xref: /openbmc/linux/kernel/irq/handle.c (revision b627b4ed)
1 /*
2  * linux/kernel/irq/handle.c
3  *
4  * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
5  * Copyright (C) 2005-2006, Thomas Gleixner, Russell King
6  *
7  * This file contains the core interrupt handling code.
8  *
9  * Detailed information is available in Documentation/DocBook/genericirq
10  *
11  */
12 
13 #include <linux/irq.h>
14 #include <linux/module.h>
15 #include <linux/random.h>
16 #include <linux/interrupt.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/rculist.h>
19 #include <linux/hash.h>
20 #include <trace/irq.h>
21 #include <linux/bootmem.h>
22 
23 #include "internals.h"
24 
25 /*
26  * lockdep: we want to handle all irq_desc locks as a single lock-class:
27  */
28 struct lock_class_key irq_desc_lock_class;
29 
30 /**
31  * handle_bad_irq - handle spurious and unhandled irqs
32  * @irq:       the interrupt number
33  * @desc:      description of the interrupt
34  *
35  * Handles spurious and unhandled IRQ's. It also prints a debugmessage.
36  */
37 void handle_bad_irq(unsigned int irq, struct irq_desc *desc)
38 {
39 	print_irq_desc(irq, desc);
40 	kstat_incr_irqs_this_cpu(irq, desc);
41 	ack_bad_irq(irq);
42 }
43 
44 #if defined(CONFIG_SMP) && defined(CONFIG_GENERIC_HARDIRQS)
45 static void __init init_irq_default_affinity(void)
46 {
47 	alloc_bootmem_cpumask_var(&irq_default_affinity);
48 	cpumask_setall(irq_default_affinity);
49 }
50 #else
51 static void __init init_irq_default_affinity(void)
52 {
53 }
54 #endif
55 
56 /*
57  * Linux has a controller-independent interrupt architecture.
58  * Every controller has a 'controller-template', that is used
59  * by the main code to do the right thing. Each driver-visible
60  * interrupt source is transparently wired to the appropriate
61  * controller. Thus drivers need not be aware of the
62  * interrupt-controller.
63  *
64  * The code is designed to be easily extended with new/different
65  * interrupt controllers, without having to do assembly magic or
66  * having to touch the generic code.
67  *
68  * Controller mappings for all interrupt sources:
69  */
70 int nr_irqs = NR_IRQS;
71 EXPORT_SYMBOL_GPL(nr_irqs);
72 
73 #ifdef CONFIG_SPARSE_IRQ
74 
75 static struct irq_desc irq_desc_init = {
76 	.irq	    = -1,
77 	.status	    = IRQ_DISABLED,
78 	.chip	    = &no_irq_chip,
79 	.handle_irq = handle_bad_irq,
80 	.depth      = 1,
81 	.lock       = __SPIN_LOCK_UNLOCKED(irq_desc_init.lock),
82 };
83 
84 void init_kstat_irqs(struct irq_desc *desc, int cpu, int nr)
85 {
86 	int node;
87 	void *ptr;
88 
89 	node = cpu_to_node(cpu);
