xref: /openbmc/linux/kernel/fork.c (revision ff6defa6)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/mm.h>
32 #include <linux/vmacache.h>
33 #include <linux/nsproxy.h>
34 #include <linux/capability.h>
35 #include <linux/cpu.h>
36 #include <linux/cgroup.h>
37 #include <linux/security.h>
38 #include <linux/hugetlb.h>
39 #include <linux/seccomp.h>
40 #include <linux/swap.h>
41 #include <linux/syscalls.h>
42 #include <linux/jiffies.h>
43 #include <linux/futex.h>
44 #include <linux/compat.h>
45 #include <linux/kthread.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/rcupdate.h>
48 #include <linux/ptrace.h>
49 #include <linux/mount.h>
50 #include <linux/audit.h>
51 #include <linux/memcontrol.h>
52 #include <linux/ftrace.h>
53 #include <linux/proc_fs.h>
54 #include <linux/profile.h>
55 #include <linux/rmap.h>
56 #include <linux/ksm.h>
57 #include <linux/acct.h>
58 #include <linux/tsacct_kern.h>
59 #include <linux/cn_proc.h>
60 #include <linux/freezer.h>
61 #include <linux/delayacct.h>
62 #include <linux/taskstats_kern.h>
63 #include <linux/random.h>
64 #include <linux/tty.h>
65 #include <linux/blkdev.h>
66 #include <linux/fs_struct.h>
67 #include <linux/magic.h>
68 #include <linux/perf_event.h>
69 #include <linux/posix-timers.h>
70 #include <linux/user-return-notifier.h>
71 #include <linux/oom.h>
72 #include <linux/khugepaged.h>
73 #include <linux/signalfd.h>
74 #include <linux/uprobes.h>
75 #include <linux/aio.h>
76 #include <linux/compiler.h>
77 
78 #include <asm/pgtable.h>
79 #include <asm/pgalloc.h>
80 #include <asm/uaccess.h>
81 #include <asm/mmu_context.h>
82 #include <asm/cacheflush.h>
83 #include <asm/tlbflush.h>
84 
85 #include <trace/events/sched.h>
86 
87 #define CREATE_TRACE_POINTS
88 #include <trace/events/task.h>
89 
90 /*
91  * Protected counters by write_lock_irq(&tasklist_lock)
92  */
93 unsigned long total_forks;	/* Handle normal Linux uptimes. */
94 int nr_threads;			/* The idle threads do not count.. */
95 
96 int max_threads;		/* tunable limit on nr_threads */
97 
98 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
99 
100 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
101 
102 #ifdef CONFIG_PROVE_RCU
103 int lockdep_tasklist_lock_is_held(void)
104 {
105 	return lockdep_is_held(&tasklist_lock);
106 }
107 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
108 #endif /* #ifdef CONFIG_PROVE_RCU */
109 
110 int nr_processes(void)
111 {
112 	int cpu;
113 	int total = 0;
114 
115 	for_each_possible_cpu(cpu)
116 		total += per_cpu(process_counts, cpu);
117 
118 	return total;
119 }
120 
121 void __weak arch_release_task_struct(struct task_struct *tsk)
122 {
123 }
124 
125 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
126 static struct kmem_cache *task_struct_cachep;
127 
128 static inline struct task_struct *alloc_task_struct_node(int node)
129 {
130 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
131 }
132 
133 static inline void free_task_struct(struct task_struct *tsk)
134 {
135 	kmem_cache_free(task_struct_cachep, tsk);
136 }
137 #endif
138 
139 void __weak arch_release_thread_info(struct thread_info *ti)
140 {
141 }
142 
143 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
144 
145 /*
146  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
147  * kmemcache based allocator.
148  */
149 # if THREAD_SIZE >= PAGE_SIZE
150 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
151 						  int node)
152 {
153 	struct page *page = alloc_kmem_pages_node(node, THREADINFO_GFP,
154 						  THREAD_SIZE_ORDER);
155 
156 	return page ? page_address(page) : NULL;
157 }
158 
159 static inline void free_thread_info(struct thread_info *ti)
160 {
161 	free_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER);
162 }
163 # else
164 static struct kmem_cache *thread_info_cache;
165 
166 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
167 						  int node)
168 {
169 	return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
170 }
171 
172 static void free_thread_info(struct thread_info *ti)
173 {
174 	kmem_cache_free(thread_info_cache, ti);
175 }
176 
177 void thread_info_cache_init(void)
178 {
179 	thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
180 					      THREAD_SIZE, 0, NULL);
181 	BUG_ON(thread_info_cache == NULL);
182 }
183 # endif
184 #endif
185 
186 /* SLAB cache for signal_struct structures (tsk->signal) */
187 static struct kmem_cache *signal_cachep;
188 
189 /* SLAB cache for sighand_struct structures (tsk->sighand) */
190 struct kmem_cache *sighand_cachep;
191 
192 /* SLAB cache for files_struct structures (tsk->files) */
193 struct kmem_cache *files_cachep;
194 
195 /* SLAB cache for fs_struct structures (tsk->fs) */
196 struct kmem_cache *fs_cachep;
197 
198 /* SLAB cache for vm_area_struct structures */
199 struct kmem_cache *vm_area_cachep;
200 
201 /* SLAB cache for mm_struct structures (tsk->mm) */
202 static struct kmem_cache *mm_cachep;
203 
204 static void account_kernel_stack(struct thread_info *ti, int account)
205 {
206 	struct zone *zone = page_zone(virt_to_page(ti));
207 
208 	mod_zone_page_state(zone, NR_KERNEL_STACK, account);
209 }
210 
211 void free_task(struct task_struct *tsk)
212 {
213 	account_kernel_stack(tsk->stack, -1);
214 	arch_release_thread_info(tsk->stack);
215 	free_thread_info(tsk->stack);
216 	rt_mutex_debug_task_free(tsk);
217 	ftrace_graph_exit_task(tsk);
218 	put_seccomp_filter(tsk);
219 	arch_release_task_struct(tsk);
220 	free_task_struct(tsk);
221 }
222 EXPORT_SYMBOL(free_task);
223 
224 static inline void free_signal_struct(struct signal_struct *sig)
225 {
226 	taskstats_tgid_free(sig);
227 	sched_autogroup_exit(sig);
228 	kmem_cache_free(signal_cachep, sig);
229 }
230 
231 static inline void put_signal_struct(struct signal_struct *sig)
232 {
233 	if (atomic_dec_and_test(&sig->sigcnt))
234 		free_signal_struct(sig);
235 }
236 
237 void __put_task_struct(struct task_struct *tsk)
238 {
239 	WARN_ON(!tsk->exit_state);
240 	WARN_ON(atomic_read(&tsk->usage));
241 	WARN_ON(tsk == current);
242 
243 	task_numa_free(tsk);
244 	security_task_free(tsk);
245 	exit_creds(tsk);
246 	delayacct_tsk_free(tsk);
247 	put_signal_struct(tsk->signal);
248 
249 	if (!profile_handoff_task(tsk))
250 		free_task(tsk);
251 }
252 EXPORT_SYMBOL_GPL(__put_task_struct);
253 
254 void __init __weak arch_task_cache_init(void) { }
255 
256 void __init fork_init(unsigned long mempages)
257 {
258 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
259 #ifndef ARCH_MIN_TASKALIGN
260 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
261 #endif
262 	/* create a slab on which task_structs can be allocated */
263 	task_struct_cachep =
264 		kmem_cache_create("task_struct", sizeof(struct task_struct),
265 			ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
266 #endif
267 
268 	/* do the arch specific task caches init */
269 	arch_task_cache_init();
270 
271 	/*
272 	 * The default maximum number of threads is set to a safe
273 	 * value: the thread structures can take up at most half
274 	 * of memory.
