xref: /openbmc/linux/kernel/fork.c (revision f97cee494dc92395a668445bcd24d34c89f4ff8c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14 
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/binfmts.h>
41 #include <linux/mman.h>
42 #include <linux/mmu_notifier.h>
43 #include <linux/fs.h>
44 #include <linux/mm.h>
45 #include <linux/vmacache.h>
46 #include <linux/nsproxy.h>
47 #include <linux/capability.h>
48 #include <linux/cpu.h>
49 #include <linux/cgroup.h>
50 #include <linux/security.h>
51 #include <linux/hugetlb.h>
52 #include <linux/seccomp.h>
53 #include <linux/swap.h>
54 #include <linux/syscalls.h>
55 #include <linux/jiffies.h>
56 #include <linux/futex.h>
57 #include <linux/compat.h>
58 #include <linux/kthread.h>
59 #include <linux/task_io_accounting_ops.h>
60 #include <linux/rcupdate.h>
61 #include <linux/ptrace.h>
62 #include <linux/mount.h>
63 #include <linux/audit.h>
64 #include <linux/memcontrol.h>
65 #include <linux/ftrace.h>
66 #include <linux/proc_fs.h>
67 #include <linux/profile.h>
68 #include <linux/rmap.h>
69 #include <linux/ksm.h>
70 #include <linux/acct.h>
71 #include <linux/userfaultfd_k.h>
72 #include <linux/tsacct_kern.h>
73 #include <linux/cn_proc.h>
74 #include <linux/freezer.h>
75 #include <linux/delayacct.h>
76 #include <linux/taskstats_kern.h>
77 #include <linux/random.h>
78 #include <linux/tty.h>
79 #include <linux/blkdev.h>
80 #include <linux/fs_struct.h>
81 #include <linux/magic.h>
82 #include <linux/perf_event.h>
83 #include <linux/posix-timers.h>
84 #include <linux/user-return-notifier.h>
85 #include <linux/oom.h>
86 #include <linux/khugepaged.h>
87 #include <linux/signalfd.h>
88 #include <linux/uprobes.h>
89 #include <linux/aio.h>
90 #include <linux/compiler.h>
91 #include <linux/sysctl.h>
92 #include <linux/kcov.h>
93 #include <linux/livepatch.h>
94 #include <linux/thread_info.h>
95 #include <linux/stackleak.h>
96 #include <linux/kasan.h>
97 #include <linux/scs.h>
98 
99 #include <asm/pgalloc.h>
100 #include <linux/uaccess.h>
101 #include <asm/mmu_context.h>
102 #include <asm/cacheflush.h>
103 #include <asm/tlbflush.h>
104 
105 #include <trace/events/sched.h>
106 
107 #define CREATE_TRACE_POINTS
108 #include <trace/events/task.h>
109 
110 /*
111  * Minimum number of threads to boot the kernel
112  */
113 #define MIN_THREADS 20
114 
115 /*
116  * Maximum number of threads
117  */
118 #define MAX_THREADS FUTEX_TID_MASK
119 
120 /*
121  * Protected counters by write_lock_irq(&tasklist_lock)
122  */
123 unsigned long total_forks;	/* Handle normal Linux uptimes. */
124 int nr_threads;			/* The idle threads do not count.. */
125 
126 static int max_threads;		/* tunable limit on nr_threads */
127 
128 #define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
129 
130 static const char * const resident_page_types[] = {
131 	NAMED_ARRAY_INDEX(MM_FILEPAGES),
132 	NAMED_ARRAY_INDEX(MM_ANONPAGES),
133 	NAMED_ARRAY_INDEX(MM_SWAPENTS),
134 	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
135 };
136 
137 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
138 
139 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
140 
141 #ifdef CONFIG_PROVE_RCU
142 int lockdep_tasklist_lock_is_held(void)
143 {
144 	return lockdep_is_held(&tasklist_lock);
145 }
146 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
147 #endif /* #ifdef CONFIG_PROVE_RCU */
148 
149 int nr_processes(void)
150 {
151 	int cpu;
152 	int total = 0;
153 
154 	for_each_possible_cpu(cpu)
155 		total += per_cpu(process_counts, cpu);
156 
157 	return total;
158 }
159 
160 void __weak arch_release_task_struct(struct task_struct *tsk)
161 {
162 }
163 
164 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
165 static struct kmem_cache *task_struct_cachep;
166 
167 static inline struct task_struct *alloc_task_struct_node(int node)
168 {
169 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
170 }
171 
172 static inline void free_task_struct(struct task_struct *tsk)
173 {
174 	kmem_cache_free(task_struct_cachep, tsk);
175 }
176 #endif
177 
178 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
179 
180 /*
181  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
182  * kmemcache based allocator.
183  */
184 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
185 
186 #ifdef CONFIG_VMAP_STACK
187 /*
188  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
189  * flush.  Try to minimize the number of calls by caching stacks.
190  */
191 #define NR_CACHED_STACKS 2
192 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
193 
194 static int free_vm_stack_cache(unsigned int cpu)
195 {
196 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
197 	int i;
198 
199 	for (i = 0; i < NR_CACHED_STACKS; i++) {
200 		struct vm_struct *vm_stack = cached_vm_stacks[i];
201 
202 		if (!vm_stack)
203 			continue;
204 
205 		vfree(vm_stack->addr);
206 		cached_vm_stacks[i] = NULL;
207 	}
208 
209 	return 0;
210 }
211 #endif
212 
213 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
214 {
215 #ifdef CONFIG_VMAP_STACK
216 	void *stack;
217 	int i;
218 
219 	for (i = 0; i < NR_CACHED_STACKS; i++) {
220 		struct vm_struct *s;
221 
222 		s = this_cpu_xchg(cached_stacks[i], NULL);
223 
224 		if (!s)
225 			continue;
226 
227 		/* Clear the KASAN shadow of the stack. */
228 		kasan_unpoison_shadow(s->addr, THREAD_SIZE);
229 
230 		/* Clear stale pointers from reused stack. */
231 		memset(s->addr, 0, THREAD_SIZE);
232 
233 		tsk->stack_vm_area = s;
234 		tsk->stack = s->addr;
235 		return s->addr;
236 	}
237 
238 	/*
239 	 * Allocated stacks are cached and later reused by new threads,
240 	 * so memcg accounting is performed manually on assigning/releasing
241 	 * stacks to tasks. Drop __GFP_ACCOUNT.
242 	 */
243 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
244 				     VMALLOC_START, VMALLOC_END,
245 				     THREADINFO_GFP & ~__GFP_ACCOUNT,
246 				     PAGE_KERNEL,
247 				     0, node, __builtin_return_address(0));
248 
249 	/*
250 	 * We can't call find_vm_area() in interrupt context, and
251 	 * free_thread_stack() can be called in interrupt context,
252 	 * so cache the vm_struct.
253 	 */
254 	if (stack) {
255 		tsk->stack_vm_area = find_vm_area(stack);
256 		tsk->stack = stack;
257 	}
258 	return stack;
259 #else
260 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
261 					     THREAD_SIZE_ORDER);
262 
263 	if (likely(page)) {
264 		tsk->stack = kasan_reset_tag(page_address(page));
265 		return tsk->stack;
266 	}
267 	return NULL;
268 #endif
269 }
270 
271 static inline void free_thread_stack(struct task_struct *tsk)
272 {
273 #ifdef CONFIG_VMAP_STACK
274 	struct vm_struct *vm = task_stack_vm_area(tsk);
275 
276 	if (vm) {
277 		int i;
278 
279 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
280 			memcg_kmem_uncharge_page(vm->pages[i], 0);
281 
282 		for (i = 0; i < NR_CACHED_STACKS; i++) {
283 			if (this_cpu_cmpxchg(cached_stacks[i],
284 					NULL, tsk->stack_vm_area) != NULL)
285 				continue;
286 
287 			return;
288 		}
289 
290 		vfree_atomic(tsk->stack);
291 		return;
292 	}
293 #endif
294 
295 	__free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
296 }
297 # else
298 static struct kmem_cache *thread_stack_cache;
299 
300 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
301 						  int node)
302 {
303 	unsigned long *stack;
304 	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
305 	stack = kasan_reset_tag(stack);
306 	tsk->stack = stack;
307 	return stack;
308 }
309 
310 static void free_thread_stack(struct task_struct *tsk)
311 {
312 	kmem_cache_free(thread_stack_cache, tsk->stack);
313 }
314 
315 void thread_stack_cache_init(void)
316 {
317 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
318 					THREAD_SIZE, THREAD_SIZE, 0, 0,
319 					THREAD_SIZE, NULL);
320 	BUG_ON(thread_stack_cache == NULL);
321 }
322 # endif
323 #endif
324 
325 /* SLAB cache for signal_struct structures (tsk->signal) */
326 static struct kmem_cache *signal_cachep;
327 
328 /* SLAB cache for sighand_struct structures (tsk->sighand) */
329 struct kmem_cache *sighand_cachep;
330 
331 /* SLAB cache for files_struct structures (tsk->files) */
332 struct kmem_cache *files_cachep;
333 
334 /* SLAB cache for fs_struct structures (tsk->fs) */
335 struct kmem_cache *fs_cachep;
336 
337 /* SLAB cache for vm_area_struct structures */
338 static struct kmem_cache *vm_area_cachep;
339 
340 /* SLAB cache for mm_struct structures (tsk->mm) */
341 static struct kmem_cache *mm_cachep;
342 
343 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
344 {
345 	struct vm_area_struct *vma;
346 
347 	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
348 	if (vma)
349 		vma_init(vma, mm);
350 	return vma;
351 }
352 
353 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
354 {
355 	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
356 
357 	if (new) {
358 		ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
359 		ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
360 		/*
361 		 * orig->shared.rb may be modified concurrently, but the clone
362 		 * will be reinitialized.
363 		 */
364 		*new = data_race(*orig);
365 		INIT_LIST_HEAD(&new->anon_vma_chain);
366 		new->vm_next = new->vm_prev = NULL;
367 	}
368 	return new;
369 }
370 
371 void vm_area_free(struct vm_area_struct *vma)
372 {
373 	kmem_cache_free(vm_area_cachep, vma);
374 }
375 
376 static void account_kernel_stack(struct task_struct *tsk, int account)
377 {
378 	void *stack = task_stack_page(tsk);
379 	struct vm_struct *vm = task_stack_vm_area(tsk);
380 
381 
382 	/* All stack pages are in the same node. */
383 	if (vm)
384 		mod_lruvec_page_state(vm->pages[0], NR_KERNEL_STACK_KB,
385 				      account * (THREAD_SIZE / 1024));
386 	else
387 		mod_lruvec_slab_state(stack, NR_KERNEL_STACK_KB,
388 				      account * (THREAD_SIZE / 1024));
389 }
390 
391 static int memcg_charge_kernel_stack(struct task_struct *tsk)
392 {
393 #ifdef CONFIG_VMAP_STACK
394 	struct vm_struct *vm = task_stack_vm_area(tsk);
395 	int ret;
396 
397 	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
398 
399 	if (vm) {
400 		int i;
401 
402 		BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
403 
404 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
405 			/*
406 			 * If memcg_kmem_charge_page() fails, page->mem_cgroup
407 			 * pointer is NULL, and memcg_kmem_uncharge_page() in
408 			 * free_thread_stack() will ignore this page.
409 			 */
410 			ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL,
411 						     0);
412 			if (ret)
413 				return ret;
414 		}
415 	}
416 #endif
417 	return 0;
418 }
419 
420 static void release_task_stack(struct task_struct *tsk)
421 {
422 	if (WARN_ON(tsk->state != TASK_DEAD))
423 		return;  /* Better to leak the stack than to free prematurely */
424 
425 	account_kernel_stack(tsk, -1);
426 	free_thread_stack(tsk);
427 	tsk->stack = NULL;
428 #ifdef CONFIG_VMAP_STACK
429 	tsk->stack_vm_area = NULL;
430 #endif
431 }
432 
433 #ifdef CONFIG_THREAD_INFO_IN_TASK
434 void put_task_stack(struct task_struct *tsk)
435 {
436 	if (refcount_dec_and_test(&tsk->stack_refcount))
437 		release_task_stack(tsk);
438 }
439 #endif
440 
441 void free_task(struct task_struct *tsk)
442 {
443 	scs_release(tsk);
444 
445 #ifndef CONFIG_THREAD_INFO_IN_TASK
446 	/*
447 	 * The task is finally done with both the stack and thread_info,
448 	 * so free both.
