xref: /openbmc/linux/kernel/futex/core.c (revision 64cf26f0)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Fast Userspace Mutexes (which I call "Futexes!").
4  *  (C) Rusty Russell, IBM 2002
5  *
6  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
7  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8  *
9  *  Removed page pinning, fix privately mapped COW pages and other cleanups
10  *  (C) Copyright 2003, 2004 Jamie Lokier
11  *
12  *  Robust futex support started by Ingo Molnar
13  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
14  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15  *
16  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
17  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
18  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19  *
20  *  PRIVATE futexes by Eric Dumazet
21  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22  *
23  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
24  *  Copyright (C) IBM Corporation, 2009
25  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
26  *
27  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
28  *  enough at me, Linus for the original (flawed) idea, Matthew
29  *  Kirkwood for proof-of-concept implementation.
30  *
31  *  "The futexes are also cursed."
32  *  "But they come in a choice of three flavours!"
33  */
34 #include <linux/compat.h>
35 #include <linux/jhash.h>
36 #include <linux/pagemap.h>
37 #include <linux/memblock.h>
38 #include <linux/fault-inject.h>
39 #include <linux/slab.h>
40 
41 #include "futex.h"
42 #include "../locking/rtmutex_common.h"
43 
44 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
45 int  __read_mostly futex_cmpxchg_enabled;
46 #endif
47 
48 
49 /*
50  * The base of the bucket array and its size are always used together
51  * (after initialization only in futex_hash()), so ensure that they
52  * reside in the same cacheline.
53  */
54 static struct {
55 	struct futex_hash_bucket *queues;
56 	unsigned long            hashsize;
57 } __futex_data __read_mostly __aligned(2*sizeof(long));
58 #define futex_queues   (__futex_data.queues)
59 #define futex_hashsize (__futex_data.hashsize)
60 
61 
62 /*
63  * Fault injections for futexes.
64  */
65 #ifdef CONFIG_FAIL_FUTEX
66 
67 static struct {
68 	struct fault_attr attr;
69 
70 	bool ignore_private;
71 } fail_futex = {
72 	.attr = FAULT_ATTR_INITIALIZER,
73 	.ignore_private = false,
74 };
75 
76 static int __init setup_fail_futex(char *str)
77 {
78 	return setup_fault_attr(&fail_futex.attr, str);
79 }
80 __setup("fail_futex=", setup_fail_futex);
81 
82 bool should_fail_futex(bool fshared)
83 {
84 	if (fail_futex.ignore_private && !fshared)
85 		return false;
86 
87 	return should_fail(&fail_futex.attr, 1);
88 }
89 
90 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
91 
92 static int __init fail_futex_debugfs(void)
93 {
94 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
95 	struct dentry *dir;
96 
97 	dir = fault_create_debugfs_attr("fail_futex", NULL,
98 					&fail_futex.attr);
99 	if (IS_ERR(dir))
100 		return PTR_ERR(dir);
101 
102 	debugfs_create_bool("ignore-private", mode, dir,
103 			    &fail_futex.ignore_private);
104 	return 0;
105 }
106 
107 late_initcall(fail_futex_debugfs);
108 
109 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
110 
111 #endif /* CONFIG_FAIL_FUTEX */
112 
113 /**
114  * futex_hash - Return the hash bucket in the global hash
115  * @key:	Pointer to the futex key for which the hash is calculated
116  *
117  * We hash on the keys returned from get_futex_key (see below) and return the
118  * corresponding hash bucket in the global hash.
119  */
120 struct futex_hash_bucket *futex_hash(union futex_key *key)
121 {
122 	u32 hash = jhash2((u32 *)key, offsetof(typeof(*key), both.offset) / 4,
123 			  key->both.offset);
124 
125 	return &futex_queues[hash & (futex_hashsize - 1)];
126 }
127 
128 
129 /**
130  * futex_setup_timer - set up the sleeping hrtimer.
131  * @time:	ptr to the given timeout value
132  * @timeout:	the hrtimer_sleeper structure to be set up
133  * @flags:	futex flags
134  * @range_ns:	optional range in ns
135  *
136  * Return: Initialized hrtimer_sleeper structure or NULL if no timeout
137  *	   value given
138  */
139 struct hrtimer_sleeper *
140 futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout,
141 		  int flags, u64 range_ns)
142 {
143 	if (!time)
144 		return NULL;
145 
146 	hrtimer_init_sleeper_on_stack(timeout, (flags & FLAGS_CLOCKRT) ?
147 				      CLOCK_REALTIME : CLOCK_MONOTONIC,
148 				      HRTIMER_MODE_ABS);
149 	/*
150 	 * If range_ns is 0, calling hrtimer_set_expires_range_ns() is
151 	 * effectively the same as calling hrtimer_set_expires().
152 	 */
153 	hrtimer_set_expires_range_ns(&timeout->timer, *time, range_ns);
154 
155 	return timeout;
156 }
157 
158 /*
159  * Generate a machine wide unique identifier for this inode.
160  *
161  * This relies on u64 not wrapping in the life-time of the machine; which with
162  * 1ns resolution means almost 585 years.
