xref: /openbmc/linux/kernel/fork.c (revision ee88f4eb)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14 
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/binfmts.h>
41 #include <linux/mman.h>
42 #include <linux/mmu_notifier.h>
43 #include <linux/fs.h>
44 #include <linux/mm.h>
45 #include <linux/vmacache.h>
46 #include <linux/nsproxy.h>
47 #include <linux/capability.h>
48 #include <linux/cpu.h>
49 #include <linux/cgroup.h>
50 #include <linux/security.h>
51 #include <linux/hugetlb.h>
52 #include <linux/seccomp.h>
53 #include <linux/swap.h>
54 #include <linux/syscalls.h>
55 #include <linux/jiffies.h>
56 #include <linux/futex.h>
57 #include <linux/compat.h>
58 #include <linux/kthread.h>
59 #include <linux/task_io_accounting_ops.h>
60 #include <linux/rcupdate.h>
61 #include <linux/ptrace.h>
62 #include <linux/mount.h>
63 #include <linux/audit.h>
64 #include <linux/memcontrol.h>
65 #include <linux/ftrace.h>
66 #include <linux/proc_fs.h>
67 #include <linux/profile.h>
68 #include <linux/rmap.h>
69 #include <linux/ksm.h>
70 #include <linux/acct.h>
71 #include <linux/userfaultfd_k.h>
72 #include <linux/tsacct_kern.h>
73 #include <linux/cn_proc.h>
74 #include <linux/freezer.h>
75 #include <linux/delayacct.h>
76 #include <linux/taskstats_kern.h>
77 #include <linux/random.h>
78 #include <linux/tty.h>
79 #include <linux/blkdev.h>
80 #include <linux/fs_struct.h>
81 #include <linux/magic.h>
82 #include <linux/perf_event.h>
83 #include <linux/posix-timers.h>
84 #include <linux/user-return-notifier.h>
85 #include <linux/oom.h>
86 #include <linux/khugepaged.h>
87 #include <linux/signalfd.h>
88 #include <linux/uprobes.h>
89 #include <linux/aio.h>
90 #include <linux/compiler.h>
91 #include <linux/sysctl.h>
92 #include <linux/kcov.h>
93 #include <linux/livepatch.h>
94 #include <linux/thread_info.h>
95 #include <linux/stackleak.h>
96 #include <linux/kasan.h>
97 
98 #include <asm/pgtable.h>
99 #include <asm/pgalloc.h>
100 #include <linux/uaccess.h>
101 #include <asm/mmu_context.h>
102 #include <asm/cacheflush.h>
103 #include <asm/tlbflush.h>
104 
105 #include <trace/events/sched.h>
106 
107 #define CREATE_TRACE_POINTS
108 #include <trace/events/task.h>
109 
110 /*
111  * Minimum number of threads to boot the kernel
112  */
113 #define MIN_THREADS 20
114 
115 /*
116  * Maximum number of threads
117  */
118 #define MAX_THREADS FUTEX_TID_MASK
119 
120 /*
121  * Protected counters by write_lock_irq(&tasklist_lock)
122  */
123 unsigned long total_forks;	/* Handle normal Linux uptimes. */
124 int nr_threads;			/* The idle threads do not count.. */
125 
126 static int max_threads;		/* tunable limit on nr_threads */
127 
128 #define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
129 
130 static const char * const resident_page_types[] = {
131 	NAMED_ARRAY_INDEX(MM_FILEPAGES),
132 	NAMED_ARRAY_INDEX(MM_ANONPAGES),
133 	NAMED_ARRAY_INDEX(MM_SWAPENTS),
134 	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
135 };
136 
137 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
138 
139 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
140 
141 #ifdef CONFIG_PROVE_RCU
142 int lockdep_tasklist_lock_is_held(void)
143 {
144 	return lockdep_is_held(&tasklist_lock);
145 }
146 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
147 #endif /* #ifdef CONFIG_PROVE_RCU */
148 
149 int nr_processes(void)
150 {
151 	int cpu;
152 	int total = 0;
153 
154 	for_each_possible_cpu(cpu)
155 		total += per_cpu(process_counts, cpu);
156 
157 	return total;
158 }
159 
160 void __weak arch_release_task_struct(struct task_struct *tsk)
161 {
162 }
163 
164 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
165 static struct kmem_cache *task_struct_cachep;
166 
167 static inline struct task_struct *alloc_task_struct_node(int node)
168 {
169 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
170 }
171 
172 static inline void free_task_struct(struct task_struct *tsk)
173 {
174 	kmem_cache_free(task_struct_cachep, tsk);
175 }
176 #endif
177 
178 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
179 
180 /*
181  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
182  * kmemcache based allocator.
183  */
184 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
185 
186 #ifdef CONFIG_VMAP_STACK
187 /*
188  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
189  * flush.  Try to minimize the number of calls by caching stacks.