90 	ptr = kzalloc_node(nr * sizeof(*desc->kstat_irqs), GFP_ATOMIC, node);
91 
92 	/*
93 	 * don't overwite if can not get new one
94 	 * init_copy_kstat_irqs() could still use old one
95 	 */
96 	if (ptr) {
97 		printk(KERN_DEBUG "  alloc kstat_irqs on cpu %d node %d\n",
98 			 cpu, node);
99 		desc->kstat_irqs = ptr;
100 	}
101 }
102 
103 static void init_one_irq_desc(int irq, struct irq_desc *desc, int cpu)
104 {
105 	memcpy(desc, &irq_desc_init, sizeof(struct irq_desc));
106 
107 	spin_lock_init(&desc->lock);
108 	desc->irq = irq;
109 #ifdef CONFIG_SMP
110 	desc->cpu = cpu;
111 #endif
112 	lockdep_set_class(&desc->lock, &irq_desc_lock_class);
113 	init_kstat_irqs(desc, cpu, nr_cpu_ids);
114 	if (!desc->kstat_irqs) {
115 		printk(KERN_ERR "can not alloc kstat_irqs\n");
116 		BUG_ON(1);
117 	}
118 	if (!init_alloc_desc_masks(desc, cpu, false)) {
119 		printk(KERN_ERR "can not alloc irq_desc cpumasks\n");
120 		BUG_ON(1);
121 	}
122 	arch_init_chip_data(desc, cpu);
123 }
124 
125 /*
126  * Protect the sparse_irqs:
127  */
128 DEFINE_SPINLOCK(sparse_irq_lock);
129 
130 struct irq_desc **irq_desc_ptrs __read_mostly;
131 
132 static struct irq_desc irq_desc_legacy[NR_IRQS_LEGACY] __cacheline_aligned_in_smp = {
133 	[0 ... NR_IRQS_LEGACY-1] = {
134 		.irq	    = -1,
135 		.status	    = IRQ_DISABLED,
136 		.chip	    = &no_irq_chip,
137 		.handle_irq = handle_bad_irq,
138 		.depth	    = 1,
139 		.lock	    = __SPIN_LOCK_UNLOCKED(irq_desc_init.lock),
140 	}
141 };
142 
143 static unsigned int *kstat_irqs_legacy;
144 
145 int __init early_irq_init(void)
146 {
147 	struct irq_desc *desc;
148 	int legacy_count;
149 	int i;
150 
151 	init_irq_default_affinity();
152 
153 	 /* initialize nr_irqs based on nr_cpu_ids */
154 	arch_probe_nr_irqs();
155 	printk(KERN_INFO "NR_IRQS:%d nr_irqs:%d\n", NR_IRQS, nr_irqs);
156 
157 	desc = irq_desc_legacy;
158 	legacy_count = ARRAY_SIZE(irq_desc_legacy);
159 
160 	/* allocate irq_desc_ptrs array based on nr_irqs */
161 	irq_desc_ptrs = alloc_bootmem(nr_irqs * sizeof(void *));
162 
163 	/* allocate based on nr_cpu_ids */
164 	/* FIXME: invert kstat_irgs, and it'd be a per_cpu_alloc'd thing */
165 	kstat_irqs_legacy = alloc_bootmem(NR_IRQS_LEGACY * nr_cpu_ids *
166 					  sizeof(int));
167 
168 	for (i = 0; i < legacy_count; i++) {
169 		desc[i].irq = i;
170 		desc[i].kstat_irqs = kstat_irqs_legacy + i * nr_cpu_ids;
171 		lockdep_set_class(&desc[i].lock, &irq_desc_lock_class);
172 		init_alloc_desc_masks(&desc[i], 0, true);
173 		irq_desc_ptrs[i] = desc + i;
174 	}
175 
176 	for (i = legacy_count; i < nr_irqs; i++)
177 		irq_desc_ptrs[i] = NULL;
178 
