1 // SPDX-License-Identifier: GPL-2.0-or-later 2 3 #include <linux/sched/task.h> 4 #include <linux/sched/signal.h> 5 #include <linux/freezer.h> 6 7 #include "futex.h" 8 9 /* 10 * READ this before attempting to hack on futexes! 11 * 12 * Basic futex operation and ordering guarantees 13 * ============================================= 14 * 15 * The waiter reads the futex value in user space and calls 16 * futex_wait(). This function computes the hash bucket and acquires 17 * the hash bucket lock. After that it reads the futex user space value 18 * again and verifies that the data has not changed. If it has not changed 19 * it enqueues itself into the hash bucket, releases the hash bucket lock 20 * and schedules. 21 * 22 * The waker side modifies the user space value of the futex and calls 23 * futex_wake(). This function computes the hash bucket and acquires the 24 * hash bucket lock. Then it looks for waiters on that futex in the hash 25 * bucket and wakes them. 26 * 27 * In futex wake up scenarios where no tasks are blocked on a futex, taking 28 * the hb spinlock can be avoided and simply return. In order for this 29 * optimization to work, ordering guarantees must exist so that the waiter 30 * being added to the list is acknowledged when the list is concurrently being 31 * checked by the waker, avoiding scenarios like the following: 32 * 33 * CPU 0 CPU 1 34 * val = *futex; 35 * sys_futex(WAIT, futex, val); 36 * futex_wait(futex, val); 37 * uval = *futex; 38 * *futex = newval; 39 * sys_futex(WAKE, futex); 40 * futex_wake(futex); 41 * if (queue_empty()) 42 * return; 43 * if (uval == val) 44 * lock(hash_bucket(futex)); 45 * queue(); 46 * unlock(hash_bucket(futex)); 47 * schedule(); 48 * 49 * This would cause the waiter on CPU 0 to wait forever because it 50 * missed the transition of the user space value from val to newval 51 * and the waker did not find the waiter in the hash bucket queue. 52 * 53 * The correct serialization ensures that a waiter either observes 54 * the changed user space value before blocking or is woken by a 55 * concurrent waker: 56 * 57 * CPU 0 CPU 1 58 * val = *futex; 59 * sys_futex(WAIT, futex, val); 60 * futex_wait(futex, val); 61 * 62 * waiters++; (a) 63 * smp_mb(); (A) <-- paired with -. 64 * | 65 * lock(hash_bucket(futex)); | 66 * | 67 * uval = *futex; | 68 * | *futex = newval; 69 * | sys_futex(WAKE, futex); 70 * | futex_wake(futex); 71 * | 72 * `--------> smp_mb(); (B) 73 * if (uval == val) 74 * queue(); 75 * unlock(hash_bucket(futex)); 76 * schedule(); if (waiters) 77 * lock(hash_bucket(futex)); 78 * else wake_waiters(futex); 79 * waiters--; (b) unlock(hash_bucket(futex)); 80 * 81 * Where (A) orders the waiters increment and the futex value read through 82 * atomic operations (see futex_hb_waiters_inc) and where (B) orders the write 83 * to futex and the waiters read (see futex_hb_waiters_pending()). 84 * 85 * This yields the following case (where X:=waiters, Y:=futex): 86 * 87 * X = Y = 0 88 * 89 * w[X]=1 w[Y]=1 90 * MB MB 91 * r[Y]=y r[X]=x 92 * 93 * Which guarantees that x==0 && y==0 is impossible; which translates back into 94 * the guarantee that we cannot both miss the futex variable change and the 95 * enqueue. 96 * 97 * Note that a new waiter is accounted for in (a) even when it is possible that 98 * the wait call can return error, in which case we backtrack from it in (b). 99 * Refer to the comment in futex_q_lock(). 100 * 101 * Similarly, in order to account for waiters being requeued on another 102 * address we always increment the waiters for the destination bucket before 103 * acquiring the lock. It then decrements them again after releasing it - 104 * the code that actually moves the futex(es) between hash buckets (requeue_futex) 105 * will do the additional required waiter count housekeeping. This is done for 106 * double_lock_hb() and double_unlock_hb(), respectively. 107 */ 108 109 /* 110 * The hash bucket lock must be held when this is called. 111 * Afterwards, the futex_q must not be accessed. Callers 112 * must ensure to later call wake_up_q() for the actual 113 * wakeups to occur. 