163  *
164  * This further relies on the fact that a well formed program will not unmap
165  * the file while it has a (shared) futex waiting on it. This mapping will have
166  * a file reference which pins the mount and inode.
167  *
168  * If for some reason an inode gets evicted and read back in again, it will get
169  * a new sequence number and will _NOT_ match, even though it is the exact same
170  * file.
171  *
172  * It is important that futex_match() will never have a false-positive, esp.
173  * for PI futexes that can mess up the state. The above argues that false-negatives
174  * are only possible for malformed programs.
175  */
176 static u64 get_inode_sequence_number(struct inode *inode)
177 {
178 	static atomic64_t i_seq;
179 	u64 old;
180 
181 	/* Does the inode already have a sequence number? */
182 	old = atomic64_read(&inode->i_sequence);
183 	if (likely(old))
184 		return old;
185 
186 	for (;;) {
187 		u64 new = atomic64_add_return(1, &i_seq);
188 		if (WARN_ON_ONCE(!new))
189 			continue;
190 
191 		old = atomic64_cmpxchg_relaxed(&inode->i_sequence, 0, new);
192 		if (old)
193 			return old;
194 		return new;
195 	}
196 }
197 
198 /**
199  * get_futex_key() - Get parameters which are the keys for a futex
200  * @uaddr:	virtual address of the futex
201  * @fshared:	false for a PROCESS_PRIVATE futex, true for PROCESS_SHARED
202  * @key:	address where result is stored.
203  * @rw:		mapping needs to be read/write (values: FUTEX_READ,
204  *              FUTEX_WRITE)
205  *
206  * Return: a negative error code or 0
207  *
208  * The key words are stored in @key on success.
209  *
210  * For shared mappings (when @fshared), the key is:
211  *
212  *   ( inode->i_sequence, page->index, offset_within_page )
213  *
214  * [ also see get_inode_sequence_number() ]
215  *
216  * For private mappings (or when !@fshared), the key is:
217  *
218  *   ( current->mm, address, 0 )
219  *
220  * This allows (cross process, where applicable) identification of the futex
221  * without keeping the page pinned for the duration of the FUTEX_WAIT.
222  *
223  * lock_page() might sleep, the caller should not hold a spinlock.
224  */
225 int get_futex_key(u32 __user *uaddr, bool fshared, union futex_key *key,
226 		  enum futex_access rw)
227 {
228 	unsigned long address = (unsigned long)uaddr;
229 	struct mm_struct *mm = current->mm;
230 	struct page *page, *tail;
231 	struct address_space *mapping;
232 	int err, ro = 0;
233 
234 	/*
235 	 * The futex address must be "naturally" aligned.
236 	 */
237 	key->both.offset = address % PAGE_SIZE;
238 	if (unlikely((address % sizeof(u32)) != 0))
239 		return -EINVAL;
240 	address -= key->both.offset;
241 
242 	if (unlikely(!access_ok(uaddr, sizeof(u32))))
243 		return -EFAULT;
244 
245 	if (unlikely(should_fail_futex(fshared)))
246 		return -EFAULT;
247 
248 	/*
249 	 * PROCESS_PRIVATE futexes are fast.
250 	 * As the mm cannot disappear under us and the 'key' only needs
251 	 * virtual address, we dont even have to find the underlying vma.
252 	 * Note : We do have to check 'uaddr' is a valid user address,
253 	 *        but access_ok() should be faster than find_vma()
254 	 */
255 	if (!fshared) {
256 		key->private.mm = mm;
257 		key->private.address = address;
258 		return 0;
259 	}
260 
261 again:
262 	/* Ignore any VERIFY_READ mapping (futex common case) */
263 	if (unlikely(should_fail_futex(true)))
264 		return -EFAULT;
265 
266 	err = get_user_pages_fast(address, 1, FOLL_WRITE, &page);
267 	/*
268 	 * If write access is not required (eg. FUTEX_WAIT), try
269 	 * and get read-only access.
270 	 */
271 	if (err == -EFAULT && rw == FUTEX_READ) {
272 		err = get_user_pages_fast(address, 1, 0, &page);
273 		ro = 1;
274 	}
275 	if (err < 0)
276 		return err;
277 	else
278 		err = 0;
279 
280 	/*
281 	 * The treatment of mapping from this point on is critical. The page
282 	 * lock protects many things but in this context the page lock
283 	 * stabilizes mapping, prevents inode freeing in the shared
284 	 * file-backed region case and guards against movement to swap cache.
285 	 *
286 	 * Strictly speaking the page lock is not needed in all cases being
287 	 * considered here and page lock forces unnecessarily serialization
288 	 * From this point on, mapping will be re-verified if necessary and
289 	 * page lock will be acquired only if it is unavoidable
290 	 *
291 	 * Mapping checks require the head page for any compound page so the
292 	 * head page and mapping is looked up now. For anonymous pages, it
293 	 * does not matter if the page splits in the future as the key is
294 	 * based on the address. For filesystem-backed pages, the tail is
295 	 * required as the index of the page determines the key. For
296 	 * base pages, there is no tail page and tail == page.