449 	 */
450 	release_task_stack(tsk);
451 #else
452 	/*
453 	 * If the task had a separate stack allocation, it should be gone
454 	 * by now.
455 	 */
456 	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
457 #endif
458 	rt_mutex_debug_task_free(tsk);
459 	ftrace_graph_exit_task(tsk);
460 	arch_release_task_struct(tsk);
461 	if (tsk->flags & PF_KTHREAD)
462 		free_kthread_struct(tsk);
463 	free_task_struct(tsk);
464 }
465 EXPORT_SYMBOL(free_task);
466 
467 #ifdef CONFIG_MMU
468 static __latent_entropy int dup_mmap(struct mm_struct *mm,
469 					struct mm_struct *oldmm)
470 {
471 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
472 	struct rb_node **rb_link, *rb_parent;
473 	int retval;
474 	unsigned long charge;
475 	LIST_HEAD(uf);
476 
477 	uprobe_start_dup_mmap();
478 	if (mmap_write_lock_killable(oldmm)) {
479 		retval = -EINTR;
480 		goto fail_uprobe_end;
481 	}
482 	flush_cache_dup_mm(oldmm);
483 	uprobe_dup_mmap(oldmm, mm);
484 	/*
485 	 * Not linked in yet - no deadlock potential:
486 	 */
487 	mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
488 
489 	/* No ordering required: file already has been exposed. */
490 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
491 
492 	mm->total_vm = oldmm->total_vm;
493 	mm->data_vm = oldmm->data_vm;
494 	mm->exec_vm = oldmm->exec_vm;
495 	mm->stack_vm = oldmm->stack_vm;
496 
497 	rb_link = &mm->mm_rb.rb_node;
498 	rb_parent = NULL;
499 	pprev = &mm->mmap;
500 	retval = ksm_fork(mm, oldmm);
501 	if (retval)
502 		goto out;
503 	retval = khugepaged_fork(mm, oldmm);
504 	if (retval)
505 		goto out;
506 
507 	prev = NULL;
508 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
509 		struct file *file;
510 
511 		if (mpnt->vm_flags & VM_DONTCOPY) {
512 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
513 			continue;
514 		}
515 		charge = 0;
516 		/*
517 		 * Don't duplicate many vmas if we've been oom-killed (for
518 		 * example)
519 		 */
520 		if (fatal_signal_pending(current)) {
521 			retval = -EINTR;
522 			goto out;
523 		}
524 		if (mpnt->vm_flags & VM_ACCOUNT) {
525 			unsigned long len = vma_pages(mpnt);
526 
527 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
528 				goto fail_nomem;
529 			charge = len;
530 		}
531 		tmp = vm_area_dup(mpnt);
532 		if (!tmp)
533 			goto fail_nomem;
534 		retval = vma_dup_policy(mpnt, tmp);
535 		if (retval)
536 			goto fail_nomem_policy;
537 		tmp->vm_mm = mm;
538 		retval = dup_userfaultfd(tmp, &uf);
539 		if (retval)
540 			goto fail_nomem_anon_vma_fork;
541 		if (tmp->vm_flags & VM_WIPEONFORK) {
542 			/*
543 			 * VM_WIPEONFORK gets a clean slate in the child.
544 			 * Don't prepare anon_vma until fault since we don't
545 			 * copy page for current vma.
546 			 */
547 			tmp->anon_vma = NULL;
548 		} else if (anon_vma_fork(tmp, mpnt))
549 			goto fail_nomem_anon_vma_fork;
550 		tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
551 		file = tmp->vm_file;
552 		if (file) {
553 			struct inode *inode = file_inode(file);
554 			struct address_space *mapping = file->f_mapping;
555 
556 			get_file(file);
557 			if (tmp->vm_flags & VM_DENYWRITE)
558 				atomic_dec(&inode->i_writecount);
559 			i_mmap_lock_write(mapping);
560 			if (tmp->vm_flags & VM_SHARED)
561 				atomic_inc(&mapping->i_mmap_writable);
562 			flush_dcache_mmap_lock(mapping);
563 			/* insert tmp into the share list, just after mpnt */
564 			vma_interval_tree_insert_after(tmp, mpnt,
565 					&mapping->i_mmap);
566 			flush_dcache_mmap_unlock(mapping);
567 			i_mmap_unlock_write(mapping);
568 		}
569 
570 		/*
571 		 * Clear hugetlb-related page reserves for children. This only
572 		 * affects MAP_PRIVATE mappings. Faults generated by the child
573 		 * are not guaranteed to succeed, even if read-only
574 		 */
575 		if (is_vm_hugetlb_page(tmp))
576 			reset_vma_resv_huge_pages(tmp);
577 
578 		/*
579 		 * Link in the new vma and copy the page table entries.
580 		 */
581 		*pprev = tmp;
582 		pprev = &tmp->vm_next;
583 		tmp->vm_prev = prev;
584 		prev = tmp;
585 
586 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
587 		rb_link = &tmp->vm_rb.rb_right;
588 		rb_parent = &tmp->vm_rb;
589 
590 		mm->map_count++;
591 		if (!(tmp->vm_flags & VM_WIPEONFORK))
592 			retval = copy_page_range(mm, oldmm, mpnt, tmp);
593 
594 		if (tmp->vm_ops && tmp->vm_ops->open)
595 			tmp->vm_ops->open(tmp);
596 
597 		if (retval)
598 			goto out;
599 	}
600 	/* a new mm has just been created */
601 	retval = arch_dup_mmap(oldmm, mm);
602 out:
603 	mmap_write_unlock(mm);
604 	flush_tlb_mm(oldmm);
605 	mmap_write_unlock(oldmm);
606 	dup_userfaultfd_complete(&uf);
607 fail_uprobe_end:
608 	uprobe_end_dup_mmap();
609 	return retval;
610 fail_nomem_anon_vma_fork:
611 	mpol_put(vma_policy(tmp));
612 fail_nomem_policy:
613 	vm_area_free(tmp);
614 fail_nomem:
615 	retval = -ENOMEM;
616 	vm_unacct_memory(charge);
617 	goto out;
618 }
619 
620 static inline int mm_alloc_pgd(struct mm_struct *mm)
621 {
622 	mm->pgd = pgd_alloc(mm);
623 	if (unlikely(!mm->pgd))
624 		return -ENOMEM;
625 	return 0;
626 }
627 
628 static inline void mm_free_pgd(struct mm_struct *mm)
629 {
630 	pgd_free(mm, mm->pgd);
631 }
632 #else
633 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
634 {
635 	mmap_write_lock(oldmm);
636 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
637 	mmap_write_unlock(oldmm);
638 	return 0;
639 }
640 #define mm_alloc_pgd(mm)	(0)
641 #define mm_free_pgd(mm)
642 #endif /* CONFIG_MMU */
643 
644 static void check_mm(struct mm_struct *mm)
645 {
646 	int i;
647 
648 	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
649 			 "Please make sure 'struct resident_page_types[]' is updated as well");
650 
651 	for (i = 0; i < NR_MM_COUNTERS; i++) {
652 		long x = atomic_long_read(&mm->rss_stat.count[i]);
653 
654 		if (unlikely(x))
655 			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
656 				 mm, resident_page_types[i], x);
657 	}
658 
659 	if (mm_pgtables_bytes(mm))
660 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
661 				mm_pgtables_bytes(mm));
662 
663 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
664 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
665 #endif
666 }
667 
668 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
669 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
670 
671 /*
672  * Called when the last reference to the mm
673  * is dropped: either by a lazy thread or by
674  * mmput. Free the page directory and the mm.
675  */
676 void __mmdrop(struct mm_struct *mm)
677 {
678 	BUG_ON(mm == &init_mm);
679 	WARN_ON_ONCE(mm == current->mm);
680 	WARN_ON_ONCE(mm == current->active_mm);
681 	mm_free_pgd(mm);
682 	destroy_context(mm);
683 	mmu_notifier_subscriptions_destroy(mm);
684 	check_mm(mm);
685 	put_user_ns(mm->user_ns);
686 	free_mm(mm);
687 }
688 EXPORT_SYMBOL_GPL(__mmdrop);
689 
690 static void mmdrop_async_fn(struct work_struct *work)
691 {
692 	struct mm_struct *mm;
693 
694 	mm = container_of(work, struct mm_struct, async_put_work);
695 	__mmdrop(mm);
696 }
697 
698 static void mmdrop_async(struct mm_struct *mm)
699 {
700 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
701 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
702 		schedule_work(&mm->async_put_work);
703 	}
704 }
705 
706 static inline void free_signal_struct(struct signal_struct *sig)
707 {
708 	taskstats_tgid_free(sig);
709 	sched_autogroup_exit(sig);
710 	/*
711 	 * __mmdrop is not safe to call from softirq context on x86 due to
712 	 * pgd_dtor so postpone it to the async context
713 	 */
714 	if (sig->oom_mm)
715 		mmdrop_async(sig->oom_mm);
716 	kmem_cache_free(signal_cachep, sig);
717 }
718 
719 static inline void put_signal_struct(struct signal_struct *sig)
720 {
721 	if (refcount_dec_and_test(&sig->sigcnt))
722 		free_signal_struct(sig);
723 }
724 
725 void __put_task_struct(struct task_struct *tsk)
726 {
727 	WARN_ON(!tsk->exit_state);
728 	WARN_ON(refcount_read(&tsk->usage));
729 	WARN_ON(tsk == current);
730 
731 	cgroup_free(tsk);
732 	task_numa_free(tsk, true);
733 	security_task_free(tsk);
734 	exit_creds(tsk);
735 	delayacct_tsk_free(tsk);
736 	put_signal_struct(tsk->signal);
737 
738 	if (!profile_handoff_task(tsk))
739 		free_task(tsk);
740 }
741 EXPORT_SYMBOL_GPL(__put_task_struct);
742 
743 void __init __weak arch_task_cache_init(void) { }
744 
745 /*
746  * set_max_threads
747  */
748 static void set_max_threads(unsigned int max_threads_suggested)
749 {
750 	u64 threads;
751 	unsigned long nr_pages = totalram_pages();
752 
753 	/*
754 	 * The number of threads shall be limited such that the thread
755 	 * structures may only consume a small part of the available memory.
756 	 */
757 	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
758 		threads = MAX_THREADS;
759 	else
760 		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
761 				    (u64) THREAD_SIZE * 8UL);
762 
763 	if (threads > max_threads_suggested)
764 		threads = max_threads_suggested;
765 
766 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
767 }
768 
769 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
770 /* Initialized by the architecture: */
771 int arch_task_struct_size __read_mostly;
772 #endif
773 
774 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
775 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
776 {
777 	/* Fetch thread_struct whitelist for the architecture. */
778 	arch_thread_struct_whitelist(offset, size);
779 
780 	/*
781 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
782 	 * adjust offset to position of thread_struct in task_struct.