114 */ 115 void futex_wake_mark(struct wake_q_head *wake_q, struct futex_q *q) 116 { 117 struct task_struct *p = q->task; 118 119 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n")) 120 return; 121 122 get_task_struct(p); 123 __futex_unqueue(q); 124 /* 125 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL 126 * is written, without taking any locks. This is possible in the event 127 * of a spurious wakeup, for example. A memory barrier is required here 128 * to prevent the following store to lock_ptr from getting ahead of the 129 * plist_del in __futex_unqueue(). 130 */ 131 smp_store_release(&q->lock_ptr, NULL); 132 133 /* 134 * Queue the task for later wakeup for after we've released 135 * the hb->lock. 136 */ 137 wake_q_add_safe(wake_q, p); 138 } 139 140 /* 141 * Wake up waiters matching bitset queued on this futex (uaddr). 142 */ 143 int futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset) 144 { 145 struct futex_hash_bucket *hb; 146 struct futex_q *this, *next; 147 union futex_key key = FUTEX_KEY_INIT; 148 int ret; 149 DEFINE_WAKE_Q(wake_q); 150 151 if (!bitset) 152 return -EINVAL; 153 154 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_READ); 155 if (unlikely(ret != 0)) 156 return ret; 157 158 hb = futex_hash(&key); 159 160 /* Make sure we really have tasks to wakeup */ 161 if (!futex_hb_waiters_pending(hb)) 162 return ret; 163 164 spin_lock(&hb->lock); 165 166 plist_for_each_entry_safe(this, next, &hb->chain, list) { 167 if (futex_match (&this->key, &key)) { 168 if (this->pi_state || this->rt_waiter) { 169 ret = -EINVAL; 170 break; 171 } 172 173 /* Check if one of the bits is set in both bitsets */ 174 if (!(this->bitset & bitset)) 175 continue; 176 177 futex_wake_mark(&wake_q, this); 178 if (++ret >= nr_wake) 179 break; 180 } 181 } 182 183 spin_unlock(&hb->lock); 184 wake_up_q(&wake_q); 185 return ret; 186 } 187 188 static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr) 189 { 190 unsigned int op = (encoded_op & 0x70000000) >> 28; 191 unsigned int cmp = (encoded_op & 0x0f000000) >> 24; 192 int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11); 193 int cmparg = sign_extend32(encoded_op & 0x00000fff, 11); 194 int oldval, ret; 195 196 if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) { 197 if (oparg < 0 || oparg > 31) { 198 char comm[sizeof(current->comm)]; 199 /* 200 * kill this print and return -EINVAL when userspace 201 * is sane again 202 */ 203 pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n", 204 get_task_comm(comm, current), oparg); 205 oparg &= 31; 206 } 207 oparg = 1 << oparg; 208 } 209 210 pagefault_disable(); 211 ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr); 212 pagefault_enable(); 213 if (ret) 214 return ret; 215 216 switch (cmp) { 217 case FUTEX_OP_CMP_EQ: 218 return oldval == cmparg; 219 case FUTEX_OP_CMP_NE: 220 return oldval != cmparg; 221 case FUTEX_OP_CMP_LT: 222 return oldval < cmparg; 223 case FUTEX_OP_CMP_GE: 224 return oldval >= cmparg; 225 case FUTEX_OP_CMP_LE: 226 return oldval <= cmparg; 227 case FUTEX_OP_CMP_GT: 228 return oldval > cmparg; 229 default: 230 return -ENOSYS; 231 } 232 } 233 234 /* 235 * Wake up all waiters hashed on the physical page that is mapped 236 * to this virtual address: 237 */ 238 int futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2, 239 int nr_wake, int nr_wake2, int op) 240 { 241 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT; 242 struct futex_hash_bucket *hb1, *hb2; 243 struct futex_q *this, *next; 244 int ret, op_ret; 245 DEFINE_WAKE_Q(wake_q); 246 247 retry: 248 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ); 249 if (unlikely(ret != 0)) 250 return ret; 251 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE); 252 if (unlikely(ret != 0)) 253 return ret; 254 255 hb1 = futex_hash(&key1); 256 hb2 = futex_hash(&key2); 257 258 retry_private: 259 double_lock_hb(hb1, hb2); 260 op_ret = futex_atomic_op_inuser(op, uaddr2); 261 if (unlikely(op_ret < 0)) { 262 double_unlock_hb(hb1, hb2); 263 264 if (!IS_ENABLED(CONFIG_MMU) || 265 unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) { 266 /* 267 * we don't get EFAULT from MMU faults if we don't have 268 * an MMU, but we might get them from range checking 269 */ 270 ret = op_ret; 271 return ret; 272 } 273 274 if (op_ret == -EFAULT) { 275 ret = fault_in_user_writeable(uaddr2); 276 if (ret) 277 return ret; 278 } 279 280 cond_resched(); 281 if (!