xref: /openbmc/linux/kernel/iomem.c (revision 42c06a0e)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #include <linux/device.h>
3 #include <linux/types.h>
4 #include <linux/io.h>
5 #include <linux/mm.h>
6 #include <linux/ioremap.h>
7 
8 #ifndef ioremap_cache
9 /* temporary while we convert existing ioremap_cache users to memremap */
10 __weak void __iomem *ioremap_cache(resource_size_t offset, unsigned long size)
11 {
12 	return ioremap(offset, size);
13 }
14 #endif
15 
16 #ifndef arch_memremap_wb
17 static void *arch_memremap_wb(resource_size_t offset, unsigned long size)
18 {
19 	return (__force void *)ioremap_cache(offset, size);
20 }
21 #endif
22 
23 #ifndef arch_memremap_can_ram_remap
24 static bool arch_memremap_can_ram_remap(resource_size_t offset, size_t size,
25 					unsigned long flags)
26 {
27 	return true;
28 }
29 #endif
30 
31 static void *try_ram_remap(resource_size_t offset, size_t size,
32 			   unsigned long flags)
33 {
34 	unsigned long pfn = PHYS_PFN(offset);
35 
36 	/* In the simple case just return the existing linear address */
37 	if (pfn_valid(pfn) && !PageHighMem(pfn_to_page(pfn)) &&
38 	    arch_memremap_can_ram_remap(offset, size, flags))
39 		return __va(offset);
40 
41 	return NULL; /* fallback to arch_memremap_wb */
42 }
43 
44 /**
45  * memremap() - remap an iomem_resource as cacheable memory
46  * @offset: iomem resource start address
47  * @size: size of remap
48  * @flags: any of MEMREMAP_WB, MEMREMAP_WT, MEMREMAP_WC,
49  *		  MEMREMAP_ENC, MEMREMAP_DEC
50  *
51  * memremap() is "ioremap" for cases where it is known that the resource
52  * being mapped does not have i/o side effects and the __iomem
53  * annotation is not applicable. In the case of multiple flags, the different
54  * mapping types will be attempted in the order listed below until one of
55  * them succeeds.
56  *
57  * MEMREMAP_WB - matches the default mapping for System RAM on
58  * the architecture.  This is usually a read-allocate write-back cache.
59  * Moreover, if MEMREMAP_WB is specified and the requested remap region is RAM
60  * memremap() will bypass establishing a new mapping and instead return
61  * a pointer into the direct map.
62  *
63  * MEMREMAP_WT - establish a mapping whereby writes either bypass the
64  * cache or are written through to memory and never exist in a
65  * cache-dirty state with respect to program visibility.  Attempts to
66  * map System RAM with this mapping type will fail.
67  *
68  * MEMREMAP_WC - establish a writecombine mapping, whereby writes may
69  * be coalesced together (e.g. in the CPU's write buffers), but is otherwise
70  * uncached. Attempts to map System RAM with this mapping type will fail.
71  */
72 void *memremap(resource_size_t offset, size_t size, unsigned long flags)
73 {
74 	int is_ram = region_intersects(offset, size,
75 				       IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE);
76 	void *addr = NULL;
77 
78 	if (!flags)
79 		return NULL;
80 
81 	if (is_ram == REGION_MIXED) {
82 		WARN_ONCE(1, "memremap attempted on mixed range %pa size: %#lx\n",
83 				&offset, (unsigned long) size);
84 		return NULL;
85 	}
86 
87 	/* Try all mapping types requested until one returns non-NULL */
88 	if (flags & MEMREMAP_WB) {
89 		/*
90 		 * MEMREMAP_WB is special in that it can be satisfied
91 		 * from the direct map.  Some archs depend on the
92 		 * capability of memremap() to autodetect cases where
93 		 * the requested range is potentially in System RAM.
94 		 */
95 		if (is_ram == REGION_INTERSECTS)
96 			addr = try_ram_remap(offset, size, flags);
97 		if (!addr)
98 			addr = arch_memremap_wb(offset, size);
99 	}
100 
101 	/*
102 	 * If we don't have a mapping yet and other request flags are
103 	 * present then we will be attempting to establish a new virtual
104 	 * address mapping.  Enforce that this mapping is not aliasing
105 	 * System RAM.
106 	 */
107 	if (!addr && is_ram == REGION_INTERSECTS && flags != MEMREMAP_WB) {
108 		WARN_ONCE(1, "memremap attempted on ram %pa size: %#lx\n",
109 				&offset, (unsigned long) size);
110 		return NULL;
111 	}
112 
113 	if (!addr && (flags & MEMREMAP_WT))
114 		addr = ioremap_wt(offset, size);
115 
116 	if (!addr && (flags & MEMREMAP_WC))
117 		addr = ioremap_wc(offset, size);
118 
119 	return addr;
120 }
121 EXPORT_SYMBOL(memremap);
122 
123 void memunmap(void *addr)
124 {
125 	if (is_ioremap_addr(addr))
126 		iounmap((void __iomem *) addr);
127 }
128 EXPORT_SYMBOL(memunmap);
129 
130 static void devm_memremap_release(struct device *dev, void *res)
131 {
132 	memunmap(*(void **)res);
133 }
134 
135 static int devm_memremap_match(struct device *dev, void *res, void *match_data)
136 {
137 	return *(void **)res == match_data;
138 }
139 
140 void *devm_memremap(struct device *dev, resource_size_t offset,
141 		size_t size, unsigned long flags)
142 {
143 	void **ptr, *addr;
144 
145 	ptr = devres_alloc_node(devm_memremap_release, sizeof(*ptr), GFP_KERNEL,
146 			dev_to_node(dev));
147 	if (!ptr)
148 		return ERR_PTR(-ENOMEM);
149 
150 	addr = memremap(offset, size, flags);
151 	if (addr) {
152 		*ptr = addr;
153 		devres_add(dev, ptr);
154 	} else {
155 		devres_free(ptr);
156 		return ERR_PTR(-ENXIO);
157 	}
158 
159 	return addr;
160 }
161 EXPORT_SYMBOL(devm_memremap);
162 
163 void devm_memunmap(struct device *dev, void *addr)
164 {
165 	WARN_ON(devres_release(dev, devm_memremap_release,
166 				devm_memremap_match, addr));
167 }
168 EXPORT_SYMBOL(devm_memunmap);
169