783 	 */
784 	if (unlikely(*size == 0))
785 		*offset = 0;
786 	else
787 		*offset += offsetof(struct task_struct, thread);
788 }
789 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
790 
791 void __init fork_init(void)
792 {
793 	int i;
794 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
795 #ifndef ARCH_MIN_TASKALIGN
796 #define ARCH_MIN_TASKALIGN	0
797 #endif
798 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
799 	unsigned long useroffset, usersize;
800 
801 	/* create a slab on which task_structs can be allocated */
802 	task_struct_whitelist(&useroffset, &usersize);
803 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
804 			arch_task_struct_size, align,
805 			SLAB_PANIC|SLAB_ACCOUNT,
806 			useroffset, usersize, NULL);
807 #endif
808 
809 	/* do the arch specific task caches init */
810 	arch_task_cache_init();
811 
812 	set_max_threads(MAX_THREADS);
813 
814 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
815 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
816 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
817 		init_task.signal->rlim[RLIMIT_NPROC];
818 
819 	for (i = 0; i < UCOUNT_COUNTS; i++) {
820 		init_user_ns.ucount_max[i] = max_threads/2;
821 	}
822 
823 #ifdef CONFIG_VMAP_STACK
824 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
825 			  NULL, free_vm_stack_cache);
826 #endif
827 
828 	scs_init();
829 
830 	lockdep_init_task(&init_task);
831 	uprobes_init();
832 }
833 
834 int __weak arch_dup_task_struct(struct task_struct *dst,
835 					       struct task_struct *src)
836 {
837 	*dst = *src;
838 	return 0;
839 }
840 
841 void set_task_stack_end_magic(struct task_struct *tsk)
842 {
843 	unsigned long *stackend;
844 
845 	stackend = end_of_stack(tsk);
846 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
847 }
848 
849 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
850 {
851 	struct task_struct *tsk;
852 	unsigned long *stack;
853 	struct vm_struct *stack_vm_area __maybe_unused;
854 	int err;
855 
856 	if (node == NUMA_NO_NODE)
857 		node = tsk_fork_get_node(orig);
858 	tsk = alloc_task_struct_node(node);
859 	if (!tsk)
860 		return NULL;
861 
862 	stack = alloc_thread_stack_node(tsk, node);
863 	if (!stack)
864 		goto free_tsk;
865 
866 	if (memcg_charge_kernel_stack(tsk))
867 		goto free_stack;
868 
869 	stack_vm_area = task_stack_vm_area(tsk);
870 
871 	err = arch_dup_task_struct(tsk, orig);
872 
873 	/*
874 	 * arch_dup_task_struct() clobbers the stack-related fields.  Make
875 	 * sure they're properly initialized before using any stack-related
876 	 * functions again.
877 	 */
878 	tsk->stack = stack;
879 #ifdef CONFIG_VMAP_STACK
880 	tsk->stack_vm_area = stack_vm_area;
881 #endif
882 #ifdef CONFIG_THREAD_INFO_IN_TASK
883 	refcount_set(&tsk->stack_refcount, 1);
884 #endif
885 
886 	if (err)
887 		goto free_stack;
888 
889 	err = scs_prepare(tsk, node);
890 	if (err)
891 		goto free_stack;
892 
893 #ifdef CONFIG_SECCOMP
894 	/*
895 	 * We must handle setting up seccomp filters once we're under
896 	 * the sighand lock in case orig has changed between now and
897 	 * then. Until then, filter must be NULL to avoid messing up
898 	 * the usage counts on the error path calling free_task.
899 	 */
900 	tsk->seccomp.filter = NULL;
901 #endif
902 
903 	setup_thread_stack(tsk, orig);
904 	clear_user_return_notifier(tsk);
905 	clear_tsk_need_resched(tsk);
906 	set_task_stack_end_magic(tsk);
907 
908 #ifdef CONFIG_STACKPROTECTOR
909 	tsk->stack_canary = get_random_canary();
910 #endif
911 	if (orig->cpus_ptr == &orig->cpus_mask)
912 		tsk->cpus_ptr = &tsk->cpus_mask;
913 
914 	/*
915 	 * One for the user space visible state that goes away when reaped.
916 	 * One for the scheduler.
917 	 */
918 	refcount_set(&tsk->rcu_users, 2);
919 	/* One for the rcu users */
920 	refcount_set(&tsk->usage, 1);
921 #ifdef CONFIG_BLK_DEV_IO_TRACE
922 	tsk->btrace_seq = 0;
923 #endif
924 	tsk->splice_pipe = NULL;
925 	tsk->task_frag.page = NULL;
926 	tsk->wake_q.next = NULL;
927 
928 	account_kernel_stack(tsk, 1);
929 
930 	kcov_task_init(tsk);
931 
932 #ifdef CONFIG_FAULT_INJECTION
933 	tsk->fail_nth = 0;
934 #endif
935 
936 #ifdef CONFIG_BLK_CGROUP
937 	tsk->throttle_queue = NULL;
938 	tsk->use_memdelay = 0;
939 #endif
940 
941 #ifdef CONFIG_MEMCG
942 	tsk->active_memcg = NULL;
943 #endif
944 	return tsk;
945 
946 free_stack:
947 	free_thread_stack(tsk);
948 free_tsk:
949 	free_task_struct(tsk);
950 	return NULL;
951 }
952 
953 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
954 
955 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
956 
957 static int __init coredump_filter_setup(char *s)
958 {
959 	default_dump_filter =
960 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
961 		MMF_DUMP_FILTER_MASK;
962 	return 1;
963 }
964 
965 __setup("coredump_filter=", coredump_filter_setup);
966 
967 #include <linux/init_task.h>
968 
969 static void mm_init_aio(struct mm_struct *mm)
970 {
971 #ifdef CONFIG_AIO
972 	spin_lock_init(&mm->ioctx_lock);
973 	mm->ioctx_table = NULL;
974 #endif
975 }
976 
977 static __always_inline void mm_clear_owner(struct mm_struct *mm,
978 					   struct task_struct *p)
979 {
980 #ifdef CONFIG_MEMCG
981 	if (mm->owner == p)
982 		WRITE_ONCE(mm->owner, NULL);
983 #endif
984 }
985 
986 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
987 {
988 #ifdef CONFIG_MEMCG
989 	mm->owner = p;
990 #endif
991 }
992 
993 static void mm_init_uprobes_state(struct mm_struct *mm)
994 {
995 #ifdef CONFIG_UPROBES
996 	mm->uprobes_state.xol_area = NULL;
997 #endif
998 }
999 
1000 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1001 	struct user_namespace *user_ns)
1002 {
1003 	mm->mmap = NULL;
1004 	mm->mm_rb = RB_ROOT;
1005 	mm->vmacache_seqnum = 0;
1006 	atomic_set(&mm->mm_users, 1);
1007 	atomic_set(&mm->mm_count, 1);
1008 	mmap_init_lock(mm);
1009 	INIT_LIST_HEAD(&mm->mmlist);
1010 	mm->core_state = NULL;
1011 	mm_pgtables_bytes_init(mm);
1012 	mm->map_count = 0;
1013 	mm->locked_vm = 0;
1014 	atomic_set(&mm->has_pinned, 0);
1015 	atomic64_set(&mm->pinned_vm, 0);
1016 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1017 	spin_lock_init(&mm->page_table_lock);
1018 	spin_lock_init(&mm->arg_lock);
1019 	mm_init_cpumask(mm);
1020 	mm_init_aio(mm);
1021 	mm_init_owner(mm, p);
1022 	RCU_INIT_POINTER(mm->exe_file, NULL);
1023 	mmu_notifier_subscriptions_init(mm);
1024 	init_tlb_flush_pending(mm);
1025 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1026 	mm->pmd_huge_pte = NULL;
1027 #endif
1028 	mm_init_uprobes_state(mm);
1029 
1030 	if (current->mm) {
1031 		mm->flags = current->mm->flags & MMF_INIT_MASK;
1032 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1033 	} else {
1034 		mm->flags = default_dump_filter;
1035 		mm->def_flags = 0;
1036 	}
1037 
1038 	if (mm_alloc_pgd(mm))
1039 		goto fail_nopgd;
1040 
1041 	if (init_new_context(p, mm))
1042 		goto fail_nocontext;
1043 
1044 	mm->user_ns = get_user_ns(user_ns);
1045 	return mm;
1046 
1047 fail_nocontext:
1048 	mm_free_pgd(mm);
1049 fail_nopgd:
1050 	free_mm(mm);
1051 	return NULL;
1052 }
1053 
1054 /*
1055  * Allocate and initialize an mm_struct.
1056  */
1057 struct mm_struct *mm_alloc(void)
1058 {
1059 	struct mm_struct *mm;
1060 
1061 	mm = allocate_mm();
1062 	if (!mm)
1063 		return NULL;
1064 
1065 	memset(mm, 0, sizeof(*mm));
1066 	return mm_init(mm, current, current_user_ns());
1067 }
1068 
1069 static inline void __mmput(struct mm_struct *mm)
1070 {
1071 	VM_BUG_ON(atomic_read(&mm->mm_users));
1072 
1073 	uprobe_clear_state(mm);
1074 	exit_aio(mm);
1075 	ksm_exit(mm);
1076 	khugepaged_exit(mm); /* must run before exit_mmap */
1077 	exit_mmap(mm);
1078 	mm_put_huge_zero_page(mm);
1079 	set_mm_exe_file(mm, NULL);
1080 	if (!list_empty(&mm->mmlist)) {
1081 		spin_lock(&mmlist_lock);
1082 		list_del(&mm->mmlist);
1083 		spin_unlock(&mmlist_lock);
1084 	}
1085 	if (mm->binfmt)
1086 		module_put(mm->binfmt->module);
1087 	mmdrop(mm);
1088 }
1089 
1090 /*
1091  * Decrement the use count and release all resources for an mm.
1092  */
1093 void mmput(struct mm_struct *mm)
1094 {
1095 	might_sleep();
1096 
1097 	if (atomic_dec_and_test(&mm->mm_users))
1098 		__mmput(mm);
1099 }
1100 EXPORT_SYMBOL_GPL(mmput);
1101 
1102 #ifdef CONFIG_MMU
1103 static void mmput_async_fn(struct work_struct *work)
1104 {
1105 	struct mm_struct *mm = container_of(work, struct mm_struct,
1106 					    async_put_work);
1107 
1108 	__mmput(mm);
1109 }
1110 
1111 void mmput_async(struct mm_struct *mm)
1112 {
1113 	if (atomic_dec_and_test(&mm->mm_users)) {
1114 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1115 		schedule_work(&mm->async_put_work);
1116 	}
1117 }
1118 #endif
1119 
1120 /**
1121  * set_mm_exe_file - change a reference to the mm's executable file
1122  *
1123  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1124  *
1125  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1126  * invocations: in mmput() nobody alive left, in execve task is single
1127  * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1128  * mm->exe_file, but does so without using set_mm_exe_file() in order
1129  * to do avoid the need for any locks.
1130  */
1131 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1132 {
1133 	struct file *old_exe_file;
1134 
1135 	/*
1136 	 * It is safe to dereference the exe_file without RCU as
1137 	 * this function is only called if nobody else can access
1138 	 * this mm -- see comment above for justification.
1139 	 */
1140 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1141 
1142 	if (new_exe_file)
1143 		get_file(new_exe_file);
1144 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1145 	if (old_exe_file)
1146 		fput(old_exe_file);
1147 }
1148 
1149 /**
1150  * get_mm_exe_file - acquire a reference to the mm's executable file
1151  *
1152  * Returns %NULL if mm has no associated executable file.
1153  * User must release file via fput().
1154  */
1155 struct file *get_mm_exe_file(struct mm_struct *mm)
1156 {
1157 	struct file *exe_file;
1158 
1159 	rcu_read_lock();
1160 	exe_file = rcu_dereference(mm->exe_file);
1161 	if (exe_file && !get_file_rcu(exe_file))
1162 		exe_file = NULL;
1163 	rcu_read_unlock();
1164 	return exe_file;
1165 }
1166 EXPORT_SYMBOL(get_mm_exe_file);
1167 
1168 /**
1169  * get_task_exe_file - acquire a reference to the task's executable file
1170  *
1171  * Returns %NULL if task's mm (if any) has no associated executable file or
1172  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1173  * User must release file via fput().
1174  */
1175 struct file *get_task_exe_file(struct task_struct *task)
1176 {
1177 	struct file *exe_file = NULL;
1178 	struct mm_struct *mm;
1179 
1180 	task_lock(task);
1181 	mm = task->mm;
1182 	if (mm) {
1183 		if (!(task->flags & PF_KTHREAD))
1184 			exe_file = get_mm_exe_file(mm);
1185 	}
1186 	task_unlock(task);
1187 	return exe_file;
1188 }
1189 EXPORT_SYMBOL(get_task_exe_file);
1190 
1191 /**
1192  * get_task_mm - acquire a reference to the task's mm
1193  *
1194  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1195  * this kernel workthread has transiently adopted a user mm with use_mm,
1196  * to do its AIO) is not set and if so returns a reference to it, after
1197  * bumping up the use count.  User must release the mm via mmput()
1198  * after use.  Typically used by /proc and ptrace.