275 	 */
276 	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
277 
278 	/*
279 	 * we need to allow at least 20 threads to boot a system
280 	 */
281 	if (max_threads < 20)
282 		max_threads = 20;
283 
284 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
285 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
286 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
287 		init_task.signal->rlim[RLIMIT_NPROC];
288 }
289 
290 int __weak arch_dup_task_struct(struct task_struct *dst,
291 					       struct task_struct *src)
292 {
293 	*dst = *src;
294 	return 0;
295 }
296 
297 void set_task_stack_end_magic(struct task_struct *tsk)
298 {
299 	unsigned long *stackend;
300 
301 	stackend = end_of_stack(tsk);
302 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
303 }
304 
305 static struct task_struct *dup_task_struct(struct task_struct *orig)
306 {
307 	struct task_struct *tsk;
308 	struct thread_info *ti;
309 	int node = tsk_fork_get_node(orig);
310 	int err;
311 
312 	tsk = alloc_task_struct_node(node);
313 	if (!tsk)
314 		return NULL;
315 
316 	ti = alloc_thread_info_node(tsk, node);
317 	if (!ti)
318 		goto free_tsk;
319 
320 	err = arch_dup_task_struct(tsk, orig);
321 	if (err)
322 		goto free_ti;
323 
324 	tsk->stack = ti;
325 #ifdef CONFIG_SECCOMP
326 	/*
327 	 * We must handle setting up seccomp filters once we're under
328 	 * the sighand lock in case orig has changed between now and
329 	 * then. Until then, filter must be NULL to avoid messing up
330 	 * the usage counts on the error path calling free_task.
331 	 */
332 	tsk->seccomp.filter = NULL;
333 #endif
334 
335 	setup_thread_stack(tsk, orig);
336 	clear_user_return_notifier(tsk);
337 	clear_tsk_need_resched(tsk);
338 	set_task_stack_end_magic(tsk);
339 
340 #ifdef CONFIG_CC_STACKPROTECTOR
341 	tsk->stack_canary = get_random_int();
342 #endif
343 
344 	/*
345 	 * One for us, one for whoever does the "release_task()" (usually
346 	 * parent)
347 	 */
348 	atomic_set(&tsk->usage, 2);
349 #ifdef CONFIG_BLK_DEV_IO_TRACE
350 	tsk->btrace_seq = 0;
351 #endif
352 	tsk->splice_pipe = NULL;
353 	tsk->task_frag.page = NULL;
354 
355 	account_kernel_stack(ti, 1);
356 
357 	return tsk;
358 
359 free_ti:
360 	free_thread_info(ti);
361 free_tsk:
362 	free_task_struct(tsk);
363 	return NULL;
364 }
365 
366 #ifdef CONFIG_MMU
367 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
368 {
369 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
370 	struct rb_node **rb_link, *rb_parent;
371 	int retval;
372 	unsigned long charge;
373 
374 	uprobe_start_dup_mmap();
375 	down_write(&oldmm->mmap_sem);
376 	flush_cache_dup_mm(oldmm);
377 	uprobe_dup_mmap(oldmm, mm);
378 	/*
379 	 * Not linked in yet - no deadlock potential:
380 	 */
381 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
382 
383 	mm->total_vm = oldmm->total_vm;
384 	mm->shared_vm = oldmm->shared_vm;
385 	mm->exec_vm = oldmm->exec_vm;
386 	mm->stack_vm = oldmm->stack_vm;
387 
388 	rb_link = &mm->mm_rb.rb_node;
389 	rb_parent = NULL;
390 	pprev = &mm->mmap;
391 	retval = ksm_fork(mm, oldmm);
392 	if (retval)
393 		goto out;
394 	retval = khugepaged_fork(mm, oldmm);
395 	if (retval)
396 		goto out;
397 
398 	prev = NULL;
399 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
400 		struct file *file;
401 
402 		if (mpnt->vm_flags & VM_DONTCOPY) {
403 			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
404 							-vma_pages(mpnt));
405 			continue;
406 		}
407 		charge = 0;
408 		if (mpnt->vm_flags & VM_ACCOUNT) {
409 			unsigned long len = vma_pages(mpnt);
410 
411 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
412 				goto fail_nomem;
413 			charge = len;
414 		}
415 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
416 		if (!tmp)
417 			goto fail_nomem;
418 		*tmp = *mpnt;
419 		INIT_LIST_HEAD(&tmp->anon_vma_chain);
420 		retval = vma_dup_policy(mpnt, tmp);
421 		if (retval)
422 			goto fail_nomem_policy;
423 		tmp->vm_mm = mm;
424 		if (anon_vma_fork(tmp, mpnt))
425 			goto fail_nomem_anon_vma_fork;
426 		tmp->vm_flags &= ~VM_LOCKED;
427 		tmp->vm_next = tmp->vm_prev = NULL;
428 		file = tmp->vm_file;
429 		if (file) {
430 			struct inode *inode = file_inode(file);
431 			struct address_space *mapping = file->f_mapping;
432 
433 			get_file(file);
434 			if (tmp->vm_flags & VM_DENYWRITE)
435 				atomic_dec(&inode->i_writecount);
436 			i_mmap_lock_write(mapping);
437 			if (tmp->vm_flags & VM_SHARED)
438 				atomic_inc(&mapping->i_mmap_writable);
439 			flush_dcache_mmap_lock(mapping);
440 			/* insert tmp into the share list, just after mpnt */
441 			if (unlikely(tmp->vm_flags & VM_NONLINEAR))
442 				vma_nonlinear_insert(tmp,
443 						&mapping->i_mmap_nonlinear);
444 			else
445 				vma_interval_tree_insert_after(tmp, mpnt,
446 							&mapping->i_mmap);
447 			flush_dcache_mmap_unlock(mapping);
448 			i_mmap_unlock_write(mapping);
449 		}
450 
451 		/*
452 		 * Clear hugetlb-related page reserves for children. This only
453 		 * affects MAP_PRIVATE mappings. Faults generated by the child
454 		 * are not guaranteed to succeed, even if read-only
455 		 */
456 		if (is_vm_hugetlb_page(tmp))
457 			reset_vma_resv_huge_pages(tmp);
458 
459 		/*
460 		 * Link in the new vma and copy the page table entries.