297 	 */
298 	tail = page;
299 	page = compound_head(page);
300 	mapping = READ_ONCE(page->mapping);
301 
302 	/*
303 	 * If page->mapping is NULL, then it cannot be a PageAnon
304 	 * page; but it might be the ZERO_PAGE or in the gate area or
305 	 * in a special mapping (all cases which we are happy to fail);
306 	 * or it may have been a good file page when get_user_pages_fast
307 	 * found it, but truncated or holepunched or subjected to
308 	 * invalidate_complete_page2 before we got the page lock (also
309 	 * cases which we are happy to fail).  And we hold a reference,
310 	 * so refcount care in invalidate_complete_page's remove_mapping
311 	 * prevents drop_caches from setting mapping to NULL beneath us.
312 	 *
313 	 * The case we do have to guard against is when memory pressure made
314 	 * shmem_writepage move it from filecache to swapcache beneath us:
315 	 * an unlikely race, but we do need to retry for page->mapping.
316 	 */
317 	if (unlikely(!mapping)) {
318 		int shmem_swizzled;
319 
320 		/*
321 		 * Page lock is required to identify which special case above
322 		 * applies. If this is really a shmem page then the page lock
323 		 * will prevent unexpected transitions.
324 		 */
325 		lock_page(page);
326 		shmem_swizzled = PageSwapCache(page) || page->mapping;
327 		unlock_page(page);
328 		put_page(page);
329 
330 		if (shmem_swizzled)
331 			goto again;
332 
333 		return -EFAULT;
334 	}
335 
336 	/*
337 	 * Private mappings are handled in a simple way.
338 	 *
339 	 * If the futex key is stored on an anonymous page, then the associated
340 	 * object is the mm which is implicitly pinned by the calling process.
341 	 *
342 	 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
343 	 * it's a read-only handle, it's expected that futexes attach to
344 	 * the object not the particular process.
345 	 */
346 	if (PageAnon(page)) {
347 		/*
348 		 * A RO anonymous page will never change and thus doesn't make
349 		 * sense for futex operations.
350 		 */
351 		if (unlikely(should_fail_futex(true)) || ro) {
352 			err = -EFAULT;
353 			goto out;
354 		}
355 
356 		key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
357 		key->private.mm = mm;
358 		key->private.address = address;
359 
360 	} else {
361 		struct inode *inode;
362 
363 		/*
364 		 * The associated futex object in this case is the inode and
365 		 * the page->mapping must be traversed. Ordinarily this should
366 		 * be stabilised under page lock but it's not strictly
367 		 * necessary in this case as we just want to pin the inode, not
368 		 * update the radix tree or anything like that.
369 		 *
370 		 * The RCU read lock is taken as the inode is finally freed
371 		 * under RCU. If the mapping still matches expectations then the
372 		 * mapping->host can be safely accessed as being a valid inode.
373 		 */
374 		rcu_read_lock();
375 
376 		if (READ_ONCE(page->mapping) != mapping) {
377 			rcu_read_unlock();
378 			put_page(page);
379 
380 			goto again;
381 		}
382 
383 		inode = READ_ONCE(mapping->host);
384 		if (!inode) {
385 			rcu_read_unlock();
386 			put_page(page);
387 
388 			goto again;
389 		}
390 
391 		key->both.offset |= FUT_OFF_INODE; /* inode-based key */
392 		key->shared.i_seq = get_inode_sequence_number(inode);
393 		key->shared.pgoff = page_to_pgoff(tail);
394 		rcu_read_unlock();
395 	}
396 
397 out:
398 	put_page(page);
399 	return err;
400 }
401 
402 /**
403  * fault_in_user_writeable() - Fault in user address and verify RW access
404  * @uaddr:	pointer to faulting user space address
405  *
406  * Slow path to fixup the fault we just took in the atomic write
407  * access to @uaddr.
408  *
409  * We have no generic implementation of a non-destructive write to the
410  * user address. We know that we faulted in the atomic pagefault
411  * disabled section so we can as well avoid the #PF overhead by
412  * calling get_user_pages() right away.
413  */
414 int fault_in_user_writeable(u32 __user *uaddr)
415 {
416 	struct mm_struct *mm = current->mm;
417 	int ret;
418 
419 	mmap_read_lock(mm);
420 	ret = fixup_user_fault(mm, (unsigned long)uaddr,
421 			       FAULT_FLAG_WRITE, NULL);
422 	mmap_read_unlock(mm);
423 
424 	return ret < 0 ? ret : 0;
425 }
426 
427 /**
428  * futex_top_waiter() - Return the highest priority waiter on a futex
429  * @hb:		the hash bucket the futex_q's reside in
430  * @key:	the futex key (to distinguish it from other futex futex_q's)
431  *
432  * Must be called with the hb lock held.
