xref: /openbmc/linux/kernel/irq/handle.c (revision 78c99ba1)
1 /*
2  * linux/kernel/irq/handle.c
3  *
4  * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
5  * Copyright (C) 2005-2006, Thomas Gleixner, Russell King
6  *
7  * This file contains the core interrupt handling code.
8  *
9  * Detailed information is available in Documentation/DocBook/genericirq
10  *
11  */
12 
13 #include <linux/irq.h>
14 #include <linux/slab.h>
15 #include <linux/module.h>
16 #include <linux/random.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/rculist.h>
20 #include <linux/hash.h>
21 #include <linux/bootmem.h>
22 #include <trace/events/irq.h>
23 
24 #include "internals.h"
25 
26 /*
27  * lockdep: we want to handle all irq_desc locks as a single lock-class:
28  */
29 struct lock_class_key irq_desc_lock_class;
30 
31 /**
32  * handle_bad_irq - handle spurious and unhandled irqs
33  * @irq:       the interrupt number
34  * @desc:      description of the interrupt
35  *
36  * Handles spurious and unhandled IRQ's. It also prints a debugmessage.
37  */
38 void handle_bad_irq(unsigned int irq, struct irq_desc *desc)
39 {
40 	print_irq_desc(irq, desc);
41 	kstat_incr_irqs_this_cpu(irq, desc);
42 	ack_bad_irq(irq);
43 }
44 
45 #if defined(CONFIG_SMP) && defined(CONFIG_GENERIC_HARDIRQS)
46 static void __init init_irq_default_affinity(void)
47 {
48 	alloc_bootmem_cpumask_var(&irq_default_affinity);
49 	cpumask_setall(irq_default_affinity);
50 }
51 #else
52 static void __init init_irq_default_affinity(void)
53 {
54 }
55 #endif
56 
57 /*
58  * Linux has a controller-independent interrupt architecture.
59  * Every controller has a 'controller-template', that is used
60  * by the main code to do the right thing. Each driver-visible
61  * interrupt source is transparently wired to the appropriate
62  * controller. Thus drivers need not be aware of the
63  * interrupt-controller.
64  *
65  * The code is designed to be easily extended with new/different
66  * interrupt controllers, without having to do assembly magic or
67  * having to touch the generic code.
68  *
69  * Controller mappings for all interrupt sources:
70  */
71 int nr_irqs = NR_IRQS;
72 EXPORT_SYMBOL_GPL(nr_irqs);
73 
74 #ifdef CONFIG_SPARSE_IRQ
75 
76 static struct irq_desc irq_desc_init = {
77 	.irq	    = -1,
78 	.status	    = IRQ_DISABLED,
79 	.chip	    = &no_irq_chip,
80 	.handle_irq = handle_bad_irq,
81 	.depth      = 1,
82 	.lock       = __SPIN_LOCK_UNLOCKED(irq_desc_init.lock),
83 };
84 
85 void __ref init_kstat_irqs(struct irq_desc *desc, int node, int nr)
86 {
87 	void *ptr;
88 
89 	if (slab_is_available())
90 		ptr = kzalloc_node(nr * sizeof(*desc->kstat_irqs),
91 				   GFP_ATOMIC, node);