190  */
191 #define NR_CACHED_STACKS 2
192 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
193 
194 static int free_vm_stack_cache(unsigned int cpu)
195 {
196 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
197 	int i;
198 
199 	for (i = 0; i < NR_CACHED_STACKS; i++) {
200 		struct vm_struct *vm_stack = cached_vm_stacks[i];
201 
202 		if (!vm_stack)
203 			continue;
204 
205 		vfree(vm_stack->addr);
206 		cached_vm_stacks[i] = NULL;
207 	}
208 
209 	return 0;
210 }
211 #endif
212 
213 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
214 {
215 #ifdef CONFIG_VMAP_STACK
216 	void *stack;
217 	int i;
218 
219 	for (i = 0; i < NR_CACHED_STACKS; i++) {
220 		struct vm_struct *s;
221 
222 		s = this_cpu_xchg(cached_stacks[i], NULL);
223 
224 		if (!s)
225 			continue;
226 
227 		/* Clear the KASAN shadow of the stack. */
228 		kasan_unpoison_shadow(s->addr, THREAD_SIZE);
229 
230 		/* Clear stale pointers from reused stack. */
231 		memset(s->addr, 0, THREAD_SIZE);
232 
233 		tsk->stack_vm_area = s;
234 		tsk->stack = s->addr;
235 		return s->addr;
236 	}
237 
238 	/*
239 	 * Allocated stacks are cached and later reused by new threads,
240 	 * so memcg accounting is performed manually on assigning/releasing
241 	 * stacks to tasks. Drop __GFP_ACCOUNT.
242 	 */
243 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
244 				     VMALLOC_START, VMALLOC_END,
245 				     THREADINFO_GFP & ~__GFP_ACCOUNT,
246 				     PAGE_KERNEL,
247 				     0, node, __builtin_return_address(0));
248 
249 	/*
250 	 * We can't call find_vm_area() in interrupt context, and
251 	 * free_thread_stack() can be called in interrupt context,
252 	 * so cache the vm_struct.
253 	 */
254 	if (stack) {
255 		tsk->stack_vm_area = find_vm_area(stack);
256 		tsk->stack = stack;
257 	}
258 	return stack;
259 #else
260 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
261 					     THREAD_SIZE_ORDER);
262 
263 	if (likely(page)) {
264 		tsk->stack = page_address(page);
265 		return tsk->stack;
266 	}
267 	return NULL;
268 #endif
269 }
270 
271 static inline void free_thread_stack(struct task_struct *tsk)
272 {
273 #ifdef CONFIG_VMAP_STACK
274 	struct vm_struct *vm = task_stack_vm_area(tsk);
275 
276 	if (vm) {
277 		int i;
278 
279 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
280 			mod_memcg_page_state(vm->pages[i],
281 					     MEMCG_KERNEL_STACK_KB,
282 					     -(int)(PAGE_SIZE / 1024));
283 
284 			memcg_kmem_uncharge(vm->pages[i], 0);
285 		}
286 
287 		for (i = 0; i < NR_CACHED_STACKS; i++) {
288 			if (this_cpu_cmpxchg(cached_stacks[i],
289 					NULL, tsk->stack_vm_area) != NULL)
290 				continue;
291 
292 			return;
293 		}
294 
295 		vfree_atomic(tsk->stack);
296 		return;
297 	}
298 #endif
299 
300 	__free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
301 }
302 # else
303 static struct kmem_cache *thread_stack_cache;
304 
305 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
306 						  int node)
307 {
308 	unsigned long *stack;
309 	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
310 	tsk->stack = stack;
311 	return stack;
312 }
313 
314 static void free_thread_stack(struct task_struct *tsk)
315 {
316 	kmem_cache_free(thread_stack_cache, tsk->stack);
317 }
318 
319 void thread_stack_cache_init(void)
320 {
321 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
322 					THREAD_SIZE, THREAD_SIZE, 0, 0,
323 					THREAD_SIZE, NULL);
324 	BUG_ON(thread_stack_cache == NULL);
325 }
326 # endif
327 #endif
328 
329 /* SLAB cache for signal_struct structures (tsk->signal) */
330 static struct kmem_cache *signal_cachep;
331 
332 /* SLAB cache for sighand_struct structures (tsk->sighand) */
333 struct kmem_cache *sighand_cachep;
334 
335 /* SLAB cache for files_struct structures (tsk->files) */
336 struct kmem_cache *files_cachep;
337 
338 /* SLAB cache for fs_struct structures (tsk->fs) */
339 struct kmem_cache *fs_cachep;
340 
341 /* SLAB cache for vm_area_struct structures */
342 static struct kmem_cache *vm_area_cachep;
343 
344 /* SLAB cache for mm_struct structures (tsk->mm) */
345 static struct kmem_cache *mm_cachep;
346 
347 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
348 {
349 	struct vm_area_struct *vma;
350 
351 	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
352 	if (vma)
353 		vma_init(vma, mm);
354 	return vma;
355 }
356 
357 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
358 {
359 	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
360 
361 	if (new) {
362 		*new = *orig;
363 		INIT_LIST_HEAD(&new->anon_vma_chain);
364 	}
365 	return new;
366 }
367 
368 void vm_area_free(struct vm_area_struct *vma)
369 {
370 	kmem_cache_free(vm_area_cachep, vma);
371 }
372 
373 static void account_kernel_stack(struct task_struct *tsk, int account)
374 {
375 	void *stack = task_stack_page(tsk);
376 	struct vm_struct *vm = task_stack_vm_area(tsk);
377 
378 	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
379 
380 	if (vm) {
381 		int i;
382 
383 		BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
384 
385 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
386 			mod_zone_page_state(page_zone(vm->pages[i]),
387 					    NR_KERNEL_STACK_KB,
388 					    PAGE_SIZE / 1024 * account);
389 		}
390 	} else {
391 		/*
392 		 * All stack pages are in the same zone and belong to the
393 		 * same memcg.
