xref: /openbmc/linux/kernel/futex/core.c (revision 7a836736b6537b0e2633381d743d9c1559ce243c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Fast Userspace Mutexes (which I call "Futexes!").
4  *  (C) Rusty Russell, IBM 2002
5  *
6  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
7  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8  *
9  *  Removed page pinning, fix privately mapped COW pages and other cleanups
10  *  (C) Copyright 2003, 2004 Jamie Lokier
11  *
12  *  Robust futex support started by Ingo Molnar
13  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
14  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15  *
16  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
17  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
18  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19  *
20  *  PRIVATE futexes by Eric Dumazet
21  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22  *
23  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
24  *  Copyright (C) IBM Corporation, 2009
25  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
26  *
27  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
28  *  enough at me, Linus for the original (flawed) idea, Matthew
29  *  Kirkwood for proof-of-concept implementation.
30  *
31  *  "The futexes are also cursed."
32  *  "But they come in a choice of three flavours!"
33  */
34 #include <linux/compat.h>
35 #include <linux/jhash.h>
36 #include <linux/pagemap.h>
37 #include <linux/memblock.h>
38 #include <linux/fault-inject.h>
39 #include <linux/slab.h>
40 
41 #include "futex.h"
42 #include "../locking/rtmutex_common.h"
43 
44 /*
45  * The base of the bucket array and its size are always used together
46  * (after initialization only in futex_hash()), so ensure that they
47  * reside in the same cacheline.
48  */
49 static struct {
50 	struct futex_hash_bucket *queues;
51 	unsigned long            hashsize;
52 } __futex_data __read_mostly __aligned(2*sizeof(long));
53 #define futex_queues   (__futex_data.queues)
54 #define futex_hashsize (__futex_data.hashsize)
55 
56 
57 /*
58  * Fault injections for futexes.
59  */
60 #ifdef CONFIG_FAIL_FUTEX
61 
62 static struct {
63 	struct fault_attr attr;
64 
65 	bool ignore_private;
66 } fail_futex = {
67 	.attr = FAULT_ATTR_INITIALIZER,
68 	.ignore_private = false,
69 };
70 
71 static int __init setup_fail_futex(char *str)
72 {
73 	return setup_fault_attr(&fail_futex.attr, str);
74 }
75 __setup("fail_futex=", setup_fail_futex);
76 
77 bool should_fail_futex(bool fshared)
78 {
79 	if (fail_futex.ignore_private && !fshared)
80 		return false;
81 
82 	return should_fail(&fail_futex.attr, 1);
83 }
84 
85 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
86 
87 static int __init fail_futex_debugfs(void)
88 {
89 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
90 	struct dentry *dir;
91 
92 	dir = fault_create_debugfs_attr("fail_futex", NULL,
93 					&fail_futex.attr);
94 	if (IS_ERR(dir))
95 		return PTR_ERR(dir);
96 
97 	debugfs_create_bool("ignore-private", mode, dir,
98 			    &fail_futex.ignore_private);
99 	return 0;
100 }
101 
102 late_initcall(fail_futex_debugfs);
103 
104 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
105 
106 #endif /* CONFIG_FAIL_FUTEX */
107 
108 /**
109  * futex_hash - Return the hash bucket in the global hash
110  * @key:	Pointer to the futex key for which the hash is calculated
111  *
112  * We hash on the keys returned from get_futex_key (see below) and return the
113  * corresponding hash bucket in the global hash.
114  */
115 struct futex_hash_bucket *futex_hash(union futex_key *key)
116 {
117 	u32 hash = jhash2((u32 *)key, offsetof(typeof(*key), both.offset) / 4,
118 			  key->both.offset);
119 
120 	return &futex_queues[hash & (futex_hashsize - 1)];
121 }
122 
123 
124 /**
125  * futex_setup_timer - set up the sleeping hrtimer.
126  * @time:	ptr to the given timeout value
127  * @timeout:	the hrtimer_sleeper structure to be set up
128  * @flags:	futex flags
129  * @range_ns:	optional range in ns
130  *
131  * Return: Initialized hrtimer_sleeper structure or NULL if no timeout
132  *	   value given
133  */
134 struct hrtimer_sleeper *
135 futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout,
136 		  int flags, u64 range_ns)
137 {
138 	if (!time)
139 		return NULL;
140 
141 	hrtimer_init_sleeper_on_stack(timeout, (flags & FLAGS_CLOCKRT) ?
142 				      CLOCK_REALTIME : CLOCK_MONOTONIC,
143 				      HRTIMER_MODE_ABS);
144 	/*
145 	 * If range_ns is 0, calling hrtimer_set_expires_range_ns() is
146 	 * effectively the same as calling hrtimer_set_expires().
147 	 */
148 	hrtimer_set_expires_range_ns(&timeout->timer, *time, range_ns);
149 
150 	return timeout;
151 }
152 
153 /*
154  * Generate a machine wide unique identifier for this inode.
155  *
156  * This relies on u64 not wrapping in the life-time of the machine; which with
157  * 1ns resolution means almost 585 years.