433  */
434 struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb, union futex_key *key)
435 {
436 	struct futex_q *this;
437 
438 	plist_for_each_entry(this, &hb->chain, list) {
439 		if (futex_match(&this->key, key))
440 			return this;
441 	}
442 	return NULL;
443 }
444 
445 int futex_cmpxchg_value_locked(u32 *curval, u32 __user *uaddr, u32 uval, u32 newval)
446 {
447 	int ret;
448 
449 	pagefault_disable();
450 	ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
451 	pagefault_enable();
452 
453 	return ret;
454 }
455 
456 int futex_get_value_locked(u32 *dest, u32 __user *from)
457 {
458 	int ret;
459 
460 	pagefault_disable();
461 	ret = __get_user(*dest, from);
462 	pagefault_enable();
463 
464 	return ret ? -EFAULT : 0;
465 }
466 
467 /**
468  * wait_for_owner_exiting - Block until the owner has exited
469  * @ret: owner's current futex lock status
470  * @exiting:	Pointer to the exiting task
471  *
472  * Caller must hold a refcount on @exiting.
473  */
474 void wait_for_owner_exiting(int ret, struct task_struct *exiting)
475 {
476 	if (ret != -EBUSY) {
477 		WARN_ON_ONCE(exiting);
478 		return;
479 	}
480 
481 	if (WARN_ON_ONCE(ret == -EBUSY && !exiting))
482 		return;
483 
484 	mutex_lock(&exiting->futex_exit_mutex);
485 	/*
486 	 * No point in doing state checking here. If the waiter got here
487 	 * while the task was in exec()->exec_futex_release() then it can
488 	 * have any FUTEX_STATE_* value when the waiter has acquired the
489 	 * mutex. OK, if running, EXITING or DEAD if it reached exit()
490 	 * already. Highly unlikely and not a problem. Just one more round
491 	 * through the futex maze.
492 	 */
493 	mutex_unlock(&exiting->futex_exit_mutex);
494 
495 	put_task_struct(exiting);
496 }
497 
498 /**
499  * __futex_unqueue() - Remove the futex_q from its futex_hash_bucket
500  * @q:	The futex_q to unqueue
501  *
502  * The q->lock_ptr must not be NULL and must be held by the caller.
503  */
504 void __futex_unqueue(struct futex_q *q)
505 {
506 	struct futex_hash_bucket *hb;
507 
508 	if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
509 		return;
510 	lockdep_assert_held(q->lock_ptr);
511 
512 	hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
513 	plist_del(&q->list, &hb->chain);
514 	futex_hb_waiters_dec(hb);
515 }
516 
517 /* The key must be already stored in q->key. */
518 struct futex_hash_bucket *futex_q_lock(struct futex_q *q)
519 	__acquires(&hb->lock)
520 {
521 	struct futex_hash_bucket *hb;
522 
523 	hb = futex_hash(&q->key);
524 
525 	/*
526 	 * Increment the counter before taking the lock so that
527 	 * a potential waker won't miss a to-be-slept task that is
528 	 * waiting for the spinlock. This is safe as all futex_q_lock()
529 	 * users end up calling futex_queue(). Similarly, for housekeeping,
530 	 * decrement the counter at futex_q_unlock() when some error has
531 	 * occurred and we don't end up adding the task to the list.
532 	 */
533 	futex_hb_waiters_inc(hb); /* implies smp_mb(); (A) */
534 
535 	q->lock_ptr = &hb->lock;
536 
537 	spin_lock(&hb->lock);
538 	return hb;
539 }
540 
541 void futex_q_unlock(struct futex_hash_bucket *hb)
542 	__releases(&hb->lock)
543 {
544 	spin_unlock(&hb->lock);
545 	futex_hb_waiters_dec(hb);
546 }
547 
548 void __futex_queue(struct futex_q *q, struct futex_hash_bucket *hb)
549 {
550 	int prio;
551 
552 	/*
553 	 * The priority used to register this element is
554 	 * - either the real thread-priority for the real-time threads
555 	 * (i.e. threads with a priority lower than MAX_RT_PRIO)
556 	 * - or MAX_RT_PRIO for non-RT threads.
557 	 * Thus, all RT-threads are woken first in priority order, and
558 	 * the others are woken last, in FIFO order.
559 	 */
560 	prio = min(current->normal_prio, MAX_RT_PRIO);
561 
562 	plist_node_init(&q->list, prio);
563 	plist_add(&q->list, &hb->chain);
564 	q->task = current;
565 }
566 
567 /**
568  * futex_unqueue() - Remove the futex_q from its futex_hash_bucket
569  * @q:	The futex_q to unqueue
570  *
571  * The q->lock_ptr must not be held by the caller. A call to futex_unqueue() must
572  * be paired with exactly one earlier call to futex_queue().
573  *
574  * Return:
575  *  - 1 - if the futex_q was still queued (and we removed unqueued it);
576  *  - 0 - if the futex_q was already removed by the waking thread
577  */
578 int futex_unqueue(struct futex_q *q)
579 {
580 	spinlock_t *lock_ptr;
581 	int ret = 0;
582 
583 	/* In the common case we don't take the spinlock, which is nice. */
584 retry:
585 	/*
586 	 * q->lock_ptr can change between this read and the following spin_lock.
587 	 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
588 	 * optimizing lock_ptr out of the logic below.
589 	 */
590 	lock_ptr = READ_ONCE(q->lock_ptr);
591 	if (lock_ptr != NULL) {
592 		spin_lock(lock_ptr);
593 		/*
594 		 * q->lock_ptr can change between reading it and
595 		 * spin_lock(), causing us to take the wrong lock.  This
596 		 * corrects the race condition.