394 		 */
395 		struct page *first_page = virt_to_page(stack);
396 
397 		mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
398 				    THREAD_SIZE / 1024 * account);
399 
400 		mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB,
401 				     account * (THREAD_SIZE / 1024));
402 	}
403 }
404 
405 static int memcg_charge_kernel_stack(struct task_struct *tsk)
406 {
407 #ifdef CONFIG_VMAP_STACK
408 	struct vm_struct *vm = task_stack_vm_area(tsk);
409 	int ret;
410 
411 	if (vm) {
412 		int i;
413 
414 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
415 			/*
416 			 * If memcg_kmem_charge() fails, page->mem_cgroup
417 			 * pointer is NULL, and both memcg_kmem_uncharge()
418 			 * and mod_memcg_page_state() in free_thread_stack()
419 			 * will ignore this page. So it's safe.
420 			 */
421 			ret = memcg_kmem_charge(vm->pages[i], GFP_KERNEL, 0);
422 			if (ret)
423 				return ret;
424 
425 			mod_memcg_page_state(vm->pages[i],
426 					     MEMCG_KERNEL_STACK_KB,
427 					     PAGE_SIZE / 1024);
428 		}
429 	}
430 #endif
431 	return 0;
432 }
433 
434 static void release_task_stack(struct task_struct *tsk)
435 {
436 	if (WARN_ON(tsk->state != TASK_DEAD))
437 		return;  /* Better to leak the stack than to free prematurely */
438 
439 	account_kernel_stack(tsk, -1);
440 	free_thread_stack(tsk);
441 	tsk->stack = NULL;
442 #ifdef CONFIG_VMAP_STACK
443 	tsk->stack_vm_area = NULL;
444 #endif
445 }
446 
447 #ifdef CONFIG_THREAD_INFO_IN_TASK
448 void put_task_stack(struct task_struct *tsk)
449 {
450 	if (refcount_dec_and_test(&tsk->stack_refcount))
451 		release_task_stack(tsk);
452 }
453 #endif
454 
455 void free_task(struct task_struct *tsk)
456 {
457 #ifndef CONFIG_THREAD_INFO_IN_TASK
458 	/*
459 	 * The task is finally done with both the stack and thread_info,
460 	 * so free both.
461 	 */
462 	release_task_stack(tsk);
463 #else
464 	/*
465 	 * If the task had a separate stack allocation, it should be gone
466 	 * by now.
467 	 */
468 	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
469 #endif
470 	rt_mutex_debug_task_free(tsk);
471 	ftrace_graph_exit_task(tsk);
472 	put_seccomp_filter(tsk);
473 	arch_release_task_struct(tsk);
474 	if (tsk->flags & PF_KTHREAD)
475 		free_kthread_struct(tsk);
476 	free_task_struct(tsk);
477 }
478 EXPORT_SYMBOL(free_task);
479 
480 #ifdef CONFIG_MMU
481 static __latent_entropy int dup_mmap(struct mm_struct *mm,
482 					struct mm_struct *oldmm)
483 {
484 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
485 	struct rb_node **rb_link, *rb_parent;
486 	int retval;
487 	unsigned long charge;
488 	LIST_HEAD(uf);
489 
490 	uprobe_start_dup_mmap();
491 	if (down_write_killable(&oldmm->mmap_sem)) {
492 		retval = -EINTR;
493 		goto fail_uprobe_end;
494 	}
495 	flush_cache_dup_mm(oldmm);
496 	uprobe_dup_mmap(oldmm, mm);
497 	/*
498 	 * Not linked in yet - no deadlock potential:
499 	 */
500 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
501 
502 	/* No ordering required: file already has been exposed. */
503 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
504 
505 	mm->total_vm = oldmm->total_vm;
506 	mm->data_vm = oldmm->data_vm;
507 	mm->exec_vm = oldmm->exec_vm;
508 	mm->stack_vm = oldmm->stack_vm;
509 
510 	rb_link = &mm->mm_rb.rb_node;
511 	rb_parent = NULL;
512 	pprev = &mm->mmap;
513 	retval = ksm_fork(mm, oldmm);
514 	if (retval)
515 		goto out;
516 	retval = khugepaged_fork(mm, oldmm);
517 	if (retval)
518 		goto out;
519 
520 	prev = NULL;
521 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
522 		struct file *file;
523 
524 		if (mpnt->vm_flags & VM_DONTCOPY) {
525 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
526 			continue;
527 		}
528 		charge = 0;
529 		/*
530 		 * Don't duplicate many vmas if we've been oom-killed (for
531 		 * example)
532 		 */
533 		if (fatal_signal_pending(current)) {
534 			retval = -EINTR;
535 			goto out;
536 		}
537 		if (mpnt->vm_flags & VM_ACCOUNT) {
538 			unsigned long len = vma_pages(mpnt);
539 
540 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
541 				goto fail_nomem;
542 			charge = len;
543 		}
544 		tmp = vm_area_dup(mpnt);
545 		if (!tmp)
546 			goto fail_nomem;