158  *
159  * This further relies on the fact that a well formed program will not unmap
160  * the file while it has a (shared) futex waiting on it. This mapping will have
161  * a file reference which pins the mount and inode.
162  *
163  * If for some reason an inode gets evicted and read back in again, it will get
164  * a new sequence number and will _NOT_ match, even though it is the exact same
165  * file.
166  *
167  * It is important that futex_match() will never have a false-positive, esp.
168  * for PI futexes that can mess up the state. The above argues that false-negatives
169  * are only possible for malformed programs.
170  */
171 static u64 get_inode_sequence_number(struct inode *inode)
172 {
173 	static atomic64_t i_seq;
174 	u64 old;
175 
176 	/* Does the inode already have a sequence number? */
177 	old = atomic64_read(&inode->i_sequence);
178 	if (likely(old))
179 		return old;
180 
181 	for (;;) {
182 		u64 new = atomic64_add_return(1, &i_seq);
183 		if (WARN_ON_ONCE(!new))
184 			continue;
185 
186 		old = atomic64_cmpxchg_relaxed(&inode->i_sequence, 0, new);
187 		if (old)
188 			return old;
189 		return new;
190 	}
191 }
192 
193 /**
194  * get_futex_key() - Get parameters which are the keys for a futex
195  * @uaddr:	virtual address of the futex
196  * @fshared:	false for a PROCESS_PRIVATE futex, true for PROCESS_SHARED
197  * @key:	address where result is stored.
198  * @rw:		mapping needs to be read/write (values: FUTEX_READ,
199  *              FUTEX_WRITE)
200  *
201  * Return: a negative error code or 0
202  *
203  * The key words are stored in @key on success.
204  *
205  * For shared mappings (when @fshared), the key is:
206  *
207  *   ( inode->i_sequence, page->index, offset_within_page )
208  *
209  * [ also see get_inode_sequence_number() ]
210  *
211  * For private mappings (or when !@fshared), the key is:
212  *
213  *   ( current->mm, address, 0 )
214  *
215  * This allows (cross process, where applicable) identification of the futex
216  * without keeping the page pinned for the duration of the FUTEX_WAIT.
217  *
218  * lock_page() might sleep, the caller should not hold a spinlock.
219  */
220 int get_futex_key(u32 __user *uaddr, bool fshared, union futex_key *key,
221 		  enum futex_access rw)
222 {
223 	unsigned long address = (unsigned long)uaddr;
224 	struct mm_struct *mm = current->mm;
225 	struct page *page, *tail;
226 	struct address_space *mapping;
227 	int err, ro = 0;
228 
229 	/*
230 	 * The futex address must be "naturally" aligned.
231 	 */
232 	key->both.offset = address % PAGE_SIZE;
233 	if (unlikely((address % sizeof(u32)) != 0))
234 		return -EINVAL;
235 	address -= key->both.offset;
236 
237 	if (unlikely(!access_ok(uaddr, sizeof(u32))))
238 		return -EFAULT;
239 
240 	if (unlikely(should_fail_futex(fshared)))
241 		return -EFAULT;
242 
243 	/*
244 	 * PROCESS_PRIVATE futexes are fast.
245 	 * As the mm cannot disappear under us and the 'key' only needs
246 	 * virtual address, we dont even have to find the underlying vma.
247 	 * Note : We do have to check 'uaddr' is a valid user address,
248 	 *        but access_ok() should be faster than find_vma()
249 	 */
250 	if (!fshared) {
251 		/*
252 		 * On no-MMU, shared futexes are treated as private, therefore
253 		 * we must not include the current process in the key. Since
254 		 * there is only one address space, the address is a unique key
255 		 * on its own.
256 		 */
257 		if (IS_ENABLED(CONFIG_MMU))
258 			key->private.mm = mm;
259 		else
260 			key->private.mm = NULL;
261 
262 		key->private.address = address;
263 		return 0;
264 	}
265 
266 again:
267 	/* Ignore any VERIFY_READ mapping (futex common case) */
268 	if (unlikely(should_fail_futex(true)))
269 		return -EFAULT;
270 
271 	err = get_user_pages_fast(address, 1, FOLL_WRITE, &page);
272 	/*
273 	 * If write access is not required (eg. FUTEX_WAIT), try
274 	 * and get read-only access.
275 	 */
276 	if (err == -EFAULT && rw == FUTEX_READ) {
277 		err = get_user_pages_fast(address, 1, 0, &page);
278 		ro = 1;
279 	}
280 	if (err < 0)
281 		return err;
282 	else
283 		err = 0;
284 
285 	/*
286 	 * The treatment of mapping from this point on is critical. The page
287 	 * lock protects many things but in this context the page lock
288 	 * stabilizes mapping, prevents inode freeing in the shared
289 	 * file-backed region case and guards against movement to swap cache.
290 	 *
291 	 * Strictly speaking the page lock is not needed in all cases being
292 	 * considered here and page lock forces unnecessarily serialization
293 	 * From this point on, mapping will be re-verified if necessary and
294 	 * page lock will be acquired only if it is unavoidable
295 	 *
296 	 * Mapping checks require the head page for any compound page so the
297 	 * head page and mapping is looked up now. For anonymous pages, it
298 	 * does not matter if the page splits in the future as the key is
299 	 * based on the address. For filesystem-backed pages, the tail is
300 	 * required as the index of the page determines the key. For
301 	 * base pages, there is no tail page and tail == page.