92 	else
93 		ptr = alloc_bootmem_node(NODE_DATA(node),
94 				nr * sizeof(*desc->kstat_irqs));
95 
96 	/*
97 	 * don't overwite if can not get new one
98 	 * init_copy_kstat_irqs() could still use old one
99 	 */
100 	if (ptr) {
101 		printk(KERN_DEBUG "  alloc kstat_irqs on node %d\n", node);
102 		desc->kstat_irqs = ptr;
103 	}
104 }
105 
106 static void init_one_irq_desc(int irq, struct irq_desc *desc, int node)
107 {
108 	memcpy(desc, &irq_desc_init, sizeof(struct irq_desc));
109 
110 	spin_lock_init(&desc->lock);
111 	desc->irq = irq;
112 #ifdef CONFIG_SMP
113 	desc->node = node;
114 #endif
115 	lockdep_set_class(&desc->lock, &irq_desc_lock_class);
116 	init_kstat_irqs(desc, node, nr_cpu_ids);
117 	if (!desc->kstat_irqs) {
118 		printk(KERN_ERR "can not alloc kstat_irqs\n");
119 		BUG_ON(1);
120 	}
121 	if (!alloc_desc_masks(desc, node, false)) {
122 		printk(KERN_ERR "can not alloc irq_desc cpumasks\n");
123 		BUG_ON(1);
124 	}
125 	init_desc_masks(desc);
126 	arch_init_chip_data(desc, node);
127 }
128 
129 /*
130  * Protect the sparse_irqs:
131  */
132 DEFINE_SPINLOCK(sparse_irq_lock);
133 
134 struct irq_desc **irq_desc_ptrs __read_mostly;
135 
136 static struct irq_desc irq_desc_legacy[NR_IRQS_LEGACY] __cacheline_aligned_in_smp = {
137 	[0 ... NR_IRQS_LEGACY-1] = {
138 		.irq	    = -1,
139 		.status	    = IRQ_DISABLED,
140 		.chip	    = &no_irq_chip,
141 		.handle_irq = handle_bad_irq,
142 		.depth	    = 1,
143 		.lock	    = __SPIN_LOCK_UNLOCKED(irq_desc_init.lock),
144 	}
145 };
146 
147 static unsigned int *kstat_irqs_legacy;
148 
149 int __init early_irq_init(void)
150 {
151 	struct irq_desc *desc;
152 	int legacy_count;
153 	int node;
154 	int i;
155 
156 	init_irq_default_affinity();
157 
158 	 /* initialize nr_irqs based on nr_cpu_ids */
159 	arch_probe_nr_irqs();
160 	printk(KERN_INFO "NR_IRQS:%d nr_irqs:%d\n", NR_IRQS, nr_irqs);
161 
162 	desc = irq_desc_legacy;
163 	legacy_count = ARRAY_SIZE(irq_desc_legacy);
164  	node = first_online_node;
165 
166 	/* allocate irq_desc_ptrs array based on nr_irqs */
167 	irq_desc_ptrs = kcalloc(nr_irqs, sizeof(void *), GFP_NOWAIT);
168 
169 	/* allocate based on nr_cpu_ids */
170 	kstat_irqs_legacy = kzalloc_node(NR_IRQS_LEGACY * nr_cpu_ids *
171 					  sizeof(int), GFP_NOWAIT, node);
172 
173 	for (i = 0; i < legacy_count; i++) {
174 		desc[i].irq = i;
175 		desc[i].kstat_irqs = kstat_irqs_legacy + i * nr_cpu_ids;
176 		lockdep_set_class(&desc[i].lock, &irq_desc_lock_class);
177 		alloc_desc_masks(&desc[i], node, true);
178 		init_desc_masks(&desc[i]);
179 		irq_desc_ptrs[i] = desc + i;
180 	}
181 
182 	for (i = legacy_count; i < nr_irqs; i++)
183 		irq_desc_ptrs[i] = NULL;
184 