597 		 *
598 		 * Reasoning goes like this: if we have the wrong lock,
599 		 * q->lock_ptr must have changed (maybe several times)
600 		 * between reading it and the spin_lock().  It can
601 		 * change again after the spin_lock() but only if it was
602 		 * already changed before the spin_lock().  It cannot,
603 		 * however, change back to the original value.  Therefore
604 		 * we can detect whether we acquired the correct lock.
605 		 */
606 		if (unlikely(lock_ptr != q->lock_ptr)) {
607 			spin_unlock(lock_ptr);
608 			goto retry;
609 		}
610 		__futex_unqueue(q);
611 
612 		BUG_ON(q->pi_state);
613 
614 		spin_unlock(lock_ptr);
615 		ret = 1;
616 	}
617 
618 	return ret;
619 }
620 
621 /*
622  * PI futexes can not be requeued and must remove themselves from the
623  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held.
624  */
625 void futex_unqueue_pi(struct futex_q *q)
626 {
627 	__futex_unqueue(q);
628 
629 	BUG_ON(!q->pi_state);
630 	put_pi_state(q->pi_state);
631 	q->pi_state = NULL;
632 }
633 
634 /* Constants for the pending_op argument of handle_futex_death */
635 #define HANDLE_DEATH_PENDING	true
636 #define HANDLE_DEATH_LIST	false
637 
638 /*
639  * Process a futex-list entry, check whether it's owned by the
640  * dying task, and do notification if so:
641  */
642 static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr,
643 			      bool pi, bool pending_op)
644 {
645 	u32 uval, nval, mval;
646 	int err;
647 
648 	/* Futex address must be 32bit aligned */
649 	if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
650 		return -1;
651 
652 retry:
653 	if (get_user(uval, uaddr))
654 		return -1;
655 
656 	/*
657 	 * Special case for regular (non PI) futexes. The unlock path in
658 	 * user space has two race scenarios:
659 	 *
660 	 * 1. The unlock path releases the user space futex value and
661 	 *    before it can execute the futex() syscall to wake up
662 	 *    waiters it is killed.
663 	 *
664 	 * 2. A woken up waiter is killed before it can acquire the
665 	 *    futex in user space.
666 	 *
667 	 * In both cases the TID validation below prevents a wakeup of
668 	 * potential waiters which can cause these waiters to block
669 	 * forever.
670 	 *
671 	 * In both cases the following conditions are met:
672 	 *
673 	 *	1) task->robust_list->list_op_pending != NULL
674 	 *	   @pending_op == true
675 	 *	2) User space futex value == 0
676 	 *	3) Regular futex: @pi == false
677 	 *
678 	 * If these conditions are met, it is safe to attempt waking up a
679 	 * potential waiter without touching the user space futex value and
680 	 * trying to set the OWNER_DIED bit. The user space futex value is
681 	 * uncontended and the rest of the user space mutex state is
682 	 * consistent, so a woken waiter will just take over the
683 	 * uncontended futex. Setting the OWNER_DIED bit would create
684 	 * inconsistent state and malfunction of the user space owner died
685 	 * handling.
686 	 */
687 	if (pending_op && !pi && !uval) {
688 		futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
689 		return 0;
690 	}
691 
692 	if ((uval & FUTEX_TID_MASK) != task_pid_vnr(curr))
693 		return 0;
694 
695 	/*
696 	 * Ok, this dying thread is truly holding a futex
697 	 * of interest. Set the OWNER_DIED bit atomically
698 	 * via cmpxchg, and if the value had FUTEX_WAITERS
699 	 * set, wake up a waiter (if any). (We have to do a
700 	 * futex_wake() even if OWNER_DIED is already set -
701 	 * to handle the rare but possible case of recursive
702 	 * thread-death.) The rest of the cleanup is done in
703 	 * userspace.
704 	 */
705 	mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
706 
707 	/*
708 	 * We are not holding a lock here, but we want to have
709 	 * the pagefault_disable/enable() protection because
710 	 * we want to handle the fault gracefully. If the
711 	 * access fails we try to fault in the futex with R/W
712 	 * verification via get_user_pages. get_user() above
713 	 * does not guarantee R/W access. If that fails we
714 	 * give up and leave the futex locked.
715 	 */
716 	if ((err = futex_cmpxchg_value_locked(&nval, uaddr, uval, mval))) {
717 		switch (err) {
718 		case -EFAULT:
719 			if (fault_in_user_writeable(uaddr))
720 				return -1;
721 			goto retry;
722 
723 		case -EAGAIN:
724 			cond_resched();
725 			goto retry;
726 
727 		default:
728 			WARN_ON_ONCE(1);
729 			return err;
730 		}
731 	}
732 
733 	if (nval != uval)
734 		goto retry;
735 
736 	/*
737 	 * Wake robust non-PI futexes here. The wakeup of
738 	 * PI futexes happens in exit_pi_state():
739 	 */
740 	if (!pi && (uval & FUTEX_WAITERS))
741 		futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
742 
743 	return 0;
744 }
745 
746 /*
747  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
748  */
749 static inline int fetch_robust_entry(struct robust_list __user **entry,
750 				     struct robust_list __user * __user *head,
751 				     unsigned int *pi)
752 {
753 	unsigned long uentry;
754 
755 	if (get_user(uentry, (unsigned long __user *)head))
756 		return -EFAULT;
757 
758 	*entry = (void __user *)(uentry & ~1UL);
759 	*pi = uentry & 1;
760 
761 	return 0;
762 }
763 
764 /*
765  * Walk curr->robust_list (very carefully, it's a userspace list!)