1199  */
1200 struct mm_struct *get_task_mm(struct task_struct *task)
1201 {
1202 	struct mm_struct *mm;
1203 
1204 	task_lock(task);
1205 	mm = task->mm;
1206 	if (mm) {
1207 		if (task->flags & PF_KTHREAD)
1208 			mm = NULL;
1209 		else
1210 			mmget(mm);
1211 	}
1212 	task_unlock(task);
1213 	return mm;
1214 }
1215 EXPORT_SYMBOL_GPL(get_task_mm);
1216 
1217 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1218 {
1219 	struct mm_struct *mm;
1220 	int err;
1221 
1222 	err =  mutex_lock_killable(&task->signal->exec_update_mutex);
1223 	if (err)
1224 		return ERR_PTR(err);
1225 
1226 	mm = get_task_mm(task);
1227 	if (mm && mm != current->mm &&
1228 			!ptrace_may_access(task, mode)) {
1229 		mmput(mm);
1230 		mm = ERR_PTR(-EACCES);
1231 	}
1232 	mutex_unlock(&task->signal->exec_update_mutex);
1233 
1234 	return mm;
1235 }
1236 
1237 static void complete_vfork_done(struct task_struct *tsk)
1238 {
1239 	struct completion *vfork;
1240 
1241 	task_lock(tsk);
1242 	vfork = tsk->vfork_done;
1243 	if (likely(vfork)) {
1244 		tsk->vfork_done = NULL;
1245 		complete(vfork);
1246 	}
1247 	task_unlock(tsk);
1248 }
1249 
1250 static int wait_for_vfork_done(struct task_struct *child,
1251 				struct completion *vfork)
1252 {
1253 	int killed;
1254 
1255 	freezer_do_not_count();
1256 	cgroup_enter_frozen();
1257 	killed = wait_for_completion_killable(vfork);
1258 	cgroup_leave_frozen(false);
1259 	freezer_count();
1260 
1261 	if (killed) {
1262 		task_lock(child);
1263 		child->vfork_done = NULL;
1264 		task_unlock(child);
1265 	}
1266 
1267 	put_task_struct(child);
1268 	return killed;
1269 }
1270 
1271 /* Please note the differences between mmput and mm_release.
1272  * mmput is called whenever we stop holding onto a mm_struct,
1273  * error success whatever.
1274  *
1275  * mm_release is called after a mm_struct has been removed
1276  * from the current process.
1277  *
1278  * This difference is important for error handling, when we
1279  * only half set up a mm_struct for a new process and need to restore
1280  * the old one.  Because we mmput the new mm_struct before
1281  * restoring the old one. . .
1282  * Eric Biederman 10 January 1998
1283  */
1284 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1285 {
1286 	uprobe_free_utask(tsk);
1287 
1288 	/* Get rid of any cached register state */
1289 	deactivate_mm(tsk, mm);
1290 
1291 	/*
1292 	 * Signal userspace if we're not exiting with a core dump
1293 	 * because we want to leave the value intact for debugging
1294 	 * purposes.
1295 	 */
1296 	if (tsk->clear_child_tid) {
1297 		if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1298 		    atomic_read(&mm->mm_users) > 1) {
1299 			/*
1300 			 * We don't check the error code - if userspace has
1301 			 * not set up a proper pointer then tough luck.
1302 			 */
1303 			put_user(0, tsk->clear_child_tid);
1304 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1305 					1, NULL, NULL, 0, 0);
1306 		}
1307 		tsk->clear_child_tid = NULL;
1308 	}
1309 
1310 	/*
1311 	 * All done, finally we can wake up parent and return this mm to him.
1312 	 * Also kthread_stop() uses this completion for synchronization.
1313 	 */
1314 	if (tsk->vfork_done)
1315 		complete_vfork_done(tsk);
1316 }
1317 
1318 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1319 {
1320 	futex_exit_release(tsk);
1321 	mm_release(tsk, mm);
1322 }
1323 
1324 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1325 {
1326 	futex_exec_release(tsk);
1327 	mm_release(tsk, mm);
1328 }
1329 
1330 /**
1331  * dup_mm() - duplicates an existing mm structure
1332  * @tsk: the task_struct with which the new mm will be associated.
1333  * @oldmm: the mm to duplicate.
1334  *
1335  * Allocates a new mm structure and duplicates the provided @oldmm structure
1336  * content into it.
1337  *
1338  * Return: the duplicated mm or NULL on failure.
1339  */
1340 static struct mm_struct *dup_mm(struct task_struct *tsk,
1341 				struct mm_struct *oldmm)
1342 {
1343 	struct mm_struct *mm;
1344 	int err;
1345 
1346 	mm = allocate_mm();
1347 	if (!mm)
1348 		goto fail_nomem;
1349 
1350 	memcpy(mm, oldmm, sizeof(*mm));
1351 
1352 	if (!mm_init(mm, tsk, mm->user_ns))
1353 		goto fail_nomem;
1354 
1355 	err = dup_mmap(mm, oldmm);
1356 	if (err)
1357 		goto free_pt;
1358 
1359 	mm->hiwater_rss = get_mm_rss(mm);
1360 	mm->hiwater_vm = mm->total_vm;
1361 
1362 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1363 		goto free_pt;
1364 
1365 	return mm;
1366 
1367 free_pt:
1368 	/* don't put binfmt in mmput, we haven't got module yet */
1369 	mm->binfmt = NULL;
1370 	mm_init_owner(mm, NULL);
1371 	mmput(mm);
1372 
1373 fail_nomem:
1374 	return NULL;
1375 }
1376 
1377 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1378 {
1379 	struct mm_struct *mm, *oldmm;
1380 	int retval;
1381 
1382 	tsk->min_flt = tsk->maj_flt = 0;
1383 	tsk->nvcsw = tsk->nivcsw = 0;
1384 #ifdef CONFIG_DETECT_HUNG_TASK
1385 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1386 	tsk->last_switch_time = 0;
1387 #endif
1388 
1389 	tsk->mm = NULL;
1390 	tsk->active_mm = NULL;
1391 
1392 	/*
1393 	 * Are we cloning a kernel thread?
1394 	 *
1395 	 * We need to steal a active VM for that..
1396 	 */
1397 	oldmm = current->mm;
1398 	if (!oldmm)
1399 		return 0;
1400 
1401 	/* initialize the new vmacache entries */
1402 	vmacache_flush(tsk);
1403 
1404 	if (clone_flags & CLONE_VM) {
1405 		mmget(oldmm);
1406 		mm = oldmm;
1407 		goto good_mm;
1408 	}
1409 
1410 	retval = -ENOMEM;
1411 	mm = dup_mm(tsk, current->mm);
1412 	if (!mm)
1413 		goto fail_nomem;
1414 
1415 good_mm:
1416 	tsk->mm = mm;
1417 	tsk->active_mm = mm;
1418 	return 0;
1419 
1420 fail_nomem:
1421 	return retval;
1422 }
1423 
1424 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1425 {
1426 	struct fs_struct *fs = current->fs;
1427 	if (clone_flags & CLONE_FS) {
1428 		/* tsk->fs is already what we want */
1429 		spin_lock(&fs->lock);
1430 		if (fs->in_exec) {
1431 			spin_unlock(&fs->lock);
1432 			return -EAGAIN;
1433 		}
1434 		fs->users++;
1435 		spin_unlock(&fs->lock);
1436 		return 0;
1437 	}
1438 	tsk->fs = copy_fs_struct(fs);
1439 	if (!tsk->fs)
1440 		return -ENOMEM;
1441 	return 0;
1442 }
1443 
1444 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1445 {
1446 	struct files_struct *oldf, *newf;
1447 	int error = 0;
1448 
1449 	/*
1450 	 * A background process may not have any files ...
1451 	 */
1452 	oldf = current->files;
1453 	if (!oldf)
1454 		goto out;
1455 
1456 	if (clone_flags & CLONE_FILES) {
1457 		atomic_inc(&oldf->count);
1458 		goto out;
1459 	}
1460 
1461 	newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1462 	if (!newf)
1463 		goto out;
1464 
1465 	tsk->files = newf;
1466 	error = 0;
1467 out:
1468 	return error;
1469 }
1470 
1471 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1472 {
1473 #ifdef CONFIG_BLOCK
1474 	struct io_context *ioc = current->io_context;
1475 	struct io_context *new_ioc;
1476 
1477 	if (!ioc)
1478 		return 0;
1479 	/*
1480 	 * Share io context with parent, if CLONE_IO is set
1481 	 */
1482 	if (clone_flags & CLONE_IO) {
1483 		ioc_task_link(ioc);
1484 		tsk->io_context = ioc;
1485 	} else if (ioprio_valid(ioc->ioprio)) {
1486 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1487 		if (unlikely(!new_ioc))
1488 			return -ENOMEM;
1489 
1490 		new_ioc->ioprio = ioc->ioprio;
1491 		put_io_context(new_ioc);
1492 	}
1493 #endif
1494 	return 0;
1495 }
1496 
1497 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1498 {
1499 	struct sighand_struct *sig;
1500 
1501 	if (clone_flags & CLONE_SIGHAND) {
1502 		refcount_inc(&current->sighand->count);
1503 		return 0;
1504 	}
1505 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1506 	RCU_INIT_POINTER(tsk->sighand, sig);
1507 	if (!sig)
1508 		return -ENOMEM;
1509 
1510 	refcount_set(&sig->count, 1);
1511 	spin_lock_irq(&current->sighand->siglock);
1512 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1513 	spin_unlock_irq(&current->sighand->siglock);
1514 
1515 	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1516 	if (clone_flags & CLONE_CLEAR_SIGHAND)
1517 		flush_signal_handlers(tsk, 0);
1518 
1519 	return 0;
1520 }
1521 
1522 void __cleanup_sighand(struct sighand_struct *sighand)
1523 {
1524 	if (refcount_dec_and_test(&sighand->count)) {
1525 		signalfd_cleanup(sighand);
1526 		/*
1527 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1528 		 * without an RCU grace period, see __lock_task_sighand().
1529 		 */
1530 		kmem_cache_free(sighand_cachep, sighand);
1531 	}
1532 }
1533 
1534 /*
1535  * Initialize POSIX timer handling for a thread group.
1536  */
1537 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1538 {
1539 	struct posix_cputimers *pct = &sig->posix_cputimers;
1540 	unsigned long cpu_limit;
1541 
1542 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1543 	posix_cputimers_group_init(pct, cpu_limit);
1544 }
1545 
1546 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1547 {
1548 	struct signal_struct *sig;
1549 
1550 	if (clone_flags & CLONE_THREAD)
1551 		return 0;
1552 
1553 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1554 	tsk->signal = sig;
1555 	if (!sig)
1556 		return -ENOMEM;
1557 
1558 	sig->nr_threads = 1;
1559 	atomic_set(&sig->live, 1);
1560 	refcount_set(&sig->sigcnt, 1);
1561 
1562 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1563 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1564 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1565 
1566 	init_waitqueue_head(&sig->wait_chldexit);
1567 	sig->curr_target = tsk;
1568 	init_sigpending(&sig->shared_pending);
1569 	INIT_HLIST_HEAD(&sig->multiprocess);
1570 	seqlock_init(&sig->stats_lock);
1571 	prev_cputime_init(&sig->prev_cputime);
1572 
1573 #ifdef CONFIG_POSIX_TIMERS
1574 	INIT_LIST_HEAD(&sig->posix_timers);
1575 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1576 	sig->real_timer.function = it_real_fn;
1577 #endif
1578 
1579 	task_lock(current->group_leader);
1580 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1581 	task_unlock(current->group_leader);
1582 
1583 	posix_cpu_timers_init_group(sig);
1584 
1585 	tty_audit_fork(sig);
1586 	sched_autogroup_fork(sig);
1587 
1588 	sig->oom_score_adj = current->signal->oom_score_adj;
1589 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1590 
1591 	mutex_init(&sig->cred_guard_mutex);
1592 	mutex_init(&sig->exec_update_mutex);
1593 
1594 	return 0;
1595 }
1596 
1597 static void copy_seccomp(struct task_struct *p)
1598 {
1599 #ifdef CONFIG_SECCOMP
1600 	/*
1601 	 * Must be called with sighand->lock held, which is common to
1602 	 * all threads in the group. Holding cred_guard_mutex is not
1603 	 * needed because this new task is not yet running and cannot
1604 	 * be racing exec.