(flags & FLAGS_SHARED)) 282 goto retry_private; 283 goto retry; 284 } 285 286 plist_for_each_entry_safe(this, next, &hb1->chain, list) { 287 if (futex_match (&this->key, &key1)) { 288 if (this->pi_state || this->rt_waiter) { 289 ret = -EINVAL; 290 goto out_unlock; 291 } 292 futex_wake_mark(&wake_q, this); 293 if (++ret >= nr_wake) 294 break; 295 } 296 } 297 298 if (op_ret > 0) { 299 op_ret = 0; 300 plist_for_each_entry_safe(this, next, &hb2->chain, list) { 301 if (futex_match (&this->key, &key2)) { 302 if (this->pi_state || this->rt_waiter) { 303 ret = -EINVAL; 304 goto out_unlock; 305 } 306 futex_wake_mark(&wake_q, this); 307 if (++op_ret >= nr_wake2) 308 break; 309 } 310 } 311 ret += op_ret; 312 } 313 314 out_unlock: 315 double_unlock_hb(hb1, hb2); 316 wake_up_q(&wake_q); 317 return ret; 318 } 319 320 static long futex_wait_restart(struct restart_block *restart); 321 322 /** 323 * futex_wait_queue() - futex_queue() and wait for wakeup, timeout, or signal 324 * @hb: the futex hash bucket, must be locked by the caller 325 * @q: the futex_q to queue up on 326 * @timeout: the prepared hrtimer_sleeper, or null for no timeout 327 */ 328 void futex_wait_queue(struct futex_hash_bucket *hb, struct futex_q *q, 329 struct hrtimer_sleeper *timeout) 330 { 331 /* 332 * The task state is guaranteed to be set before another task can 333 * wake it. set_current_state() is implemented using smp_store_mb() and 334 * futex_queue() calls spin_unlock() upon completion, both serializing 335 * access to the hash list and forcing another memory barrier. 336 */ 337 set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 338 futex_queue(q, hb); 339 340 /* Arm the timer */ 341 if (timeout) 342 hrtimer_sleeper_start_expires(timeout, HRTIMER_MODE_ABS); 343 344 /* 345 * If we have been removed from the hash list, then another task 346 * has tried to wake us, and we can skip the call to schedule(). 347 */ 348 if (likely(!plist_node_empty(&q->list))) { 349 /* 350 * If the timer has already expired, current will already be 351 * flagged for rescheduling. Only call schedule if there 352 * is no timeout, or if it has yet to expire. 353 */ 354 if (!timeout || timeout->task) 355 schedule(); 356 } 357 __set_current_state(TASK_RUNNING); 358 } 359 360 /** 361 * unqueue_multiple - Remove various futexes from their hash bucket 362 * @v: The list of futexes to unqueue 363 * @count: Number of futexes in the list 364 * 365 * Helper to unqueue a list of futexes. This can't fail. 366 * 367 * Return: 368 * - >=0 - Index of the last futex that was awoken; 369 * - -1 - No futex was awoken 370 */ 371 static int unqueue_multiple(struct futex_vector *v, int count) 372 { 373 int ret = -1, i; 374 375 for (i = 0; i < count; i++) { 376 if (!futex_unqueue(&v[i].q)) 377 ret = i; 378 } 379 380 return ret; 381 } 382 383 /** 384 * futex_wait_multiple_setup - Prepare to wait and enqueue multiple futexes 385 * @vs: The futex list to wait on 386 * @count: The size of the list 387 * @woken: Index of the last woken futex, if any. Used to notify the 388 * caller that it can return this index to userspace (return parameter) 389 * 390 * Prepare multiple futexes in a single step and enqueue them. This may fail if 391 * the futex list is invalid or if any futex was already awoken. On success the 392 * task is ready to interruptible sleep. 393 * 394 * Return: 395 * - 1 - One of the futexes was woken by another thread 396 * - 0 - Success 397 * - <0 - -EFAULT, -EWOULDBLOCK or -EINVAL 398 */ 399 static int futex_wait_multiple_setup(struct futex_vector *vs, int count, int *woken) 400 { 401 struct futex_hash_bucket *hb; 402 bool retry = false; 403 int ret, i; 404 u32 uval; 405 406 /* 407 * Enqueuing multiple futexes is tricky, because we need to enqueue 408 * each futex on the list before dealing with the next one to avoid 409 * deadlocking on the hash bucket. But, before enqueuing, we need to 410 * make sure that current->state is TASK_INTERRUPTIBLE, so we don't 411 * lose any wake events, which cannot be done before the get_futex_key 412 * of the next key, because it calls get_user_pages, which can sleep. 