185 	return arch_early_irq_init();
186 }
187 
188 struct irq_desc *irq_to_desc(unsigned int irq)
189 {
190 	if (irq_desc_ptrs && irq < nr_irqs)
191 		return irq_desc_ptrs[irq];
192 
193 	return NULL;
194 }
195 
196 struct irq_desc * __ref irq_to_desc_alloc_node(unsigned int irq, int node)
197 {
198 	struct irq_desc *desc;
199 	unsigned long flags;
200 
201 	if (irq >= nr_irqs) {
202 		WARN(1, "irq (%d) >= nr_irqs (%d) in irq_to_desc_alloc\n",
203 			irq, nr_irqs);
204 		return NULL;
205 	}
206 
207 	desc = irq_desc_ptrs[irq];
208 	if (desc)
209 		return desc;
210 
211 	spin_lock_irqsave(&sparse_irq_lock, flags);
212 
213 	/* We have to check it to avoid races with another CPU */
214 	desc = irq_desc_ptrs[irq];
215 	if (desc)
216 		goto out_unlock;
217 
218 	if (slab_is_available())
219 		desc = kzalloc_node(sizeof(*desc), GFP_ATOMIC, node);
220 	else
221 		desc = alloc_bootmem_node(NODE_DATA(node), sizeof(*desc));
222 
223 	printk(KERN_DEBUG "  alloc irq_desc for %d on node %d\n", irq, node);
224 	if (!desc) {
225 		printk(KERN_ERR "can not alloc irq_desc\n");
226 		BUG_ON(1);
227 	}
228 	init_one_irq_desc(irq, desc, node);
229 
230 	irq_desc_ptrs[irq] = desc;
231 
232 out_unlock:
233 	spin_unlock_irqrestore(&sparse_irq_lock, flags);
234 
235 	return desc;
236 }
237 
238 #else /* !CONFIG_SPARSE_IRQ */
239 
240 struct irq_desc irq_desc[NR_IRQS] __cacheline_aligned_in_smp = {
241 	[0 ... NR_IRQS-1] = {
242 		.status = IRQ_DISABLED,
243 		.chip = &no_irq_chip,
244 		.handle_irq = handle_bad_irq,
245 		.depth = 1,
246 		.lock = __SPIN_LOCK_UNLOCKED(irq_desc->lock),
247 	}
248 };
249 
250 static unsigned int kstat_irqs_all[NR_IRQS][NR_CPUS];
251 int __init early_irq_init(void)
252 {
253 	struct irq_desc *desc;
254 	int count;
255 	int i;
256 
257 	init_irq_default_affinity();
258 
259 	printk(KERN_INFO "NR_IRQS:%d\n", NR_IRQS);
260 
261 	desc = irq_desc;
262 	count = ARRAY_SIZE(irq_desc);
263 
264 	for (i = 0; i < count; i++) {
265 		desc[i].irq = i;
266 		alloc_desc_masks(&desc[i], 0, true);
267 		init_desc_masks(&desc[i]);
268 		desc[i].kstat_irqs = kstat_irqs_all[i];
269 	}
270 	return arch_early_irq_init();
271 }
272 
273 struct irq_desc *irq_to_desc(unsigned int irq)
274 {
275 	return (irq < NR_IRQS) ? irq_desc + irq : NULL;
276 }
277 
278 struct irq_desc *irq_to_desc_alloc_node(unsigned int irq, int node)
279 {
280 	return irq_to_desc(irq);
281 }
282 #endif /* !CONFIG_SPARSE_IRQ */
283 
284 void clear_kstat_irqs(struct irq_desc *desc)
285 {
286 	memset(desc->kstat_irqs, 0, nr_cpu_ids * sizeof(*(desc->kstat_irqs)));
287 }
288 
289 /*
290  * What should we do if we get a hw irq event on an illegal vector?
291  * Each architecture has to answer this themself.