302 	 */
303 	tail = page;
304 	page = compound_head(page);
305 	mapping = READ_ONCE(page->mapping);
306 
307 	/*
308 	 * If page->mapping is NULL, then it cannot be a PageAnon
309 	 * page; but it might be the ZERO_PAGE or in the gate area or
310 	 * in a special mapping (all cases which we are happy to fail);
311 	 * or it may have been a good file page when get_user_pages_fast
312 	 * found it, but truncated or holepunched or subjected to
313 	 * invalidate_complete_page2 before we got the page lock (also
314 	 * cases which we are happy to fail).  And we hold a reference,
315 	 * so refcount care in invalidate_inode_page's remove_mapping
316 	 * prevents drop_caches from setting mapping to NULL beneath us.
317 	 *
318 	 * The case we do have to guard against is when memory pressure made
319 	 * shmem_writepage move it from filecache to swapcache beneath us:
320 	 * an unlikely race, but we do need to retry for page->mapping.
321 	 */
322 	if (unlikely(!mapping)) {
323 		int shmem_swizzled;
324 
325 		/*
326 		 * Page lock is required to identify which special case above
327 		 * applies. If this is really a shmem page then the page lock
328 		 * will prevent unexpected transitions.
329 		 */
330 		lock_page(page);
331 		shmem_swizzled = PageSwapCache(page) || page->mapping;
332 		unlock_page(page);
333 		put_page(page);
334 
335 		if (shmem_swizzled)
336 			goto again;
337 
338 		return -EFAULT;
339 	}
340 
341 	/*
342 	 * Private mappings are handled in a simple way.
343 	 *
344 	 * If the futex key is stored on an anonymous page, then the associated
345 	 * object is the mm which is implicitly pinned by the calling process.
346 	 *
347 	 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
348 	 * it's a read-only handle, it's expected that futexes attach to
349 	 * the object not the particular process.
350 	 */
351 	if (PageAnon(page)) {
352 		/*
353 		 * A RO anonymous page will never change and thus doesn't make
354 		 * sense for futex operations.
355 		 */
356 		if (unlikely(should_fail_futex(true)) || ro) {
357 			err = -EFAULT;
358 			goto out;
359 		}
360 
361 		key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
362 		key->private.mm = mm;
363 		key->private.address = address;
364 
365 	} else {
366 		struct inode *inode;
367 
368 		/*
369 		 * The associated futex object in this case is the inode and
370 		 * the page->mapping must be traversed. Ordinarily this should
371 		 * be stabilised under page lock but it's not strictly
372 		 * necessary in this case as we just want to pin the inode, not
373 		 * update the radix tree or anything like that.
374 		 *
375 		 * The RCU read lock is taken as the inode is finally freed
376 		 * under RCU. If the mapping still matches expectations then the
377 		 * mapping->host can be safely accessed as being a valid inode.
378 		 */
379 		rcu_read_lock();
380 
381 		if (READ_ONCE(page->mapping) != mapping) {
382 			rcu_read_unlock();
383 			put_page(page);
384 
385 			goto again;
386 		}
387 
388 		inode = READ_ONCE(mapping->host);
389 		if (!inode) {
390 			rcu_read_unlock();
391 			put_page(page);
392 
393 			goto again;
394 		}
395 
396 		key->both.offset |= FUT_OFF_INODE; /* inode-based key */
397 		key->shared.i_seq = get_inode_sequence_number(inode);
398 		key->shared.pgoff = page_to_pgoff(tail);
399 		rcu_read_unlock();
400 	}
401 
402 out:
403 	put_page(page);
404 	return err;
405 }
406 
407 /**
408  * fault_in_user_writeable() - Fault in user address and verify RW access
409  * @uaddr:	pointer to faulting user space address
410  *
411  * Slow path to fixup the fault we just took in the atomic write
412  * access to @uaddr.
413  *
414  * We have no generic implementation of a non-destructive write to the
415  * user address. We know that we faulted in the atomic pagefault
416  * disabled section so we can as well avoid the #PF overhead by
417  * calling get_user_pages() right away.
418  */
419 int fault_in_user_writeable(u32 __user *uaddr)
420 {
421 	struct mm_struct *mm = current->mm;
422 	int ret;
423 
424 	mmap_read_lock(mm);
425 	ret = fixup_user_fault(mm, (unsigned long)uaddr,
426 			       FAULT_FLAG_WRITE, NULL);
427 	mmap_read_unlock(mm);
428 
429 	return ret < 0 ? ret : 0;
430 }
431 
432 /**
433  * futex_top_waiter() - Return the highest priority waiter on a futex
434  * @hb:		the hash bucket the futex_q's reside in
435  * @key:	the futex key (to distinguish it from other futex futex_q's)
436  *
437  * Must be called with the hb lock held.