461 		 */
462 		*pprev = tmp;
463 		pprev = &tmp->vm_next;
464 		tmp->vm_prev = prev;
465 		prev = tmp;
466 
467 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
468 		rb_link = &tmp->vm_rb.rb_right;
469 		rb_parent = &tmp->vm_rb;
470 
471 		mm->map_count++;
472 		retval = copy_page_range(mm, oldmm, mpnt);
473 
474 		if (tmp->vm_ops && tmp->vm_ops->open)
475 			tmp->vm_ops->open(tmp);
476 
477 		if (retval)
478 			goto out;
479 	}
480 	/* a new mm has just been created */
481 	arch_dup_mmap(oldmm, mm);
482 	retval = 0;
483 out:
484 	up_write(&mm->mmap_sem);
485 	flush_tlb_mm(oldmm);
486 	up_write(&oldmm->mmap_sem);
487 	uprobe_end_dup_mmap();
488 	return retval;
489 fail_nomem_anon_vma_fork:
490 	mpol_put(vma_policy(tmp));
491 fail_nomem_policy:
492 	kmem_cache_free(vm_area_cachep, tmp);
493 fail_nomem:
494 	retval = -ENOMEM;
495 	vm_unacct_memory(charge);
496 	goto out;
497 }
498 
499 static inline int mm_alloc_pgd(struct mm_struct *mm)
500 {
501 	mm->pgd = pgd_alloc(mm);
502 	if (unlikely(!mm->pgd))
503 		return -ENOMEM;
504 	return 0;
505 }
506 
507 static inline void mm_free_pgd(struct mm_struct *mm)
508 {
509 	pgd_free(mm, mm->pgd);
510 }
511 #else
512 #define dup_mmap(mm, oldmm)	(0)
513 #define mm_alloc_pgd(mm)	(0)
514 #define mm_free_pgd(mm)
515 #endif /* CONFIG_MMU */
516 
517 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
518 
519 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
520 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
521 
522 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
523 
524 static int __init coredump_filter_setup(char *s)
525 {
526 	default_dump_filter =
527 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
528 		MMF_DUMP_FILTER_MASK;
529 	return 1;
530 }
531 
532 __setup("coredump_filter=", coredump_filter_setup);
533 
534 #include <linux/init_task.h>
535 
536 static void mm_init_aio(struct mm_struct *mm)
537 {
538 #ifdef CONFIG_AIO
539 	spin_lock_init(&mm->ioctx_lock);
540 	mm->ioctx_table = NULL;
541 #endif
542 }
543 
544 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
545 {
546 #ifdef CONFIG_MEMCG
547 	mm->owner = p;
548 #endif
549 }
550 
551 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
552 {
553 	mm->mmap = NULL;
554 	mm->mm_rb = RB_ROOT;
555 	mm->vmacache_seqnum = 0;
556 	atomic_set(&mm->mm_users, 1);
557 	atomic_set(&mm->mm_count, 1);
558 	init_rwsem(&mm->mmap_sem);
559 	INIT_LIST_HEAD(&mm->mmlist);
560 	mm->core_state = NULL;
561 	atomic_long_set(&mm->nr_ptes, 0);
562 	mm->map_count = 0;
563 	mm->locked_vm = 0;
564 	mm->pinned_vm = 0;
565 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
566 	spin_lock_init(&mm->page_table_lock);
567 	mm_init_cpumask(mm);
568 	mm_init_aio(mm);
569 	mm_init_owner(mm, p);
570 	mmu_notifier_mm_init(mm);
571 	clear_tlb_flush_pending(mm);
572 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
573 	mm->pmd_huge_pte = NULL;
574 #endif
575 
576 	if (current->mm) {
577 		mm->flags = current->mm->flags & MMF_INIT_MASK;
578 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
579 	} else {
580 		mm->flags = default_dump_filter;
581 		mm->def_flags = 0;
582 	}
583 
584 	if (mm_alloc_pgd(mm))
585 		goto fail_nopgd;
586 
587 	if (init_new_context(p, mm))
588 		goto fail_nocontext;
589 
590 	return mm;
591 
592 fail_nocontext:
593 	mm_free_pgd(mm);
594 fail_nopgd:
595 	free_mm(mm);
596 	return NULL;
597 }
598 
599 static void check_mm(struct mm_struct *mm)
600 {
601 	int i;
602 
603 	for (i = 0; i < NR_MM_COUNTERS; i++) {
604 		long x = atomic_long_read(&mm->rss_stat.count[i]);
605 
606 		if (unlikely(x))
607 			printk(KERN_ALERT "BUG: Bad rss-counter state "
608 					  "mm:%p idx:%d val:%ld\n", mm, i, x);
609 	}
610 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
611 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
612 #endif
613 }
614 
615 /*
616  * Allocate and initialize an mm_struct.
617  */
618 struct mm_struct *mm_alloc(void)
619 {
620 	struct mm_struct *mm;
621 
622 	mm = allocate_mm();
623 	if (!mm)
624 		return NULL;
625 
626 	memset(mm, 0, sizeof(*mm));
627 	return mm_init(mm, current);
628 }
629 
630 /*
631  * Called when the last reference to the mm
632  * is dropped: either by a lazy thread or by
633  * mmput. Free the page directory and the mm.
634  */
635 void __mmdrop(struct mm_struct *mm)
636 {
637 	BUG_ON(mm == &init_mm);
638 	mm_free_pgd(mm);
639 	destroy_context(mm);
640 	mmu_notifier_mm_destroy(mm);
641 	check_mm(mm);
642 	free_mm(mm);
643 }
644 EXPORT_SYMBOL_GPL(__mmdrop);
645 
646 /*
647  * Decrement the use count and release all resources for an mm.
648  */
649 void mmput(struct mm_struct *mm)
650 {
651 	might_sleep();
652 
653 	if (atomic_dec_and_test(&mm->mm_users)) {
654 		uprobe_clear_state(mm);
655 		exit_aio(mm);
656 		ksm_exit(mm);
657 		khugepaged_exit(mm); /* must run before exit_mmap */
658 		exit_mmap(mm);
659 		set_mm_exe_file(mm, NULL);
660 		if (!list_empty(&mm->mmlist)) {
661 			spin_lock(&mmlist_lock);
662 			list_del(&mm->mmlist);
663 			spin_unlock(&mmlist_lock);
664 		}
665 		if (mm->binfmt)
666 			module_put(mm->binfmt->module);
667 		mmdrop(mm);
668 	}
669 }
670 EXPORT_SYMBOL_GPL(mmput);
671 
672 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
673 {
674 	if (new_exe_file)
675 		get_file(new_exe_file);
676 	if (mm->exe_file)
677 		fput(mm->exe_file);
678 	mm->exe_file = new_exe_file;
679 }
680 
681 struct file *get_mm_exe_file(struct mm_struct *mm)
682 {
683 	struct file *exe_file;
684 
685 	/* We need mmap_sem to protect against races with removal of exe_file */
686 	down_read(&mm->mmap_sem);
687 	exe_file = mm->exe_file;
688 	if (exe_file)
689 		get_file(exe_file);
690 	up_read(&mm->mmap_sem);
691 	return exe_file;
692 }
693 
694 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
695 {
696 	/* It's safe to write the exe_file pointer without exe_file_lock because
697 	 * this is called during fork when the task is not yet in /proc */
698 	newmm->exe_file = get_mm_exe_file(oldmm);
699 }
700 
701 /**
702  * get_task_mm - acquire a reference to the task's mm
703  *
704  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
705  * this kernel workthread has transiently adopted a user mm with use_mm,
706  * to do its AIO) is not set and if so returns a reference to it, after
707  * bumping up the use count.  User must release the mm via mmput()
708  * after use.  Typically used by /proc and ptrace.
709  */
710 struct mm_struct *get_task_mm(struct task_struct *task)
711 {
712 	struct mm_struct *mm;
713 
714 	task_lock(task);
715 	mm = task->mm;
716 	if (mm) {
717 		if (task->flags & PF_KTHREAD)
718 			mm = NULL;
719 		else
720 			atomic_inc(&mm->mm_users);
721 	}
722 	task_unlock(task);
723 	return mm;
724 }
725 EXPORT_SYMBOL_GPL(get_task_mm);
726 
727 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
728 {
729 	struct mm_struct *mm;
730 	int err;
731 
732 	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
733 	if (err)
734 		return ERR_PTR(err);
735 
736 	mm = get_task_mm(task);
737 	if (mm && mm != current->mm &&
738 			!ptrace_may_access(task, mode)) {
739 		mmput(mm);
740 		mm = ERR_PTR(-EACCES);
741 	}
742 	mutex_unlock(&task->signal->cred_guard_mutex);
743 
744 	return mm;
745 }
746 
747 static void complete_vfork_done(struct task_struct *tsk)
748 {
749 	struct completion *vfork;
750 
751 	task_lock(tsk);
752 	vfork = tsk->vfork_done;
753 	if (likely(vfork)) {
754 		tsk->vfork_done = NULL;
755 		complete(vfork);
756 	}
757 	task_unlock(tsk);
758 }
759 
760 static int wait_for_vfork_done(struct task_struct *child,
761 				struct completion *vfork)
762 {
763 	int killed;
764 
765 	freezer_do_not_count();
766 	killed = wait_for_completion_killable(vfork);
767 	freezer_count();
768 
769 	if (killed) {
770 		task_lock(child);
771 		child->vfork_done = NULL;
772 		task_unlock(child);
773 	}
774 
775 	put_task_struct(child);
776 	return killed;
777 }
778 
779 /* Please note the differences between mmput and mm_release.
780  * mmput is called whenever we stop holding onto a mm_struct,
781  * error success whatever.
782  *
783  * mm_release is called after a mm_struct has been removed
784  * from the current process.
785  *
786  * This difference is important for error handling, when we
787  * only half set up a mm_struct for a new process and need to restore
788  * the old one.  Because we mmput the new mm_struct before
789  * restoring the old one. . .