1605 	 */
1606 	assert_spin_locked(&current->sighand->siglock);
1607 
1608 	/* Ref-count the new filter user, and assign it. */
1609 	get_seccomp_filter(current);
1610 	p->seccomp = current->seccomp;
1611 
1612 	/*
1613 	 * Explicitly enable no_new_privs here in case it got set
1614 	 * between the task_struct being duplicated and holding the
1615 	 * sighand lock. The seccomp state and nnp must be in sync.
1616 	 */
1617 	if (task_no_new_privs(current))
1618 		task_set_no_new_privs(p);
1619 
1620 	/*
1621 	 * If the parent gained a seccomp mode after copying thread
1622 	 * flags and between before we held the sighand lock, we have
1623 	 * to manually enable the seccomp thread flag here.
1624 	 */
1625 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1626 		set_tsk_thread_flag(p, TIF_SECCOMP);
1627 #endif
1628 }
1629 
1630 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1631 {
1632 	current->clear_child_tid = tidptr;
1633 
1634 	return task_pid_vnr(current);
1635 }
1636 
1637 static void rt_mutex_init_task(struct task_struct *p)
1638 {
1639 	raw_spin_lock_init(&p->pi_lock);
1640 #ifdef CONFIG_RT_MUTEXES
1641 	p->pi_waiters = RB_ROOT_CACHED;
1642 	p->pi_top_task = NULL;
1643 	p->pi_blocked_on = NULL;
1644 #endif
1645 }
1646 
1647 static inline void init_task_pid_links(struct task_struct *task)
1648 {
1649 	enum pid_type type;
1650 
1651 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1652 		INIT_HLIST_NODE(&task->pid_links[type]);
1653 	}
1654 }
1655 
1656 static inline void
1657 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1658 {
1659 	if (type == PIDTYPE_PID)
1660 		task->thread_pid = pid;
1661 	else
1662 		task->signal->pids[type] = pid;
1663 }
1664 
1665 static inline void rcu_copy_process(struct task_struct *p)
1666 {
1667 #ifdef CONFIG_PREEMPT_RCU
1668 	p->rcu_read_lock_nesting = 0;
1669 	p->rcu_read_unlock_special.s = 0;
1670 	p->rcu_blocked_node = NULL;
1671 	INIT_LIST_HEAD(&p->rcu_node_entry);
1672 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1673 #ifdef CONFIG_TASKS_RCU
1674 	p->rcu_tasks_holdout = false;
1675 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1676 	p->rcu_tasks_idle_cpu = -1;
1677 #endif /* #ifdef CONFIG_TASKS_RCU */
1678 #ifdef CONFIG_TASKS_TRACE_RCU
1679 	p->trc_reader_nesting = 0;
1680 	p->trc_reader_special.s = 0;
1681 	INIT_LIST_HEAD(&p->trc_holdout_list);
1682 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1683 }
1684 
1685 struct pid *pidfd_pid(const struct file *file)
1686 {
1687 	if (file->f_op == &pidfd_fops)
1688 		return file->private_data;
1689 
1690 	return ERR_PTR(-EBADF);
1691 }
1692 
1693 static int pidfd_release(struct inode *inode, struct file *file)
1694 {
1695 	struct pid *pid = file->private_data;
1696 
1697 	file->private_data = NULL;
1698 	put_pid(pid);
1699 	return 0;
1700 }
1701 
1702 #ifdef CONFIG_PROC_FS
1703 /**
1704  * pidfd_show_fdinfo - print information about a pidfd
1705  * @m: proc fdinfo file
1706  * @f: file referencing a pidfd
1707  *
1708  * Pid:
1709  * This function will print the pid that a given pidfd refers to in the
1710  * pid namespace of the procfs instance.
1711  * If the pid namespace of the process is not a descendant of the pid
1712  * namespace of the procfs instance 0 will be shown as its pid. This is
1713  * similar to calling getppid() on a process whose parent is outside of
1714  * its pid namespace.
1715  *
1716  * NSpid:
1717  * If pid namespaces are supported then this function will also print
1718  * the pid of a given pidfd refers to for all descendant pid namespaces
1719  * starting from the current pid namespace of the instance, i.e. the
1720  * Pid field and the first entry in the NSpid field will be identical.
1721  * If the pid namespace of the process is not a descendant of the pid
1722  * namespace of the procfs instance 0 will be shown as its first NSpid
1723  * entry and no others will be shown.
1724  * Note that this differs from the Pid and NSpid fields in
1725  * /proc/<pid>/status where Pid and NSpid are always shown relative to
1726  * the  pid namespace of the procfs instance. The difference becomes
1727  * obvious when sending around a pidfd between pid namespaces from a
1728  * different branch of the tree, i.e. where no ancestoral relation is
1729  * present between the pid namespaces:
1730  * - create two new pid namespaces ns1 and ns2 in the initial pid
1731  *   namespace (also take care to create new mount namespaces in the
1732  *   new pid namespace and mount procfs)
1733  * - create a process with a pidfd in ns1
1734  * - send pidfd from ns1 to ns2
1735  * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1736  *   have exactly one entry, which is 0
1737  */
1738 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1739 {
1740 	struct pid *pid = f->private_data;
1741 	struct pid_namespace *ns;
1742 	pid_t nr = -1;
1743 
1744 	if (likely(pid_has_task(pid, PIDTYPE_PID))) {
1745 		ns = proc_pid_ns(file_inode(m->file)->i_sb);
1746 		nr = pid_nr_ns(pid, ns);
1747 	}
1748 
1749 	seq_put_decimal_ll(m, "Pid:\t", nr);
1750 
1751 #ifdef CONFIG_PID_NS
1752 	seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1753 	if (nr > 0) {
1754 		int i;
1755 
1756 		/* If nr is non-zero it means that 'pid' is valid and that
1757 		 * ns, i.e. the pid namespace associated with the procfs
1758 		 * instance, is in the pid namespace hierarchy of pid.
1759 		 * Start at one below the already printed level.
1760 		 */
1761 		for (i = ns->level + 1; i <= pid->level; i++)
1762 			seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
1763 	}
1764 #endif
1765 	seq_putc(m, '\n');
1766 }
1767 #endif
1768 
1769 /*
1770  * Poll support for process exit notification.
1771  */
1772 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1773 {
1774 	struct pid *pid = file->private_data;
1775 	__poll_t poll_flags = 0;
1776 
1777 	poll_wait(file, &pid->wait_pidfd, pts);
1778 
1779 	/*
1780 	 * Inform pollers only when the whole thread group exits.
1781 	 * If the thread group leader exits before all other threads in the
1782 	 * group, then poll(2) should block, similar to the wait(2) family.
1783 	 */
1784 	if (thread_group_exited(pid))
1785 		poll_flags = EPOLLIN | EPOLLRDNORM;
1786 
1787 	return poll_flags;
1788 }
1789 
1790 const struct file_operations pidfd_fops = {
1791 	.release = pidfd_release,
1792 	.poll = pidfd_poll,
1793 #ifdef CONFIG_PROC_FS
1794 	.show_fdinfo = pidfd_show_fdinfo,
1795 #endif
1796 };
1797 
1798 static void __delayed_free_task(struct rcu_head *rhp)
1799 {
1800 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1801 
1802 	free_task(tsk);
1803 }
1804 
1805 static __always_inline void delayed_free_task(struct task_struct *tsk)
1806 {
1807 	if (IS_ENABLED(CONFIG_MEMCG))
1808 		call_rcu(&tsk->rcu, __delayed_free_task);
1809 	else
1810 		free_task(tsk);
1811 }
1812 
1813 /*
1814  * This creates a new process as a copy of the old one,
1815  * but does not actually start it yet.
1816  *
1817  * It copies the registers, and all the appropriate
1818  * parts of the process environment (as per the clone
1819  * flags). The actual kick-off is left to the caller.
1820  */
1821 static __latent_entropy struct task_struct *copy_process(
1822 					struct pid *pid,
1823 					int trace,
1824 					int node,
1825 					struct kernel_clone_args *args)
1826 {
1827 	int pidfd = -1, retval;
1828 	struct task_struct *p;
1829 	struct multiprocess_signals delayed;
1830 	struct file *pidfile = NULL;
1831 	u64 clone_flags = args->flags;
1832 	struct nsproxy *nsp = current->nsproxy;
1833 
1834 	/*
1835 	 * Don't allow sharing the root directory with processes in a different
1836 	 * namespace
1837 	 */
1838 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1839 		return ERR_PTR(-EINVAL);
1840 
1841 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1842 		return ERR_PTR(-EINVAL);
1843 
1844 	/*
1845 	 * Thread groups must share signals as well, and detached threads
1846 	 * can only be started up within the thread group.
1847 	 */
1848 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1849 		return ERR_PTR(-EINVAL);
1850 
1851 	/*
1852 	 * Shared signal handlers imply shared VM. By way of the above,
1853 	 * thread groups also imply shared VM. Blocking this case allows
1854 	 * for various simplifications in other code.
1855 	 */
1856 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1857 		return ERR_PTR(-EINVAL);
1858 
1859 	/*
1860 	 * Siblings of global init remain as zombies on exit since they are
1861 	 * not reaped by their parent (swapper). To solve this and to avoid
1862 	 * multi-rooted process trees, prevent global and container-inits
1863 	 * from creating siblings.
1864 	 */
1865 	if ((clone_flags & CLONE_PARENT) &&
1866 				current->signal->flags & SIGNAL_UNKILLABLE)
1867 		return ERR_PTR(-EINVAL);
1868 
1869 	/*
1870 	 * If the new process will be in a different pid or user namespace
1871 	 * do not allow it to share a thread group with the forking task.
1872 	 */
1873 	if (clone_flags & CLONE_THREAD) {
1874 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1875 		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
1876 			return ERR_PTR(-EINVAL);
1877 	}
1878 
1879 	/*
1880 	 * If the new process will be in a different time namespace
1881 	 * do not allow it to share VM or a thread group with the forking task.
1882 	 */
1883 	if (clone_flags & (CLONE_THREAD | CLONE_VM)) {
1884 		if (nsp->time_ns != nsp->time_ns_for_children)
1885 			return ERR_PTR(-EINVAL);
1886 	}
1887 
1888 	if (clone_flags & CLONE_PIDFD) {
1889 		/*
1890 		 * - CLONE_DETACHED is blocked so that we can potentially
1891 		 *   reuse it later for CLONE_PIDFD.
1892 		 * - CLONE_THREAD is blocked until someone really needs it.
1893 		 */
1894 		if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
1895 			return ERR_PTR(-EINVAL);
1896 	}
1897 
1898 	/*
1899 	 * Force any signals received before this point to be delivered
1900 	 * before the fork happens.  Collect up signals sent to multiple
1901 	 * processes that happen during the fork and delay them so that
1902 	 * they appear to happen after the fork.
1903 	 */
1904 	sigemptyset(&delayed.signal);
1905 	INIT_HLIST_NODE(&delayed.node);
1906 
1907 	spin_lock_irq(&current->sighand->siglock);
1908 	if (!(clone_flags & CLONE_THREAD))
1909 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
1910 	recalc_sigpending();
1911 	spin_unlock_irq(&current->sighand->siglock);
1912 	retval = -ERESTARTNOINTR;
1913 	if (signal_pending(current))
1914 		goto fork_out;
1915 
1916 	retval = -ENOMEM;
1917 	p = dup_task_struct(current, node);
1918 	if (!p)
1919 		goto fork_out;
1920 
1921 	/*
1922 	 * This _must_ happen before we call free_task(), i.e. before we jump
1923 	 * to any of the bad_fork_* labels. This is to avoid freeing
1924 	 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1925 	 * kernel threads (PF_KTHREAD).
1926 	 */
1927 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
1928 	/*
1929 	 * Clear TID on mm_release()?