547 		retval = vma_dup_policy(mpnt, tmp);
548 		if (retval)
549 			goto fail_nomem_policy;
550 		tmp->vm_mm = mm;
551 		retval = dup_userfaultfd(tmp, &uf);
552 		if (retval)
553 			goto fail_nomem_anon_vma_fork;
554 		if (tmp->vm_flags & VM_WIPEONFORK) {
555 			/* VM_WIPEONFORK gets a clean slate in the child. */
556 			tmp->anon_vma = NULL;
557 			if (anon_vma_prepare(tmp))
558 				goto fail_nomem_anon_vma_fork;
559 		} else if (anon_vma_fork(tmp, mpnt))
560 			goto fail_nomem_anon_vma_fork;
561 		tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
562 		tmp->vm_next = tmp->vm_prev = NULL;
563 		file = tmp->vm_file;
564 		if (file) {
565 			struct inode *inode = file_inode(file);
566 			struct address_space *mapping = file->f_mapping;
567 
568 			get_file(file);
569 			if (tmp->vm_flags & VM_DENYWRITE)
570 				atomic_dec(&inode->i_writecount);
571 			i_mmap_lock_write(mapping);
572 			if (tmp->vm_flags & VM_SHARED)
573 				atomic_inc(&mapping->i_mmap_writable);
574 			flush_dcache_mmap_lock(mapping);
575 			/* insert tmp into the share list, just after mpnt */
576 			vma_interval_tree_insert_after(tmp, mpnt,
577 					&mapping->i_mmap);
578 			flush_dcache_mmap_unlock(mapping);
579 			i_mmap_unlock_write(mapping);
580 		}
581 
582 		/*
583 		 * Clear hugetlb-related page reserves for children. This only
584 		 * affects MAP_PRIVATE mappings. Faults generated by the child
585 		 * are not guaranteed to succeed, even if read-only
586 		 */
587 		if (is_vm_hugetlb_page(tmp))
588 			reset_vma_resv_huge_pages(tmp);
589 
590 		/*
591 		 * Link in the new vma and copy the page table entries.
592 		 */
593 		*pprev = tmp;
594 		pprev = &tmp->vm_next;
595 		tmp->vm_prev = prev;
596 		prev = tmp;
597 
598 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
599 		rb_link = &tmp->vm_rb.rb_right;
600 		rb_parent = &tmp->vm_rb;
601 
602 		mm->map_count++;
603 		if (!(tmp->vm_flags & VM_WIPEONFORK))
604 			retval = copy_page_range(mm, oldmm, mpnt);
605 
606 		if (tmp->vm_ops && tmp->vm_ops->open)
607 			tmp->vm_ops->open(tmp);
608 
609 		if (retval)
610 			goto out;
611 	}
612 	/* a new mm has just been created */
613 	retval = arch_dup_mmap(oldmm, mm);
614 out:
615 	up_write(&mm->mmap_sem);
616 	flush_tlb_mm(oldmm);
617 	up_write(&oldmm->mmap_sem);
618 	dup_userfaultfd_complete(&uf);
619 fail_uprobe_end:
620 	uprobe_end_dup_mmap();
621 	return retval;
622 fail_nomem_anon_vma_fork:
623 	mpol_put(vma_policy(tmp));
624 fail_nomem_policy:
625 	vm_area_free(tmp);
626 fail_nomem:
627 	retval = -ENOMEM;
628 	vm_unacct_memory(charge);
629 	goto out;
630 }
631 
632 static inline int mm_alloc_pgd(struct mm_struct *mm)
633 {
634 	mm->pgd = pgd_alloc(mm);
635 	if (unlikely(!mm->pgd))
636 		return -ENOMEM;
637 	return 0;
638 }
639 
640 static inline void mm_free_pgd(struct mm_struct *mm)
641 {
642 	pgd_free(mm, mm->pgd);
643 }
644 #else
645 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
646 {
647 	down_write(&oldmm->mmap_sem);
648 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
649 	up_write(&oldmm->mmap_sem);
650 	return 0;
651 }
652 #define mm_alloc_pgd(mm)	(0)
653 #define mm_free_pgd(mm)
654 #endif /* CONFIG_MMU */
655 
656 static void check_mm(struct mm_struct *mm)
657 {
658 	int i;
659 
660 	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
661 			 "Please make sure 'struct resident_page_types[]' is updated as well");
662 
663 	for (i = 0; i < NR_MM_COUNTERS; i++) {
664 		long x = atomic_long_read(&mm->rss_stat.count[i]);
665 
666 		if (unlikely(x))
667 			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
668 				 mm, resident_page_types[i], x);
669 	}
670 
671 	if (mm_pgtables_bytes(mm))
672 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
673 				mm_pgtables_bytes(mm));
674 
675 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
676 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
677 #endif
678 }
679 
680 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
681 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
682 
683 /*
684  * Called when the last reference to the mm
685  * is dropped: either by a lazy thread or by
686  * mmput. Free the page directory and the mm.