179 	return arch_early_irq_init();
180 }
181 
182 struct irq_desc *irq_to_desc(unsigned int irq)
183 {
184 	if (irq_desc_ptrs && irq < nr_irqs)
185 		return irq_desc_ptrs[irq];
186 
187 	return NULL;
188 }
189 
190 struct irq_desc *irq_to_desc_alloc_cpu(unsigned int irq, int cpu)
191 {
192 	struct irq_desc *desc;
193 	unsigned long flags;
194 	int node;
195 
196 	if (irq >= nr_irqs) {
197 		WARN(1, "irq (%d) >= nr_irqs (%d) in irq_to_desc_alloc\n",
198 			irq, nr_irqs);
199 		return NULL;
200 	}
201 
202 	desc = irq_desc_ptrs[irq];
203 	if (desc)
204 		return desc;
205 
206 	spin_lock_irqsave(&sparse_irq_lock, flags);
207 
208 	/* We have to check it to avoid races with another CPU */
209 	desc = irq_desc_ptrs[irq];
210 	if (desc)
211 		goto out_unlock;
212 
213 	node = cpu_to_node(cpu);
214 	desc = kzalloc_node(sizeof(*desc), GFP_ATOMIC, node);
215 	printk(KERN_DEBUG "  alloc irq_desc for %d on cpu %d node %d\n",
216 		 irq, cpu, node);
217 	if (!desc) {
218 		printk(KERN_ERR "can not alloc irq_desc\n");
219 		BUG_ON(1);
220 	}
221 	init_one_irq_desc(irq, desc, cpu);
222 
223 	irq_desc_ptrs[irq] = desc;
224 
225 out_unlock:
226 	spin_unlock_irqrestore(&sparse_irq_lock, flags);
227 
228 	return desc;
229 }
230 
231 #else /* !CONFIG_SPARSE_IRQ */
232 
233 struct irq_desc irq_desc[NR_IRQS] __cacheline_aligned_in_smp = {
234 	[0 ... NR_IRQS-1] = {
235 		.status = IRQ_DISABLED,
236 		.chip = &no_irq_chip,
237 		.handle_irq = handle_bad_irq,
238 		.depth = 1,
239 		.lock = __SPIN_LOCK_UNLOCKED(irq_desc->lock),
240 	}
241 };
242 
243 static unsigned int kstat_irqs_all[NR_IRQS][NR_CPUS];
244 int __init early_irq_init(void)
245 {
246 	struct irq_desc *desc;
247 	int count;
248 	int i;
249 
250 	init_irq_default_affinity();
251 
252 	printk(KERN_INFO "NR_IRQS:%d\n", NR_IRQS);
253 
254 	desc = irq_desc;
255 	count = ARRAY_SIZE(irq_desc);
256 
257 	for (i = 0; i < count; i++) {
258 		desc[i].irq = i;
259 		init_alloc_desc_masks(&desc[i], 0, true);
260 		desc[i].kstat_irqs = kstat_irqs_all[i];
261 	}
262 	return arch_early_irq_init();
263 }
264 
265 struct irq_desc *irq_to_desc(unsigned int irq)
266 {
267 	return (irq < NR_IRQS) ? irq_desc + irq : NULL;
268 }
269 
270 struct irq_desc *irq_to_desc_alloc_cpu(unsigned int irq, int cpu)
271 {
272 	return irq_to_desc(irq);
273 }
274 #endif /* !CONFIG_SPARSE_IRQ */
275 
276 void clear_kstat_irqs(struct irq_desc *desc)
277 {
278 	memset(desc->kstat_irqs, 0, nr_cpu_ids * sizeof(*(desc->kstat_irqs)));
279 }
280 
281 /*
282  * What should we do if we get a hw irq event on an illegal vector?
283  * Each architecture has to answer this themself.