438  */
439 struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb, union futex_key *key)
440 {
441 	struct futex_q *this;
442 
443 	plist_for_each_entry(this, &hb->chain, list) {
444 		if (futex_match(&this->key, key))
445 			return this;
446 	}
447 	return NULL;
448 }
449 
450 int futex_cmpxchg_value_locked(u32 *curval, u32 __user *uaddr, u32 uval, u32 newval)
451 {
452 	int ret;
453 
454 	pagefault_disable();
455 	ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
456 	pagefault_enable();
457 
458 	return ret;
459 }
460 
461 int futex_get_value_locked(u32 *dest, u32 __user *from)
462 {
463 	int ret;
464 
465 	pagefault_disable();
466 	ret = __get_user(*dest, from);
467 	pagefault_enable();
468 
469 	return ret ? -EFAULT : 0;
470 }
471 
472 /**
473  * wait_for_owner_exiting - Block until the owner has exited
474  * @ret: owner's current futex lock status
475  * @exiting:	Pointer to the exiting task
476  *
477  * Caller must hold a refcount on @exiting.
478  */
479 void wait_for_owner_exiting(int ret, struct task_struct *exiting)
480 {
481 	if (ret != -EBUSY) {
482 		WARN_ON_ONCE(exiting);
483 		return;
484 	}
485 
486 	if (WARN_ON_ONCE(ret == -EBUSY && !exiting))
487 		return;
488 
489 	mutex_lock(&exiting->futex_exit_mutex);
490 	/*
491 	 * No point in doing state checking here. If the waiter got here
492 	 * while the task was in exec()->exec_futex_release() then it can
493 	 * have any FUTEX_STATE_* value when the waiter has acquired the
494 	 * mutex. OK, if running, EXITING or DEAD if it reached exit()
495 	 * already. Highly unlikely and not a problem. Just one more round
496 	 * through the futex maze.
497 	 */
498 	mutex_unlock(&exiting->futex_exit_mutex);
499 
500 	put_task_struct(exiting);
501 }
502 
503 /**
504  * __futex_unqueue() - Remove the futex_q from its futex_hash_bucket
505  * @q:	The futex_q to unqueue
506  *
507  * The q->lock_ptr must not be NULL and must be held by the caller.
508  */
509 void __futex_unqueue(struct futex_q *q)
510 {
511 	struct futex_hash_bucket *hb;
512 
513 	if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
514 		return;
515 	lockdep_assert_held(q->lock_ptr);
516 
517 	hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
518 	plist_del(&q->list, &hb->chain);
519 	futex_hb_waiters_dec(hb);
520 }
521 
522 /* The key must be already stored in q->key. */
523 struct futex_hash_bucket *futex_q_lock(struct futex_q *q)
524 	__acquires(&hb->lock)
525 {
526 	struct futex_hash_bucket *hb;
527 
528 	hb = futex_hash(&q->key);
529 
530 	/*
531 	 * Increment the counter before taking the lock so that
532 	 * a potential waker won't miss a to-be-slept task that is
533 	 * waiting for the spinlock. This is safe as all futex_q_lock()
534 	 * users end up calling futex_queue(). Similarly, for housekeeping,
535 	 * decrement the counter at futex_q_unlock() when some error has
536 	 * occurred and we don't end up adding the task to the list.
537 	 */
538 	futex_hb_waiters_inc(hb); /* implies smp_mb(); (A) */
539 
540 	q->lock_ptr = &hb->lock;
541 
542 	spin_lock(&hb->lock);
543 	return hb;
544 }
545 
546 void futex_q_unlock(struct futex_hash_bucket *hb)
547 	__releases(&hb->lock)
548 {
549 	spin_unlock(&hb->lock);
550 	futex_hb_waiters_dec(hb);
551 }
552 
553 void __futex_queue(struct futex_q *q, struct futex_hash_bucket *hb)
554 {
555 	int prio;
556 
557 	/*
558 	 * The priority used to register this element is
559 	 * - either the real thread-priority for the real-time threads
560 	 * (i.e. threads with a priority lower than MAX_RT_PRIO)
561 	 * - or MAX_RT_PRIO for non-RT threads.
562 	 * Thus, all RT-threads are woken first in priority order, and
563 	 * the others are woken last, in FIFO order.
564 	 */
565 	prio = min(current->normal_prio, MAX_RT_PRIO);
566 
567 	plist_node_init(&q->list, prio);
568 	plist_add(&q->list, &hb->chain);
569 	q->task = current;
570 }
571 
572 /**
573  * futex_unqueue() - Remove the futex_q from its futex_hash_bucket
574  * @q:	The futex_q to unqueue
575  *
576  * The q->lock_ptr must not be held by the caller. A call to futex_unqueue() must
577  * be paired with exactly one earlier call to futex_queue().
578  *
579  * Return:
580  *  - 1 - if the futex_q was still queued (and we removed unqueued it);
581  *  - 0 - if the futex_q was already removed by the waking thread
582  */
583 int futex_unqueue(struct futex_q *q)
584 {
585 	spinlock_t *lock_ptr;
586 	int ret = 0;
587 
588 	/* In the common case we don't take the spinlock, which is nice. */
589 retry:
590 	/*
591 	 * q->lock_ptr can change between this read and the following spin_lock.