687  */
688 void __mmdrop(struct mm_struct *mm)
689 {
690 	BUG_ON(mm == &init_mm);
691 	WARN_ON_ONCE(mm == current->mm);
692 	WARN_ON_ONCE(mm == current->active_mm);
693 	mm_free_pgd(mm);
694 	destroy_context(mm);
695 	mmu_notifier_mm_destroy(mm);
696 	check_mm(mm);
697 	put_user_ns(mm->user_ns);
698 	free_mm(mm);
699 }
700 EXPORT_SYMBOL_GPL(__mmdrop);
701 
702 static void mmdrop_async_fn(struct work_struct *work)
703 {
704 	struct mm_struct *mm;
705 
706 	mm = container_of(work, struct mm_struct, async_put_work);
707 	__mmdrop(mm);
708 }
709 
710 static void mmdrop_async(struct mm_struct *mm)
711 {
712 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
713 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
714 		schedule_work(&mm->async_put_work);
715 	}
716 }
717 
718 static inline void free_signal_struct(struct signal_struct *sig)
719 {
720 	taskstats_tgid_free(sig);
721 	sched_autogroup_exit(sig);
722 	/*
723 	 * __mmdrop is not safe to call from softirq context on x86 due to
724 	 * pgd_dtor so postpone it to the async context
725 	 */
726 	if (sig->oom_mm)
727 		mmdrop_async(sig->oom_mm);
728 	kmem_cache_free(signal_cachep, sig);
729 }
730 
731 static inline void put_signal_struct(struct signal_struct *sig)
732 {
733 	if (refcount_dec_and_test(&sig->sigcnt))
734 		free_signal_struct(sig);
735 }
736 
737 void __put_task_struct(struct task_struct *tsk)
738 {
739 	WARN_ON(!tsk->exit_state);
740 	WARN_ON(refcount_read(&tsk->usage));
741 	WARN_ON(tsk == current);
742 
743 	cgroup_free(tsk);
744 	task_numa_free(tsk, true);
745 	security_task_free(tsk);
746 	exit_creds(tsk);
747 	delayacct_tsk_free(tsk);
748 	put_signal_struct(tsk->signal);
749 
750 	if (!profile_handoff_task(tsk))
751 		free_task(tsk);
752 }
753 EXPORT_SYMBOL_GPL(__put_task_struct);
754 
755 void __init __weak arch_task_cache_init(void) { }
756 
757 /*
758  * set_max_threads
759  */
760 static void set_max_threads(unsigned int max_threads_suggested)
761 {
762 	u64 threads;
763 	unsigned long nr_pages = totalram_pages();
764 
765 	/*
766 	 * The number of threads shall be limited such that the thread
767 	 * structures may only consume a small part of the available memory.
768 	 */
769 	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
770 		threads = MAX_THREADS;
771 	else
772 		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
773 				    (u64) THREAD_SIZE * 8UL);
774 
775 	if (threads > max_threads_suggested)
776 		threads = max_threads_suggested;
777 
778 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
779 }
780 
781 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
782 /* Initialized by the architecture: */
783 int arch_task_struct_size __read_mostly;
784 #endif
785 
786 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
787 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
788 {
789 	/* Fetch thread_struct whitelist for the architecture. */
790 	arch_thread_struct_whitelist(offset, size);
791 
792 	/*
793 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
794 	 * adjust offset to position of thread_struct in task_struct.