790  * Eric Biederman 10 January 1998
791  */
792 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
793 {
794 	/* Get rid of any futexes when releasing the mm */
795 #ifdef CONFIG_FUTEX
796 	if (unlikely(tsk->robust_list)) {
797 		exit_robust_list(tsk);
798 		tsk->robust_list = NULL;
799 	}
800 #ifdef CONFIG_COMPAT
801 	if (unlikely(tsk->compat_robust_list)) {
802 		compat_exit_robust_list(tsk);
803 		tsk->compat_robust_list = NULL;
804 	}
805 #endif
806 	if (unlikely(!list_empty(&tsk->pi_state_list)))
807 		exit_pi_state_list(tsk);
808 #endif
809 
810 	uprobe_free_utask(tsk);
811 
812 	/* Get rid of any cached register state */
813 	deactivate_mm(tsk, mm);
814 
815 	/*
816 	 * If we're exiting normally, clear a user-space tid field if
817 	 * requested.  We leave this alone when dying by signal, to leave
818 	 * the value intact in a core dump, and to save the unnecessary
819 	 * trouble, say, a killed vfork parent shouldn't touch this mm.
820 	 * Userland only wants this done for a sys_exit.
821 	 */
822 	if (tsk->clear_child_tid) {
823 		if (!(tsk->flags & PF_SIGNALED) &&
824 		    atomic_read(&mm->mm_users) > 1) {
825 			/*
826 			 * We don't check the error code - if userspace has
827 			 * not set up a proper pointer then tough luck.
828 			 */
829 			put_user(0, tsk->clear_child_tid);
830 			sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
831 					1, NULL, NULL, 0);
832 		}
833 		tsk->clear_child_tid = NULL;
834 	}
835 
836 	/*
837 	 * All done, finally we can wake up parent and return this mm to him.
838 	 * Also kthread_stop() uses this completion for synchronization.
839 	 */
840 	if (tsk->vfork_done)
841 		complete_vfork_done(tsk);
842 }
843 
844 /*
845  * Allocate a new mm structure and copy contents from the
846  * mm structure of the passed in task structure.
847  */
848 static struct mm_struct *dup_mm(struct task_struct *tsk)
849 {
850 	struct mm_struct *mm, *oldmm = current->mm;
851 	int err;
852 
853 	mm = allocate_mm();
854 	if (!mm)
855 		goto fail_nomem;
856 
857 	memcpy(mm, oldmm, sizeof(*mm));
858 
859 	if (!mm_init(mm, tsk))
860 		goto fail_nomem;
861 
862 	dup_mm_exe_file(oldmm, mm);
863 
864 	err = dup_mmap(mm, oldmm);
865 	if (err)
866 		goto free_pt;
867 
868 	mm->hiwater_rss = get_mm_rss(mm);
869 	mm->hiwater_vm = mm->total_vm;
870 
871 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
872 		goto free_pt;
873 
874 	return mm;
875 
876 free_pt:
877 	/* don't put binfmt in mmput, we haven't got module yet */
878 	mm->binfmt = NULL;
879 	mmput(mm);
880 
881 fail_nomem:
882 	return NULL;
883 }
884 
885 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
886 {
887 	struct mm_struct *mm, *oldmm;
888 	int retval;
889 
890 	tsk->min_flt = tsk->maj_flt = 0;
891 	tsk->nvcsw = tsk->nivcsw = 0;
892 #ifdef CONFIG_DETECT_HUNG_TASK
893 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
894 #endif
895 
896 	tsk->mm = NULL;
897 	tsk->active_mm = NULL;
898 
899 	/*
900 	 * Are we cloning a kernel thread?
901 	 *
902 	 * We need to steal a active VM for that..
903 	 */
904 	oldmm = current->mm;
905 	if (!oldmm)
906 		return 0;
907 
908 	/* initialize the new vmacache entries */
909 	vmacache_flush(tsk);
910 
911 	if (clone_flags & CLONE_VM) {
912 		atomic_inc(&oldmm->mm_users);
913 		mm = oldmm;
914 		goto good_mm;
915 	}
916 
917 	retval = -ENOMEM;
918 	mm = dup_mm(tsk);
919 	if (!mm)
920 		goto fail_nomem;
921 
922 good_mm:
923 	tsk->mm = mm;
924 	tsk->active_mm = mm;
925 	return 0;
926 
927 fail_nomem:
928 	return retval;
929 }
930 
931 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
932 {
933 	struct fs_struct *fs = current->fs;
934 	if (clone_flags & CLONE_FS) {
935 		/* tsk->fs is already what we want */
936 		spin_lock(&fs->lock);
937 		if (fs->in_exec) {
938 			spin_unlock(&fs->lock);
939 			return -EAGAIN;
940 		}
941 		fs->users++;
942 		spin_unlock(&fs->lock);
943 		return 0;
944 	}
945 	tsk->fs = copy_fs_struct(fs);
946 	if (!tsk->fs)
947 		return -ENOMEM;
948 	return 0;
949 }
950 
951 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
952 {
953 	struct files_struct *oldf, *newf;
954 	int error = 0;
955 
956 	/*
957 	 * A background process may not have any files ...
958 	 */
959 	oldf = current->files;
960 	if (!oldf)
961 		goto out;
962 
963 	if (clone_flags & CLONE_FILES) {
964 		atomic_inc(&oldf->count);
965 		goto out;
966 	}
967 
968 	newf = dup_fd(oldf, &error);
969 	if (!newf)
970 		goto out;
971 
972 	tsk->files = newf;
973 	error = 0;
974 out:
975 	return error;
976 }
977 
978 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
979 {
980 #ifdef CONFIG_BLOCK
981 	struct io_context *ioc = current->io_context;
982 	struct io_context *new_ioc;
983 
984 	if (!ioc)
985 		return 0;
986 	/*
987 	 * Share io context with parent, if CLONE_IO is set
988 	 */
989 	if (clone_flags & CLONE_IO) {
990 		ioc_task_link(ioc);
991 		tsk->io_context = ioc;
992 	} else if (ioprio_valid(ioc->ioprio)) {
993 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
994 		if (unlikely(!new_ioc))
995 			return -ENOMEM;
996 
997 		new_ioc->ioprio = ioc->ioprio;
998 		put_io_context(new_ioc);
999 	}
1000 #endif
1001 	return 0;
1002 }
1003 
1004 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1005 {
1006 	struct sighand_struct *sig;
1007 
1008 	if (clone_flags & CLONE_SIGHAND) {
1009 		atomic_inc(&current->sighand->count);
1010 		return 0;
1011 	}
1012 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1013 	rcu_assign_pointer(tsk->sighand, sig);
1014 	if (!sig)
1015 		return -ENOMEM;
1016 	atomic_set(&sig->count, 1);
1017 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1018 	return 0;
1019 }
1020 
1021 void __cleanup_sighand(struct sighand_struct *sighand)
1022 {
1023 	if (atomic_dec_and_test(&sighand->count)) {
1024 		signalfd_cleanup(sighand);
1025 		/*
1026 		 * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
1027 		 * without an RCU grace period, see __lock_task_sighand().
1028 		 */
1029 		kmem_cache_free(sighand_cachep, sighand);
1030 	}
1031 }
1032 
1033 /*
1034  * Initialize POSIX timer handling for a thread group.
1035  */
1036 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1037 {
1038 	unsigned long cpu_limit;
1039 
1040 	/* Thread group counters. */
1041 	thread_group_cputime_init(sig);
1042 
1043 	cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1044 	if (cpu_limit != RLIM_INFINITY) {
1045 		sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1046 		sig->cputimer.running = 1;
1047 	}
1048 
1049 	/* The timer lists. */
1050 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
1051 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
1052 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
1053 }
1054 
1055 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1056 {
1057 	struct signal_struct *sig;
1058 
1059 	if (clone_flags & CLONE_THREAD)
1060 		return 0;
1061 
1062 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1063 	tsk->signal = sig;
1064 	if (!sig)
1065 		return -ENOMEM;
1066 
1067 	sig->nr_threads = 1;
1068 	atomic_set(&sig->live, 1);
1069 	atomic_set(&sig->sigcnt, 1);
1070 
1071 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1072 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1073 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1074 
1075 	init_waitqueue_head(&sig->wait_chldexit);
1076 	sig->curr_target = tsk;
1077 	init_sigpending(&sig->shared_pending);
1078 	INIT_LIST_HEAD(&sig->posix_timers);
1079 	seqlock_init(&sig->stats_lock);
1080 
1081 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1082 	sig->real_timer.function = it_real_fn;
1083 
1084 	task_lock(current->group_leader);
1085 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1086 	task_unlock(current->group_leader);
1087 
1088 	posix_cpu_timers_init_group(sig);
1089 
1090 	tty_audit_fork(sig);
1091 	sched_autogroup_fork(sig);
1092 
1093 #ifdef CONFIG_CGROUPS
1094 	init_rwsem(&sig->group_rwsem);
1095 #endif
1096 
1097 	sig->oom_score_adj = current->signal->oom_score_adj;
1098 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1099 
1100 	sig->has_child_subreaper = current->signal->has_child_subreaper ||
1101 				   current->signal->is_child_subreaper;
1102 
1103 	mutex_init(&sig->cred_guard_mutex);
1104 
1105 	return 0;
1106 }
1107 
1108 static void copy_seccomp(struct task_struct *p)
1109 {
1110 #ifdef CONFIG_SECCOMP
1111 	/*
1112 	 * Must be called with sighand->lock held, which is common to
1113 	 * all threads in the group. Holding cred_guard_mutex is not
1114 	 * needed because this new task is not yet running and cannot
1115 	 * be racing exec.