284  */
285 static void ack_bad(unsigned int irq)
286 {
287 	struct irq_desc *desc = irq_to_desc(irq);
288 
289 	print_irq_desc(irq, desc);
290 	ack_bad_irq(irq);
291 }
292 
293 /*
294  * NOP functions
295  */
296 static void noop(unsigned int irq)
297 {
298 }
299 
300 static unsigned int noop_ret(unsigned int irq)
301 {
302 	return 0;
303 }
304 
305 /*
306  * Generic no controller implementation
307  */
308 struct irq_chip no_irq_chip = {
309 	.name		= "none",
310 	.startup	= noop_ret,
311 	.shutdown	= noop,
312 	.enable		= noop,
313 	.disable	= noop,
314 	.ack		= ack_bad,
315 	.end		= noop,
316 };
317 
318 /*
319  * Generic dummy implementation which can be used for
320  * real dumb interrupt sources
321  */
322 struct irq_chip dummy_irq_chip = {
323 	.name		= "dummy",
324 	.startup	= noop_ret,
325 	.shutdown	= noop,
326 	.enable		= noop,
327 	.disable	= noop,
328 	.ack		= noop,
329 	.mask		= noop,
330 	.unmask		= noop,
331 	.end		= noop,
332 };
333 
334 /*
335  * Special, empty irq handler:
336  */
337 irqreturn_t no_action(int cpl, void *dev_id)
338 {
339 	return IRQ_NONE;
340 }
341 
342 static void warn_no_thread(unsigned int irq, struct irqaction *action)
343 {
344 	if (test_and_set_bit(IRQTF_WARNED, &action->thread_flags))
345 		return;
346 
347 	printk(KERN_WARNING "IRQ %d device %s returned IRQ_WAKE_THREAD "
348 	       "but no thread function available.", irq, action->name);
349 }
350 
351 DEFINE_TRACE(irq_handler_entry);
352 DEFINE_TRACE(irq_handler_exit);
353 
354 /**
355  * handle_IRQ_event - irq action chain handler
356  * @irq:	the interrupt number
357  * @action:	the interrupt action chain for this irq
358  *
359  * Handles the action chain of an irq event
360  */
361 irqreturn_t handle_IRQ_event(unsigned int irq, struct irqaction *action)
362 {
363 	irqreturn_t ret, retval = IRQ_NONE;
364 	unsigned int status = 0;
365 
366 	WARN_ONCE(!in_irq(), "BUG: IRQ handler called from non-hardirq context!");
367 
368 	if (!(action->flags & IRQF_DISABLED))
369 		local_irq_enable_in_hardirq();
370 
371 	do {
372 		trace_irq_handler_entry(irq, action);
373 		ret = action->handler(irq, action->dev_id);
374 		trace_irq_handler_exit(irq, action, ret);
375 
376 		switch (ret) {
377 		case IRQ_WAKE_THREAD:
378 			/*
379 			 * Set result to handled so the spurious check
380 			 * does not trigger.
381 			 */
382 			ret = IRQ_HANDLED;
383 
384 			/*
385 			 * Catch drivers which return WAKE_THREAD but
386 			 * did not set up a thread function
387 			 */
388 			if (unlikely(!action->thread_fn)) {
389 				warn_no_thread(irq, action);
390 				break;
391 			}
392 
393 			/*
394 			 * Wake up the handler thread for this
395 			 * action. In case the thread crashed and was
396 			 * killed we just pretend that we handled the
397 			 * interrupt. The hardirq handler above has
398 			 * disabled the device interrupt, so no irq
399 			 * storm is lurking.
400 			 */
401 			if (likely(!test_bit(IRQTF_DIED,
402 					     &action->thread_flags))) {
403 				set_bit(IRQTF_RUNTHREAD, &action->thread_flags);
404 				wake_up_process(action->thread);
405 			}
406 
407 			/* Fall through to add to randomness */
408 		case IRQ_HANDLED:
409 			status |= action->flags;
410 			break;
411 
412 		default:
413 			break;
414 		}
415 
416 		retval |= ret;
417 		action = action->next;
418 	} while (action);
419 
420 	if (status & IRQF_SAMPLE_RANDOM)
421 		add_interrupt_randomness(irq);
422 	local_irq_disable();
423 
424 	return retval;
425 }
426 
427 #ifndef CONFIG_GENERIC_HARDIRQS_NO__DO_IRQ
428 
429 #ifdef CONFIG_ENABLE_WARN_DEPRECATED
430 # warning __do_IRQ is deprecated. Please convert to proper flow handlers
431 #endif
432 
433 /**
434  * __do_IRQ - original all in one highlevel IRQ handler
435  * @irq:	the interrupt number
436  *
437  * __do_IRQ handles all normal device IRQ's (the special
438  * SMP cross-CPU interrupts have their own specific
439  * handlers).
440  *
441  * This is the original x86 implementation which is used for every
442  * interrupt type.
