_irqs);
181 	kfree(desc);
182 }
183 
184 static void free_desc(unsigned int irq)
185 {
186 	struct irq_desc *desc = irq_to_desc(irq);
187 
188 	unregister_irq_proc(irq, desc);
189 
190 	/*
191 	 * sparse_irq_lock protects also show_interrupts() and
192 	 * kstat_irq_usr(). Once we deleted the descriptor from the
193 	 * sparse tree we can free it. Access in proc will fail to
194 	 * lookup the descriptor.
195 	 */
196 	mutex_lock(&sparse_irq_lock);
197 	delete_irq_desc(irq);
198 	mutex_unlock(&sparse_irq_lock);
199 
200 	/*
201 	 * We free the descriptor, masks and stat fields via RCU. That
202 	 * allows demultiplex interrupts to do rcu based management of
203 	 * the child interrupts.
204 	 */
205 	call_rcu(&desc->rcu, delayed_free_desc);
206 }
207 
208 static int alloc_descs(unsigned int start, unsigned int cnt, int node,
209 		       struct module *owner)
210 {
211 	struct irq_desc *desc;
212 	int i;
213 
214 	for (i = 0; i < cnt; i++) {
215 		desc = alloc_desc(start + i, node, owner);
216 		if (!desc)
217 			goto err;
218 		mutex_lock(&sparse_irq_lock);
219 		irq_insert_desc(start + i, desc);
220 		mutex_unlock(&sparse_irq_lock);
221 	}
222 	return start;
223 
224 err:
225 	for (i--; i >= 0; i--)
226 		free_desc(start + i);
227 
228 	mutex_lock(&sparse_irq_lock);
229 	bitmap_clear(allocated_irqs, start, cnt);
230 	mutex_unlock(&sparse_irq_lock);
231 	return -ENOMEM;
232 }
233 
234 static int irq_expand_nr_irqs(unsigned int nr)
235 {
236 	if (nr > IRQ_BITMAP_BITS)
237 		return -ENOMEM;
238 	nr_irqs = nr;
239 	return 0;
240 }
241 
242 int __init early_irq_init(void)
243 {
244 	int i, initcnt, node = first_online_node;
245 	struct irq_desc *desc;
246 
247 	init_irq_default_affinity();
248 
249 	/* Let arch update nr_irqs and return the nr of preallocated irqs */
250 	initcnt = arch_probe_nr_irqs();
251 	printk(KERN_INFO "NR_IRQS:%d nr_irqs:%d %d\n", NR_IRQS, nr_irqs, initcnt);
252 
253 	if (WARN_ON(nr_irqs > IRQ_BITMAP_BITS))
254 		nr_irqs = IRQ_BITMAP_BITS;
255 
256 	if (WARN_ON(initcnt > IRQ_BITMAP_BITS))
257 		initcnt = IRQ_BITMAP_BITS;
258 
259 	if (initcnt > nr_irqs)
260 		nr_irqs = initcnt;
261 
262 	for (i = 0; i < initcnt; i++) {
263 		desc = alloc_desc(i, node, NULL);
264 		set_bit(i, allocated_irqs);
265 		irq_insert_desc(i, desc);
266 	}
267 	return arch_early_irq_init();
268 }
269 
270 #else /* !CONFIG_SPARSE_IRQ */
271 
272 struct irq_desc irq_desc[NR_IRQS] __cacheline_aligned_in_smp = {
273 	[0 ... NR_IRQS-1] = {
274 		.handle_irq	= handle_bad_irq,
275 		.depth		= 1,
276 		.lock		= __RAW_SPIN_LOCK_UNLOCKED(irq_desc->lock),
277 	}
278 };
279 
280 int __init early_irq_init(void)
281 {
282 	int count, i, node = first_online_node;
283 	struct irq_desc *desc;
284 
285 	init_irq_default_affinity();
286 
287 	printk(KERN_INFO "NR_IRQS:%d\n", NR_IRQS);
288 
289 	desc = irq_desc;
290 	count = ARRAY_SIZE(irq_desc);
291 
292 	for (i = 0; i < count; i++) {
293 		desc[i].kstat_irqs = alloc_percpu(unsigned int);
294 		alloc_masks(&desc[i], GFP_KERNEL, node);
295 		raw_spin_lock_init(&desc[i].lock);
296 		lockdep_set_class(&desc[i].lock, &irq_desc_lock_class);
297 		desc_set_defaults(i, &desc[i], node, NULL);
298 	}
299 	return arch_early_irq_init();
300 }
301 
302 struct irq_desc *irq_to_desc(unsigned int irq)
303 {
304 	return (irq < NR_IRQS) ? irq_desc + irq : NULL;
305 }
306 EXPORT_SYMBOL(irq_to_desc);
307 
