xref: /openbmc/linux/kernel/fork.c (revision f15cbe6f1a4b4d9df59142fc8e4abb973302cf44)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/mnt_namespace.h>
21 #include <linux/personality.h>
22 #include <linux/mempolicy.h>
23 #include <linux/sem.h>
24 #include <linux/file.h>
25 #include <linux/fdtable.h>
26 #include <linux/iocontext.h>
27 #include <linux/key.h>
28 #include <linux/binfmts.h>
29 #include <linux/mman.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/swap.h>
38 #include <linux/syscalls.h>
39 #include <linux/jiffies.h>
40 #include <linux/tracehook.h>
41 #include <linux/futex.h>
42 #include <linux/task_io_accounting_ops.h>
43 #include <linux/rcupdate.h>
44 #include <linux/ptrace.h>
45 #include <linux/mount.h>
46 #include <linux/audit.h>
47 #include <linux/memcontrol.h>
48 #include <linux/profile.h>
49 #include <linux/rmap.h>
50 #include <linux/acct.h>
51 #include <linux/tsacct_kern.h>
52 #include <linux/cn_proc.h>
53 #include <linux/freezer.h>
54 #include <linux/delayacct.h>
55 #include <linux/taskstats_kern.h>
56 #include <linux/random.h>
57 #include <linux/tty.h>
58 #include <linux/proc_fs.h>
59 #include <linux/blkdev.h>
60 
61 #include <asm/pgtable.h>
62 #include <asm/pgalloc.h>
63 #include <asm/uaccess.h>
64 #include <asm/mmu_context.h>
65 #include <asm/cacheflush.h>
66 #include <asm/tlbflush.h>
67 
68 /*
69  * Protected counters by write_lock_irq(&tasklist_lock)
70  */
71 unsigned long total_forks;	/* Handle normal Linux uptimes. */
72 int nr_threads; 		/* The idle threads do not count.. */
73 
74 int max_threads;		/* tunable limit on nr_threads */
75 
76 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
77 
78 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
79 
80 int nr_processes(void)
81 {
82 	int cpu;
83 	int total = 0;
84 
85 	for_each_online_cpu(cpu)
86 		total += per_cpu(process_counts, cpu);
87 
88 	return total;
89 }
90 
91 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
92 # define alloc_task_struct()	kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
93 # define free_task_struct(tsk)	kmem_cache_free(task_struct_cachep, (tsk))
94 static struct kmem_cache *task_struct_cachep;
95 #endif
96 
97 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
98 static inline struct thread_info *alloc_thread_info(struct task_struct *tsk)
99 {
100 #ifdef CONFIG_DEBUG_STACK_USAGE
101 	gfp_t mask = GFP_KERNEL | __GFP_ZERO;
102 #else
103 	gfp_t mask = GFP_KERNEL;
104 #endif
105 	return (struct thread_info *)__get_free_pages(mask, THREAD_SIZE_ORDER);
106 }
107 
108 static inline void free_thread_info(struct thread_info *ti)
109 {
110 	free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
111 }
112 #endif
113 
114 /* SLAB cache for signal_struct structures (tsk->signal) */
115 static struct kmem_cache *signal_cachep;
116 
117 /* SLAB cache for sighand_struct structures (tsk->sighand) */
118 struct kmem_cache *sighand_cachep;
119 
120 /* SLAB cache for files_struct structures (tsk->files) */
121 struct kmem_cache *files_cachep;
122 
123 /* SLAB cache for fs_struct structures (tsk->fs) */
124 struct kmem_cache *fs_cachep;
125 
126 /* SLAB cache for vm_area_struct structures */
127 struct kmem_cache *vm_area_cachep;
128 
129 /* SLAB cache for mm_struct structures (tsk->mm) */
130 static struct kmem_cache *mm_cachep;
131 
132 void free_task(struct task_struct *tsk)
133 {
134 	prop_local_destroy_single(&tsk->dirties);
135 	free_thread_info(tsk->stack);
136 	rt_mutex_debug_task_free(tsk);
137 	free_task_struct(tsk);
138 }
139 EXPORT_SYMBOL(free_task);
140 
141 void __put_task_struct(struct task_struct *tsk)
142 {
143 	WARN_ON(!tsk->exit_state);
144 	WARN_ON(atomic_read(&tsk->usage));
145 	WARN_ON(tsk == current);
146 
147 	security_task_free(tsk);
148 	free_uid(tsk->user);
149 	put_group_info(tsk->group_info);
150 	delayacct_tsk_free(tsk);
151 
152 	if (!profile_handoff_task(tsk))
153 		free_task(tsk);
154 }
155 
156 /*
157  * macro override instead of weak attribute alias, to workaround
158  * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
159  */
160 #ifndef arch_task_cache_init
161 #define arch_task_cache_init()
162 #endif
163 
164 void __init fork_init(unsigned long mempages)
165 {
166 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
167 #ifndef ARCH_MIN_TASKALIGN
168 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
169 #endif
170 	/* create a slab on which task_structs can be allocated */
171 	task_struct_cachep =
172 		kmem_cache_create("task_struct", sizeof(struct task_struct),
173 			ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL);
174 #endif
175 
176 	/* do the arch specific task caches init */
177 	arch_task_cache_init();
178 
179 	/*
180 	 * The default maximum number of threads is set to a safe
181 	 * value: the thread structures can take up at most half
182 	 * of memory.