292  */
293 static void ack_bad(unsigned int irq)
294 {
295 	struct irq_desc *desc = irq_to_desc(irq);
296 
297 	print_irq_desc(irq, desc);
298 	ack_bad_irq(irq);
299 }
300 
301 /*
302  * NOP functions
303  */
304 static void noop(unsigned int irq)
305 {
306 }
307 
308 static unsigned int noop_ret(unsigned int irq)
309 {
310 	return 0;
311 }
312 
313 /*
314  * Generic no controller implementation
315  */
316 struct irq_chip no_irq_chip = {
317 	.name		= "none",
318 	.startup	= noop_ret,
319 	.shutdown	= noop,
320 	.enable		= noop,
321 	.disable	= noop,
322 	.ack		= ack_bad,
323 	.end		= noop,
324 };
325 
326 /*
327  * Generic dummy implementation which can be used for
328  * real dumb interrupt sources
329  */
330 struct irq_chip dummy_irq_chip = {
331 	.name		= "dummy",
332 	.startup	= noop_ret,
333 	.shutdown	= noop,
334 	.enable		= noop,
335 	.disable	= noop,
336 	.ack		= noop,
337 	.mask		= noop,
338 	.unmask		= noop,
339 	.end		= noop,
340 };
341 
342 /*
343  * Special, empty irq handler:
344  */
345 irqreturn_t no_action(int cpl, void *dev_id)
346 {
347 	return IRQ_NONE;
348 }
349 
350 static void warn_no_thread(unsigned int irq, struct irqaction *action)
351 {
352 	if (test_and_set_bit(IRQTF_WARNED, &action->thread_flags))
353 		return;
354 
355 	printk(KERN_WARNING "IRQ %d device %s returned IRQ_WAKE_THREAD "
356 	       "but no thread function available.", irq, action->name);
357 }
358 
359 /**
360  * handle_IRQ_event - irq action chain handler
361  * @irq:	the interrupt number
362  * @action:	the interrupt action chain for this irq
363  *
364  * Handles the action chain of an irq event
365  */
366 irqreturn_t handle_IRQ_event(unsigned int irq, struct irqaction *action)
367 {
368 	irqreturn_t ret, retval = IRQ_NONE;
369 	unsigned int status = 0;
370 
371 	if (!(action->flags & IRQF_DISABLED))
372 		local_irq_enable_in_hardirq();
373 
374 	do {
375 		trace_irq_handler_entry(irq, action);
376 		ret = action->handler(irq, action->dev_id);
377 		trace_irq_handler_exit(irq, action, ret);
378 
379 		switch (ret) {
380 		case IRQ_WAKE_THREAD:
381 			/*
382 			 * Set result to handled so the spurious check
383 			 * does not trigger.
384 			 */
385 			ret = IRQ_HANDLED;
386 
387 			/*
388 			 * Catch drivers which return WAKE_THREAD but
389 			 * did not set up a thread function
390 			 */
391 			if (unlikely(!action->thread_fn)) {
392 				warn_no_thread(irq, action);
393 				break;
394 			}
395 
396 			/*
397 			 * Wake up the handler thread for this
398 			 * action. In case the thread crashed and was
399 			 * killed we just pretend that we handled the
400 			 * interrupt. The hardirq handler above has
401 			 * disabled the device interrupt, so no irq
402 			 * storm is lurking.
403 			 */
404 			if (likely(!test_bit(IRQTF_DIED,
405 					     &action->thread_flags))) {
406 				set_bit(IRQTF_RUNTHREAD, &action->thread_flags);
407 				wake_up_process(action->thread);
408 			}
409 
410 			/* Fall through to add to randomness */
411 		case IRQ_HANDLED:
412 			status |= action->flags;
413 			break;
414 
415 		default:
416 			break;
417 		}
418 
419 		retval |= ret;
420 		action = action->next;
421 	} while (action);
422 
423 	if (status & IRQF_SAMPLE_RANDOM)
424 		add_interrupt_randomness(irq);
425 	local_irq_disable();
426 
427 	return retval;
428 }
429 
430 #ifndef CONFIG_GENERIC_HARDIRQS_NO__DO_IRQ
431 
432 #ifdef CONFIG_ENABLE_WARN_DEPRECATED
433 # warning __do_IRQ is deprecated. Please convert to proper flow handlers
434 #endif
435 
436 /**
437  * __do_IRQ - original all in one highlevel IRQ handler
438  * @irq:	the interrupt number
439  *
440  * __do_IRQ handles all normal device IRQ's (the special
441  * SMP cross-CPU interrupts have their own specific
442  * handlers).
443  *
444  * This is the original x86 implementation which is used for every
445  * interrupt type.