443  */
444 unsigned int __do_IRQ(unsigned int irq)
445 {
446 	struct irq_desc *desc = irq_to_desc(irq);
447 	struct irqaction *action;
448 	unsigned int status;
449 
450 	kstat_incr_irqs_this_cpu(irq, desc);
451 
452 	if (CHECK_IRQ_PER_CPU(desc->status)) {
453 		irqreturn_t action_ret;
454 
455 		/*
456 		 * No locking required for CPU-local interrupts:
457 		 */
458 		if (desc->chip->ack) {
459 			desc->chip->ack(irq);
460 			/* get new one */
461 			desc = irq_remap_to_desc(irq, desc);
462 		}
463 		if (likely(!(desc->status & IRQ_DISABLED))) {
464 			action_ret = handle_IRQ_event(irq, desc->action);
465 			if (!noirqdebug)
466 				note_interrupt(irq, desc, action_ret);
467 		}
468 		desc->chip->end(irq);
469 		return 1;
470 	}
471 
472 	spin_lock(&desc->lock);
473 	if (desc->chip->ack) {
474 		desc->chip->ack(irq);
475 		desc = irq_remap_to_desc(irq, desc);
476 	}
477 	/*
478 	 * REPLAY is when Linux resends an IRQ that was dropped earlier
479 	 * WAITING is used by probe to mark irqs that are being tested
480 	 */
481 	status = desc->status & ~(IRQ_REPLAY | IRQ_WAITING);
482 	status |= IRQ_PENDING; /* we _want_ to handle it */
483 
484 	/*
485 	 * If the IRQ is disabled for whatever reason, we cannot
486 	 * use the action we have.
487 	 */
488 	action = NULL;
489 	if (likely(!(status & (IRQ_DISABLED | IRQ_INPROGRESS)))) {
490 		action = desc->action;
491 		status &= ~IRQ_PENDING; /* we commit to handling */
492 		status |= IRQ_INPROGRESS; /* we are handling it */
493 	}
494 	desc->status = status;
495 
496 	/*
497 	 * If there is no IRQ handler or it was disabled, exit early.
498 	 * Since we set PENDING, if another processor is handling
499 	 * a different instance of this same irq, the other processor
500 	 * will take care of it.
501 	 */
502 	if (unlikely(!action))
503 		goto out;
504 
505 	/*
506 	 * Edge triggered interrupts need to remember
507 	 * pending events.
508 	 * This applies to any hw interrupts that allow a second
509 	 * instance of the same irq to arrive while we are in do_IRQ
510 	 * or in the handler. But the code here only handles the _second_
511 	 * instance of the irq, not the third or fourth. So it is mostly
512 	 * useful for irq hardware that does not mask cleanly in an
513 	 * SMP environment.
514 	 */
515 	for (;;) {
516 		irqreturn_t action_ret;
517 
518 		spin_unlock(&desc->lock);
519 
520 		action_ret = handle_IRQ_event(irq, action);
521 		if (!noirqdebug)
522 			note_interrupt(irq, desc, action_ret);
523 
524 		spin_lock(&desc->lock);
525 		if (likely(!(desc->status & IRQ_PENDING)))
526 			break;
527 		desc->status &= ~IRQ_PENDING;
528 	}
529 	desc->status &= ~IRQ_INPROGRESS;
530 
531 out:
532 	/*
533 	 * The ->end() handler has to deal with interrupts which got
534 	 * disabled while the handler was running.
535 	 */
536 	desc->chip->end(irq);
537 	spin_unlock(&desc->lock);
538 
539 	return 1;
540 }
541 #endif
542 
543 void early_init_irq_lock_class(void)
544 {
545 	struct irq_desc *desc;
546 	int i;
547 
548 	for_each_irq_desc(i, desc) {
549 		lockdep_set_class(&desc->lock, &irq_desc_lock_class);
550 	}
551 }
552 
553 unsigned int kstat_irqs_cpu(unsigned int irq, int cpu)
554 {
555 	struct irq_desc *desc = irq_to_desc(irq);
556 	return desc ? desc->kstat_irqs[cpu] : 0;
557 }
558 EXPORT_SYMBOL(kstat_irqs_cpu);
559 
560