1116 	 */
1117 	assert_spin_locked(&current->sighand->siglock);
1118 
1119 	/* Ref-count the new filter user, and assign it. */
1120 	get_seccomp_filter(current);
1121 	p->seccomp = current->seccomp;
1122 
1123 	/*
1124 	 * Explicitly enable no_new_privs here in case it got set
1125 	 * between the task_struct being duplicated and holding the
1126 	 * sighand lock. The seccomp state and nnp must be in sync.
1127 	 */
1128 	if (task_no_new_privs(current))
1129 		task_set_no_new_privs(p);
1130 
1131 	/*
1132 	 * If the parent gained a seccomp mode after copying thread
1133 	 * flags and between before we held the sighand lock, we have
1134 	 * to manually enable the seccomp thread flag here.
1135 	 */
1136 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1137 		set_tsk_thread_flag(p, TIF_SECCOMP);
1138 #endif
1139 }
1140 
1141 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1142 {
1143 	current->clear_child_tid = tidptr;
1144 
1145 	return task_pid_vnr(current);
1146 }
1147 
1148 static void rt_mutex_init_task(struct task_struct *p)
1149 {
1150 	raw_spin_lock_init(&p->pi_lock);
1151 #ifdef CONFIG_RT_MUTEXES
1152 	p->pi_waiters = RB_ROOT;
1153 	p->pi_waiters_leftmost = NULL;
1154 	p->pi_blocked_on = NULL;
1155 #endif
1156 }
1157 
1158 /*
1159  * Initialize POSIX timer handling for a single task.
1160  */
1161 static void posix_cpu_timers_init(struct task_struct *tsk)
1162 {
1163 	tsk->cputime_expires.prof_exp = 0;
1164 	tsk->cputime_expires.virt_exp = 0;
1165 	tsk->cputime_expires.sched_exp = 0;
1166 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1167 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1168 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1169 }
1170 
1171 static inline void
1172 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1173 {
1174 	 task->pids[type].pid = pid;
1175 }
1176 
1177 /*
1178  * This creates a new process as a copy of the old one,
1179  * but does not actually start it yet.
1180  *
1181  * It copies the registers, and all the appropriate
1182  * parts of the process environment (as per the clone
1183  * flags). The actual kick-off is left to the caller.
1184  */
1185 static struct task_struct *copy_process(unsigned long clone_flags,
1186 					unsigned long stack_start,
1187 					unsigned long stack_size,
1188 					int __user *child_tidptr,
1189 					struct pid *pid,
1190 					int trace)
1191 {
1192 	int retval;
1193 	struct task_struct *p;
1194 
1195 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1196 		return ERR_PTR(-EINVAL);
1197 
1198 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1199 		return ERR_PTR(-EINVAL);
1200 
1201 	/*
1202 	 * Thread groups must share signals as well, and detached threads
1203 	 * can only be started up within the thread group.
1204 	 */
1205 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1206 		return ERR_PTR(-EINVAL);
1207 
1208 	/*
1209 	 * Shared signal handlers imply shared VM. By way of the above,
1210 	 * thread groups also imply shared VM. Blocking this case allows
1211 	 * for various simplifications in other code.
1212 	 */
1213 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1214 		return ERR_PTR(-EINVAL);
1215 
1216 	/*
1217 	 * Siblings of global init remain as zombies on exit since they are
1218 	 * not reaped by their parent (swapper). To solve this and to avoid
1219 	 * multi-rooted process trees, prevent global and container-inits
1220 	 * from creating siblings.
1221 	 */
1222 	if ((clone_flags & CLONE_PARENT) &&
1223 				current->signal->flags & SIGNAL_UNKILLABLE)
1224 		return ERR_PTR(-EINVAL);
1225 
1226 	/*
1227 	 * If the new process will be in a different pid or user namespace
1228 	 * do not allow it to share a thread group or signal handlers or
1229 	 * parent with the forking task.
1230 	 */
1231 	if (clone_flags & CLONE_SIGHAND) {
1232 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1233 		    (task_active_pid_ns(current) !=
1234 				current->nsproxy->pid_ns_for_children))
1235 			return ERR_PTR(-EINVAL);
1236 	}
1237 
1238 	retval = security_task_create(clone_flags);
1239 	if (retval)
1240 		goto fork_out;
1241 
1242 	retval = -ENOMEM;
1243 	p = dup_task_struct(current);
1244 	if (!p)
1245 		goto fork_out;
1246 
1247 	ftrace_graph_init_task(p);
1248 
1249 	rt_mutex_init_task(p);
1250 
1251 #ifdef CONFIG_PROVE_LOCKING
1252 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1253 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1254 #endif
1255 	retval = -EAGAIN;
1256 	if (atomic_read(&p->real_cred->user->processes) >=
1257 			task_rlimit(p, RLIMIT_NPROC)) {
1258 		if (p->real_cred->user != INIT_USER &&
1259 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1260 			goto bad_fork_free;
1261 	}
1262 	current->flags &= ~PF_NPROC_EXCEEDED;
1263 
1264 	retval = copy_creds(p, clone_flags);
1265 	if (retval < 0)
1266 		goto bad_fork_free;
1267 
1268 	/*
1269 	 * If multiple threads are within copy_process(), then this check
1270 	 * triggers too late. This doesn't hurt, the check is only there
1271 	 * to stop root fork bombs.