183 	 */
184 	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
185 
186 	/*
187 	 * we need to allow at least 20 threads to boot a system
188 	 */
189 	if(max_threads < 20)
190 		max_threads = 20;
191 
192 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
193 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
194 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
195 		init_task.signal->rlim[RLIMIT_NPROC];
196 }
197 
198 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
199 					       struct task_struct *src)
200 {
201 	*dst = *src;
202 	return 0;
203 }
204 
205 static struct task_struct *dup_task_struct(struct task_struct *orig)
206 {
207 	struct task_struct *tsk;
208 	struct thread_info *ti;
209 	int err;
210 
211 	prepare_to_copy(orig);
212 
213 	tsk = alloc_task_struct();
214 	if (!tsk)
215 		return NULL;
216 
217 	ti = alloc_thread_info(tsk);
218 	if (!ti) {
219 		free_task_struct(tsk);
220 		return NULL;
221 	}
222 
223  	err = arch_dup_task_struct(tsk, orig);
224 	if (err)
225 		goto out;
226 
227 	tsk->stack = ti;
228 
229 	err = prop_local_init_single(&tsk->dirties);
230 	if (err)
231 		goto out;
232 
233 	setup_thread_stack(tsk, orig);
234 
235 #ifdef CONFIG_CC_STACKPROTECTOR
236 	tsk->stack_canary = get_random_int();
237 #endif
238 
239 	/* One for us, one for whoever does the "release_task()" (usually parent) */
240 	atomic_set(&tsk->usage,2);
241 	atomic_set(&tsk->fs_excl, 0);
242 #ifdef CONFIG_BLK_DEV_IO_TRACE
243 	tsk->btrace_seq = 0;
244 #endif
245 	tsk->splice_pipe = NULL;
246 	return tsk;
247 
248 out:
249 	free_thread_info(ti);
250 	free_task_struct(tsk);
251 	return NULL;
252 }
253 
254 #ifdef CONFIG_MMU
255 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
256 {
257 	struct vm_area_struct *mpnt, *tmp, **pprev;
258 	struct rb_node **rb_link, *rb_parent;
259 	int retval;
260 	unsigned long charge;
261 	struct mempolicy *pol;
262 
263 	down_write(&oldmm->mmap_sem);
264 	flush_cache_dup_mm(oldmm);
265 	/*
266 	 * Not linked in yet - no deadlock potential:
267 	 */
268 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
269 
270 	mm->locked_vm = 0;
271 	mm->mmap = NULL;
272 	mm->mmap_cache = NULL;
273 	mm->free_area_cache = oldmm->mmap_base;
274 	mm->cached_hole_size = ~0UL;
275 	mm->map_count = 0;
276 	cpus_clear(mm->cpu_vm_mask);
277 	mm->mm_rb = RB_ROOT;
278 	rb_link = &mm->mm_rb.rb_node;
279 	rb_parent = NULL;
280 	pprev = &mm->mmap;
281 
282 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
283 		struct file *file;
284 
285 		if (mpnt->vm_flags & VM_DONTCOPY) {
286 			long pages = vma_pages(mpnt);
287 			mm->total_vm -= pages;
288 			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
289 								-pages);
290 			continue;
291 		}
292 		charge = 0;
293 		if (mpnt->vm_flags & VM_ACCOUNT) {
294 			unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
295 			if (security_vm_enough_memory(len))
296 				goto fail_nomem;
297 			charge = len;
298 		}
299 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
300 		if (!tmp)
301 			goto fail_nomem;
302 		*tmp = *mpnt;
303 		pol = mpol_dup(vma_policy(mpnt));
304 		retval = PTR_ERR(pol);
305 		if (IS_ERR(pol))
306 			goto fail_nomem_policy;
307 		vma_set_policy(tmp, pol);
308 		tmp->vm_flags &= ~VM_LOCKED;
309 		tmp->vm_mm = mm;
310 		tmp->vm_next = NULL;
311 		anon_vma_link(tmp);
312 		file = tmp->vm_file;
313 		if (file) {
314 			struct inode *inode = file->f_path.dentry->d_inode;
315 			get_file(file);
316 			if (tmp->vm_flags & VM_DENYWRITE)
317 				atomic_dec(&inode->i_writecount);
318 
319 			/* insert tmp into the share list, just after mpnt */
320 			spin_lock(&file->f_mapping->i_mmap_lock);
321 			tmp->vm_truncate_count = mpnt->vm_truncate_count;
322 			flush_dcache_mmap_lock(file->f_mapping);
323 			vma_prio_tree_add(tmp, mpnt);
324 			flush_dcache_mmap_unlock(file->f_mapping);
325 			spin_unlock(&file->f_mapping->i_mmap_lock);
326 		}
327 
328 		/*
329 		 * Clear hugetlb-related page reserves for children. This only
330 		 * affects MAP_PRIVATE mappings. Faults generated by the child
331 		 * are not guaranteed to succeed, even if read-only
332 		 */
333 		if (is_vm_hugetlb_page(tmp))
334 			reset_vma_resv_huge_pages(tmp);
335 
336 		/*
337 		 * Link in the new vma and copy the page table entries.
338 		 */
339 		*pprev = tmp;
340 		pprev = &tmp->vm_next;
341 
342 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
343 		rb_link = &tmp->vm_rb.rb_right;
344 		rb_parent = &tmp->vm_rb;
345 
346 		mm->map_count++;
347 		retval = copy_page_range(mm, oldmm, mpnt);
348 
349 		if (tmp->vm_ops && tmp->vm_ops->open)
350 			tmp->vm_ops->open(tmp);
351 
352 		if (retval)
353 			goto out;
354 	}
355 	/* a new mm has just been created */
356 	arch_dup_mmap(oldmm, mm);
357 	retval = 0;
358 out:
359 	up_write(&mm->mmap_sem);
360 	flush_tlb_mm(oldmm);
361 	up_write(&oldmm->mmap_sem);
362 	return retval;
363 fail_nomem_policy:
364 	kmem_cache_free(vm_area_cachep, tmp);
365 fail_nomem:
366 	retval = -ENOMEM;
367 	vm_unacct_memory(charge);
368 	goto out;
369 }
370 
371 static inline int mm_alloc_pgd(struct mm_struct * mm)
372 {
373 	mm->pgd = pgd_alloc(mm);
374 	if (unlikely(!mm->pgd))
375 		return -ENOMEM;
376 	return 0;
377 }
378 
379 static inline void mm_free_pgd(struct mm_struct * mm)
380 {
381 	pgd_free(mm, mm->pgd);
382 }
383 #else
384 #define dup_mmap(mm, oldmm)	(0)
385 #define mm_alloc_pgd(mm)	(0)
386 #define mm_free_pgd(mm)
387 #endif /* CONFIG_MMU */
388 
389 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
390 
391 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
392 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
393 
394 #include <linux/init_task.h>
395 
396 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
397 {
398 	atomic_set(&mm->mm_users, 1);
399 	atomic_set(&mm->mm_count, 1);
400 	init_rwsem(&mm->mmap_sem);
401 	INIT_LIST_HEAD(&mm->mmlist);
402 	mm->flags = (current->mm) ? current->mm->flags
403 				  : MMF_DUMP_FILTER_DEFAULT;
404 	mm->core_state = NULL;
405 	mm->nr_ptes = 0;
406 	set_mm_counter(mm, file_rss, 0);
407 	set_mm_counter(mm, anon_rss, 0);
408 	spin_lock_init(&mm->page_table_lock);
409 	rwlock_init(&mm->ioctx_list_lock);
410 	mm->ioctx_list = NULL;
411 	mm->free_area_cache = TASK_UNMAPPED_BASE;
412 	mm->cached_hole_size = ~0UL;
413 	mm_init_owner(mm, p);
414 
415 	if (likely(!mm_alloc_pgd(mm))) {
416 		mm->def_flags = 0;
417 		return mm;
418 	}
419 
420 	free_mm(mm);
421 	return NULL;
422 }
423 
424 /*
425  * Allocate and initialize an mm_struct.
426  */
427 struct mm_struct * mm_alloc(void)
428 {
429 	struct mm_struct * mm;
430 
431 	mm = allocate_mm();
432 	if (mm) {
433 		memset(mm, 0, sizeof(*mm));
434 		mm = mm_init(mm, current);
435 	}
436 	return mm;
437 }
438 
439 /*
440  * Called when the last reference to the mm
441  * is dropped: either by a lazy thread or by
442  * mmput. Free the page directory and the mm.
443  */
444 void __mmdrop(struct mm_struct *mm)
445 {
446 	BUG_ON(mm == &init_mm);
447 	mm_free_pgd(mm);
448 	destroy_context(mm);
449 	free_mm(mm);
450 }
451 EXPORT_SYMBOL_GPL(__mmdrop);
452 
453 /*
454  * Decrement the use count and release all resources for an mm.