795 	 */
796 	if (unlikely(*size == 0))
797 		*offset = 0;
798 	else
799 		*offset += offsetof(struct task_struct, thread);
800 }
801 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
802 
803 void __init fork_init(void)
804 {
805 	int i;
806 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
807 #ifndef ARCH_MIN_TASKALIGN
808 #define ARCH_MIN_TASKALIGN	0
809 #endif
810 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
811 	unsigned long useroffset, usersize;
812 
813 	/* create a slab on which task_structs can be allocated */
814 	task_struct_whitelist(&useroffset, &usersize);
815 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
816 			arch_task_struct_size, align,
817 			SLAB_PANIC|SLAB_ACCOUNT,
818 			useroffset, usersize, NULL);
819 #endif
820 
821 	/* do the arch specific task caches init */
822 	arch_task_cache_init();
823 
824 	set_max_threads(MAX_THREADS);
825 
826 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
827 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
828 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
829 		init_task.signal->rlim[RLIMIT_NPROC];
830 
831 	for (i = 0; i < UCOUNT_COUNTS; i++) {
832 		init_user_ns.ucount_max[i] = max_threads/2;
833 	}
834 
835 #ifdef CONFIG_VMAP_STACK
836 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
837 			  NULL, free_vm_stack_cache);
838 #endif
839 
840 	lockdep_init_task(&init_task);
841 	uprobes_init();
842 }
843 
844 int __weak arch_dup_task_struct(struct task_struct *dst,
845 					       struct task_struct *src)
846 {
847 	*dst = *src;
848 	return 0;
849 }
850 
851 void set_task_stack_end_magic(struct task_struct *tsk)
852 {
853 	unsigned long *stackend;
854 
855 	stackend = end_of_stack(tsk);
856 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
857 }
858 
859 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
860 {
861 	struct task_struct *tsk;
862 	unsigned long *stack;
863 	struct vm_struct *stack_vm_area __maybe_unused;
864 	int err;
865 
866 	if (node == NUMA_NO_NODE)
867 		node = tsk_fork_get_node(orig);
868 	tsk = alloc_task_struct_node(node);
869 	if (!tsk)
870 		return NULL;
871 
872 	stack = alloc_thread_stack_node(tsk, node);
873 	if (!stack)
874 		goto free_tsk;
875 
876 	if (memcg_charge_kernel_stack(tsk))
877 		goto free_stack;
878 
879 	stack_vm_area = task_stack_vm_area(tsk);
880 
881 	err = arch_dup_task_struct(tsk, orig);
882 
883 	/*
884 	 * arch_dup_task_struct() clobbers the stack-related fields.  Make
885 	 * sure they're properly initialized before using any stack-related
886 	 * functions again.
887 	 */
888 	tsk->stack = stack;
889 #ifdef CONFIG_VMAP_STACK
890 	tsk->stack_vm_area = stack_vm_area;
891 #endif
892 #ifdef CONFIG_THREAD_INFO_IN_TASK
893 	refcount_set(&tsk->stack_refcount, 1);
894 #endif
895 
896 	if (err)
897 		goto free_stack;
898 
899 #ifdef CONFIG_SECCOMP
900 	/*
901 	 * We must handle setting up seccomp filters once we're under
902 	 * the sighand lock in case orig has changed between now and
903 	 * then. Until then, filter must be NULL to avoid messing up
904 	 * the usage counts on the error path calling free_task.
905 	 */
906 	tsk->seccomp.filter = NULL;
907 #endif
908 
909 	setup_thread_stack(tsk, orig);
910 	clear_user_return_notifier(tsk);
911 	clear_tsk_need_resched(tsk);
912 	set_task_stack_end_magic(tsk);
913 
914 #ifdef CONFIG_STACKPROTECTOR
915 	tsk->stack_canary = get_random_canary();
916 #endif
917 	if (orig->cpus_ptr == &orig->cpus_mask)
918 		tsk->cpus_ptr = &tsk->cpus_mask;
919 
920 	/*
921 	 * One for the user space visible state that goes away when reaped.
922 	 * One for the scheduler.
923 	 */
924 	refcount_set(&tsk->rcu_users, 2);
925 	/* One for the rcu users */
926 	refcount_set(&tsk->usage, 1);
927 #ifdef CONFIG_BLK_DEV_IO_TRACE
928 	tsk->btrace_seq = 0;
929 #endif
930 	tsk->splice_pipe = NULL;
931 	tsk->task_frag.page = NULL;
932 	tsk->wake_q.next = NULL;
933 
934 	account_kernel_stack(tsk, 1);
935 
936 	kcov_task_init(tsk);
937 
938 #ifdef CONFIG_FAULT_INJECTION
939 	tsk->fail_nth = 0;
940 #endif
941 
942 #ifdef CONFIG_BLK_CGROUP
943 	tsk->throttle_queue = NULL;
944 	tsk->use_memdelay = 0;
945 #endif
946 
947 #ifdef CONFIG_MEMCG
948 	tsk->active_memcg = NULL;
949 #endif
950 	return tsk;
951 
952 free_stack:
953 	free_thread_stack(tsk);
954 free_tsk:
955 	free_task_struct(tsk);
956 	return NULL;
957 }
958 
959 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
960 
961 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
962 
963 static int __init coredump_filter_setup(char *s)
964 {
965 	default_dump_filter =
966 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
967 		MMF_DUMP_FILTER_MASK;