766  * and mark any locks found there dead, and notify any waiters.
767  *
768  * We silently return on any sign of list-walking problem.
769  */
770 static void exit_robust_list(struct task_struct *curr)
771 {
772 	struct robust_list_head __user *head = curr->robust_list;
773 	struct robust_list __user *entry, *next_entry, *pending;
774 	unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
775 	unsigned int next_pi;
776 	unsigned long futex_offset;
777 	int rc;
778 
779 	if (!futex_cmpxchg_enabled)
780 		return;
781 
782 	/*
783 	 * Fetch the list head (which was registered earlier, via
784 	 * sys_set_robust_list()):
785 	 */
786 	if (fetch_robust_entry(&entry, &head->list.next, &pi))
787 		return;
788 	/*
789 	 * Fetch the relative futex offset:
790 	 */
791 	if (get_user(futex_offset, &head->futex_offset))
792 		return;
793 	/*
794 	 * Fetch any possibly pending lock-add first, and handle it
795 	 * if it exists:
796 	 */
797 	if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
798 		return;
799 
800 	next_entry = NULL;	/* avoid warning with gcc */
801 	while (entry != &head->list) {
802 		/*
803 		 * Fetch the next entry in the list before calling
804 		 * handle_futex_death:
805 		 */
806 		rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
807 		/*
808 		 * A pending lock might already be on the list, so
809 		 * don't process it twice:
810 		 */
811 		if (entry != pending) {
812 			if (handle_futex_death((void __user *)entry + futex_offset,
813 						curr, pi, HANDLE_DEATH_LIST))
814 				return;
815 		}
816 		if (rc)
817 			return;
818 		entry = next_entry;
819 		pi = next_pi;
820 		/*
821 		 * Avoid excessively long or circular lists:
822 		 */
823 		if (!--limit)
824 			break;
825 
826 		cond_resched();
827 	}
828 
829 	if (pending) {
830 		handle_futex_death((void __user *)pending + futex_offset,
831 				   curr, pip, HANDLE_DEATH_PENDING);
832 	}
833 }
834 
835 #ifdef CONFIG_COMPAT
836 static void __user *futex_uaddr(struct robust_list __user *entry,
837 				compat_long_t futex_offset)
838 {
839 	compat_uptr_t base = ptr_to_compat(entry);
840 	void __user *uaddr = compat_ptr(base + futex_offset);
841 
842 	return uaddr;
843 }
844 
845 /*
846  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
847  */
848 static inline int
849 compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
850 		   compat_uptr_t __user *head, unsigned int *pi)
851 {
852 	if (get_user(*uentry, head))
853 		return -EFAULT;
854 
855 	*entry = compat_ptr((*uentry) & ~1);
856 	*pi = (unsigned int)(*uentry) & 1;
857 
858 	return 0;
859 }
860 
861 /*
862  * Walk curr->robust_list (very carefully, it's a userspace list!)
863  * and mark any locks found there dead, and notify any waiters.
864  *
865  * We silently return on any sign of list-walking problem.
866  */
867 static void compat_exit_robust_list(struct task_struct *curr)
868 {
869 	struct compat_robust_list_head __user *head = curr->compat_robust_list;
870 	struct robust_list __user *entry, *next_entry, *pending;
871 	unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
872 	unsigned int next_pi;
873 	compat_uptr_t uentry, next_uentry, upending;
874 	compat_long_t futex_offset;
875 	int rc;
876 
877 	if (!futex_cmpxchg_enabled)
878 		return;
879 
880 	/*
881 	 * Fetch the list head (which was registered earlier, via
882 	 * sys_set_robust_list()):
883 	 */
884 	if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
885 		return;
886 	/*
887 	 * Fetch the relative futex offset:
888 	 */
889 	if (get_user(futex_offset, &head->futex_offset))
890 		return;
891 	/*
892 	 * Fetch any possibly pending lock-add first, and handle it
893 	 * if it exists:
894 	 */
895 	if (compat_fetch_robust_entry(&upending, &pending,
896 			       &head->list_op_pending, &pip))
897 		return;
898 
899 	next_entry = NULL;	/* avoid warning with gcc */
900 	while (entry != (struct robust_list __user *) &head->list) {
901 		/*
902 		 * Fetch the next entry in the list before calling
903 		 * handle_futex_death:
904 		 */
905 		rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
906 			(compat_uptr_t __user *)&entry->next, &next_pi);
907 		/*
908 		 * A pending lock might already be on the list, so
909 		 * dont process it twice:
910 		 */
911 		if (entry != pending) {
912 			void __user *uaddr = futex_uaddr(entry, futex_offset);
913 
914 			if (handle_futex_death(uaddr, curr, pi,
915 					       HANDLE_DEATH_LIST))
916 				return;
917 		}
918 		if (rc)
919 			return;
920 		uentry = next_uentry;
921 		entry = next_entry;
922 		pi = next_pi;
923 		/*
924 		 * Avoid excessively long or circular lists:
925 		 */
926 		if (!--limit)
927 			break;
928 
929 		cond_resched();
930 	}
931 	if (pending) {
932 		void __user *uaddr = futex_uaddr(pending, futex_offset);
933 
934 		handle_futex_death(uaddr, curr, pip, HANDLE_DEATH_PENDING);
935 	}
936 }
937 #endif
938 
939 #ifdef CONFIG_FUTEX_PI
940 
941 /*
942  * This task is holding PI mutexes at exit time => bad.