1272 	 */
1273 	retval = -EAGAIN;
1274 	if (nr_threads >= max_threads)
1275 		goto bad_fork_cleanup_count;
1276 
1277 	if (!try_module_get(task_thread_info(p)->exec_domain->module))
1278 		goto bad_fork_cleanup_count;
1279 
1280 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1281 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1282 	p->flags |= PF_FORKNOEXEC;
1283 	INIT_LIST_HEAD(&p->children);
1284 	INIT_LIST_HEAD(&p->sibling);
1285 	rcu_copy_process(p);
1286 	p->vfork_done = NULL;
1287 	spin_lock_init(&p->alloc_lock);
1288 
1289 	init_sigpending(&p->pending);
1290 
1291 	p->utime = p->stime = p->gtime = 0;
1292 	p->utimescaled = p->stimescaled = 0;
1293 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1294 	p->prev_cputime.utime = p->prev_cputime.stime = 0;
1295 #endif
1296 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1297 	seqlock_init(&p->vtime_seqlock);
1298 	p->vtime_snap = 0;
1299 	p->vtime_snap_whence = VTIME_SLEEPING;
1300 #endif
1301 
1302 #if defined(SPLIT_RSS_COUNTING)
1303 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1304 #endif
1305 
1306 	p->default_timer_slack_ns = current->timer_slack_ns;
1307 
1308 	task_io_accounting_init(&p->ioac);
1309 	acct_clear_integrals(p);
1310 
1311 	posix_cpu_timers_init(p);
1312 
1313 	p->start_time = ktime_get_ns();
1314 	p->real_start_time = ktime_get_boot_ns();
1315 	p->io_context = NULL;
1316 	p->audit_context = NULL;
1317 	if (clone_flags & CLONE_THREAD)
1318 		threadgroup_change_begin(current);
1319 	cgroup_fork(p);
1320 #ifdef CONFIG_NUMA
1321 	p->mempolicy = mpol_dup(p->mempolicy);
1322 	if (IS_ERR(p->mempolicy)) {
1323 		retval = PTR_ERR(p->mempolicy);
1324 		p->mempolicy = NULL;
1325 		goto bad_fork_cleanup_threadgroup_lock;
1326 	}
1327 #endif
1328 #ifdef CONFIG_CPUSETS
1329 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1330 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1331 	seqcount_init(&p->mems_allowed_seq);
1332 #endif
1333 #ifdef CONFIG_TRACE_IRQFLAGS
1334 	p->irq_events = 0;
1335 	p->hardirqs_enabled = 0;
1336 	p->hardirq_enable_ip = 0;
1337 	p->hardirq_enable_event = 0;
1338 	p->hardirq_disable_ip = _THIS_IP_;
1339 	p->hardirq_disable_event = 0;
1340 	p->softirqs_enabled = 1;
1341 	p->softirq_enable_ip = _THIS_IP_;
1342 	p->softirq_enable_event = 0;
1343 	p->softirq_disable_ip = 0;
1344 	p->softirq_disable_event = 0;
1345 	p->hardirq_context = 0;
1346 	p->softirq_context = 0;
1347 #endif
1348 #ifdef CONFIG_LOCKDEP
1349 	p->lockdep_depth = 0; /* no locks held yet */
1350 	p->curr_chain_key = 0;
1351 	p->lockdep_recursion = 0;
1352 #endif
1353 
1354 #ifdef CONFIG_DEBUG_MUTEXES
1355 	p->blocked_on = NULL; /* not blocked yet */
1356 #endif
1357 #ifdef CONFIG_BCACHE
1358 	p->sequential_io	= 0;
1359 	p->sequential_io_avg	= 0;
1360 #endif
1361 
1362 	/* Perform scheduler related setup. Assign this task to a CPU. */
1363 	retval = sched_fork(clone_flags, p);
1364 	if (retval)
1365 		goto bad_fork_cleanup_policy;
1366 
1367 	retval = perf_event_init_task(p);
1368 	if (retval)
1369 		goto bad_fork_cleanup_policy;
1370 	retval = audit_alloc(p);
1371 	if (retval)
1372 		goto bad_fork_cleanup_perf;
1373 	/* copy all the process information */
1374 	shm_init_task(p);
1375 	retval = copy_semundo(clone_flags, p);
1376 	if (retval)
1377 		goto bad_fork_cleanup_audit;
1378 	retval = copy_files(clone_flags, p);
1379 	if (retval)
1380 		goto bad_fork_cleanup_semundo;
1381 	retval = copy_fs(clone_flags, p);
1382 	if (retval)
1383 		goto bad_fork_cleanup_files;
1384 	retval = copy_sighand(clone_flags, p);
1385 	if (retval)
1386 		goto bad_fork_cleanup_fs;
1387 	retval = copy_signal(clone_flags, p);
1388 	if (retval)
1389 		goto bad_fork_cleanup_sighand;
1390 	retval = copy_mm(clone_flags, p);
1391 	if (retval)
1392 		goto bad_fork_cleanup_signal;
1393 	retval = copy_namespaces(clone_flags, p);
1394 	if (retval)
1395 		goto bad_fork_cleanup_mm;
1396 	retval = copy_io(clone_flags, p);
1397 	if (retval)
1398 		goto bad_fork_cleanup_namespaces;
1399 	retval = copy_thread(clone_flags, stack_start, stack_size, p);
1400 	if (retval)
1401 		goto bad_fork_cleanup_io;
1402 
1403 	if (pid != &init_struct_pid) {
1404 		retval = -ENOMEM;
1405 		pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1406 		if (!pid)
1407 			goto bad_fork_cleanup_io;
1408 	}
1409 
1410 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1411 	/*
1412 	 * Clear TID on mm_release()?
1413 	 */
1414 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1415 #ifdef CONFIG_BLOCK
1416 	p->plug = NULL;
1417 #endif
1418 #ifdef CONFIG_FUTEX
1419 	p->robust_list = NULL;
1420 #ifdef CONFIG_COMPAT
1421 	p->compat_robust_list = NULL;
1422 #endif
1423 	INIT_LIST_HEAD(&p->pi_state_list);
1424 	p->pi_state_cache = NULL;
1425 #endif
1426 	/*
1427 	 * sigaltstack should be cleared when sharing the same VM
1428 	 */
1429 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1430 		p->sas_ss_sp = p->sas_ss_size = 0;
1431 
1432 	/*
1433 	 * Syscall tracing and stepping should be turned off in the
1434 	 * child regardless of CLONE_PTRACE.
1435 	 */
1436 	user_disable_single_step(p);
1437 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1438 #ifdef TIF_SYSCALL_EMU
1439 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1440 #endif
1441 	clear_all_latency_tracing(p);
1442 
1443 	/* ok, now we should be set up.. */
1444 	p->pid = pid_nr(pid);
1445 	if (clone_flags & CLONE_THREAD) {
1446 		p->exit_signal = -1;
1447 		p->group_leader = current->group_leader;
1448 		p->tgid = current->tgid;
1449 	} else {
1450 		if (clone_flags & CLONE_PARENT)
1451 			p->exit_signal = current->group_leader->exit_signal;
1452 		else
1453 			p->exit_signal = (clone_flags & CSIGNAL);
1454 		p->group_leader = p;
1455 		p->tgid = p->pid;
1456 	}
1457 
1458 	p->nr_dirtied = 0;
1459 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1460 	p->dirty_paused_when = 0;
1461 
1462 	p->pdeath_signal = 0;
1463 	INIT_LIST_HEAD(&p->thread_group);
1464 	p->task_works = NULL;
1465 
1466 	/*
1467 	 * Make it visible to the rest of the system, but dont wake it up yet.
1468 	 * Need tasklist lock for parent etc handling!
1469 	 */
1470 	write_lock_irq(&tasklist_lock);
1471 
1472 	/* CLONE_PARENT re-uses the old parent */
1473 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1474 		p->real_parent = current->real_parent;
1475 		p->parent_exec_id = current->parent_exec_id;
1476 	} else {
1477 		p->real_parent = current;
1478 		p->parent_exec_id = current->self_exec_id;
1479 	}
1480 
1481 	spin_lock(&current->sighand->siglock);
1482 
1483 	/*
1484 	 * Copy seccomp details explicitly here, in case they were changed
1485 	 * before holding sighand lock.
1486 	 */
1487 	copy_seccomp(p);
1488 
1489 	/*
1490 	 * Process group and session signals need to be delivered to just the
1491 	 * parent before the fork or both the parent and the child after the
1492 	 * fork. Restart if a signal comes in before we add the new process to
1493 	 * it's process group.