968 	return 1;
969 }
970 
971 __setup("coredump_filter=", coredump_filter_setup);
972 
973 #include <linux/init_task.h>
974 
975 static void mm_init_aio(struct mm_struct *mm)
976 {
977 #ifdef CONFIG_AIO
978 	spin_lock_init(&mm->ioctx_lock);
979 	mm->ioctx_table = NULL;
980 #endif
981 }
982 
983 static __always_inline void mm_clear_owner(struct mm_struct *mm,
984 					   struct task_struct *p)
985 {
986 #ifdef CONFIG_MEMCG
987 	if (mm->owner == p)
988 		WRITE_ONCE(mm->owner, NULL);
989 #endif
990 }
991 
992 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
993 {
994 #ifdef CONFIG_MEMCG
995 	mm->owner = p;
996 #endif
997 }
998 
999 static void mm_init_uprobes_state(struct mm_struct *mm)
1000 {
1001 #ifdef CONFIG_UPROBES
1002 	mm->uprobes_state.xol_area = NULL;
1003 #endif
1004 }
1005 
1006 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1007 	struct user_namespace *user_ns)
1008 {
1009 	mm->mmap = NULL;
1010 	mm->mm_rb = RB_ROOT;
1011 	mm->vmacache_seqnum = 0;
1012 	atomic_set(&mm->mm_users, 1);
1013 	atomic_set(&mm->mm_count, 1);
1014 	init_rwsem(&mm->mmap_sem);
1015 	INIT_LIST_HEAD(&mm->mmlist);
1016 	mm->core_state = NULL;
1017 	mm_pgtables_bytes_init(mm);
1018 	mm->map_count = 0;
1019 	mm->locked_vm = 0;
1020 	atomic64_set(&mm->pinned_vm, 0);
1021 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1022 	spin_lock_init(&mm->page_table_lock);
1023 	spin_lock_init(&mm->arg_lock);
1024 	mm_init_cpumask(mm);
1025 	mm_init_aio(mm);
1026 	mm_init_owner(mm, p);
1027 	RCU_INIT_POINTER(mm->exe_file, NULL);
1028 	mmu_notifier_mm_init(mm);
1029 	init_tlb_flush_pending(mm);
1030 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1031 	mm->pmd_huge_pte = NULL;
1032 #endif
1033 	mm_init_uprobes_state(mm);
1034 
1035 	if (current->mm) {
1036 		mm->flags = current->mm->flags & MMF_INIT_MASK;
1037 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1038 	} else {
1039 		mm->flags = default_dump_filter;
1040 		mm->def_flags = 0;
1041 	}
1042 
1043 	if (mm_alloc_pgd(mm))
1044 		goto fail_nopgd;
1045 
1046 	if (init_new_context(p, mm))
1047 		goto fail_nocontext;
1048 
1049 	mm->user_ns = get_user_ns(user_ns);
1050 	return mm;
1051 
1052 fail_nocontext:
1053 	mm_free_pgd(mm);
1054 fail_nopgd:
1055 	free_mm(mm);
1056 	return NULL;
1057 }
1058 
1059 /*
1060  * Allocate and initialize an mm_struct.
1061  */
1062 struct mm_struct *mm_alloc(void)
1063 {
1064 	struct mm_struct *mm;
1065 
1066 	mm = allocate_mm();
1067 	if (!mm)
1068 		return NULL;
1069 
1070 	memset(mm, 0, sizeof(*mm));
1071 	return mm_init(mm, current, current_user_ns());
1072 }
1073 
1074 static inline void __mmput(struct mm_struct *mm)
1075 {
1076 	VM_BUG_ON(atomic_read(&mm->mm_users));
1077 
1078 	uprobe_clear_state(mm);
1079 	exit_aio(mm);
1080 	ksm_exit(mm);
1081 	khugepaged_exit(mm); /* must run before exit_mmap */
1082 	exit_mmap(mm);
1083 	mm_put_huge_zero_page(mm);
1084 	set_mm_exe_file(mm, NULL);
1085 	if (!list_empty(&mm->mmlist)) {
1086 		spin_lock(&mmlist_lock);
1087 		list_del(&mm->mmlist);
1088 		spin_unlock(&mmlist_lock);
1089 	}
1090 	if (mm->binfmt)
1091 		module_put(mm->binfmt->module);
1092 	mmdrop(mm);
1093 }
1094 
1095 /*
1096  * Decrement the use count and release all resources for an mm.
1097  */
1098 void mmput(struct mm_struct *mm)
1099 {
1100 	might_sleep();
1101 
1102 	if (atomic_dec_and_test(&mm->mm_users))
1103 		__mmput(mm);
1104 }
1105 EXPORT_SYMBOL_GPL(mmput);
1106 
1107 #ifdef CONFIG_MMU
1108 static void mmput_async_fn(struct work_struct *work)
1109 {
1110 	struct mm_struct *mm = container_of(work, struct mm_struct,
1111 					    async_put_work);
1112 
1113 	__mmput(mm);
1114 }
1115 
1116 void mmput_async(struct mm_struct *mm)
1117 {
1118 	if (atomic_dec_and_test(&mm->mm_users)) {
1119 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1120 		schedule_work(&mm->async_put_work);
1121 	}
1122 }
1123 #endif
1124 
1125 /**
1126  * set_mm_exe_file - change a reference to the mm's executable file
1127  *
1128  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1129  *
1130  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1131  * invocations: in mmput() nobody alive left, in execve task is single
1132  * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1133  * mm->exe_file, but does so without using set_mm_exe_file() in order
1134  * to do avoid the need for any locks.
1135  */
1136 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1137 {
1138 	struct file *old_exe_file;
1139 
1140 	/*
1141 	 * It is safe to dereference the exe_file without RCU as
1142 	 * this function is only called if nobody else can access
1143 	 * this mm -- see comment above for justification.