592 	 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
593 	 * optimizing lock_ptr out of the logic below.
594 	 */
595 	lock_ptr = READ_ONCE(q->lock_ptr);
596 	if (lock_ptr != NULL) {
597 		spin_lock(lock_ptr);
598 		/*
599 		 * q->lock_ptr can change between reading it and
600 		 * spin_lock(), causing us to take the wrong lock.  This
601 		 * corrects the race condition.
602 		 *
603 		 * Reasoning goes like this: if we have the wrong lock,
604 		 * q->lock_ptr must have changed (maybe several times)
605 		 * between reading it and the spin_lock().  It can
606 		 * change again after the spin_lock() but only if it was
607 		 * already changed before the spin_lock().  It cannot,
608 		 * however, change back to the original value.  Therefore
609 		 * we can detect whether we acquired the correct lock.
610 		 */
611 		if (unlikely(lock_ptr != q->lock_ptr)) {
612 			spin_unlock(lock_ptr);
613 			goto retry;
614 		}
615 		__futex_unqueue(q);
616 
617 		BUG_ON(q->pi_state);
618 
619 		spin_unlock(lock_ptr);
620 		ret = 1;
621 	}
622 
623 	return ret;
624 }
625 
626 /*
627  * PI futexes can not be requeued and must remove themselves from the
628  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held.
629  */
630 void futex_unqueue_pi(struct futex_q *q)
631 {
632 	__futex_unqueue(q);
633 
634 	BUG_ON(!q->pi_state);
635 	put_pi_state(q->pi_state);
636 	q->pi_state = NULL;
637 }
638 
639 /* Constants for the pending_op argument of handle_futex_death */
640 #define HANDLE_DEATH_PENDING	true
641 #define HANDLE_DEATH_LIST	false
642 
643 /*
644  * Process a futex-list entry, check whether it's owned by the
645  * dying task, and do notification if so:
646  */
647 static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr,
648 			      bool pi, bool pending_op)
649 {
650 	u32 uval, nval, mval;
651 	pid_t owner;
652 	int err;
653 
654 	/* Futex address must be 32bit aligned */
655 	if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
656 		return -1;
657 
658 retry:
659 	if (get_user(uval, uaddr))
660 		return -1;
661 
662 	/*
663 	 * Special case for regular (non PI) futexes. The unlock path in
664 	 * user space has two race scenarios:
665 	 *
666 	 * 1. The unlock path releases the user space futex value and
667 	 *    before it can execute the futex() syscall to wake up
668 	 *    waiters it is killed.
669 	 *
670 	 * 2. A woken up waiter is killed before it can acquire the
671 	 *    futex in user space.
672 	 *
673 	 * In the second case, the wake up notification could be generated
674 	 * by the unlock path in user space after setting the futex value
675 	 * to zero or by the kernel after setting the OWNER_DIED bit below.
676 	 *
677 	 * In both cases the TID validation below prevents a wakeup of
678 	 * potential waiters which can cause these waiters to block
679 	 * forever.
680 	 *
681 	 * In both cases the following conditions are met:
682 	 *
683 	 *	1) task->robust_list->list_op_pending != NULL
684 	 *	   @pending_op == true
685 	 *	2) The owner part of user space futex value == 0
686 	 *	3) Regular futex: @pi == false
687 	 *
688 	 * If these conditions are met, it is safe to attempt waking up a
689 	 * potential waiter without touching the user space futex value and
690 	 * trying to set the OWNER_DIED bit. If the futex value is zero,
691 	 * the rest of the user space mutex state is consistent, so a woken
692 	 * waiter will just take over the uncontended futex. Setting the
693 	 * OWNER_DIED bit would create inconsistent state and malfunction
694 	 * of the user space owner died handling. Otherwise, the OWNER_DIED
695 	 * bit is already set, and the woken waiter is expected to deal with
696 	 * this.
697 	 */
698 	owner = uval & FUTEX_TID_MASK;
699 
700 	if (pending_op && !pi && !owner) {
701 		futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
702 		return 0;
703 	}
704 
705 	if (owner != task_pid_vnr(curr))
706 		return 0;
707 
708 	/*
709 	 * Ok, this dying thread is truly holding a futex
710 	 * of interest. Set the OWNER_DIED bit atomically
711 	 * via cmpxchg, and if the value had FUTEX_WAITERS
712 	 * set, wake up a waiter (if any). (We have to do a
713 	 * futex_wake() even if OWNER_DIED is already set -
714 	 * to handle the rare but possible case of recursive
715 	 * thread-death.) The rest of the cleanup is done in
716 	 * userspace.
717 	 */
718 	mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
719 
720 	/*
721 	 * We are not holding a lock here, but we want to have
722 	 * the pagefault_disable/enable() protection because
723 	 * we want to handle the fault gracefully. If the
724 	 * access fails we try to fault in the futex with R/W
725 	 * verification via get_user_pages. get_user() above
726 	 * does not guarantee R/W access. If that fails we
727 	 * give up and leave the futex locked.