943  * Kernel cleans up PI-state, but userspace is likely hosed.
944  * (Robust-futex cleanup is separate and might save the day for userspace.)
945  */
946 static void exit_pi_state_list(struct task_struct *curr)
947 {
948 	struct list_head *next, *head = &curr->pi_state_list;
949 	struct futex_pi_state *pi_state;
950 	struct futex_hash_bucket *hb;
951 	union futex_key key = FUTEX_KEY_INIT;
952 
953 	if (!futex_cmpxchg_enabled)
954 		return;
955 	/*
956 	 * We are a ZOMBIE and nobody can enqueue itself on
957 	 * pi_state_list anymore, but we have to be careful
958 	 * versus waiters unqueueing themselves:
959 	 */
960 	raw_spin_lock_irq(&curr->pi_lock);
961 	while (!list_empty(head)) {
962 		next = head->next;
963 		pi_state = list_entry(next, struct futex_pi_state, list);
964 		key = pi_state->key;
965 		hb = futex_hash(&key);
966 
967 		/*
968 		 * We can race against put_pi_state() removing itself from the
969 		 * list (a waiter going away). put_pi_state() will first
970 		 * decrement the reference count and then modify the list, so
971 		 * its possible to see the list entry but fail this reference
972 		 * acquire.
973 		 *
974 		 * In that case; drop the locks to let put_pi_state() make
975 		 * progress and retry the loop.
976 		 */
977 		if (!refcount_inc_not_zero(&pi_state->refcount)) {
978 			raw_spin_unlock_irq(&curr->pi_lock);
979 			cpu_relax();
980 			raw_spin_lock_irq(&curr->pi_lock);
981 			continue;
982 		}
983 		raw_spin_unlock_irq(&curr->pi_lock);
984 
985 		spin_lock(&hb->lock);
986 		raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
987 		raw_spin_lock(&curr->pi_lock);
988 		/*
989 		 * We dropped the pi-lock, so re-check whether this
990 		 * task still owns the PI-state:
991 		 */
992 		if (head->next != next) {
993 			/* retain curr->pi_lock for the loop invariant */
994 			raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
995 			spin_unlock(&hb->lock);
996 			put_pi_state(pi_state);
997 			continue;
998 		}
999 
1000 		WARN_ON(pi_state->owner != curr);
1001 		WARN_ON(list_empty(&pi_state->list));
1002 		list_del_init(&pi_state->list);
1003 		pi_state->owner = NULL;
1004 
1005 		raw_spin_unlock(&curr->pi_lock);
1006 		raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1007 		spin_unlock(&hb->lock);
1008 
1009 		rt_mutex_futex_unlock(&pi_state->pi_mutex);
1010 		put_pi_state(pi_state);
1011 
1012 		raw_spin_lock_irq(&curr->pi_lock);
1013 	}
1014 	raw_spin_unlock_irq(&curr->pi_lock);
1015 }
1016 #else
1017 static inline void exit_pi_state_list(struct task_struct *curr) { }
1018 #endif
1019 
1020 static void futex_cleanup(struct task_struct *tsk)
1021 {
1022 	if (unlikely(tsk->robust_list)) {
1023 		exit_robust_list(tsk);
1024 		tsk->robust_list = NULL;
1025 	}
1026 
1027 #ifdef CONFIG_COMPAT
1028 	if (unlikely(tsk->compat_robust_list)) {
1029 		compat_exit_robust_list(tsk);
1030 		tsk->compat_robust_list = NULL;
1031 	}
1032 #endif
1033 
1034 	if (unlikely(!list_empty(&tsk->pi_state_list)))
1035 		exit_pi_state_list(tsk);
1036 }
1037 
1038 /**
1039  * futex_exit_recursive - Set the tasks futex state to FUTEX_STATE_DEAD
1040  * @tsk:	task to set the state on
1041  *
1042  * Set the futex exit state of the task lockless. The futex waiter code
1043  * observes that state when a task is exiting and loops until the task has
1044  * actually finished the futex cleanup. The worst case for this is that the
1045  * waiter runs through the wait loop until the state becomes visible.
1046  *
1047  * This is called from the recursive fault handling path in do_exit().
1048  *
1049  * This is best effort. Either the futex exit code has run already or
1050  * not. If the OWNER_DIED bit has been set on the futex then the waiter can
1051  * take it over. If not, the problem is pushed back to user space. If the
1052  * futex exit code did not run yet, then an already queued waiter might
1053  * block forever, but there is nothing which can be done about that.