455  */
456 void mmput(struct mm_struct *mm)
457 {
458 	might_sleep();
459 
460 	if (atomic_dec_and_test(&mm->mm_users)) {
461 		exit_aio(mm);
462 		exit_mmap(mm);
463 		set_mm_exe_file(mm, NULL);
464 		if (!list_empty(&mm->mmlist)) {
465 			spin_lock(&mmlist_lock);
466 			list_del(&mm->mmlist);
467 			spin_unlock(&mmlist_lock);
468 		}
469 		put_swap_token(mm);
470 		mmdrop(mm);
471 	}
472 }
473 EXPORT_SYMBOL_GPL(mmput);
474 
475 /**
476  * get_task_mm - acquire a reference to the task's mm
477  *
478  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
479  * this kernel workthread has transiently adopted a user mm with use_mm,
480  * to do its AIO) is not set and if so returns a reference to it, after
481  * bumping up the use count.  User must release the mm via mmput()
482  * after use.  Typically used by /proc and ptrace.
483  */
484 struct mm_struct *get_task_mm(struct task_struct *task)
485 {
486 	struct mm_struct *mm;
487 
488 	task_lock(task);
489 	mm = task->mm;
490 	if (mm) {
491 		if (task->flags & PF_KTHREAD)
492 			mm = NULL;
493 		else
494 			atomic_inc(&mm->mm_users);
495 	}
496 	task_unlock(task);
497 	return mm;
498 }
499 EXPORT_SYMBOL_GPL(get_task_mm);
500 
501 /* Please note the differences between mmput and mm_release.
502  * mmput is called whenever we stop holding onto a mm_struct,
503  * error success whatever.
504  *
505  * mm_release is called after a mm_struct has been removed
506  * from the current process.
507  *
508  * This difference is important for error handling, when we
509  * only half set up a mm_struct for a new process and need to restore
510  * the old one.  Because we mmput the new mm_struct before
511  * restoring the old one. . .
512  * Eric Biederman 10 January 1998
513  */
514 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
515 {
516 	struct completion *vfork_done = tsk->vfork_done;
517 
518 	/* Get rid of any cached register state */
519 	deactivate_mm(tsk, mm);
520 
521 	/* notify parent sleeping on vfork() */
522 	if (vfork_done) {
523 		tsk->vfork_done = NULL;
524 		complete(vfork_done);
525 	}
526 
527 	/*
528 	 * If we're exiting normally, clear a user-space tid field if
529 	 * requested.  We leave this alone when dying by signal, to leave
530 	 * the value intact in a core dump, and to save the unnecessary
531 	 * trouble otherwise.  Userland only wants this done for a sys_exit.
532 	 */
533 	if (tsk->clear_child_tid
534 	    && !(tsk->flags & PF_SIGNALED)
535 	    && atomic_read(&mm->mm_users) > 1) {
536 		u32 __user * tidptr = tsk->clear_child_tid;
537 		tsk->clear_child_tid = NULL;
538 
539 		/*
540 		 * We don't check the error code - if userspace has
541 		 * not set up a proper pointer then tough luck.
542 		 */
543 		put_user(0, tidptr);
544 		sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
545 	}
546 }
547 
548 /*
549  * Allocate a new mm structure and copy contents from the
550  * mm structure of the passed in task structure.
551  */
552 struct mm_struct *dup_mm(struct task_struct *tsk)
553 {
554 	struct mm_struct *mm, *oldmm = current->mm;
555 	int err;
556 
557 	if (!oldmm)
558 		return NULL;
559 
560 	mm = allocate_mm();
561 	if (!mm)
562 		goto fail_nomem;
563 
564 	memcpy(mm, oldmm, sizeof(*mm));
565 
566 	/* Initializing for Swap token stuff */
567 	mm->token_priority = 0;
568 	mm->last_interval = 0;
569 
570 	if (!mm_init(mm, tsk))
571 		goto fail_nomem;
572 
573 	if (init_new_context(tsk, mm))
574 		goto fail_nocontext;
575 
576 	dup_mm_exe_file(oldmm, mm);
577 
578 	err = dup_mmap(mm, oldmm);
579 	if (err)
580 		goto free_pt;
581 
582 	mm->hiwater_rss = get_mm_rss(mm);
583 	mm->hiwater_vm = mm->total_vm;
584 
585 	return mm;
586 
587 free_pt:
588 	mmput(mm);
589 
590 fail_nomem:
591 	return NULL;
592 
593 fail_nocontext:
594 	/*
595 	 * If init_new_context() failed, we cannot use mmput() to free the mm
596 	 * because it calls destroy_context()
597 	 */
598 	mm_free_pgd(mm);
599 	free_mm(mm);
600 	return NULL;
601 }
602 
603 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
604 {
605 	struct mm_struct * mm, *oldmm;
606 	int retval;
607 
608 	tsk->min_flt = tsk->maj_flt = 0;
609 	tsk->nvcsw = tsk->nivcsw = 0;
610 
611 	tsk->mm = NULL;
612 	tsk->active_mm = NULL;
613 
614 	/*
615 	 * Are we cloning a kernel thread?
616 	 *
617 	 * We need to steal a active VM for that..
618 	 */
619 	oldmm = current->mm;
620 	if (!oldmm)
621 		return 0;
622 
623 	if (clone_flags & CLONE_VM) {
624 		atomic_inc(&oldmm->mm_users);
625 		mm = oldmm;
626 		goto good_mm;
627 	}
628 
629 	retval = -ENOMEM;
630 	mm = dup_mm(tsk);
631 	if (!mm)
632 		goto fail_nomem;
633 
634 good_mm:
635 	/* Initializing for Swap token stuff */
636 	mm->token_priority = 0;
637 	mm->last_interval = 0;
638 
639 	tsk->mm = mm;
640 	tsk->active_mm = mm;
641 	return 0;
642 
643 fail_nomem:
644 	return retval;
645 }
646 
647 static struct fs_struct *__copy_fs_struct(struct fs_struct *old)
648 {
649 	struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
650 	/* We don't need to lock fs - think why ;-) */
651 	if (fs) {
652 		atomic_set(&fs->count, 1);
653 		rwlock_init(&fs->lock);
654 		fs->umask = old->umask;
655 		read_lock(&old->lock);
656 		fs->root = old->root;
657 		path_get(&old->root);
658 		fs->pwd = old->pwd;
659 		path_get(&old->pwd);
660 		read_unlock(&old->lock);
661 	}
662 	return fs;
663 }
664 
665 struct fs_struct *copy_fs_struct(struct fs_struct *old)
666 {
667 	return __copy_fs_struct(old);
668 }
669 
670 EXPORT_SYMBOL_GPL(copy_fs_struct);
671 
672 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
673 {
674 	if (clone_flags & CLONE_FS) {
675 		atomic_inc(&current->fs->count);
676 		return 0;
677 	}
678 	tsk->fs = __copy_fs_struct(current->fs);
679 	if (!tsk->fs)
680 		return -ENOMEM;
681 	return 0;
682 }
683 
684 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
685 {
686 	struct files_struct *oldf, *newf;
687 	int error = 0;
688 
689 	/*
690 	 * A background process may not have any files ...