1494 	 * A fatal signal pending means that current will exit, so the new
1495 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1496 	*/
1497 	recalc_sigpending();
1498 	if (signal_pending(current)) {
1499 		spin_unlock(&current->sighand->siglock);
1500 		write_unlock_irq(&tasklist_lock);
1501 		retval = -ERESTARTNOINTR;
1502 		goto bad_fork_free_pid;
1503 	}
1504 
1505 	if (likely(p->pid)) {
1506 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1507 
1508 		init_task_pid(p, PIDTYPE_PID, pid);
1509 		if (thread_group_leader(p)) {
1510 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1511 			init_task_pid(p, PIDTYPE_SID, task_session(current));
1512 
1513 			if (is_child_reaper(pid)) {
1514 				ns_of_pid(pid)->child_reaper = p;
1515 				p->signal->flags |= SIGNAL_UNKILLABLE;
1516 			}
1517 
1518 			p->signal->leader_pid = pid;
1519 			p->signal->tty = tty_kref_get(current->signal->tty);
1520 			list_add_tail(&p->sibling, &p->real_parent->children);
1521 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1522 			attach_pid(p, PIDTYPE_PGID);
1523 			attach_pid(p, PIDTYPE_SID);
1524 			__this_cpu_inc(process_counts);
1525 		} else {
1526 			current->signal->nr_threads++;
1527 			atomic_inc(&current->signal->live);
1528 			atomic_inc(&current->signal->sigcnt);
1529 			list_add_tail_rcu(&p->thread_group,
1530 					  &p->group_leader->thread_group);
1531 			list_add_tail_rcu(&p->thread_node,
1532 					  &p->signal->thread_head);
1533 		}
1534 		attach_pid(p, PIDTYPE_PID);
1535 		nr_threads++;
1536 	}
1537 
1538 	total_forks++;
1539 	spin_unlock(&current->sighand->siglock);
1540 	syscall_tracepoint_update(p);
1541 	write_unlock_irq(&tasklist_lock);
1542 
1543 	proc_fork_connector(p);
1544 	cgroup_post_fork(p);
1545 	if (clone_flags & CLONE_THREAD)
1546 		threadgroup_change_end(current);
1547 	perf_event_fork(p);
1548 
1549 	trace_task_newtask(p, clone_flags);
1550 	uprobe_copy_process(p, clone_flags);
1551 
1552 	return p;
1553 
1554 bad_fork_free_pid:
1555 	if (pid != &init_struct_pid)
1556 		free_pid(pid);
1557 bad_fork_cleanup_io:
1558 	if (p->io_context)
1559 		exit_io_context(p);
1560 bad_fork_cleanup_namespaces:
1561 	exit_task_namespaces(p);
1562 bad_fork_cleanup_mm:
1563 	if (p->mm)
1564 		mmput(p->mm);
1565 bad_fork_cleanup_signal:
1566 	if (!(clone_flags & CLONE_THREAD))
1567 		free_signal_struct(p->signal);
1568 bad_fork_cleanup_sighand:
1569 	__cleanup_sighand(p->sighand);
1570 bad_fork_cleanup_fs:
1571 	exit_fs(p); /* blocking */
1572 bad_fork_cleanup_files:
1573 	exit_files(p); /* blocking */
1574 bad_fork_cleanup_semundo:
1575 	exit_sem(p);
1576 bad_fork_cleanup_audit:
1577 	audit_free(p);
1578 bad_fork_cleanup_perf:
1579 	perf_event_free_task(p);
1580 bad_fork_cleanup_policy:
1581 #ifdef CONFIG_NUMA
1582 	mpol_put(p->mempolicy);
1583 bad_fork_cleanup_threadgroup_lock:
1584 #endif
1585 	if (clone_flags & CLONE_THREAD)
1586 		threadgroup_change_end(current);
1587 	delayacct_tsk_free(p);
1588 	module_put(task_thread_info(p)->exec_domain->module);
1589 bad_fork_cleanup_count:
1590 	atomic_dec(&p->cred->user->processes);
1591 	exit_creds(p);
1592 bad_fork_free:
1593 	free_task(p);
1594 fork_out:
1595 	return ERR_PTR(retval);
1596 }
1597 
1598 static inline void init_idle_pids(struct pid_link *links)
1599 {
1600 	enum pid_type type;
1601 
1602 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1603 		INIT_HLIST_NODE(&links[type].node); /* not really needed */
1604 		links[type].pid = &init_struct_pid;
1605 	}
1606 }
1607 
1608 struct task_struct *fork_idle(int cpu)
1609 {
1610 	struct task_struct *task;
1611 	task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0);
1612 	if (!IS_ERR(task)) {
1613 		init_idle_pids(task->pids);
1614 		init_idle(task, cpu);
1615 	}
1616 
1617 	return task;
1618 }
1619 
1620 /*
1621  *  Ok, this is the main fork-routine.
1622  *
1623  * It copies the process, and if successful kick-starts
1624  * it and waits for it to finish using the VM if required.
1625  */
1626 long do_fork(unsigned long clone_flags,
1627 	      unsigned long stack_start,
1628 	      unsigned long stack_size,
1629 	      int __user *parent_tidptr,
1630 	      int __user *child_tidptr)
1631 {
1632 	struct task_struct *p;
1633 	int trace = 0;
1634 	long nr;
1635 
1636 	/*
1637 	 * Determine whether and which event to report to ptracer.  When
1638 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
1639 	 * requested, no event is reported; otherwise, report if the event
1640 	 * for the type of forking is enabled.
1641 	 */
1642 	if (!(clone_flags & CLONE_UNTRACED)) {
1643 		if (clone_flags & CLONE_VFORK)
1644 			trace = PTRACE_EVENT_VFORK;
1645 		else if ((clone_flags & CSIGNAL) != SIGCHLD)
1646 			trace = PTRACE_EVENT_CLONE;
1647 		else
1648 			trace = PTRACE_EVENT_FORK;
1649 
1650 		if (likely(!ptrace_event_enabled(current, trace)))
1651 			trace = 0;
1652 	}
1653 
1654 	p = copy_process(clone_flags, stack_start, stack_size,
1655 			 child_tidptr, NULL, trace);
1656 	/*
1657 	 * Do this prior waking up the new thread - the thread pointer
1658 	 * might get invalid after that point, if the thread exits quickly.
1659 	 */
1660 	if (!IS_ERR(p)) {
1661 		struct completion vfork;
1662 		struct pid *pid;
1663 
1664 		trace_sched_process_fork(current, p);
1665 
1666 		pid = get_task_pid(p, PIDTYPE_PID);
1667 		nr = pid_vnr(pid);
1668 
1669 		if (clone_flags & CLONE_PARENT_SETTID)
1670 			put_user(nr, parent_tidptr);
1671 
1672 		if (clone_flags & CLONE_VFORK) {
1673 			p->vfork_done = &vfork;
1674 			init_completion(&vfork);
1675 			get_task_struct(p);
1676 		}
1677 
1678 		wake_up_new_task(p);
1679 
1680 		/* forking complete and child started to run, tell ptracer */
1681 		if (unlikely(trace))
1682 			ptrace_event_pid(trace, pid);
1683 
1684 		if (clone_flags & CLONE_VFORK) {
1685 			if (!wait_for_vfork_done(p, &vfork))
1686 				ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1687 		}
1688 
1689 		put_pid(pid);
1690 	} else {
1691 		nr = PTR_ERR(p);
1692 	}
1693 	return nr;
1694 }
1695 
1696 /*
1697  * Create a kernel thread.
1698  */
1699 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1700 {
1701 	return do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1702 		(unsigned long)arg, NULL, NULL);
1703 }
1704 
1705 #ifdef __ARCH_WANT_SYS_FORK
1706 SYSCALL_DEFINE0(fork)
1707 {
1708 #ifdef CONFIG_MMU
1709 	return do_fork(SIGCHLD, 0, 0, NULL, NULL);
1710 #else
1711 	/* can not support in nommu mode */
1712 	return -EINVAL;
1713 #endif
1714 }
1715 #endif
1716 
1717 #ifdef __ARCH_WANT_SYS_VFORK
1718 SYSCALL_DEFINE0(vfork)
1719 {
1720 	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
1721 			0, NULL, NULL);
1722 }
1723 #endif
1724 
1725 #ifdef __ARCH_WANT_SYS_CLONE
1726 #ifdef CONFIG_CLONE_BACKWARDS
1727 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1728 		 int __user *, parent_tidptr,
1729 		 int, tls_val,
1730 		 int __user *, child_tidptr)
1731 #elif defined(CONFIG_CLONE_BACKWARDS2)
1732 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1733 		 int __user *, parent_tidptr,
1734 		 int __user *, child_tidptr,
1735 		 int, tls_val)
1736 #elif defined(CONFIG_CLONE_BACKWARDS3)
1737 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
1738 		int, stack_size,
1739 		int __user *, parent_tidptr,
1740 		int __user *, child_tidptr,
1741 		int, tls_val)
1742 #else
1743 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1744 		 int __user *, parent_tidptr,
1745 		 int __user *, child_tidptr,
1746 		 int, tls_val)
1747 #endif
1748 {
1749 	return do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr);
1750 }
1751 #endif
1752 
1753 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1754 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1755 #endif
1756 
1757 static void sighand_ctor(void *data)
1758 {
1759 	struct sighand_struct *sighand = data;
1760 
1761 	spin_lock_init(&sighand->siglock);
1762 	init_waitqueue_head(&sighand->signalfd_wqh);
1763 }
1764 
1765 void __init proc_caches_init(void)
1766 {
1767 	sighand_cachep = kmem_cache_create("sighand_cache",
1768 			sizeof(struct sighand_struct), 0,
1769 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1770 			SLAB_NOTRACK, sighand_ctor);
1771 	signal_cachep = kmem_cache_create("signal_cache",
1772 			sizeof(struct signal_struct), 0,
1773 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1774 	files_cachep = kmem_cache_create("files_cache",
1775 			sizeof(struct files_struct), 0,
1776 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1777 	fs_cachep = kmem_cache_create("fs_cache",
1778 			sizeof(struct fs_struct), 0,
1779 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1780 	/*
1781 	 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1782 	 * whole struct cpumask for the OFFSTACK case. We could change
1783 	 * this to *only* allocate as much of it as required by the
1784 	 * maximum number of CPU's we can ever have.  The cpumask_allocation
1785 	 * is at the end of the structure, exactly for that reason.
