xref: /openbmc/linux/kernel/irq/handle.c (revision 22246614)
1 /*
2  * linux/kernel/irq/handle.c
3  *
4  * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
5  * Copyright (C) 2005-2006, Thomas Gleixner, Russell King
6  *
7  * This file contains the core interrupt handling code.
8  *
9  * Detailed information is available in Documentation/DocBook/genericirq
10  *
11  */
12 
13 #include <linux/irq.h>
14 #include <linux/module.h>
15 #include <linux/random.h>
16 #include <linux/interrupt.h>
17 #include <linux/kernel_stat.h>
18 
19 #include "internals.h"
20 
21 /**
22  * handle_bad_irq - handle spurious and unhandled irqs
23  * @irq:       the interrupt number
24  * @desc:      description of the interrupt
25  *
26  * Handles spurious and unhandled IRQ's. It also prints a debugmessage.
27  */
28 void
29 handle_bad_irq(unsigned int irq, struct irq_desc *desc)
30 {
31 	print_irq_desc(irq, desc);
32 	kstat_this_cpu.irqs[irq]++;
33 	ack_bad_irq(irq);
34 }
35 
36 /*
37  * Linux has a controller-independent interrupt architecture.
38  * Every controller has a 'controller-template', that is used
39  * by the main code to do the right thing. Each driver-visible
40  * interrupt source is transparently wired to the appropriate
41  * controller. Thus drivers need not be aware of the
42  * interrupt-controller.
43  *
44  * The code is designed to be easily extended with new/different
45  * interrupt controllers, without having to do assembly magic or
46  * having to touch the generic code.
47  *
48  * Controller mappings for all interrupt sources:
49  */
50 struct irq_desc irq_desc[NR_IRQS] __cacheline_aligned_in_smp = {
51 	[0 ... NR_IRQS-1] = {
52 		.status = IRQ_DISABLED,
53 		.chip = &no_irq_chip,
54 		.handle_irq = handle_bad_irq,
55 		.depth = 1,
56 		.lock = __SPIN_LOCK_UNLOCKED(irq_desc->lock),
57 #ifdef CONFIG_SMP
58 		.affinity = CPU_MASK_ALL
59 #endif
60 	}
61 };
62 
63 /*
64  * What should we do if we get a hw irq event on an illegal vector?
65  * Each architecture has to answer this themself.
66  */
67 static void ack_bad(unsigned int irq)
68 {
69 	print_irq_desc(irq, irq_desc + irq);
70 	ack_bad_irq(irq);
71 }
72 
73 /*
74  * NOP functions
75  */
76 static void noop(unsigned int irq)
77 {
78 }
79 
80 static unsigned int noop_ret(unsigned int irq)
81 {
82 	return 0;
83 }
84 
85 /*
86  * Generic no controller implementation
87  */
88 struct irq_chip no_irq_chip = {
89 	.name		= "none",
90 	.startup	= noop_ret,
91 	.shutdown	= noop,
92 	.enable		= noop,
93 	.disable	= noop,
94 	.ack		= ack_bad,
95 	.end		= noop,
96 };
97 
98 /*
99  * Generic dummy implementation which can be used for
100  * real dumb interrupt sources
101  */
102 struct irq_chip dummy_irq_chip = {
103 	.name		= "dummy",
104 	.startup	= noop_ret,
105 	.shutdown	= noop,
106 	.enable		= noop,
107 	.disable	= noop,
108 	.ack		= noop,
109 	.mask		= noop,
110 	.unmask		= noop,
111 	.end		= noop,
112 };
113 
114 /*
115  * Special, empty irq handler:
116  */
117 irqreturn_t no_action(int cpl, void *dev_id)
118 {
119 	return IRQ_NONE;
120 }
121 
122 /**
123  * handle_IRQ_event - irq action chain handler
124  * @irq:	the interrupt number
125  * @action:	the interrupt action chain for this irq
126  *
127  * Handles the action chain of an irq event
128  */
129 irqreturn_t handle_IRQ_event(unsigned int irq, struct irqaction *action)
130 {
131 	irqreturn_t ret, retval = IRQ_NONE;
132 	unsigned int status = 0;
133 
134 	handle_dynamic_tick(action);
135 
136 	if (!(action->flags & IRQF_DISABLED))
137 		local_irq_enable_in_hardirq();
138 
139 	do {
140 		ret = action->handler(irq, action->dev_id);
141 		if (ret == IRQ_HANDLED)
142 			status |= action->flags;
143 		retval |= ret;
144 		action = action->next;
145 	} while (action);
146 
147 	if (status & IRQF_SAMPLE_RANDOM)
148 		add_interrupt_randomness(irq);
149 	local_irq_disable();
150 
151 	return retval;
152 }
153 
154 #ifndef CONFIG_GENERIC_HARDIRQS_NO__DO_IRQ
155 /**
156  * __do_IRQ - original all in one highlevel IRQ handler
157  * @irq:	the interrupt number
158  *
159  * __do_IRQ handles all normal device IRQ's (the special
160  * SMP cross-CPU interrupts have their own specific
161  * handlers).