728 	 */
729 	if ((err = futex_cmpxchg_value_locked(&nval, uaddr, uval, mval))) {
730 		switch (err) {
731 		case -EFAULT:
732 			if (fault_in_user_writeable(uaddr))
733 				return -1;
734 			goto retry;
735 
736 		case -EAGAIN:
737 			cond_resched();
738 			goto retry;
739 
740 		default:
741 			WARN_ON_ONCE(1);
742 			return err;
743 		}
744 	}
745 
746 	if (nval != uval)
747 		goto retry;
748 
749 	/*
750 	 * Wake robust non-PI futexes here. The wakeup of
751 	 * PI futexes happens in exit_pi_state():
752 	 */
753 	if (!pi && (uval & FUTEX_WAITERS))
754 		futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
755 
756 	return 0;
757 }
758 
759 /*
760  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
761  */
762 static inline int fetch_robust_entry(struct robust_list __user **entry,
763 				     struct robust_list __user * __user *head,
764 				     unsigned int *pi)
765 {
766 	unsigned long uentry;
767 
768 	if (get_user(uentry, (unsigned long __user *)head))
769 		return -EFAULT;
770 
771 	*entry = (void __user *)(uentry & ~1UL);
772 	*pi = uentry & 1;
773 
774 	return 0;
775 }
776 
777 /*
778  * Walk curr->robust_list (very carefully, it's a userspace list!)
779  * and mark any locks found there dead, and notify any waiters.
780  *
781  * We silently return on any sign of list-walking problem.
782  */
783 static void exit_robust_list(struct task_struct *curr)
784 {
785 	struct robust_list_head __user *head = curr->robust_list;
786 	struct robust_list __user *entry, *next_entry, *pending;
787 	unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
788 	unsigned int next_pi;
789 	unsigned long futex_offset;
790 	int rc;
791 
792 	/*
793 	 * Fetch the list head (which was registered earlier, via
794 	 * sys_set_robust_list()):
795 	 */
796 	if (fetch_robust_entry(&entry, &head->list.next, &pi))
797 		return;
798 	/*
799 	 * Fetch the relative futex offset:
800 	 */
801 	if (get_user(futex_offset, &head->futex_offset))
802 		return;
803 	/*
804 	 * Fetch any possibly pending lock-add first, and handle it
805 	 * if it exists:
806 	 */
807 	if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
808 		return;
809 
810 	next_entry = NULL;	/* avoid warning with gcc */
811 	while (entry != &head->list) {
812 		/*
813 		 * Fetch the next entry in the list before calling
814 		 * handle_futex_death:
815 		 */
816 		rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
817 		/*
818 		 * A pending lock might already be on the list, so
819 		 * don't process it twice:
820 		 */
821 		if (entry != pending) {
822 			if (handle_futex_death((void __user *)entry + futex_offset,
823 						curr, pi, HANDLE_DEATH_LIST))
824 				return;
825 		}
826 		if (rc)
827 			return;
828 		entry = next_entry;
829 		pi = next_pi;
830 		/*
831 		 * Avoid excessively long or circular lists:
832 		 */
833 		if (!--limit)
834 			break;
835 
836 		cond_resched();
837 	}
838 
839 	if (pending) {
840 		handle_futex_death((void __user *)pending + futex_offset,
841 				   curr, pip, HANDLE_DEATH_PENDING);
842 	}
843 }
844 
845 #ifdef CONFIG_COMPAT
846 static void __user *futex_uaddr(struct robust_list __user *entry,
847 				compat_long_t futex_offset)
848 {
849 	compat_uptr_t base = ptr_to_compat(entry);
850 	void __user *uaddr = compat_ptr(base + futex_offset);
851 
852 	return uaddr;
853 }
854 
855 /*
856  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
857  */
858 static inline int
859 compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
860 		   compat_uptr_t __user *head, unsigned int *pi)
861 {
862 	if (get_user(*uentry, head))
863 		return -EFAULT;
864 
865 	*entry = compat_ptr((*uentry) & ~1);
866 	*pi = (unsigned int)(*uentry) & 1;
867 
868 	return 0;
869 }
870 
871 /*
872  * Walk curr->robust_list (very carefully, it's a userspace list!)
873  * and mark any locks found there dead, and notify any waiters.
874  *
875  * We silently return on any sign of list-walking problem.