413 * Thus, we fetch the list of futexes keys in two steps, by first 414 * pinning all the memory keys in the futex key, and only then we read 415 * each key and queue the corresponding futex. 416 * 417 * Private futexes doesn't need to recalculate hash in retry, so skip 418 * get_futex_key() when retrying. 419 */ 420 retry: 421 for (i = 0; i < count; i++) { 422 if ((vs[i].w.flags & FUTEX_PRIVATE_FLAG) && retry) 423 continue; 424 425 ret = get_futex_key(u64_to_user_ptr(vs[i].w.uaddr), 426 !(vs[i].w.flags & FUTEX_PRIVATE_FLAG), 427 &vs[i].q.key, FUTEX_READ); 428 429 if (unlikely(ret)) 430 return ret; 431 } 432 433 set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 434 435 for (i = 0; i < count; i++) { 436 u32 __user *uaddr = (u32 __user *)(unsigned long)vs[i].w.uaddr; 437 struct futex_q *q = &vs[i].q; 438 u32 val = (u32)vs[i].w.val; 439 440 hb = futex_q_lock(q); 441 ret = futex_get_value_locked(&uval, uaddr); 442 443 if (!ret && uval == val) { 444 /* 445 * The bucket lock can't be held while dealing with the 446 * next futex. Queue each futex at this moment so hb can 447 * be unlocked. 448 */ 449 futex_queue(q, hb); 450 continue; 451 } 452 453 futex_q_unlock(hb); 454 __set_current_state(TASK_RUNNING); 455 456 /* 457 * Even if something went wrong, if we find out that a futex 458 * was woken, we don't return error and return this index to 459 * userspace 460 */ 461 *woken = unqueue_multiple(vs, i); 462 if (*woken >= 0) 463 return 1; 464 465 if (ret) { 466 /* 467 * If we need to handle a page fault, we need to do so 468 * without any lock and any enqueued futex (otherwise 469 * we could lose some wakeup). So we do it here, after 470 * undoing all the work done so far. In success, we 471 * retry all the work. 472 */ 473 if (get_user(uval, uaddr)) 474 return -EFAULT; 475 476 retry = true; 477 goto retry; 478 } 479 480 if (uval != val) 481 return -EWOULDBLOCK; 482 } 483 484 return 0; 485 } 486 487 /** 488 * futex_sleep_multiple - Check sleeping conditions and sleep 489 * @vs: List of futexes to wait for 490 * @count: Length of vs 491 * @to: Timeout 492 * 493 * Sleep if and only if the timeout hasn't expired and no futex on the list has 494 * been woken up. 495 */ 496 static void futex_sleep_multiple(struct futex_vector *vs, unsigned int count, 497 struct hrtimer_sleeper *to) 498 { 499 if (to && !to->task) 500 return; 501 502 for (; count; count--, vs++) { 503 if (!READ_ONCE(vs->q.lock_ptr)) 504 return; 505 } 506 507 schedule(); 508 } 509 510 /** 511 * futex_wait_multiple - Prepare to wait on and enqueue several futexes 512 * @vs: The list of futexes to wait on 513 * @count: The number of objects 514 * @to: Timeout before giving up and returning to userspace 515 * 516 * Entry point for the FUTEX_WAIT_MULTIPLE futex operation, this function 517 * sleeps on a group of futexes and returns on the first futex that is 518 * wake, or after the timeout has elapsed. 519 * 520 * Return: 521 * - >=0 - Hint to the futex that was awoken 522 * - <0 - On error 523 */ 524 int futex_wait_multiple(struct futex_vector *vs, unsigned int count, 525 struct hrtimer_sleeper *to) 526 { 527 int ret, hint = 0; 528 529 if (to) 530 hrtimer_sleeper_start_expires(to, HRTIMER_MODE_ABS); 531 532 while (1) { 533 ret = futex_wait_multiple_setup(vs, count, &hint); 534 if (ret) { 535 if (ret > 0) { 536 /* A futex was woken during setup */ 537 ret = hint; 538 } 539 return ret; 540 } 541 542 futex_sleep_multiple(vs, count, to); 543 544 __set_current_state(TASK_RUNNING); 545 546 ret = unqueue_multiple(vs, count); 547 if (ret >= 0) 548 return ret; 549 550 if (to && !to->task) 551 return -ETIMEDOUT; 552 else if (signal_pending(current)) 553 return -ERESTARTSYS; 554 /* 555 * The final case is a spurious wakeup, for 556 * which just retry. 