162  *
163  * This is the original x86 implementation which is used for every
164  * interrupt type.
165  */
166 unsigned int __do_IRQ(unsigned int irq)
167 {
168 	struct irq_desc *desc = irq_desc + irq;
169 	struct irqaction *action;
170 	unsigned int status;
171 
172 	kstat_this_cpu.irqs[irq]++;
173 	if (CHECK_IRQ_PER_CPU(desc->status)) {
174 		irqreturn_t action_ret;
175 
176 		/*
177 		 * No locking required for CPU-local interrupts:
178 		 */
179 		if (desc->chip->ack)
180 			desc->chip->ack(irq);
181 		if (likely(!(desc->status & IRQ_DISABLED))) {
182 			action_ret = handle_IRQ_event(irq, desc->action);
183 			if (!noirqdebug)
184 				note_interrupt(irq, desc, action_ret);
185 		}
186 		desc->chip->end(irq);
187 		return 1;
188 	}
189 
190 	spin_lock(&desc->lock);
191 	if (desc->chip->ack)
192 		desc->chip->ack(irq);
193 	/*
194 	 * REPLAY is when Linux resends an IRQ that was dropped earlier
195 	 * WAITING is used by probe to mark irqs that are being tested
196 	 */
197 	status = desc->status & ~(IRQ_REPLAY | IRQ_WAITING);
198 	status |= IRQ_PENDING; /* we _want_ to handle it */
199 
200 	/*
201 	 * If the IRQ is disabled for whatever reason, we cannot
202 	 * use the action we have.
203 	 */
204 	action = NULL;
205 	if (likely(!(status & (IRQ_DISABLED | IRQ_INPROGRESS)))) {
206 		action = desc->action;
207 		status &= ~IRQ_PENDING; /* we commit to handling */
208 		status |= IRQ_INPROGRESS; /* we are handling it */
209 	}
210 	desc->status = status;
211 
212 	/*
213 	 * If there is no IRQ handler or it was disabled, exit early.
214 	 * Since we set PENDING, if another processor is handling
215 	 * a different instance of this same irq, the other processor
216 	 * will take care of it.
217 	 */
218 	if (unlikely(!action))
219 		goto out;
220 
221 	/*
222 	 * Edge triggered interrupts need to remember
223 	 * pending events.
224 	 * This applies to any hw interrupts that allow a second
225 	 * instance of the same irq to arrive while we are in do_IRQ
226 	 * or in the handler. But the code here only handles the _second_
227 	 * instance of the irq, not the third or fourth. So it is mostly
228 	 * useful for irq hardware that does not mask cleanly in an
229 	 * SMP environment.
230 	 */
231 	for (;;) {
232 		irqreturn_t action_ret;
233 
234 		spin_unlock(&desc->lock);
235 
236 		action_ret = handle_IRQ_event(irq, action);
237 		if (!noirqdebug)
238 			note_interrupt(irq, desc, action_ret);
239 
240 		spin_lock(&desc->lock);
241 		if (likely(!(desc->status & IRQ_PENDING)))
242 			break;
243 		desc->status &= ~IRQ_PENDING;
244 	}
245 	desc->status &= ~IRQ_INPROGRESS;
246 
247 out:
248 	/*
249 	 * The ->end() handler has to deal with interrupts which got
250 	 * disabled while the handler was running.
251 	 */
252 	desc->chip->end(irq);
253 	spin_unlock(&desc->lock);
254 
255 	return 1;
256 }
257 #endif
258 
259 #ifdef CONFIG_TRACE_IRQFLAGS
260 
261 /*
262  * lockdep: we want to handle all irq_desc locks as a single lock-class:
263  */
264 static struct lock_class_key irq_desc_lock_class;
265 
266 void early_init_irq_lock_class(void)
267 {
268 	int i;
269 
270 	for (i = 0; i < NR_IRQS; i++)
271 		lockdep_set_class(&irq_desc[i].lock, &irq_desc_lock_class);
272 }
273 
274 #endif
275