876  */
877 static void compat_exit_robust_list(struct task_struct *curr)
878 {
879 	struct compat_robust_list_head __user *head = curr->compat_robust_list;
880 	struct robust_list __user *entry, *next_entry, *pending;
881 	unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
882 	unsigned int next_pi;
883 	compat_uptr_t uentry, next_uentry, upending;
884 	compat_long_t futex_offset;
885 	int rc;
886 
887 	/*
888 	 * Fetch the list head (which was registered earlier, via
889 	 * sys_set_robust_list()):
890 	 */
891 	if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
892 		return;
893 	/*
894 	 * Fetch the relative futex offset:
895 	 */
896 	if (get_user(futex_offset, &head->futex_offset))
897 		return;
898 	/*
899 	 * Fetch any possibly pending lock-add first, and handle it
900 	 * if it exists:
901 	 */
902 	if (compat_fetch_robust_entry(&upending, &pending,
903 			       &head->list_op_pending, &pip))
904 		return;
905 
906 	next_entry = NULL;	/* avoid warning with gcc */
907 	while (entry != (struct robust_list __user *) &head->list) {
908 		/*
909 		 * Fetch the next entry in the list before calling
910 		 * handle_futex_death:
911 		 */
912 		rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
913 			(compat_uptr_t __user *)&entry->next, &next_pi);
914 		/*
915 		 * A pending lock might already be on the list, so
916 		 * dont process it twice:
917 		 */
918 		if (entry != pending) {
919 			void __user *uaddr = futex_uaddr(entry, futex_offset);
920 
921 			if (handle_futex_death(uaddr, curr, pi,
922 					       HANDLE_DEATH_LIST))
923 				return;
924 		}
925 		if (rc)
926 			return;
927 		uentry = next_uentry;
928 		entry = next_entry;
929 		pi = next_pi;
930 		/*
931 		 * Avoid excessively long or circular lists:
932 		 */
933 		if (!--limit)
934 			break;
935 
936 		cond_resched();
937 	}
938 	if (pending) {
939 		void __user *uaddr = futex_uaddr(pending, futex_offset);
940 
941 		handle_futex_death(uaddr, curr, pip, HANDLE_DEATH_PENDING);
942 	}
943 }
944 #endif
945 
946 #ifdef CONFIG_FUTEX_PI
947 
948 /*
949  * This task is holding PI mutexes at exit time => bad.
950  * Kernel cleans up PI-state, but userspace is likely hosed.
951  * (Robust-futex cleanup is separate and might save the day for userspace.)
952  */
953 static void exit_pi_state_list(struct task_struct *curr)
954 {
955 	struct list_head *next, *head = &curr->pi_state_list;
956 	struct futex_pi_state *pi_state;
957 	struct futex_hash_bucket *hb;
958 	union futex_key key = FUTEX_KEY_INIT;
959 
960 	/*
961 	 * We are a ZOMBIE and nobody can enqueue itself on
962 	 * pi_state_list anymore, but we have to be careful
963 	 * versus waiters unqueueing themselves:
964 	 */
965 	raw_spin_lock_irq(&curr->pi_lock);
966 	while (!list_empty(head)) {
967 		next = head->next;
968 		pi_state = list_entry(next, struct futex_pi_state, list);
969 		key = pi_state->key;
970 		hb = futex_hash(&key);
971 
972 		/*
973 		 * We can race against put_pi_state() removing itself from the
974 		 * list (a waiter going away). put_pi_state() will first
975 		 * decrement the reference count and then modify the list, so
976 		 * its possible to see the list entry but fail this reference
977 		 * acquire.
978 		 *
979 		 * In that case; drop the locks to let put_pi_state() make
980 		 * progress and retry the loop.
981 		 */
982 		if (!refcount_inc_not_zero(&pi_state->refcount)) {
983 			raw_spin_unlock_irq(&curr->pi_lock);
984 			cpu_relax();
985 			raw_spin_lock_irq(&curr->pi_lock);
986 			continue;
987 		}
988 		raw_spin_unlock_irq(&curr->pi_lock);
989 
990 		spin_lock(&hb->lock);
991 		raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
992 		raw_spin_lock(&curr->pi_lock);
993 		/*
994 		 * We dropped the pi-lock, so re-check whether this
995 		 * task still owns the PI-state:
996 		 */
997 		if (head->next != next) {
998 			/* retain curr->pi_lock for the loop invariant */
999 			raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1000 			spin_unlock(&hb->lock);
1001 			put_pi_state(pi_state);
1002 			continue;
1003 		}
1004 
1005 		WARN_ON(pi_state->owner != curr);
1006 		WARN_ON(list_empty(&pi_state->list));
1007 		list_del_init(&pi_state->list);
1008 		pi_state->owner = NULL;
1009 
1010 		raw_spin_unlock(&curr->pi_lock);
1011 		raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1012 		spin_unlock(&hb->lock);
1013 
1014 		rt_mutex_futex_unlock(&pi_state->pi_mutex);
1015 		put_pi_state(pi_state);
1016 
1017 		raw_spin_lock_irq(&curr->pi_lock);
1018 	}
1019 	raw_spin_unlock_irq(&curr->pi_lock);
1020 }
1021 #else
1022 static inline void exit_pi_state_list(struct task_struct *curr) { }
1023 #endif
1024 
1025 static void futex_cleanup(struct task_struct *tsk)
1026 {
1027 	if (unlikely(tsk->robust_list)) {
1028 		exit_robust_list(tsk);
1029 		tsk->robust_list = NULL;
1030 	}
1031 
1032 #ifdef CONFIG_COMPAT
1033 	if (unlikely(tsk->compat_robust_list)) {
1034 		compat_exit_robust_list(tsk);
1035 		tsk->compat_robust_list = NULL;
1036 	}
1037 #endif
1038 
1039 	if (unlikely(!list_empty(&tsk->pi_state_list)))
1040 		exit_pi_state_list(tsk);
1041 }
1042 
1043 /**
1044  * futex_exit_recursive - Set the tasks futex state to FUTEX_STATE_DEAD
1045  * @tsk:	task to set the state on
1046  *
1047  * Set the futex exit state of the task lockless. The futex waiter code
1048  * observes that state when a task is exiting and loops until the task has
1049  * actually finished the futex cleanup. The worst case for this is that the
1050  * waiter runs through the wait loop until the state becomes visible.