308 static void free_desc(unsigned int irq)
309 {
310 	struct irq_desc *desc = irq_to_desc(irq);
311 	unsigned long flags;
312 
313 	raw_spin_lock_irqsave(&desc->lock, flags);
314 	desc_set_defaults(irq, desc, irq_desc_get_node(desc), NULL);
315 	raw_spin_unlock_irqrestore(&desc->lock, flags);
316 }
317 
318 static inline int alloc_descs(unsigned int start, unsigned int cnt, int node,
319 			      struct module *owner)
320 {
321 	u32 i;
322 
323 	for (i = 0; i < cnt; i++) {
324 		struct irq_desc *desc = irq_to_desc(start + i);
325 
326 		desc->owner = owner;
327 	}
328 	return start;
329 }
330 
331 static int irq_expand_nr_irqs(unsigned int nr)
332 {
333 	return -ENOMEM;
334 }
335 
336 void irq_mark_irq(unsigned int irq)
337 {
338 	mutex_lock(&sparse_irq_lock);
339 	bitmap_set(allocated_irqs, irq, 1);
340 	mutex_unlock(&sparse_irq_lock);
341 }
342 
343 #ifdef CONFIG_GENERIC_IRQ_LEGACY
344 void irq_init_desc(unsigned int irq)
345 {
346 	free_desc(irq);
347 }
348 #endif
349 
350 #endif /* !CONFIG_SPARSE_IRQ */
351 
352 /**
353  * generic_handle_irq - Invoke the handler for a particular irq
354  * @irq:	The irq number to handle
355  *
356  */
357 int generic_handle_irq(unsigned int irq)
358 {
359 	struct irq_desc *desc = irq_to_desc(irq);
360 
361 	if (!desc)
362 		return -EINVAL;
363 	generic_handle_irq_desc(desc);
364 	return 0;
365 }
366 EXPORT_SYMBOL_GPL(generic_handle_irq);
367 
368 #ifdef CONFIG_HANDLE_DOMAIN_IRQ
369 /**
370  * __handle_domain_irq - Invoke the handler for a HW irq belonging to a domain
371  * @domain:	The domain where to perform the lookup
372  * @hwirq:	The HW irq number to convert to a logical one
373  * @lookup:	Whether to perform the domain lookup or not
374  * @regs:	Register file coming from the low-level handling code
375  *
376  * Returns:	0 on success, or -EINVAL if conversion has failed
377  */
378 int __handle_domain_irq(struct irq_domain *domain, unsigned int hwirq,
379 			bool lookup, struct pt_regs *regs)
380 {
381 	struct pt_regs *old_regs = set_irq_regs(regs);
382 	unsigned int irq = hwirq;
383 	int ret = 0;
384 
385 	irq_enter();
386 
387 #ifdef CONFIG_IRQ_DOMAIN
388 	if (lookup)
389 		irq = irq_find_mapping(domain, hwirq);
390 #endif
391 
392 	/*
393 	 * Some hardware gives randomly wrong interrupts.  Rather
394 	 * than crashing, do something sensible.
395 	 */
396 	if (unlikely(!irq || irq >= nr_irqs)) {
397 		ack_bad_irq(irq);
398 		ret = -EINVAL;
399 	} else {
400 		generic_handle_irq(irq);
401 	}
402 
403 	irq_exit();
404 	set_irq_regs(old_regs);
405 	return ret;
406 }
407 #endif
408 
409 /* Dynamic interrupt handling */
410 
411 /**
412  * irq_free_descs - free irq descriptors
413  * @from:	Start of descriptor range
414  * @cnt:	Number of consecutive irqs to free
415  */
416 void irq_free_descs(unsigned int from, unsigned int cnt)
417 {
418 	int i;
419 
420 	if (from >= nr_irqs || (from + cnt) > nr_irqs)
421 		return;
422 
423 	for (i = 0; i < cnt; i++)
424 		free_desc(from + i);
425 
426 	mutex_lock(&sparse_irq_lock);
427 	bitmap_clear(allocated_irqs, from, cnt);
428 	mutex_unlock(&sparse_irq_lock);
429 }
430 EXPORT_SYMBOL_GPL(irq_free_descs);
431 
432 /**
433  * irq_alloc_descs - allocate and initialize a range of irq descriptors
434  * @irq:	Allocate for specific irq number if irq >= 0
435  * @from:	Start the search from this irq number
436  * @cnt:	Number of consecutive irqs to allocate.