557 */ 558 } 559 } 560 561 /** 562 * futex_wait_setup() - Prepare to wait on a futex 563 * @uaddr: the futex userspace address 564 * @val: the expected value 565 * @flags: futex flags (FLAGS_SHARED, etc.) 566 * @q: the associated futex_q 567 * @hb: storage for hash_bucket pointer to be returned to caller 568 * 569 * Setup the futex_q and locate the hash_bucket. Get the futex value and 570 * compare it with the expected value. Handle atomic faults internally. 571 * Return with the hb lock held on success, and unlocked on failure. 572 * 573 * Return: 574 * - 0 - uaddr contains val and hb has been locked; 575 * - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked 576 */ 577 int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags, 578 struct futex_q *q, struct futex_hash_bucket **hb) 579 { 580 u32 uval; 581 int ret; 582 583 /* 584 * Access the page AFTER the hash-bucket is locked. 585 * Order is important: 586 * 587 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val); 588 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); } 589 * 590 * The basic logical guarantee of a futex is that it blocks ONLY 591 * if cond(var) is known to be true at the time of blocking, for 592 * any cond. If we locked the hash-bucket after testing *uaddr, that 593 * would open a race condition where we could block indefinitely with 594 * cond(var) false, which would violate the guarantee. 595 * 596 * On the other hand, we insert q and release the hash-bucket only 597 * after testing *uaddr. This guarantees that futex_wait() will NOT 598 * absorb a wakeup if *uaddr does not match the desired values 599 * while the syscall executes. 600 */ 601 retry: 602 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, FUTEX_READ); 603 if (unlikely(ret != 0)) 604 return ret; 605 606 retry_private: 607 *hb = futex_q_lock(q); 608 609 ret = futex_get_value_locked(&uval, uaddr); 610 611 if (ret) { 612 futex_q_unlock(*hb); 613 614 ret = get_user(uval, uaddr); 615 if (ret) 616 return ret; 617 618 if (!(flags & FLAGS_SHARED)) 619 goto retry_private; 620 621 goto retry; 622 } 623 624 if (uval != val) { 625 futex_q_unlock(*hb); 626 ret = -EWOULDBLOCK; 627 } 628 629 return ret; 630 } 631 632 int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val, ktime_t *abs_time, u32 bitset) 633 { 634 struct hrtimer_sleeper timeout, *to; 635 struct restart_block *restart; 636 struct futex_hash_bucket *hb; 637 struct futex_q q = futex_q_init; 638 int ret; 639 640 if (!bitset) 641 return -EINVAL; 642 q.bitset = bitset; 643 644 to = futex_setup_timer(abs_time, &timeout, flags, 645 current->timer_slack_ns); 646 retry: 647 /* 648 * Prepare to wait on uaddr. On success, it holds hb->lock and q 649 * is initialized. 650 */ 651 ret = futex_wait_setup(uaddr, val, flags, &q, &hb); 652 if (ret) 653 goto out; 654 655 /* futex_queue and wait for wakeup, timeout, or a signal. */ 656 futex_wait_queue(hb, &q, to); 657 658 /* If we were woken (and unqueued), we succeeded, whatever. */ 659 ret = 0; 660 if (!futex_unqueue(&q)) 661 goto out; 662 ret = -ETIMEDOUT; 663 if (to && !to->task) 664 goto out; 665 666 /* 667 * We expect signal_pending(current), but we might be the 668 * victim of a spurious wakeup as well. 669 */ 670 if (!signal_pending(current)) 671 goto retry; 672 673 ret = -ERESTARTSYS; 674 if (!abs_time) 675 goto out; 676 677 restart = ¤t->restart_block; 678 restart->futex.uaddr = uaddr; 679 restart->futex.val = val; 680 restart->futex.time = *abs_time; 681 restart->futex.bitset = bitset; 682 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT; 683 684 ret = set_restart_fn(restart, futex_wait_restart); 685 686 out: 687 if (to) { 688 hrtimer_cancel(&to->timer); 689 destroy_hrtimer_on_stack(&to->timer); 690 } 691 return ret; 692 } 693 694 static long futex_wait_restart(struct restart_block *restart) 695 { 696 u32 __user *uaddr = restart->futex.uaddr; 697 ktime_t t, *tp = NULL; 698 699 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) { 700 t = restart->futex.time; 701 tp = &t; 702 } 703 restart->fn = do_no_restart_syscall; 704 705 return (long)futex_wait(uaddr, restart->futex.flags, 706 restart->futex.val, tp, restart->futex.bitset); 707 } 708 709