1051  *
1052  * This is called from the recursive fault handling path in make_task_dead().
1053  *
1054  * This is best effort. Either the futex exit code has run already or
1055  * not. If the OWNER_DIED bit has been set on the futex then the waiter can
1056  * take it over. If not, the problem is pushed back to user space. If the
1057  * futex exit code did not run yet, then an already queued waiter might
1058  * block forever, but there is nothing which can be done about that.
1059  */
1060 void futex_exit_recursive(struct task_struct *tsk)
1061 {
1062 	/* If the state is FUTEX_STATE_EXITING then futex_exit_mutex is held */
1063 	if (tsk->futex_state == FUTEX_STATE_EXITING)
1064 		mutex_unlock(&tsk->futex_exit_mutex);
1065 	tsk->futex_state = FUTEX_STATE_DEAD;
1066 }
1067 
1068 static void futex_cleanup_begin(struct task_struct *tsk)
1069 {
1070 	/*
1071 	 * Prevent various race issues against a concurrent incoming waiter
1072 	 * including live locks by forcing the waiter to block on
1073 	 * tsk->futex_exit_mutex when it observes FUTEX_STATE_EXITING in
1074 	 * attach_to_pi_owner().
1075 	 */
1076 	mutex_lock(&tsk->futex_exit_mutex);
1077 
1078 	/*
1079 	 * Switch the state to FUTEX_STATE_EXITING under tsk->pi_lock.
1080 	 *
1081 	 * This ensures that all subsequent checks of tsk->futex_state in
1082 	 * attach_to_pi_owner() must observe FUTEX_STATE_EXITING with
1083 	 * tsk->pi_lock held.
1084 	 *
1085 	 * It guarantees also that a pi_state which was queued right before
1086 	 * the state change under tsk->pi_lock by a concurrent waiter must
1087 	 * be observed in exit_pi_state_list().
1088 	 */
1089 	raw_spin_lock_irq(&tsk->pi_lock);
1090 	tsk->futex_state = FUTEX_STATE_EXITING;
1091 	raw_spin_unlock_irq(&tsk->pi_lock);
1092 }
1093 
1094 static void futex_cleanup_end(struct task_struct *tsk, int state)
1095 {
1096 	/*
1097 	 * Lockless store. The only side effect is that an observer might
1098 	 * take another loop until it becomes visible.
1099 	 */
1100 	tsk->futex_state = state;
1101 	/*
1102 	 * Drop the exit protection. This unblocks waiters which observed
1103 	 * FUTEX_STATE_EXITING to reevaluate the state.
1104 	 */
1105 	mutex_unlock(&tsk->futex_exit_mutex);
1106 }
1107 
1108 void futex_exec_release(struct task_struct *tsk)
1109 {
1110 	/*
1111 	 * The state handling is done for consistency, but in the case of
1112 	 * exec() there is no way to prevent further damage as the PID stays
1113 	 * the same. But for the unlikely and arguably buggy case that a
1114 	 * futex is held on exec(), this provides at least as much state
1115 	 * consistency protection which is possible.
1116 	 */
1117 	futex_cleanup_begin(tsk);
1118 	futex_cleanup(tsk);
1119 	/*
1120 	 * Reset the state to FUTEX_STATE_OK. The task is alive and about
1121 	 * exec a new binary.
1122 	 */
1123 	futex_cleanup_end(tsk, FUTEX_STATE_OK);
1124 }
1125 
1126 void futex_exit_release(struct task_struct *tsk)
1127 {
1128 	futex_cleanup_begin(tsk);
1129 	futex_cleanup(tsk);
1130 	futex_cleanup_end(tsk, FUTEX_STATE_DEAD);
1131 }
1132 
1133 static int __init futex_init(void)
1134 {
1135 	unsigned int futex_shift;
1136 	unsigned long i;
1137 
1138 #if CONFIG_BASE_SMALL
1139 	futex_hashsize = 16;
1140 #else
1141 	futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
1142 #endif
1143 
1144 	futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
1145 					       futex_hashsize, 0, 0,
1146 					       &futex_shift, NULL,
1147 					       futex_hashsize, futex_hashsize);
1148 	futex_hashsize = 1UL << futex_shift;
1149 
1150 	for (i = 0; i < futex_hashsize; i++) {
1151 		atomic_set(&futex_queues[i].waiters, 0);
1152 		plist_head_init(&futex_queues[i].chain);
1153 		spin_lock_init(&futex_queues[i].lock);
1154 	}
1155 
1156 	return 0;
1157 }
1158 core_initcall(futex_init);
1159