1930 	 */
1931 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
1932 
1933 	ftrace_graph_init_task(p);
1934 
1935 	rt_mutex_init_task(p);
1936 
1937 	lockdep_assert_irqs_enabled();
1938 #ifdef CONFIG_PROVE_LOCKING
1939 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1940 #endif
1941 	retval = -EAGAIN;
1942 	if (atomic_read(&p->real_cred->user->processes) >=
1943 			task_rlimit(p, RLIMIT_NPROC)) {
1944 		if (p->real_cred->user != INIT_USER &&
1945 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1946 			goto bad_fork_free;
1947 	}
1948 	current->flags &= ~PF_NPROC_EXCEEDED;
1949 
1950 	retval = copy_creds(p, clone_flags);
1951 	if (retval < 0)
1952 		goto bad_fork_free;
1953 
1954 	/*
1955 	 * If multiple threads are within copy_process(), then this check
1956 	 * triggers too late. This doesn't hurt, the check is only there
1957 	 * to stop root fork bombs.
1958 	 */
1959 	retval = -EAGAIN;
1960 	if (data_race(nr_threads >= max_threads))
1961 		goto bad_fork_cleanup_count;
1962 
1963 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1964 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1965 	p->flags |= PF_FORKNOEXEC;
1966 	INIT_LIST_HEAD(&p->children);
1967 	INIT_LIST_HEAD(&p->sibling);
1968 	rcu_copy_process(p);
1969 	p->vfork_done = NULL;
1970 	spin_lock_init(&p->alloc_lock);
1971 
1972 	init_sigpending(&p->pending);
1973 
1974 	p->utime = p->stime = p->gtime = 0;
1975 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1976 	p->utimescaled = p->stimescaled = 0;
1977 #endif
1978 	prev_cputime_init(&p->prev_cputime);
1979 
1980 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1981 	seqcount_init(&p->vtime.seqcount);
1982 	p->vtime.starttime = 0;
1983 	p->vtime.state = VTIME_INACTIVE;
1984 #endif
1985 
1986 #if defined(SPLIT_RSS_COUNTING)
1987 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1988 #endif
1989 
1990 	p->default_timer_slack_ns = current->timer_slack_ns;
1991 
1992 #ifdef CONFIG_PSI
1993 	p->psi_flags = 0;
1994 #endif
1995 
1996 	task_io_accounting_init(&p->ioac);
1997 	acct_clear_integrals(p);
1998 
1999 	posix_cputimers_init(&p->posix_cputimers);
2000 
2001 	p->io_context = NULL;
2002 	audit_set_context(p, NULL);
2003 	cgroup_fork(p);
2004 #ifdef CONFIG_NUMA
2005 	p->mempolicy = mpol_dup(p->mempolicy);
2006 	if (IS_ERR(p->mempolicy)) {
2007 		retval = PTR_ERR(p->mempolicy);
2008 		p->mempolicy = NULL;
2009 		goto bad_fork_cleanup_threadgroup_lock;
2010 	}
2011 #endif
2012 #ifdef CONFIG_CPUSETS
2013 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2014 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2015 	seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2016 #endif
2017 #ifdef CONFIG_TRACE_IRQFLAGS
2018 	memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2019 	p->irqtrace.hardirq_disable_ip	= _THIS_IP_;
2020 	p->irqtrace.softirq_enable_ip	= _THIS_IP_;
2021 	p->softirqs_enabled		= 1;
2022 	p->softirq_context		= 0;
2023 #endif
2024 
2025 	p->pagefault_disabled = 0;
2026 
2027 #ifdef CONFIG_LOCKDEP
2028 	lockdep_init_task(p);
2029 #endif
2030 
2031 #ifdef CONFIG_DEBUG_MUTEXES
2032 	p->blocked_on = NULL; /* not blocked yet */
2033 #endif
2034 #ifdef CONFIG_BCACHE
2035 	p->sequential_io	= 0;
2036 	p->sequential_io_avg	= 0;
2037 #endif
2038 
2039 	/* Perform scheduler related setup. Assign this task to a CPU. */
2040 	retval = sched_fork(clone_flags, p);
2041 	if (retval)
2042 		goto bad_fork_cleanup_policy;
2043 
2044 	retval = perf_event_init_task(p);
2045 	if (retval)
2046 		goto bad_fork_cleanup_policy;
2047 	retval = audit_alloc(p);
2048 	if (retval)
2049 		goto bad_fork_cleanup_perf;
2050 	/* copy all the process information */
2051 	shm_init_task(p);
2052 	retval = security_task_alloc(p, clone_flags);
2053 	if (retval)
2054 		goto bad_fork_cleanup_audit;
2055 	retval = copy_semundo(clone_flags, p);
2056 	if (retval)
2057 		goto bad_fork_cleanup_security;
2058 	retval = copy_files(clone_flags, p);
2059 	if (retval)
2060 		goto bad_fork_cleanup_semundo;
2061 	retval = copy_fs(clone_flags, p);
2062 	if (retval)
2063 		goto bad_fork_cleanup_files;
2064 	retval = copy_sighand(clone_flags, p);
2065 	if (retval)
2066 		goto bad_fork_cleanup_fs;
2067 	retval = copy_signal(clone_flags, p);
2068 	if (retval)
2069 		goto bad_fork_cleanup_sighand;
2070 	retval = copy_mm(clone_flags, p);
2071 	if (retval)
2072 		goto bad_fork_cleanup_signal;
2073 	retval = copy_namespaces(clone_flags, p);
2074 	if (retval)
2075 		goto bad_fork_cleanup_mm;
2076 	retval = copy_io(clone_flags, p);
2077 	if (retval)
2078 		goto bad_fork_cleanup_namespaces;
2079 	retval = copy_thread(clone_flags, args->stack, args->stack_size, p, args->tls);
2080 	if (retval)
2081 		goto bad_fork_cleanup_io;
2082 
2083 	stackleak_task_init(p);
2084 
2085 	if (pid != &init_struct_pid) {
2086 		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2087 				args->set_tid_size);
2088 		if (IS_ERR(pid)) {
2089 			retval = PTR_ERR(pid);
2090 			goto bad_fork_cleanup_thread;
2091 		}
2092 	}
2093 
2094 	/*
2095 	 * This has to happen after we've potentially unshared the file
2096 	 * descriptor table (so that the pidfd doesn't leak into the child
2097 	 * if the fd table isn't shared).
2098 	 */
2099 	if (clone_flags & CLONE_PIDFD) {
2100 		retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2101 		if (retval < 0)
2102 			goto bad_fork_free_pid;
2103 
2104 		pidfd = retval;
2105 
2106 		pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2107 					      O_RDWR | O_CLOEXEC);
2108 		if (IS_ERR(pidfile)) {
2109 			put_unused_fd(pidfd);
2110 			retval = PTR_ERR(pidfile);
2111 			goto bad_fork_free_pid;
2112 		}
2113 		get_pid(pid);	/* held by pidfile now */
2114 
2115 		retval = put_user(pidfd, args->pidfd);
2116 		if (retval)
2117 			goto bad_fork_put_pidfd;
2118 	}
2119 
2120 #ifdef CONFIG_BLOCK
2121 	p->plug = NULL;
2122 #endif
2123 	futex_init_task(p);
2124 
2125 	/*
2126 	 * sigaltstack should be cleared when sharing the same VM
2127 	 */
2128 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2129 		sas_ss_reset(p);
2130 
2131 	/*
2132 	 * Syscall tracing and stepping should be turned off in the
2133 	 * child regardless of CLONE_PTRACE.
2134 	 */
2135 	user_disable_single_step(p);
2136 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
2137 #ifdef TIF_SYSCALL_EMU
2138 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
2139 #endif
2140 	clear_tsk_latency_tracing(p);
2141 
2142 	/* ok, now we should be set up.. */
2143 	p->pid = pid_nr(pid);
2144 	if (clone_flags & CLONE_THREAD) {
2145 		p->exit_signal = -1;
2146 		p->group_leader = current->group_leader;
2147 		p->tgid = current->tgid;
2148 	} else {
2149 		if (clone_flags & CLONE_PARENT)
2150 			p->exit_signal = current->group_leader->exit_signal;
2151 		else
2152 			p->exit_signal = args->exit_signal;
2153 		p->group_leader = p;
2154 		p->tgid = p->pid;
2155 	}
2156 
2157 	p->nr_dirtied = 0;
2158 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2159 	p->dirty_paused_when = 0;
2160 
2161 	p->pdeath_signal = 0;
2162 	INIT_LIST_HEAD(&p->thread_group);
2163 	p->task_works = NULL;
2164 
2165 	/*
2166 	 * Ensure that the cgroup subsystem policies allow the new process to be
2167 	 * forked. It should be noted the the new process's css_set can be changed
2168 	 * between here and cgroup_post_fork() if an organisation operation is in
2169 	 * progress.
2170 	 */
2171 	retval = cgroup_can_fork(p, args);
2172 	if (retval)
2173 		goto bad_fork_put_pidfd;
2174 
2175 	/*
2176 	 * From this point on we must avoid any synchronous user-space
2177 	 * communication until we take the tasklist-lock. In particular, we do
2178 	 * not want user-space to be able to predict the process start-time by
2179 	 * stalling fork(2) after we recorded the start_time but before it is
2180 	 * visible to the system.
2181 	 */
2182 
2183 	p->start_time = ktime_get_ns();
2184 	p->start_boottime = ktime_get_boottime_ns();
2185 
2186 	/*
2187 	 * Make it visible to the rest of the system, but dont wake it up yet.
2188 	 * Need tasklist lock for parent etc handling!
2189 	 */
2190 	write_lock_irq(&tasklist_lock);
2191 
2192 	/* CLONE_PARENT re-uses the old parent */
2193 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2194 		p->real_parent = current->real_parent;
2195 		p->parent_exec_id = current->parent_exec_id;
2196 	} else {
2197 		p->real_parent = current;
2198 		p->parent_exec_id = current->self_exec_id;
2199 	}
2200 
2201 	klp_copy_process(p);
2202 
2203 	spin_lock(&current->sighand->siglock);
2204 
2205 	/*
2206 	 * Copy seccomp details explicitly here, in case they were changed
2207 	 * before holding sighand lock.
2208 	 */
2209 	copy_seccomp(p);
2210 
2211 	rseq_fork(p, clone_flags);
2212 
2213 	/* Don't start children in a dying pid namespace */
2214 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2215 		retval = -ENOMEM;
2216 		goto bad_fork_cancel_cgroup;
2217 	}
2218 
2219 	/* Let kill terminate clone/fork in the middle */
2220 	if (fatal_signal_pending(current)) {
2221 		retval = -EINTR;
2222 		goto bad_fork_cancel_cgroup;
2223 	}
2224 
2225 	/* past the last point of failure */
2226 	if (pidfile)
2227 		fd_install(pidfd, pidfile);
2228 
2229 	init_task_pid_links(p);
2230 	if (likely(p->pid)) {
2231 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2232 
2233 		init_task_pid(p, PIDTYPE_PID, pid);
2234 		if (thread_group_leader(p)) {
2235 			init_task_pid(p, PIDTYPE_TGID, pid);
2236 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2237 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2238 
2239 			if (is_child_reaper(pid)) {
2240 				ns_of_pid(pid)->child_reaper = p;
2241 				p->signal->flags |= SIGNAL_UNKILLABLE;
2242 			}
2243 			p->signal->shared_pending.signal = delayed.signal;
2244 			p->signal->tty = tty_kref_get(current->signal->tty);
2245 			/*
2246 			 * Inherit has_child_subreaper flag under the same
2247 			 * tasklist_lock with adding child to the process tree
2248 			 * for propagate_has_child_subreaper optimization.