446  */
447 unsigned int __do_IRQ(unsigned int irq)
448 {
449 	struct irq_desc *desc = irq_to_desc(irq);
450 	struct irqaction *action;
451 	unsigned int status;
452 
453 	kstat_incr_irqs_this_cpu(irq, desc);
454 
455 	if (CHECK_IRQ_PER_CPU(desc->status)) {
456 		irqreturn_t action_ret;
457 
458 		/*
459 		 * No locking required for CPU-local interrupts:
460 		 */
461 		if (desc->chip->ack)
462 			desc->chip->ack(irq);
463 		if (likely(!(desc->status & IRQ_DISABLED))) {
464 			action_ret = handle_IRQ_event(irq, desc->action);
465 			if (!noirqdebug)
466 				note_interrupt(irq, desc, action_ret);
467 		}
468 		desc->chip->end(irq);
469 		return 1;
470 	}
471 
472 	spin_lock(&desc->lock);
473 	if (desc->chip->ack)
474 		desc->chip->ack(irq);
475 	/*
476 	 * REPLAY is when Linux resends an IRQ that was dropped earlier
477 	 * WAITING is used by probe to mark irqs that are being tested
478 	 */
479 	status = desc->status & ~(IRQ_REPLAY | IRQ_WAITING);
480 	status |= IRQ_PENDING; /* we _want_ to handle it */
481 
482 	/*
483 	 * If the IRQ is disabled for whatever reason, we cannot
484 	 * use the action we have.
485 	 */
486 	action = NULL;
487 	if (likely(!(status & (IRQ_DISABLED | IRQ_INPROGRESS)))) {
488 		action = desc->action;
489 		status &= ~IRQ_PENDING; /* we commit to handling */
490 		status |= IRQ_INPROGRESS; /* we are handling it */
491 	}
492 	desc->status = status;
493 
494 	/*
495 	 * If there is no IRQ handler or it was disabled, exit early.
496 	 * Since we set PENDING, if another processor is handling
497 	 * a different instance of this same irq, the other processor
498 	 * will take care of it.
499 	 */
500 	if (unlikely(!action))
501 		goto out;
502 
503 	/*
504 	 * Edge triggered interrupts need to remember
505 	 * pending events.
506 	 * This applies to any hw interrupts that allow a second
507 	 * instance of the same irq to arrive while we are in do_IRQ
508 	 * or in the handler. But the code here only handles the _second_
509 	 * instance of the irq, not the third or fourth. So it is mostly
510 	 * useful for irq hardware that does not mask cleanly in an
511 	 * SMP environment.
512 	 */
513 	for (;;) {
514 		irqreturn_t action_ret;
515 
516 		spin_unlock(&desc->lock);
517 
518 		action_ret = handle_IRQ_event(irq, action);
519 		if (!noirqdebug)
520 			note_interrupt(irq, desc, action_ret);
521 
522 		spin_lock(&desc->lock);
523 		if (likely(!(desc->status & IRQ_PENDING)))
524 			break;
525 		desc->status &= ~IRQ_PENDING;
526 	}
527 	desc->status &= ~IRQ_INPROGRESS;
528 
529 out:
530 	/*
531 	 * The ->end() handler has to deal with interrupts which got
532 	 * disabled while the handler was running.
533 	 */
534 	desc->chip->end(irq);
535 	spin_unlock(&desc->lock);
536 
537 	return 1;
538 }
539 #endif
540 
541 void early_init_irq_lock_class(void)
542 {
543 	struct irq_desc *desc;
544 	int i;
545 
546 	for_each_irq_desc(i, desc) {
547 		lockdep_set_class(&desc->lock, &irq_desc_lock_class);
548 	}
549 }
550 
551 unsigned int kstat_irqs_cpu(unsigned int irq, int cpu)
552 {
553 	struct irq_desc *desc = irq_to_desc(irq);
554 	return desc ? desc->kstat_irqs[cpu] : 0;
555 }
556 EXPORT_SYMBOL(kstat_irqs_cpu);
557 
558