691 	 */
692 	oldf = current->files;
693 	if (!oldf)
694 		goto out;
695 
696 	if (clone_flags & CLONE_FILES) {
697 		atomic_inc(&oldf->count);
698 		goto out;
699 	}
700 
701 	newf = dup_fd(oldf, &error);
702 	if (!newf)
703 		goto out;
704 
705 	tsk->files = newf;
706 	error = 0;
707 out:
708 	return error;
709 }
710 
711 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
712 {
713 #ifdef CONFIG_BLOCK
714 	struct io_context *ioc = current->io_context;
715 
716 	if (!ioc)
717 		return 0;
718 	/*
719 	 * Share io context with parent, if CLONE_IO is set
720 	 */
721 	if (clone_flags & CLONE_IO) {
722 		tsk->io_context = ioc_task_link(ioc);
723 		if (unlikely(!tsk->io_context))
724 			return -ENOMEM;
725 	} else if (ioprio_valid(ioc->ioprio)) {
726 		tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
727 		if (unlikely(!tsk->io_context))
728 			return -ENOMEM;
729 
730 		tsk->io_context->ioprio = ioc->ioprio;
731 	}
732 #endif
733 	return 0;
734 }
735 
736 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
737 {
738 	struct sighand_struct *sig;
739 
740 	if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
741 		atomic_inc(&current->sighand->count);
742 		return 0;
743 	}
744 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
745 	rcu_assign_pointer(tsk->sighand, sig);
746 	if (!sig)
747 		return -ENOMEM;
748 	atomic_set(&sig->count, 1);
749 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
750 	return 0;
751 }
752 
753 void __cleanup_sighand(struct sighand_struct *sighand)
754 {
755 	if (atomic_dec_and_test(&sighand->count))
756 		kmem_cache_free(sighand_cachep, sighand);
757 }
758 
759 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
760 {
761 	struct signal_struct *sig;
762 	int ret;
763 
764 	if (clone_flags & CLONE_THREAD) {
765 		atomic_inc(&current->signal->count);
766 		atomic_inc(&current->signal->live);
767 		return 0;
768 	}
769 	sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
770 	tsk->signal = sig;
771 	if (!sig)
772 		return -ENOMEM;
773 
774 	ret = copy_thread_group_keys(tsk);
775 	if (ret < 0) {
776 		kmem_cache_free(signal_cachep, sig);
777 		return ret;
778 	}
779 
780 	atomic_set(&sig->count, 1);
781 	atomic_set(&sig->live, 1);
782 	init_waitqueue_head(&sig->wait_chldexit);
783 	sig->flags = 0;
784 	sig->group_exit_code = 0;
785 	sig->group_exit_task = NULL;
786 	sig->group_stop_count = 0;
787 	sig->curr_target = tsk;
788 	init_sigpending(&sig->shared_pending);
789 	INIT_LIST_HEAD(&sig->posix_timers);
790 
791 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
792 	sig->it_real_incr.tv64 = 0;
793 	sig->real_timer.function = it_real_fn;
794 
795 	sig->it_virt_expires = cputime_zero;
796 	sig->it_virt_incr = cputime_zero;
797 	sig->it_prof_expires = cputime_zero;
798 	sig->it_prof_incr = cputime_zero;
799 
800 	sig->leader = 0;	/* session leadership doesn't inherit */
801 	sig->tty_old_pgrp = NULL;
802 
803 	sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
804 	sig->gtime = cputime_zero;
805 	sig->cgtime = cputime_zero;
806 	sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
807 	sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
808 	sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
809 	task_io_accounting_init(&sig->ioac);
810 	sig->sum_sched_runtime = 0;
811 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
812 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
813 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
814 	taskstats_tgid_init(sig);
815 
816 	task_lock(current->group_leader);
817 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
818 	task_unlock(current->group_leader);
819 
820 	if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
821 		/*
822 		 * New sole thread in the process gets an expiry time
823 		 * of the whole CPU time limit.
824 		 */
825 		tsk->it_prof_expires =
826 			secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
827 	}
828 	acct_init_pacct(&sig->pacct);
829 
830 	tty_audit_fork(sig);
831 
832 	return 0;
833 }
834 
835 void __cleanup_signal(struct signal_struct *sig)
836 {
837 	exit_thread_group_keys(sig);
838 	kmem_cache_free(signal_cachep, sig);
839 }
840 
841 static void cleanup_signal(struct task_struct *tsk)
842 {
843 	struct signal_struct *sig = tsk->signal;
844 
845 	atomic_dec(&sig->live);
846 
847 	if (atomic_dec_and_test(&sig->count))
848 		__cleanup_signal(sig);
849 }
850 
851 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
852 {
853 	unsigned long new_flags = p->flags;
854 
855 	new_flags &= ~PF_SUPERPRIV;
856 	new_flags |= PF_FORKNOEXEC;
857 	new_flags |= PF_STARTING;
858 	p->flags = new_flags;
859 	clear_freeze_flag(p);
860 }
861 
862 asmlinkage long sys_set_tid_address(int __user *tidptr)
863 {
864 	current->clear_child_tid = tidptr;
865 
866 	return task_pid_vnr(current);
867 }
868 
869 static void rt_mutex_init_task(struct task_struct *p)
870 {
871 	spin_lock_init(&p->pi_lock);
872 #ifdef CONFIG_RT_MUTEXES
873 	plist_head_init(&p->pi_waiters, &p->pi_lock);
874 	p->pi_blocked_on = NULL;
875 #endif
876 }
877 
878 #ifdef CONFIG_MM_OWNER
879 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
880 {
881 	mm->owner = p;
882 }
883 #endif /* CONFIG_MM_OWNER */
884 
885 /*
886  * This creates a new process as a copy of the old one,
887  * but does not actually start it yet.
888  *
889  * It copies the registers, and all the appropriate
890  * parts of the process environment (as per the clone
891  * flags). The actual kick-off is left to the caller.
892  */
893 static struct task_struct *copy_process(unsigned long clone_flags,
894 					unsigned long stack_start,
895 					struct pt_regs *regs,
896 					unsigned long stack_size,
897 					int __user *child_tidptr,
898 					struct pid *pid,
899 					int trace)
900 {
901 	int retval;
902 	struct task_struct *p;
903 	int cgroup_callbacks_done = 0;
904 
905 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
906 		return ERR_PTR(-EINVAL);
907 
908 	/*
909 	 * Thread groups must share signals as well, and detached threads
910 	 * can only be started up within the thread group.
911 	 */
912 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
913 		return ERR_PTR(-EINVAL);
914 
915 	/*
916 	 * Shared signal handlers imply shared VM. By way of the above,
917 	 * thread groups also imply shared VM. Blocking this case allows
918 	 * for various simplifications in other code.