1786 	 */
1787 	mm_cachep = kmem_cache_create("mm_struct",
1788 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1789 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1790 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1791 	mmap_init();
1792 	nsproxy_cache_init();
1793 }
1794 
1795 /*
1796  * Check constraints on flags passed to the unshare system call.
1797  */
1798 static int check_unshare_flags(unsigned long unshare_flags)
1799 {
1800 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1801 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1802 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
1803 				CLONE_NEWUSER|CLONE_NEWPID))
1804 		return -EINVAL;
1805 	/*
1806 	 * Not implemented, but pretend it works if there is nothing to
1807 	 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1808 	 * needs to unshare vm.
1809 	 */
1810 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1811 		/* FIXME: get_task_mm() increments ->mm_users */
1812 		if (atomic_read(&current->mm->mm_users) > 1)
1813 			return -EINVAL;
1814 	}
1815 
1816 	return 0;
1817 }
1818 
1819 /*
1820  * Unshare the filesystem structure if it is being shared
1821  */
1822 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1823 {
1824 	struct fs_struct *fs = current->fs;
1825 
1826 	if (!(unshare_flags & CLONE_FS) || !fs)
1827 		return 0;
1828 
1829 	/* don't need lock here; in the worst case we'll do useless copy */
1830 	if (fs->users == 1)
1831 		return 0;
1832 
1833 	*new_fsp = copy_fs_struct(fs);
1834 	if (!*new_fsp)
1835 		return -ENOMEM;
1836 
1837 	return 0;
1838 }
1839 
1840 /*
1841  * Unshare file descriptor table if it is being shared
1842  */
1843 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1844 {
1845 	struct files_struct *fd = current->files;
1846 	int error = 0;
1847 
1848 	if ((unshare_flags & CLONE_FILES) &&
1849 	    (fd && atomic_read(&fd->count) > 1)) {
1850 		*new_fdp = dup_fd(fd, &error);
1851 		if (!*new_fdp)
1852 			return error;
1853 	}
1854 
1855 	return 0;
1856 }
1857 
1858 /*
1859  * unshare allows a process to 'unshare' part of the process
1860  * context which was originally shared using clone.  copy_*
1861  * functions used by do_fork() cannot be used here directly
1862  * because they modify an inactive task_struct that is being
1863  * constructed. Here we are modifying the current, active,
1864  * task_struct.
1865  */
1866 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1867 {
1868 	struct fs_struct *fs, *new_fs = NULL;
1869 	struct files_struct *fd, *new_fd = NULL;
1870 	struct cred *new_cred = NULL;
1871 	struct nsproxy *new_nsproxy = NULL;
1872 	int do_sysvsem = 0;
1873 	int err;
1874 
1875 	/*
1876 	 * If unsharing a user namespace must also unshare the thread.
1877 	 */
1878 	if (unshare_flags & CLONE_NEWUSER)
1879 		unshare_flags |= CLONE_THREAD | CLONE_FS;
1880 	/*
1881 	 * If unsharing a thread from a thread group, must also unshare vm.
1882 	 */
1883 	if (unshare_flags & CLONE_THREAD)
1884 		unshare_flags |= CLONE_VM;
1885 	/*
1886 	 * If unsharing vm, must also unshare signal handlers.
1887 	 */
1888 	if (unshare_flags & CLONE_VM)
1889 		unshare_flags |= CLONE_SIGHAND;
1890 	/*
1891 	 * If unsharing namespace, must also unshare filesystem information.
1892 	 */
1893 	if (unshare_flags & CLONE_NEWNS)
1894 		unshare_flags |= CLONE_FS;
1895 
1896 	err = check_unshare_flags(unshare_flags);
1897 	if (err)
1898 		goto bad_unshare_out;
1899 	/*
1900 	 * CLONE_NEWIPC must also detach from the undolist: after switching
1901 	 * to a new ipc namespace, the semaphore arrays from the old
1902 	 * namespace are unreachable.
1903 	 */
1904 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1905 		do_sysvsem = 1;
1906 	err = unshare_fs(unshare_flags, &new_fs);
1907 	if (err)
1908 		goto bad_unshare_out;
1909 	err = unshare_fd(unshare_flags, &new_fd);
1910 	if (err)
1911 		goto bad_unshare_cleanup_fs;
1912 	err = unshare_userns(unshare_flags, &new_cred);
1913 	if (err)
1914 		goto bad_unshare_cleanup_fd;
1915 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1916 					 new_cred, new_fs);
1917 	if (err)
1918 		goto bad_unshare_cleanup_cred;
1919 
1920 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
1921 		if (do_sysvsem) {
1922 			/*
1923 			 * CLONE_SYSVSEM is equivalent to sys_exit().
1924 			 */
1925 			exit_sem(current);
1926 		}
1927 		if (unshare_flags & CLONE_NEWIPC) {
1928 			/* Orphan segments in old ns (see sem above). */
1929 			exit_shm(current);
1930 			shm_init_task(current);
1931 		}
1932 
1933 		if (new_nsproxy)
1934 			switch_task_namespaces(current, new_nsproxy);
1935 
1936 		task_lock(current);
1937 
1938 		if (new_fs) {
1939 			fs = current->fs;
1940 			spin_lock(&fs->lock);
1941 			current->fs = new_fs;
1942 			if (--fs->users)
1943 				new_fs = NULL;
1944 			else
1945 				new_fs = fs;
1946 			spin_unlock(&fs->lock);
1947 		}
1948 
1949 		if (new_fd) {
1950 			fd = current->files;
1951 			current->files = new_fd;
1952 			new_fd = fd;
1953 		}
1954 
1955 		task_unlock(current);
1956 
1957 		if (new_cred) {
1958 			/* Install the new user namespace */
1959 			commit_creds(new_cred);
1960 			new_cred = NULL;
1961 		}
1962 	}
1963 
1964 bad_unshare_cleanup_cred:
1965 	if (new_cred)
1966 		put_cred(new_cred);
1967 bad_unshare_cleanup_fd:
1968 	if (new_fd)
1969 		put_files_struct(new_fd);
1970 
1971 bad_unshare_cleanup_fs:
1972 	if (new_fs)
1973 		free_fs_struct(new_fs);
1974 
1975 bad_unshare_out:
1976 	return err;
1977 }
1978 
1979 /*
1980  *	Helper to unshare the files of the current task.
1981  *	We don't want to expose copy_files internals to
1982  *	the exec layer of the kernel.
1983  */
1984 
1985 int unshare_files(struct files_struct **displaced)
1986 {
1987 	struct task_struct *task = current;
1988 	struct files_struct *copy = NULL;
1989 	int error;
1990 
1991 	error = unshare_fd(CLONE_FILES, &copy);
1992 	if (error || !copy) {
1993 		*displaced = NULL;
1994 		return error;
1995 	}
1996 	*displaced = task->files;
1997 	task_lock(task);
1998 	task->files = copy;
1999 	task_unlock(task);
2000 	return 0;
2001 }
2002