1054  */
1055 void futex_exit_recursive(struct task_struct *tsk)
1056 {
1057 	/* If the state is FUTEX_STATE_EXITING then futex_exit_mutex is held */
1058 	if (tsk->futex_state == FUTEX_STATE_EXITING)
1059 		mutex_unlock(&tsk->futex_exit_mutex);
1060 	tsk->futex_state = FUTEX_STATE_DEAD;
1061 }
1062 
1063 static void futex_cleanup_begin(struct task_struct *tsk)
1064 {
1065 	/*
1066 	 * Prevent various race issues against a concurrent incoming waiter
1067 	 * including live locks by forcing the waiter to block on
1068 	 * tsk->futex_exit_mutex when it observes FUTEX_STATE_EXITING in
1069 	 * attach_to_pi_owner().
1070 	 */
1071 	mutex_lock(&tsk->futex_exit_mutex);
1072 
1073 	/*
1074 	 * Switch the state to FUTEX_STATE_EXITING under tsk->pi_lock.
1075 	 *
1076 	 * This ensures that all subsequent checks of tsk->futex_state in
1077 	 * attach_to_pi_owner() must observe FUTEX_STATE_EXITING with
1078 	 * tsk->pi_lock held.
1079 	 *
1080 	 * It guarantees also that a pi_state which was queued right before
1081 	 * the state change under tsk->pi_lock by a concurrent waiter must
1082 	 * be observed in exit_pi_state_list().
1083 	 */
1084 	raw_spin_lock_irq(&tsk->pi_lock);
1085 	tsk->futex_state = FUTEX_STATE_EXITING;
1086 	raw_spin_unlock_irq(&tsk->pi_lock);
1087 }
1088 
1089 static void futex_cleanup_end(struct task_struct *tsk, int state)
1090 {
1091 	/*
1092 	 * Lockless store. The only side effect is that an observer might
1093 	 * take another loop until it becomes visible.
1094 	 */
1095 	tsk->futex_state = state;
1096 	/*
1097 	 * Drop the exit protection. This unblocks waiters which observed
1098 	 * FUTEX_STATE_EXITING to reevaluate the state.
1099 	 */
1100 	mutex_unlock(&tsk->futex_exit_mutex);
1101 }
1102 
1103 void futex_exec_release(struct task_struct *tsk)
1104 {
1105 	/*
1106 	 * The state handling is done for consistency, but in the case of
1107 	 * exec() there is no way to prevent further damage as the PID stays
1108 	 * the same. But for the unlikely and arguably buggy case that a
1109 	 * futex is held on exec(), this provides at least as much state
1110 	 * consistency protection which is possible.
1111 	 */
1112 	futex_cleanup_begin(tsk);
1113 	futex_cleanup(tsk);
1114 	/*
1115 	 * Reset the state to FUTEX_STATE_OK. The task is alive and about
1116 	 * exec a new binary.
1117 	 */
1118 	futex_cleanup_end(tsk, FUTEX_STATE_OK);
1119 }
1120 
1121 void futex_exit_release(struct task_struct *tsk)
1122 {
1123 	futex_cleanup_begin(tsk);
1124 	futex_cleanup(tsk);
1125 	futex_cleanup_end(tsk, FUTEX_STATE_DEAD);
1126 }
1127 
1128 static void __init futex_detect_cmpxchg(void)
1129 {
1130 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
1131 	u32 curval;
1132 
1133 	/*
1134 	 * This will fail and we want it. Some arch implementations do
1135 	 * runtime detection of the futex_atomic_cmpxchg_inatomic()
1136 	 * functionality. We want to know that before we call in any
1137 	 * of the complex code paths. Also we want to prevent
1138 	 * registration of robust lists in that case. NULL is
1139 	 * guaranteed to fault and we get -EFAULT on functional
1140 	 * implementation, the non-functional ones will return
1141 	 * -ENOSYS.
1142 	 */
1143 	if (futex_cmpxchg_value_locked(&curval, NULL, 0, 0) == -EFAULT)
1144 		futex_cmpxchg_enabled = 1;
1145 #endif
1146 }
1147 
1148 static int __init futex_init(void)
1149 {
1150 	unsigned int futex_shift;
1151 	unsigned long i;
1152 
1153 #if CONFIG_BASE_SMALL
1154 	futex_hashsize = 16;
1155 #else
1156 	futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
1157 #endif
1158 
1159 	futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
1160 					       futex_hashsize, 0,
1161 					       futex_hashsize < 256 ? HASH_SMALL : 0,
1162 					       &futex_shift, NULL,
1163 					       futex_hashsize, futex_hashsize);
1164 	futex_hashsize = 1UL << futex_shift;
1165 
1166 	futex_detect_cmpxchg();
1167 
1168 	for (i = 0; i < futex_hashsize; i++) {
1169 		atomic_set(&futex_queues[i].waiters, 0);
1170 		plist_head_init(&futex_queues[i].chain);
1171 		spin_lock_init(&futex_queues[i].lock);
1172 	}
1173 
1174 	return 0;
1175 }
1176 core_initcall(futex_init);
1177