437  * @node:	Preferred node on which the irq descriptor should be allocated
438  * @owner:	Owning module (can be NULL)
439  *
440  * Returns the first irq number or error code
441  */
442 int __ref
443 __irq_alloc_descs(int irq, unsigned int from, unsigned int cnt, int node,
444 		  struct module *owner)
445 {
446 	int start, ret;
447 
448 	if (!cnt)
449 		return -EINVAL;
450 
451 	if (irq >= 0) {
452 		if (from > irq)
453 			return -EINVAL;
454 		from = irq;
455 	} else {
456 		/*
457 		 * For interrupts which are freely allocated the
458 		 * architecture can force a lower bound to the @from
459 		 * argument. x86 uses this to exclude the GSI space.
460 		 */
461 		from = arch_dynirq_lower_bound(from);
462 	}
463 
464 	mutex_lock(&sparse_irq_lock);
465 
466 	start = bitmap_find_next_zero_area(allocated_irqs, IRQ_BITMAP_BITS,
467 					   from, cnt, 0);
468 	ret = -EEXIST;
469 	if (irq >=0 && start != irq)
470 		goto err;
471 
472 	if (start + cnt > nr_irqs) {
473 		ret = irq_expand_nr_irqs(start + cnt);
474 		if (ret)
475 			goto err;
476 	}
477 
478 	bitmap_set(allocated_irqs, start, cnt);
479 	mutex_unlock(&sparse_irq_lock);
480 	return alloc_descs(start, cnt, node, owner);
481 
482 err:
483 	mutex_unlock(&sparse_irq_lock);
484 	return ret;
485 }
486 EXPORT_SYMBOL_GPL(__irq_alloc_descs);
487 
488 #ifdef CONFIG_GENERIC_IRQ_LEGACY_ALLOC_HWIRQ
489 /**
490  * irq_alloc_hwirqs - Allocate an irq descriptor and initialize the hardware
491  * @cnt:	number of interrupts to allocate
492  * @node:	node on which to allocate
493  *
494  * Returns an interrupt number > 0 or 0, if the allocation fails.
495  */
496 unsigned int irq_alloc_hwirqs(int cnt, int node)
497 {
498 	int i, irq = __irq_alloc_descs(-1, 0, cnt, node, NULL);
499 
500 	if (irq < 0)
501 		return 0;
502 
503 	for (i = irq; cnt > 0; i++, cnt--) {
504 		if (arch_setup_hwirq(i, node))
505 			goto err;
506 		irq_clear_status_flags(i, _IRQ_NOREQUEST);
507 	}
508 	return irq;
509 
510 err:
511 	for (i--; i >= irq; i--) {
512 		irq_set_status_flags(i, _IRQ_NOREQUEST | _IRQ_NOPROBE);
513 		arch_teardown_hwirq(i);
514 	}
515 	irq_free_descs(irq, cnt);
516 	return 0;
517 }
518 EXPORT_SYMBOL_GPL(irq_alloc_hwirqs);
519 
520 /**
521  * irq_free_hwirqs - Free irq descriptor and cleanup the hardware
522  * @from:	Free from irq number
523  * @cnt:	number of interrupts to free
524  *
525  */
526 void irq_free_hwirqs(unsigned int from, int cnt)
527 {
528 	int i, j;
529 
530 	for (i = from, j = cnt; j > 0; i++, j--) {
531 		irq_set_status_flags(i, _IRQ_NOREQUEST | _IRQ_NOPROBE);
532 		arch_teardown_hwirq(i);
533 	}
534 	irq_free_descs(from, cnt);
535 }
536 EXPORT_SYMBOL_GPL(irq_free_hwirqs);
537 #endif
538 
539 /**
540  * irq_get_next_irq - get next allocated irq number
541  * @offset:	where to start the search
542  *
543  * Returns next irq number after offset or nr_irqs if none is found.