919 	 */
920 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
921 		return ERR_PTR(-EINVAL);
922 
923 	retval = security_task_create(clone_flags);
924 	if (retval)
925 		goto fork_out;
926 
927 	retval = -ENOMEM;
928 	p = dup_task_struct(current);
929 	if (!p)
930 		goto fork_out;
931 
932 	rt_mutex_init_task(p);
933 
934 #ifdef CONFIG_PROVE_LOCKING
935 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
936 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
937 #endif
938 	retval = -EAGAIN;
939 	if (atomic_read(&p->user->processes) >=
940 			p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
941 		if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
942 		    p->user != current->nsproxy->user_ns->root_user)
943 			goto bad_fork_free;
944 	}
945 
946 	atomic_inc(&p->user->__count);
947 	atomic_inc(&p->user->processes);
948 	get_group_info(p->group_info);
949 
950 	/*
951 	 * If multiple threads are within copy_process(), then this check
952 	 * triggers too late. This doesn't hurt, the check is only there
953 	 * to stop root fork bombs.
954 	 */
955 	if (nr_threads >= max_threads)
956 		goto bad_fork_cleanup_count;
957 
958 	if (!try_module_get(task_thread_info(p)->exec_domain->module))
959 		goto bad_fork_cleanup_count;
960 
961 	if (p->binfmt && !try_module_get(p->binfmt->module))
962 		goto bad_fork_cleanup_put_domain;
963 
964 	p->did_exec = 0;
965 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
966 	copy_flags(clone_flags, p);
967 	INIT_LIST_HEAD(&p->children);
968 	INIT_LIST_HEAD(&p->sibling);
969 #ifdef CONFIG_PREEMPT_RCU
970 	p->rcu_read_lock_nesting = 0;
971 	p->rcu_flipctr_idx = 0;
972 #endif /* #ifdef CONFIG_PREEMPT_RCU */
973 	p->vfork_done = NULL;
974 	spin_lock_init(&p->alloc_lock);
975 
976 	clear_tsk_thread_flag(p, TIF_SIGPENDING);
977 	init_sigpending(&p->pending);
978 
979 	p->utime = cputime_zero;
980 	p->stime = cputime_zero;
981 	p->gtime = cputime_zero;
982 	p->utimescaled = cputime_zero;
983 	p->stimescaled = cputime_zero;
984 	p->prev_utime = cputime_zero;
985 	p->prev_stime = cputime_zero;
986 
987 #ifdef CONFIG_DETECT_SOFTLOCKUP
988 	p->last_switch_count = 0;
989 	p->last_switch_timestamp = 0;
990 #endif
991 
992 	task_io_accounting_init(&p->ioac);
993 	acct_clear_integrals(p);
994 
995 	p->it_virt_expires = cputime_zero;
996 	p->it_prof_expires = cputime_zero;
997 	p->it_sched_expires = 0;
998 	INIT_LIST_HEAD(&p->cpu_timers[0]);
999 	INIT_LIST_HEAD(&p->cpu_timers[1]);
1000 	INIT_LIST_HEAD(&p->cpu_timers[2]);
1001 
1002 	p->lock_depth = -1;		/* -1 = no lock */
1003 	do_posix_clock_monotonic_gettime(&p->start_time);
1004 	p->real_start_time = p->start_time;
1005 	monotonic_to_bootbased(&p->real_start_time);
1006 #ifdef CONFIG_SECURITY
1007 	p->security = NULL;
1008 #endif
1009 	p->cap_bset = current->cap_bset;
1010 	p->io_context = NULL;
1011 	p->audit_context = NULL;
1012 	cgroup_fork(p);
1013 #ifdef CONFIG_NUMA
1014 	p->mempolicy = mpol_dup(p->mempolicy);
1015  	if (IS_ERR(p->mempolicy)) {
1016  		retval = PTR_ERR(p->mempolicy);
1017  		p->mempolicy = NULL;
1018  		goto bad_fork_cleanup_cgroup;
1019  	}
1020 	mpol_fix_fork_child_flag(p);
1021 #endif
1022 #ifdef CONFIG_TRACE_IRQFLAGS
1023 	p->irq_events = 0;
1024 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1025 	p->hardirqs_enabled = 1;
1026 #else
1027 	p->hardirqs_enabled = 0;
1028 #endif
1029 	p->hardirq_enable_ip = 0;
1030 	p->hardirq_enable_event = 0;
1031 	p->hardirq_disable_ip = _THIS_IP_;
1032 	p->hardirq_disable_event = 0;
1033 	p->softirqs_enabled = 1;
1034 	p->softirq_enable_ip = _THIS_IP_;
1035 	p->softirq_enable_event = 0;
1036 	p->softirq_disable_ip = 0;
1037 	p->softirq_disable_event = 0;
1038 	p->hardirq_context = 0;
1039 	p->softirq_context = 0;
1040 #endif
1041 #ifdef CONFIG_LOCKDEP
1042 	p->lockdep_depth = 0; /* no locks held yet */
1043 	p->curr_chain_key = 0;
1044 	p->lockdep_recursion = 0;
1045 #endif
1046 
1047 #ifdef CONFIG_DEBUG_MUTEXES
1048 	p->blocked_on = NULL; /* not blocked yet */
1049 #endif
1050 
1051 	/* Perform scheduler related setup. Assign this task to a CPU. */
1052 	sched_fork(p, clone_flags);
1053 
1054 	if ((retval = security_task_alloc(p)))
1055 		goto bad_fork_cleanup_policy;
1056 	if ((retval = audit_alloc(p)))
1057 		goto bad_fork_cleanup_security;
1058 	/* copy all the process information */
1059 	if ((retval = copy_semundo(clone_flags, p)))
1060 		goto bad_fork_cleanup_audit;
1061 	if ((retval = copy_files(clone_flags, p)))
1062 		goto bad_fork_cleanup_semundo;
1063 	if ((retval = copy_fs(clone_flags, p)))
1064 		goto bad_fork_cleanup_files;
1065 	if ((retval = copy_sighand(clone_flags, p)))
1066 		goto bad_fork_cleanup_fs;
1067 	if ((retval = copy_signal(clone_flags, p)))
1068 		goto bad_fork_cleanup_sighand;
1069 	if ((retval = copy_mm(clone_flags, p)))
1070 		goto bad_fork_cleanup_signal;
1071 	if ((retval = copy_keys(clone_flags, p)))
1072 		goto bad_fork_cleanup_mm;
1073 	if ((retval = copy_namespaces(clone_flags, p)))
1074 		goto bad_fork_cleanup_keys;
1075 	if ((retval = copy_io(clone_flags, p)))
1076 		goto bad_fork_cleanup_namespaces;
1077 	retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1078 	if (retval)
1079 		goto bad_fork_cleanup_io;
1080 
1081 	if (pid != &init_struct_pid) {
1082 		retval = -ENOMEM;
1083 		pid = alloc_pid(task_active_pid_ns(p));
1084 		if (!pid)
1085 			goto bad_fork_cleanup_io;
1086 
1087 		if (clone_flags & CLONE_NEWPID) {
1088 			retval = pid_ns_prepare_proc(task_active_pid_ns(p));
1089 			if (retval < 0)
1090 				goto bad_fork_free_pid;
1091 		}
1092 	}
1093 
1094 	p->pid = pid_nr(pid);
1095 	p->tgid = p->pid;
1096 	if (clone_flags & CLONE_THREAD)
1097 		p->tgid = current->tgid;
1098 
1099 	if (current->nsproxy != p->nsproxy) {
1100 		retval = ns_cgroup_clone(p, pid);
1101 		if (retval)
1102 			goto bad_fork_free_pid;
1103 	}
1104 
1105 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1106 	/*
1107 	 * Clear TID on mm_release()?