2249 			 */
2250 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2251 							 p->real_parent->signal->is_child_subreaper;
2252 			list_add_tail(&p->sibling, &p->real_parent->children);
2253 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2254 			attach_pid(p, PIDTYPE_TGID);
2255 			attach_pid(p, PIDTYPE_PGID);
2256 			attach_pid(p, PIDTYPE_SID);
2257 			__this_cpu_inc(process_counts);
2258 		} else {
2259 			current->signal->nr_threads++;
2260 			atomic_inc(&current->signal->live);
2261 			refcount_inc(&current->signal->sigcnt);
2262 			task_join_group_stop(p);
2263 			list_add_tail_rcu(&p->thread_group,
2264 					  &p->group_leader->thread_group);
2265 			list_add_tail_rcu(&p->thread_node,
2266 					  &p->signal->thread_head);
2267 		}
2268 		attach_pid(p, PIDTYPE_PID);
2269 		nr_threads++;
2270 	}
2271 	total_forks++;
2272 	hlist_del_init(&delayed.node);
2273 	spin_unlock(&current->sighand->siglock);
2274 	syscall_tracepoint_update(p);
2275 	write_unlock_irq(&tasklist_lock);
2276 
2277 	proc_fork_connector(p);
2278 	sched_post_fork(p);
2279 	cgroup_post_fork(p, args);
2280 	perf_event_fork(p);
2281 
2282 	trace_task_newtask(p, clone_flags);
2283 	uprobe_copy_process(p, clone_flags);
2284 
2285 	return p;
2286 
2287 bad_fork_cancel_cgroup:
2288 	spin_unlock(&current->sighand->siglock);
2289 	write_unlock_irq(&tasklist_lock);
2290 	cgroup_cancel_fork(p, args);
2291 bad_fork_put_pidfd:
2292 	if (clone_flags & CLONE_PIDFD) {
2293 		fput(pidfile);
2294 		put_unused_fd(pidfd);
2295 	}
2296 bad_fork_free_pid:
2297 	if (pid != &init_struct_pid)
2298 		free_pid(pid);
2299 bad_fork_cleanup_thread:
2300 	exit_thread(p);
2301 bad_fork_cleanup_io:
2302 	if (p->io_context)
2303 		exit_io_context(p);
2304 bad_fork_cleanup_namespaces:
2305 	exit_task_namespaces(p);
2306 bad_fork_cleanup_mm:
2307 	if (p->mm) {
2308 		mm_clear_owner(p->mm, p);
2309 		mmput(p->mm);
2310 	}
2311 bad_fork_cleanup_signal:
2312 	if (!(clone_flags & CLONE_THREAD))
2313 		free_signal_struct(p->signal);
2314 bad_fork_cleanup_sighand:
2315 	__cleanup_sighand(p->sighand);
2316 bad_fork_cleanup_fs:
2317 	exit_fs(p); /* blocking */
2318 bad_fork_cleanup_files:
2319 	exit_files(p); /* blocking */
2320 bad_fork_cleanup_semundo:
2321 	exit_sem(p);
2322 bad_fork_cleanup_security:
2323 	security_task_free(p);
2324 bad_fork_cleanup_audit:
2325 	audit_free(p);
2326 bad_fork_cleanup_perf:
2327 	perf_event_free_task(p);
2328 bad_fork_cleanup_policy:
2329 	lockdep_free_task(p);
2330 #ifdef CONFIG_NUMA
2331 	mpol_put(p->mempolicy);
2332 bad_fork_cleanup_threadgroup_lock:
2333 #endif
2334 	delayacct_tsk_free(p);
2335 bad_fork_cleanup_count:
2336 	atomic_dec(&p->cred->user->processes);
2337 	exit_creds(p);
2338 bad_fork_free:
2339 	p->state = TASK_DEAD;
2340 	put_task_stack(p);
2341 	delayed_free_task(p);
2342 fork_out:
2343 	spin_lock_irq(&current->sighand->siglock);
2344 	hlist_del_init(&delayed.node);
2345 	spin_unlock_irq(&current->sighand->siglock);
2346 	return ERR_PTR(retval);
2347 }
2348 
2349 static inline void init_idle_pids(struct task_struct *idle)
2350 {
2351 	enum pid_type type;
2352 
2353 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2354 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2355 		init_task_pid(idle, type, &init_struct_pid);
2356 	}
2357 }
2358 
2359 struct task_struct *fork_idle(int cpu)
2360 {
2361 	struct task_struct *task;
2362 	struct kernel_clone_args args = {
2363 		.flags = CLONE_VM,
2364 	};
2365 
2366 	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2367 	if (!IS_ERR(task)) {
2368 		init_idle_pids(task);
2369 		init_idle(task, cpu);
2370 	}
2371 
2372 	return task;
2373 }
2374 
2375 struct mm_struct *copy_init_mm(void)
2376 {
2377 	return dup_mm(NULL, &init_mm);
2378 }
2379 
2380 /*
2381  *  Ok, this is the main fork-routine.
2382  *
2383  * It copies the process, and if successful kick-starts
2384  * it and waits for it to finish using the VM if required.
2385  *
2386  * args->exit_signal is expected to be checked for sanity by the caller.
2387  */
2388 long _do_fork(struct kernel_clone_args *args)
2389 {
2390 	u64 clone_flags = args->flags;
2391 	struct completion vfork;
2392 	struct pid *pid;
2393 	struct task_struct *p;
2394 	int trace = 0;
2395 	long nr;
2396 
2397 	/*
2398 	 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2399 	 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2400 	 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2401 	 * field in struct clone_args and it still doesn't make sense to have
2402 	 * them both point at the same memory location. Performing this check
2403 	 * here has the advantage that we don't need to have a separate helper
2404 	 * to check for legacy clone().
2405 	 */
2406 	if ((args->flags & CLONE_PIDFD) &&
2407 	    (args->flags & CLONE_PARENT_SETTID) &&
2408 	    (args->pidfd == args->parent_tid))
2409 		return -EINVAL;
2410 
2411 	/*
2412 	 * Determine whether and which event to report to ptracer.  When
2413 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2414 	 * requested, no event is reported; otherwise, report if the event
2415 	 * for the type of forking is enabled.
2416 	 */
2417 	if (!(clone_flags & CLONE_UNTRACED)) {
2418 		if (clone_flags & CLONE_VFORK)
2419 			trace = PTRACE_EVENT_VFORK;
2420 		else if (args->exit_signal != SIGCHLD)
2421 			trace = PTRACE_EVENT_CLONE;
2422 		else
2423 			trace = PTRACE_EVENT_FORK;
2424 
2425 		if (likely(!ptrace_event_enabled(current, trace)))
2426 			trace = 0;
2427 	}
2428 
2429 	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2430 	add_latent_entropy();
2431 
2432 	if (IS_ERR(p))
2433 		return PTR_ERR(p);
2434 
2435 	/*
2436 	 * Do this prior waking up the new thread - the thread pointer
2437 	 * might get invalid after that point, if the thread exits quickly.
2438 	 */
2439 	trace_sched_process_fork(current, p);
2440 
2441 	pid = get_task_pid(p, PIDTYPE_PID);
2442 	nr = pid_vnr(pid);
2443 
2444 	if (clone_flags & CLONE_PARENT_SETTID)
2445 		put_user(nr, args->parent_tid);
2446 
2447 	if (clone_flags & CLONE_VFORK) {
2448 		p->vfork_done = &vfork;
2449 		init_completion(&vfork);
2450 		get_task_struct(p);
2451 	}
2452 
2453 	wake_up_new_task(p);
2454 
2455 	/* forking complete and child started to run, tell ptracer */
2456 	if (unlikely(trace))
2457 		ptrace_event_pid(trace, pid);
2458 
2459 	if (clone_flags & CLONE_VFORK) {
2460 		if (!wait_for_vfork_done(p, &vfork))
2461 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2462 	}
2463 
2464 	put_pid(pid);
2465 	return nr;
2466 }
2467 
2468 /*
2469  * Create a kernel thread.
2470  */
2471 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2472 {
2473 	struct kernel_clone_args args = {
2474 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2475 				    CLONE_UNTRACED) & ~CSIGNAL),
2476 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2477 		.stack		= (unsigned long)fn,
2478 		.stack_size	= (unsigned long)arg,
2479 	};
2480 
2481 	return _do_fork(&args);
2482 }
2483 
2484 #ifdef __ARCH_WANT_SYS_FORK
2485 SYSCALL_DEFINE0(fork)
2486 {
2487 #ifdef CONFIG_MMU
2488 	struct kernel_clone_args args = {
2489 		.exit_signal = SIGCHLD,
2490 	};
2491 
2492 	return _do_fork(&args);
2493 #else
2494 	/* can not support in nommu mode */
2495 	return -EINVAL;
2496 #endif
2497 }
2498 #endif
2499 
2500 #ifdef __ARCH_WANT_SYS_VFORK
2501 SYSCALL_DEFINE0(vfork)
2502 {
2503 	struct kernel_clone_args args = {
2504 		.flags		= CLONE_VFORK | CLONE_VM,
2505 		.exit_signal	= SIGCHLD,
2506 	};
2507 
2508 	return _do_fork(&args);
2509 }
2510 #endif
2511 
2512 #ifdef __ARCH_WANT_SYS_CLONE
2513 #ifdef CONFIG_CLONE_BACKWARDS
2514 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2515 		 int __user *, parent_tidptr,
2516 		 unsigned long, tls,
2517 		 int __user *, child_tidptr)
2518 #elif defined(CONFIG_CLONE_BACKWARDS2)
2519 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2520 		 int __user *, parent_tidptr,
2521 		 int __user *, child_tidptr,
2522 		 unsigned long, tls)
2523 #elif defined(CONFIG_CLONE_BACKWARDS3)
2524 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2525 		int, stack_size,
2526 		int __user *, parent_tidptr,
2527 		int __user *, child_tidptr,
2528 		unsigned long, tls)
2529 #else
2530 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2531 		 int __user *, parent_tidptr,
2532 		 int __user *, child_tidptr,
2533 		 unsigned long, tls)
2534 #endif
2535 {
2536 	struct kernel_clone_args args = {
2537 		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
2538 		.pidfd		= parent_tidptr,
2539 		.child_tid	= child_tidptr,
2540 		.parent_tid	= parent_tidptr,
2541 		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
2542 		.stack		= newsp,
2543 		.tls		= tls,
2544 	};
2545 
2546 	return _do_fork(&args);
2547 }
2548 #endif
2549 
2550 #ifdef __ARCH_WANT_SYS_CLONE3
2551 
2552 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2553 					      struct clone_args __user *uargs,
2554 					      size_t usize)
2555 {
2556 	int err;
2557 	struct clone_args args;
2558 	pid_t *kset_tid = kargs->set_tid;
2559 
2560 	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2561 		     CLONE_ARGS_SIZE_VER0);
2562 	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2563 		     CLONE_ARGS_SIZE_VER1);
2564 	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2565 		     CLONE_ARGS_SIZE_VER2);
2566 	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2567 
2568 	if (unlikely(usize > PAGE_SIZE))
2569 		return -E2BIG;
2570 	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2571 		return -EINVAL;
2572 
2573 	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2574 	if (err)
2575 		return err;
2576 
2577 	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2578 		return -EINVAL;
2579 
2580 	if (unlikely(!args.set_tid && args.set_tid_size > 0))
2581 		return -EINVAL;
2582 
2583 	if (unlikely(args.set_tid && args.set_tid_size == 0))
2584 		return -EINVAL;
2585 
2586 	/*
2587 	 * Verify that higher 32bits of exit_signal are unset and that
2588 	 * it is a valid signal
2589 	 */
2590 	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2591 		     !valid_signal(args.exit_signal)))
2592 		return -EINVAL;
2593 
2594 	if ((args.flags & CLONE_INTO_CGROUP) &&
2595 	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2596 		return -EINVAL;
2597 
2598 	*kargs = (struct kernel_clone_args){
2599 		.flags		= args.flags,
2600 		.pidfd		= u64_to_user_ptr(args.pidfd),
2601 		.child_tid	= u64_to_user_ptr(args.child_tid),
2602 		.parent_tid	= u64_to_user_ptr(args.parent_tid),
2603 		.exit_signal	= args.exit_signal,
2604 		.stack		= args.stack,
2605 		.stack_size	= args.stack_size,
2606 		.tls		= args.tls,
2607 		.set_tid_size	= args.set_tid_size,
2608 		.cgroup		= args.cgroup,
2609 	};
2610 
2611 	if (args.set_tid &&
2612 		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2613 			(kargs->set_tid_size * sizeof(pid_t))))
2614 		return -EFAULT;
2615 
2616 	kargs->set_tid = kset_tid;
2617 
2618 	return 0;
2619 }
2620 
2621 /**
2622  * clone3_stack_valid - check and prepare stack
2623  * @kargs: kernel clone args
2624  *
2625  * Verify that the stack arguments userspace gave us are sane.
2626  * In addition, set the stack direction for userspace since it's easy for us to
2627  * determine.