544  */
545 unsigned int irq_get_next_irq(unsigned int offset)
546 {
547 	return find_next_bit(allocated_irqs, nr_irqs, offset);
548 }
549 
550 struct irq_desc *
551 __irq_get_desc_lock(unsigned int irq, unsigned long *flags, bool bus,
552 		    unsigned int check)
553 {
554 	struct irq_desc *desc = irq_to_desc(irq);
555 
556 	if (desc) {
557 		if (check & _IRQ_DESC_CHECK) {
558 			if ((check & _IRQ_DESC_PERCPU) &&
559 			    !irq_settings_is_per_cpu_devid(desc))
560 				return NULL;
561 
562 			if (!(check & _IRQ_DESC_PERCPU) &&
563 			    irq_settings_is_per_cpu_devid(desc))
564 				return NULL;
565 		}
566 
567 		if (bus)
568 			chip_bus_lock(desc);
569 		raw_spin_lock_irqsave(&desc->lock, *flags);
570 	}
571 	return desc;
572 }
573 
574 void __irq_put_desc_unlock(struct irq_desc *desc, unsigned long flags, bool bus)
575 {
576 	raw_spin_unlock_irqrestore(&desc->lock, flags);
577 	if (bus)
578 		chip_bus_sync_unlock(desc);
579 }
580 
581 int irq_set_percpu_devid(unsigned int irq)
582 {
583 	struct irq_desc *desc = irq_to_desc(irq);
584 
585 	if (!desc)
586 		return -EINVAL;
587 
588 	if (desc->percpu_enabled)
589 		return -EINVAL;
590 
591 	desc->percpu_enabled = kzalloc(sizeof(*desc->percpu_enabled), GFP_KERNEL);
592 
593 	if (!desc->percpu_enabled)
594 		return -ENOMEM;
595 
596 	irq_set_percpu_devid_flags(irq);
597 	return 0;
598 }
599 
600 void kstat_incr_irq_this_cpu(unsigned int irq)
601 {
602 	kstat_incr_irqs_this_cpu(irq_to_desc(irq));
603 }
604 
605 /**
606  * kstat_irqs_cpu - Get the statistics for an interrupt on a cpu
607  * @irq:	The interrupt number
608  * @cpu:	The cpu number
609  *
610  * Returns the sum of interrupt counts on @cpu since boot for
611  * @irq. The caller must ensure that the interrupt is not removed
612  * concurrently.
613  */
614 unsigned int kstat_irqs_cpu(unsigned int irq, int cpu)
615 {
616 	struct irq_desc *desc = irq_to_desc(irq);
617 
618 	return desc && desc->kstat_irqs ?
619 			*per_cpu_ptr(desc->kstat_irqs, cpu) : 0;
620 }
621 
622 /**
623  * kstat_irqs - Get the statistics for an interrupt
624  * @irq:	The interrupt number
625  *
626  * Returns the sum of interrupt counts on all cpus since boot for
627  * @irq. The caller must ensure that the interrupt is not removed
628  * concurrently.
629  */
630 unsigned int kstat_irqs(unsigned int irq)
631 {
632 	struct irq_desc *desc = irq_to_desc(irq);
633 	int cpu;
634 	unsigned int sum = 0;
635 
636 	if (!desc || !desc->kstat_irqs)
637 		return 0;
638 	for_each_possible_cpu(cpu)
639 		sum += *per_cpu_ptr(desc->kstat_irqs, cpu);
640 	return sum;
641 }
642 
643 /**
644  * kstat_irqs_usr - Get the statistics for an interrupt
645  * @irq:	The interrupt number
646  *
647  * Returns the sum of interrupt counts on all cpus since boot for
648  * @irq. Contrary to kstat_irqs() this can be called from any
649  * preemptible context. It's protected against concurrent removal of
650  * an interrupt descriptor when sparse irqs are enabled.
651  */
652 unsigned int kstat_irqs_usr(unsigned int irq)
653 {
654 	unsigned int sum;
655 
656 	irq_lock_sparse();
657 	sum = kstat_irqs(irq);
658 	irq_unlock_sparse();
659 	return sum;
660 }
661