1108 	 */
1109 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1110 #ifdef CONFIG_FUTEX
1111 	p->robust_list = NULL;
1112 #ifdef CONFIG_COMPAT
1113 	p->compat_robust_list = NULL;
1114 #endif
1115 	INIT_LIST_HEAD(&p->pi_state_list);
1116 	p->pi_state_cache = NULL;
1117 #endif
1118 	/*
1119 	 * sigaltstack should be cleared when sharing the same VM
1120 	 */
1121 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1122 		p->sas_ss_sp = p->sas_ss_size = 0;
1123 
1124 	/*
1125 	 * Syscall tracing should be turned off in the child regardless
1126 	 * of CLONE_PTRACE.
1127 	 */
1128 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1129 #ifdef TIF_SYSCALL_EMU
1130 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1131 #endif
1132 	clear_all_latency_tracing(p);
1133 
1134 	/* Our parent execution domain becomes current domain
1135 	   These must match for thread signalling to apply */
1136 	p->parent_exec_id = p->self_exec_id;
1137 
1138 	/* ok, now we should be set up.. */
1139 	p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1140 	p->pdeath_signal = 0;
1141 	p->exit_state = 0;
1142 
1143 	/*
1144 	 * Ok, make it visible to the rest of the system.
1145 	 * We dont wake it up yet.
1146 	 */
1147 	p->group_leader = p;
1148 	INIT_LIST_HEAD(&p->thread_group);
1149 
1150 	/* Now that the task is set up, run cgroup callbacks if
1151 	 * necessary. We need to run them before the task is visible
1152 	 * on the tasklist. */
1153 	cgroup_fork_callbacks(p);
1154 	cgroup_callbacks_done = 1;
1155 
1156 	/* Need tasklist lock for parent etc handling! */
1157 	write_lock_irq(&tasklist_lock);
1158 
1159 	/*
1160 	 * The task hasn't been attached yet, so its cpus_allowed mask will
1161 	 * not be changed, nor will its assigned CPU.
1162 	 *
1163 	 * The cpus_allowed mask of the parent may have changed after it was
1164 	 * copied first time - so re-copy it here, then check the child's CPU
1165 	 * to ensure it is on a valid CPU (and if not, just force it back to
1166 	 * parent's CPU). This avoids alot of nasty races.
1167 	 */
1168 	p->cpus_allowed = current->cpus_allowed;
1169 	p->rt.nr_cpus_allowed = current->rt.nr_cpus_allowed;
1170 	if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1171 			!cpu_online(task_cpu(p))))
1172 		set_task_cpu(p, smp_processor_id());
1173 
1174 	/* CLONE_PARENT re-uses the old parent */
1175 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1176 		p->real_parent = current->real_parent;
1177 	else
1178 		p->real_parent = current;
1179 
1180 	spin_lock(&current->sighand->siglock);
1181 
1182 	/*
1183 	 * Process group and session signals need to be delivered to just the
1184 	 * parent before the fork or both the parent and the child after the
1185 	 * fork. Restart if a signal comes in before we add the new process to
1186 	 * it's process group.
1187 	 * A fatal signal pending means that current will exit, so the new
1188 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1189  	 */
1190 	recalc_sigpending();
1191 	if (signal_pending(current)) {
1192 		spin_unlock(&current->sighand->siglock);
1193 		write_unlock_irq(&tasklist_lock);
1194 		retval = -ERESTARTNOINTR;
1195 		goto bad_fork_free_pid;
1196 	}
1197 
1198 	if (clone_flags & CLONE_THREAD) {
1199 		p->group_leader = current->group_leader;
1200 		list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1201 
1202 		if (!cputime_eq(current->signal->it_virt_expires,
1203 				cputime_zero) ||
1204 		    !cputime_eq(current->signal->it_prof_expires,
1205 				cputime_zero) ||
1206 		    current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1207 		    !list_empty(&current->signal->cpu_timers[0]) ||
1208 		    !list_empty(&current->signal->cpu_timers[1]) ||
1209 		    !list_empty(&current->signal->cpu_timers[2])) {
1210 			/*
1211 			 * Have child wake up on its first tick to check
1212 			 * for process CPU timers.
1213 			 */
1214 			p->it_prof_expires = jiffies_to_cputime(1);
1215 		}
1216 	}
1217 
1218 	if (likely(p->pid)) {
1219 		list_add_tail(&p->sibling, &p->real_parent->children);
1220 		tracehook_finish_clone(p, clone_flags, trace);
1221 
1222 		if (thread_group_leader(p)) {
1223 			if (clone_flags & CLONE_NEWPID)
1224 				p->nsproxy->pid_ns->child_reaper = p;
1225 
1226 			p->signal->leader_pid = pid;
1227 			p->signal->tty = current->signal->tty;
1228 			set_task_pgrp(p, task_pgrp_nr(current));
1229 			set_task_session(p, task_session_nr(current));
1230 			attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1231 			attach_pid(p, PIDTYPE_SID, task_session(current));
1232 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1233 			__get_cpu_var(process_counts)++;
1234 		}
1235 		attach_pid(p, PIDTYPE_PID, pid);
1236 		nr_threads++;
1237 	}
1238 
1239 	total_forks++;
1240 	spin_unlock(&current->sighand->siglock);
1241 	write_unlock_irq(&tasklist_lock);
1242 	proc_fork_connector(p);
1243 	cgroup_post_fork(p);
1244 	return p;
1245 
1246 bad_fork_free_pid:
1247 	if (pid != &init_struct_pid)
1248 		free_pid(pid);
1249 bad_fork_cleanup_io:
1250 	put_io_context(p->io_context);
1251 bad_fork_cleanup_namespaces:
1252 	exit_task_namespaces(p);
1253 bad_fork_cleanup_keys:
1254 	exit_keys(p);
1255 bad_fork_cleanup_mm:
1256 	if (p->mm)
1257 		mmput(p->mm);
1258 bad_fork_cleanup_signal:
1259 	cleanup_signal(p);
1260 bad_fork_cleanup_sighand:
1261 	__cleanup_sighand(p->sighand);
1262 bad_fork_cleanup_fs:
1263 	exit_fs(p); /* blocking */
1264 bad_fork_cleanup_files:
1265 	exit_files(p); /* blocking */
1266 bad_fork_cleanup_semundo:
1267 	exit_sem(p);
1268 bad_fork_cleanup_audit:
1269 	audit_free(p);
1270 bad_fork_cleanup_security:
1271 	security_task_free(p);
1272 bad_fork_cleanup_policy:
1273 #ifdef CONFIG_NUMA
1274 	mpol_put(p->mempolicy);
1275 bad_fork_cleanup_cgroup:
1276 #endif
1277 	cgroup_exit(p, cgroup_callbacks_done);
1278 	delayacct_tsk_free(p);
1279 	if (p->binfmt)
1280 		module_put(p->binfmt->module);
1281 bad_fork_cleanup_put_domain:
1282 	module_put(task_thread_info(p)->exec_domain->module);
1283 bad_fork_cleanup_count:
1284 	put_group_info(p->group_info);
1285 	atomic_dec(&p->user->processes);
1286 	free_uid(p->user);
1287 bad_fork_free:
1288 	free_task(p);
1289 fork_out:
1290 	return ERR_PTR(retval);
1291 }
1292 
1293 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1294 {
1295 	memset(regs, 0, sizeof(struct pt_regs));
1296 	return regs;
1297 }
1298 
1299 struct task_struct * __cpuinit fork_idle(int cpu)
1300 {
1301 	struct task_struct *task;
1302 	struct pt_regs regs;
1303 
1304 	task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1305 			    &init_struct_pid, 0);
1306 	if (!IS_ERR(task))
1307 		init_idle(task, cpu);
1308 
1309 	return task;
1310 }
1311 
1312 /*
1313  *  Ok, this is the main fork-routine.