2628  */
2629 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2630 {
2631 	if (kargs->stack == 0) {
2632 		if (kargs->stack_size > 0)
2633 			return false;
2634 	} else {
2635 		if (kargs->stack_size == 0)
2636 			return false;
2637 
2638 		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2639 			return false;
2640 
2641 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2642 		kargs->stack += kargs->stack_size;
2643 #endif
2644 	}
2645 
2646 	return true;
2647 }
2648 
2649 static bool clone3_args_valid(struct kernel_clone_args *kargs)
2650 {
2651 	/* Verify that no unknown flags are passed along. */
2652 	if (kargs->flags &
2653 	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
2654 		return false;
2655 
2656 	/*
2657 	 * - make the CLONE_DETACHED bit reuseable for clone3
2658 	 * - make the CSIGNAL bits reuseable for clone3
2659 	 */
2660 	if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2661 		return false;
2662 
2663 	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2664 	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2665 		return false;
2666 
2667 	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2668 	    kargs->exit_signal)
2669 		return false;
2670 
2671 	if (!clone3_stack_valid(kargs))
2672 		return false;
2673 
2674 	return true;
2675 }
2676 
2677 /**
2678  * clone3 - create a new process with specific properties
2679  * @uargs: argument structure
2680  * @size:  size of @uargs
2681  *
2682  * clone3() is the extensible successor to clone()/clone2().
2683  * It takes a struct as argument that is versioned by its size.
2684  *
2685  * Return: On success, a positive PID for the child process.
2686  *         On error, a negative errno number.
2687  */
2688 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2689 {
2690 	int err;
2691 
2692 	struct kernel_clone_args kargs;
2693 	pid_t set_tid[MAX_PID_NS_LEVEL];
2694 
2695 	kargs.set_tid = set_tid;
2696 
2697 	err = copy_clone_args_from_user(&kargs, uargs, size);
2698 	if (err)
2699 		return err;
2700 
2701 	if (!clone3_args_valid(&kargs))
2702 		return -EINVAL;
2703 
2704 	return _do_fork(&kargs);
2705 }
2706 #endif
2707 
2708 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2709 {
2710 	struct task_struct *leader, *parent, *child;
2711 	int res;
2712 
2713 	read_lock(&tasklist_lock);
2714 	leader = top = top->group_leader;
2715 down:
2716 	for_each_thread(leader, parent) {
2717 		list_for_each_entry(child, &parent->children, sibling) {
2718 			res = visitor(child, data);
2719 			if (res) {
2720 				if (res < 0)
2721 					goto out;
2722 				leader = child;
2723 				goto down;
2724 			}
2725 up:
2726 			;
2727 		}
2728 	}
2729 
2730 	if (leader != top) {
2731 		child = leader;
2732 		parent = child->real_parent;
2733 		leader = parent->group_leader;
2734 		goto up;
2735 	}
2736 out:
2737 	read_unlock(&tasklist_lock);
2738 }
2739 
2740 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2741 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2742 #endif
2743 
2744 static void sighand_ctor(void *data)
2745 {
2746 	struct sighand_struct *sighand = data;
2747 
2748 	spin_lock_init(&sighand->siglock);
2749 	init_waitqueue_head(&sighand->signalfd_wqh);
2750 }
2751 
2752 void __init proc_caches_init(void)
2753 {
2754 	unsigned int mm_size;
2755 
2756 	sighand_cachep = kmem_cache_create("sighand_cache",
2757 			sizeof(struct sighand_struct), 0,
2758 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2759 			SLAB_ACCOUNT, sighand_ctor);
2760 	signal_cachep = kmem_cache_create("signal_cache",
2761 			sizeof(struct signal_struct), 0,
2762 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2763 			NULL);
2764 	files_cachep = kmem_cache_create("files_cache",
2765 			sizeof(struct files_struct), 0,
2766 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2767 			NULL);
2768 	fs_cachep = kmem_cache_create("fs_cache",
2769 			sizeof(struct fs_struct), 0,
2770 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2771 			NULL);
2772 
2773 	/*
2774 	 * The mm_cpumask is located at the end of mm_struct, and is
2775 	 * dynamically sized based on the maximum CPU number this system
2776 	 * can have, taking hotplug into account (nr_cpu_ids).
2777 	 */
2778 	mm_size = sizeof(struct mm_struct) + cpumask_size();
2779 
2780 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
2781 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2782 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2783 			offsetof(struct mm_struct, saved_auxv),
2784 			sizeof_field(struct mm_struct, saved_auxv),
2785 			NULL);
2786 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2787 	mmap_init();
2788 	nsproxy_cache_init();
2789 }
2790 
2791 /*
2792  * Check constraints on flags passed to the unshare system call.
2793  */
2794 static int check_unshare_flags(unsigned long unshare_flags)
2795 {
2796 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2797 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2798 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2799 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
2800 				CLONE_NEWTIME))
2801 		return -EINVAL;
2802 	/*
2803 	 * Not implemented, but pretend it works if there is nothing
2804 	 * to unshare.  Note that unsharing the address space or the
2805 	 * signal handlers also need to unshare the signal queues (aka
2806 	 * CLONE_THREAD).
2807 	 */
2808 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2809 		if (!thread_group_empty(current))
2810 			return -EINVAL;
2811 	}
2812 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2813 		if (refcount_read(&current->sighand->count) > 1)
2814 			return -EINVAL;
2815 	}
2816 	if (unshare_flags & CLONE_VM) {
2817 		if (!current_is_single_threaded())
2818 			return -EINVAL;
2819 	}
2820 
2821 	return 0;
2822 }
2823 
2824 /*
2825  * Unshare the filesystem structure if it is being shared
2826  */
2827 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2828 {
2829 	struct fs_struct *fs = current->fs;
2830 
2831 	if (!(unshare_flags & CLONE_FS) || !fs)
2832 		return 0;
2833 
2834 	/* don't need lock here; in the worst case we'll do useless copy */
2835 	if (fs->users == 1)
2836 		return 0;
2837 
2838 	*new_fsp = copy_fs_struct(fs);
2839 	if (!*new_fsp)
2840 		return -ENOMEM;
2841 
2842 	return 0;
2843 }
2844 
2845 /*
2846  * Unshare file descriptor table if it is being shared
2847  */
2848 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
2849 	       struct files_struct **new_fdp)
2850 {
2851 	struct files_struct *fd = current->files;
2852 	int error = 0;
2853 
2854 	if ((unshare_flags & CLONE_FILES) &&
2855 	    (fd && atomic_read(&fd->count) > 1)) {
2856 		*new_fdp = dup_fd(fd, max_fds, &error);
2857 		if (!*new_fdp)
2858 			return error;
2859 	}
2860 
2861 	return 0;
2862 }
2863 
2864 /*
2865  * unshare allows a process to 'unshare' part of the process
2866  * context which was originally shared using clone.  copy_*
2867  * functions used by _do_fork() cannot be used here directly
2868  * because they modify an inactive task_struct that is being
2869  * constructed. Here we are modifying the current, active,
2870  * task_struct.
2871  */
2872 int ksys_unshare(unsigned long unshare_flags)
2873 {
2874 	struct fs_struct *fs, *new_fs = NULL;
2875 	struct files_struct *fd, *new_fd = NULL;
2876 	struct cred *new_cred = NULL;
2877 	struct nsproxy *new_nsproxy = NULL;
2878 	int do_sysvsem = 0;
2879 	int err;
2880 
2881 	/*
2882 	 * If unsharing a user namespace must also unshare the thread group
2883 	 * and unshare the filesystem root and working directories.
2884 	 */
2885 	if (unshare_flags & CLONE_NEWUSER)
2886 		unshare_flags |= CLONE_THREAD | CLONE_FS;
2887 	/*
2888 	 * If unsharing vm, must also unshare signal handlers.
2889 	 */
2890 	if (unshare_flags & CLONE_VM)
2891 		unshare_flags |= CLONE_SIGHAND;
2892 	/*
2893 	 * If unsharing a signal handlers, must also unshare the signal queues.
2894 	 */
2895 	if (unshare_flags & CLONE_SIGHAND)
2896 		unshare_flags |= CLONE_THREAD;
2897 	/*
2898 	 * If unsharing namespace, must also unshare filesystem information.
2899 	 */
2900 	if (unshare_flags & CLONE_NEWNS)
2901 		unshare_flags |= CLONE_FS;
2902 
2903 	err = check_unshare_flags(unshare_flags);
2904 	if (err)
2905 		goto bad_unshare_out;
2906 	/*
2907 	 * CLONE_NEWIPC must also detach from the undolist: after switching
2908 	 * to a new ipc namespace, the semaphore arrays from the old
2909 	 * namespace are unreachable.
2910 	 */
2911 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2912 		do_sysvsem = 1;
2913 	err = unshare_fs(unshare_flags, &new_fs);
2914 	if (err)
2915 		goto bad_unshare_out;
2916 	err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
2917 	if (err)
2918 		goto bad_unshare_cleanup_fs;
2919 	err = unshare_userns(unshare_flags, &new_cred);
2920 	if (err)
2921 		goto bad_unshare_cleanup_fd;
2922 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2923 					 new_cred, new_fs);
2924 	if (err)
2925 		goto bad_unshare_cleanup_cred;
2926 
2927 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2928 		if (do_sysvsem) {
2929 			/*
2930 			 * CLONE_SYSVSEM is equivalent to sys_exit().
2931 			 */
2932 			exit_sem(current);
2933 		}
2934 		if (unshare_flags & CLONE_NEWIPC) {
2935 			/* Orphan segments in old ns (see sem above). */
2936 			exit_shm(current);
2937 			shm_init_task(current);
2938 		}
2939 
2940 		if (new_nsproxy)
2941 			switch_task_namespaces(current, new_nsproxy);
2942 
2943 		task_lock(current);
2944 
2945 		if (new_fs) {
2946 			fs = current->fs;
2947 			spin_lock(&fs->lock);
2948 			current->fs = new_fs;
2949 			if (--fs->users)
2950 				new_fs = NULL;
2951 			else
2952 				new_fs = fs;
2953 			spin_unlock(&fs->lock);
2954 		}
2955 
2956 		if (new_fd) {
2957 			fd = current->files;
2958 			current->files = new_fd;
2959 			new_fd = fd;
2960 		}
2961 
2962 		task_unlock(current);
2963 
2964 		if (new_cred) {
2965 			/* Install the new user namespace */
2966 			commit_creds(new_cred);
2967 			new_cred = NULL;
2968 		}
2969 	}
2970 
2971 	perf_event_namespaces(current);
2972 
2973 bad_unshare_cleanup_cred:
2974 	if (new_cred)
2975 		put_cred(new_cred);
2976 bad_unshare_cleanup_fd:
2977 	if (new_fd)
2978 		put_files_struct(new_fd);
2979 
2980 bad_unshare_cleanup_fs:
2981 	if (new_fs)
2982 		free_fs_struct(new_fs);
2983 
2984 bad_unshare_out:
2985 	return err;
2986 }
2987 
2988 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2989 {
2990 	return ksys_unshare(unshare_flags);
2991 }
2992 
2993 /*
2994  *	Helper to unshare the files of the current task.
2995  *	We don't want to expose copy_files internals to
2996  *	the exec layer of the kernel.
2997  */
2998 
2999 int unshare_files(struct files_struct **displaced)
3000 {
3001 	struct task_struct *task = current;
3002 	struct files_struct *copy = NULL;
3003 	int error;
3004 
3005 	error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
3006 	if (error || !copy) {
3007 		*displaced = NULL;
3008 		return error;
3009 	}
3010 	*displaced = task->files;
3011 	task_lock(task);
3012 	task->files = copy;
3013 	task_unlock(task);
3014 	return 0;
3015 }
3016 
3017 int sysctl_max_threads(struct ctl_table *table, int write,
3018 		       void *buffer, size_t *lenp, loff_t *ppos)
3019 {
3020 	struct ctl_table t;
3021 	int ret;
3022 	int threads = max_threads;
3023 	int min = 1;
3024 	int max = MAX_THREADS;
3025 
3026 	t = *table;
3027 	t.data = &threads;
3028 	t.extra1 = &min;
3029 	t.extra2 = &max;
3030 
3031 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3032 	if (ret || !write)
3033 		return ret;
3034 
3035 	max_threads = threads;
3036 
3037 	return 0;
3038 }
3039