1314  *
1315  * It copies the process, and if successful kick-starts
1316  * it and waits for it to finish using the VM if required.
1317  */
1318 long do_fork(unsigned long clone_flags,
1319 	      unsigned long stack_start,
1320 	      struct pt_regs *regs,
1321 	      unsigned long stack_size,
1322 	      int __user *parent_tidptr,
1323 	      int __user *child_tidptr)
1324 {
1325 	struct task_struct *p;
1326 	int trace = 0;
1327 	long nr;
1328 
1329 	/*
1330 	 * We hope to recycle these flags after 2.6.26
1331 	 */
1332 	if (unlikely(clone_flags & CLONE_STOPPED)) {
1333 		static int __read_mostly count = 100;
1334 
1335 		if (count > 0 && printk_ratelimit()) {
1336 			char comm[TASK_COMM_LEN];
1337 
1338 			count--;
1339 			printk(KERN_INFO "fork(): process `%s' used deprecated "
1340 					"clone flags 0x%lx\n",
1341 				get_task_comm(comm, current),
1342 				clone_flags & CLONE_STOPPED);
1343 		}
1344 	}
1345 
1346 	/*
1347 	 * When called from kernel_thread, don't do user tracing stuff.
1348 	 */
1349 	if (likely(user_mode(regs)))
1350 		trace = tracehook_prepare_clone(clone_flags);
1351 
1352 	p = copy_process(clone_flags, stack_start, regs, stack_size,
1353 			 child_tidptr, NULL, trace);
1354 	/*
1355 	 * Do this prior waking up the new thread - the thread pointer
1356 	 * might get invalid after that point, if the thread exits quickly.
1357 	 */
1358 	if (!IS_ERR(p)) {
1359 		struct completion vfork;
1360 
1361 		nr = task_pid_vnr(p);
1362 
1363 		if (clone_flags & CLONE_PARENT_SETTID)
1364 			put_user(nr, parent_tidptr);
1365 
1366 		if (clone_flags & CLONE_VFORK) {
1367 			p->vfork_done = &vfork;
1368 			init_completion(&vfork);
1369 		}
1370 
1371 		tracehook_report_clone(trace, regs, clone_flags, nr, p);
1372 
1373 		/*
1374 		 * We set PF_STARTING at creation in case tracing wants to
1375 		 * use this to distinguish a fully live task from one that
1376 		 * hasn't gotten to tracehook_report_clone() yet.  Now we
1377 		 * clear it and set the child going.
1378 		 */
1379 		p->flags &= ~PF_STARTING;
1380 
1381 		if (unlikely(clone_flags & CLONE_STOPPED)) {
1382 			/*
1383 			 * We'll start up with an immediate SIGSTOP.
1384 			 */
1385 			sigaddset(&p->pending.signal, SIGSTOP);
1386 			set_tsk_thread_flag(p, TIF_SIGPENDING);
1387 			__set_task_state(p, TASK_STOPPED);
1388 		} else {
1389 			wake_up_new_task(p, clone_flags);
1390 		}
1391 
1392 		tracehook_report_clone_complete(trace, regs,
1393 						clone_flags, nr, p);
1394 
1395 		if (clone_flags & CLONE_VFORK) {
1396 			freezer_do_not_count();
1397 			wait_for_completion(&vfork);
1398 			freezer_count();
1399 			tracehook_report_vfork_done(p, nr);
1400 		}
1401 	} else {
1402 		nr = PTR_ERR(p);
1403 	}
1404 	return nr;
1405 }
1406 
1407 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1408 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1409 #endif
1410 
1411 static void sighand_ctor(void *data)
1412 {
1413 	struct sighand_struct *sighand = data;
1414 
1415 	spin_lock_init(&sighand->siglock);
1416 	init_waitqueue_head(&sighand->signalfd_wqh);
1417 }
1418 
1419 void __init proc_caches_init(void)
1420 {
1421 	sighand_cachep = kmem_cache_create("sighand_cache",
1422 			sizeof(struct sighand_struct), 0,
1423 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
1424 			sighand_ctor);
1425 	signal_cachep = kmem_cache_create("signal_cache",
1426 			sizeof(struct signal_struct), 0,
1427 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1428 	files_cachep = kmem_cache_create("files_cache",
1429 			sizeof(struct files_struct), 0,
1430 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1431 	fs_cachep = kmem_cache_create("fs_cache",
1432 			sizeof(struct fs_struct), 0,
1433 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1434 	vm_area_cachep = kmem_cache_create("vm_area_struct",
1435 			sizeof(struct vm_area_struct), 0,
1436 			SLAB_PANIC, NULL);
1437 	mm_cachep = kmem_cache_create("mm_struct",
1438 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1439 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1440 }
1441 
1442 /*
1443  * Check constraints on flags passed to the unshare system call and
1444  * force unsharing of additional process context as appropriate.
1445  */
1446 static void check_unshare_flags(unsigned long *flags_ptr)
1447 {
1448 	/*
1449 	 * If unsharing a thread from a thread group, must also
1450 	 * unshare vm.
1451 	 */
1452 	if (*flags_ptr & CLONE_THREAD)
1453 		*flags_ptr |= CLONE_VM;
1454 
1455 	/*
1456 	 * If unsharing vm, must also unshare signal handlers.
1457 	 */
1458 	if (*flags_ptr & CLONE_VM)
1459 		*flags_ptr |= CLONE_SIGHAND;
1460 
1461 	/*
1462 	 * If unsharing signal handlers and the task was created
1463 	 * using CLONE_THREAD, then must unshare the thread
1464 	 */
1465 	if ((*flags_ptr & CLONE_SIGHAND) &&
1466 	    (atomic_read(&current->signal->count) > 1))
1467 		*flags_ptr |= CLONE_THREAD;
1468 
1469 	/*
1470 	 * If unsharing namespace, must also unshare filesystem information.
1471 	 */
1472 	if (*flags_ptr & CLONE_NEWNS)
1473 		*flags_ptr |= CLONE_FS;
1474 }
1475 
1476 /*
1477  * Unsharing of tasks created with CLONE_THREAD is not supported yet
1478  */
1479 static int unshare_thread(unsigned long unshare_flags)
1480 {
1481 	if (unshare_flags & CLONE_THREAD)
1482 		return -EINVAL;
1483 
1484 	return 0;
1485 }
1486 
1487 /*
1488  * Unshare the filesystem structure if it is being shared
1489  */
1490 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1491 {
1492 	struct fs_struct *fs = current->fs;
1493 
1494 	if ((unshare_flags & CLONE_FS) &&
1495 	    (fs && atomic_read(&fs->count) > 1)) {
1496 		*new_fsp = __copy_fs_struct(current->fs);
1497 		if (!*new_fsp)
1498 			return -ENOMEM;
1499 	}
1500 
1501 	return 0;
1502 }
1503 
1504 /*
1505  * Unsharing of sighand is not supported yet
1506  */
1507 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1508 {
1509 	struct sighand_struct *sigh = current->sighand;
1510 
1511 	if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1512 		return -EINVAL;
1513 	else
1514 		return 0;
1515 }
1516 
1517 /*
1518  * Unshare vm if it is being shared
1519  */
1520 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1521 {
1522 	struct mm_struct *mm = current->mm;
1523 
1524 	if ((unshare_flags & CLONE_VM) &&
1525 	    (mm && atomic_read(&mm->mm_users) > 1)) {
1526 		return -EINVAL;
1527 	}
1528 
1529 	return 0;
1530 }
1531 
1532 /*
1533  * Unshare file descriptor table if it is being shared
1534  */
1535 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1536 {
1537 	struct files_struct *fd = current->files;
1538 	int error = 0;
1539 
1540 	if ((unshare_flags & CLONE_FILES) &&
1541 	    (fd && atomic_read(&fd->count) > 1)) {
1542 		*new_fdp = dup_fd(fd, &error);
1543 		if (!*new_fdp)
1544 			return error;
1545 	}
1546 
1547 	return 0;
1548 }
1549 
1550 /*
1551  * unshare allows a process to 'unshare' part of the process
1552  * context which was originally shared using clone.  copy_*
1553  * functions used by do_fork() cannot be used here directly
1554  * because they modify an inactive task_struct that is being
1555  * constructed. Here we are modifying the current, active,
1556  * task_struct.
1557  */
1558 asmlinkage long sys_unshare(unsigned long unshare_flags)
1559 {
1560 	int err = 0;
1561 	struct fs_struct *fs, *new_fs = NULL;
1562 	struct sighand_struct *new_sigh = NULL;
1563 	struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1564 	struct files_struct *fd, *new_fd = NULL;
1565 	struct nsproxy *new_nsproxy = NULL;
1566 	int do_sysvsem = 0;
1567 
1568 	check_unshare_flags(&unshare_flags);
1569 
1570 	/* Return -EINVAL for all unsupported flags */
1571 	err = -EINVAL;
1572 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1573 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1574 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWUSER|
1575 				CLONE_NEWNET))
1576 		goto bad_unshare_out;
1577 
1578 	/*
1579 	 * CLONE_NEWIPC must also detach from the undolist: after switching
1580 	 * to a new ipc namespace, the semaphore arrays from the old
1581 	 * namespace are unreachable.
1582 	 */
1583 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1584 		do_sysvsem = 1;
1585 	if ((err = unshare_thread(unshare_flags)))
1586 		goto bad_unshare_out;
1587 	if ((err = unshare_fs(unshare_flags, &new_fs)))
1588 		goto bad_unshare_cleanup_thread;
1589 	if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1590 		goto bad_unshare_cleanup_fs;
1591 	if ((err = unshare_vm(unshare_flags, &new_mm)))
1592 		goto bad_unshare_cleanup_sigh;
1593 	if ((err = unshare_fd(unshare_flags, &new_fd)))
1594 		goto bad_unshare_cleanup_vm;
1595 	if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1596 			new_fs)))
1597 		goto bad_unshare_cleanup_fd;
1598 
1599 	if (new_fs ||  new_mm || new_fd || do_sysvsem || new_nsproxy) {
1600 		if (do_sysvsem) {
1601 			/*
1602 			 * CLONE_SYSVSEM is equivalent to sys_exit().
1603 			 */
1604 			exit_sem(current);
1605 		}
1606 
1607 		if (new_nsproxy) {
1608 			switch_task_namespaces(current, new_nsproxy);
1609 			new_nsproxy = NULL;
1610 		}
1611 
1612 		task_lock(current);
1613 
1614 		if (new_fs) {
1615 			fs = current->fs;
1616 			current->fs = new_fs;
1617 			new_fs = fs;
1618 		}
1619 
1620 		if (new_mm) {
1621 			mm = current->mm;
1622 			active_mm = current->active_mm;
1623 			current->mm = new_mm;
1624 			current->active_mm = new_mm;
1625 			activate_mm(active_mm, new_mm);
1626 			new_mm = mm;
1627 		}
1628 
1629 		if (new_fd) {
1630 			fd = current->files;
1631 			current->files = new_fd;
1632 			new_fd = fd;
1633 		}
1634 
1635 		task_unlock(current);
1636 	}
1637 
1638 	if (new_nsproxy)
1639 		put_nsproxy(new_nsproxy);
1640 
1641 bad_unshare_cleanup_fd:
1642 	if (new_fd)
1643 		put_files_struct(new_fd);
1644 
1645 bad_unshare_cleanup_vm:
1646 	if (new_mm)
1647 		mmput(new_mm);
1648 
1649 bad_unshare_cleanup_sigh:
1650 	if (new_sigh)
1651 		if (atomic_dec_and_test(&new_sigh->count))
1652 			kmem_cache_free(sighand_cachep, new_sigh);
1653 
1654 bad_unshare_cleanup_fs:
1655 	if (new_fs)
1656 		put_fs_struct(new_fs);
1657 
1658 bad_unshare_cleanup_thread:
1659 bad_unshare_out:
1660 	return err;
1661 }
1662 
1663 /*
1664  *	Helper to unshare the files of the current task.
1665  *	We don't want to expose copy_files internals to
1666  *	the exec layer of the kernel.
1667  */
1668 
1669 int unshare_files(struct files_struct **displaced)
1670 {
1671 	struct task_struct *task = current;
1672 	struct files_struct *copy = NULL;
1673 	int error;
1674 
1675 	error = unshare_fd(CLONE_FILES, &copy);
1676 	if (error || !copy) {
1677 		*displaced = NULL;
1678 		return error;
1679 	}
1680 	*displaced = task->files;
1681 	task_lock(task);
1682 	task->files = copy;
1683 	task_unlock(task);
1684 	return 0;
1685 }
1686