1144 	 */
1145 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1146 
1147 	if (new_exe_file)
1148 		get_file(new_exe_file);
1149 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1150 	if (old_exe_file)
1151 		fput(old_exe_file);
1152 }
1153 
1154 /**
1155  * get_mm_exe_file - acquire a reference to the mm's executable file
1156  *
1157  * Returns %NULL if mm has no associated executable file.
1158  * User must release file via fput().
1159  */
1160 struct file *get_mm_exe_file(struct mm_struct *mm)
1161 {
1162 	struct file *exe_file;
1163 
1164 	rcu_read_lock();
1165 	exe_file = rcu_dereference(mm->exe_file);
1166 	if (exe_file && !get_file_rcu(exe_file))
1167 		exe_file = NULL;
1168 	rcu_read_unlock();
1169 	return exe_file;
1170 }
1171 EXPORT_SYMBOL(get_mm_exe_file);
1172 
1173 /**
1174  * get_task_exe_file - acquire a reference to the task's executable file
1175  *
1176  * Returns %NULL if task's mm (if any) has no associated executable file or
1177  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1178  * User must release file via fput().
1179  */
1180 struct file *get_task_exe_file(struct task_struct *task)
1181 {
1182 	struct file *exe_file = NULL;
1183 	struct mm_struct *mm;
1184 
1185 	task_lock(task);
1186 	mm = task->mm;
1187 	if (mm) {
1188 		if (!(task->flags & PF_KTHREAD))
1189 			exe_file = get_mm_exe_file(mm);
1190 	}
1191 	task_unlock(task);
1192 	return exe_file;
1193 }
1194 EXPORT_SYMBOL(get_task_exe_file);
1195 
1196 /**
1197  * get_task_mm - acquire a reference to the task's mm
1198  *
1199  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1200  * this kernel workthread has transiently adopted a user mm with use_mm,
1201  * to do its AIO) is not set and if so returns a reference to it, after
1202  * bumping up the use count.  User must release the mm via mmput()
1203  * after use.  Typically used by /proc and ptrace.
1204  */
1205 struct mm_struct *get_task_mm(struct task_struct *task)
1206 {
1207 	struct mm_struct *mm;
1208 
1209 	task_lock(task);
1210 	mm = task->mm;
1211 	if (mm) {
1212 		if (task->flags & PF_KTHREAD)
1213 			mm = NULL;
1214 		else
1215 			mmget(mm);
1216 	}
1217 	task_unlock(task);
1218 	return mm;
1219 }
1220 EXPORT_SYMBOL_GPL(get_task_mm);
1221 
1222 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1223 {
1224 	struct mm_struct *mm;
1225 	int err;
1226 
1227 	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
1228 	if (err)
1229 		return ERR_PTR(err);
1230 
1231 	mm = get_task_mm(task);
1232 	if (mm && mm != current->mm &&
1233 			!ptrace_may_access(task, mode)) {
1234 		mmput(mm);
1235 		mm = ERR_PTR(-EACCES);
1236 	}
1237 	mutex_unlock(&task->signal->cred_guard_mutex);
1238 
1239 	return mm;
1240 }
1241 
1242 static void complete_vfork_done(struct task_struct *tsk)
1243 {
1244 	struct completion *vfork;
1245 
1246 	task_lock(tsk);
1247 	vfork = tsk->vfork_done;
1248 	if (likely(vfork)) {
1249 		tsk->vfork_done = NULL;
1250 		complete(vfork);
1251 	}
1252 	task_unlock(tsk);
1253 }
1254 
1255 static int wait_for_vfork_done(struct task_struct *child,
1256 				struct completion *vfork)
1257 {
1258 	int killed;
1259 
1260 	freezer_do_not_count();
1261 	cgroup_enter_frozen();
1262 	killed = wait_for_completion_killable(vfork);
1263 	cgroup_leave_frozen(false);
1264 	freezer_count();
1265 
1266 	if (killed) {
1267 		task_lock(child);
1268 		child->vfork_done = NULL;
1269 		task_unlock(child);
1270 	}
1271 
1272 	put_task_struct(child);
1273 	return killed;
1274 }
1275 
1276 /* Please note the differences between mmput and mm_release.
1277  * mmput is called whenever we stop holding onto a mm_struct,
1278  * error success whatever.
1279  *
1280  * mm_release is called after a mm_struct has been removed
1281  * from the current process.
1282  *
1283  * This difference is important for error handling, when we
1284  * only half set up a mm_struct for a new process and need to restore
1285  * the old one.  Because we mmput the new mm_struct before
1286  * restoring the old one. . .
1287  * Eric Biederman 10 January 1998
1288  */
1289 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1290 {
1291 	uprobe_free_utask(tsk);
1292 
1293 	/* Get rid of any cached register state */
1294 	deactivate_mm(tsk, mm);
1295 
1296 	/*
1297 	 * Signal userspace if we're not exiting with a core dump
1298 	 * because we want to leave the value intact for debugging
1299 	 * purposes.
1300 	 */
1301 	if (tsk->clear_child_tid) {
1302 		if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1303 		    atomic_read(&mm->mm_users) > 1) {
1304 			/*
1305 			 * We don't check the error code - if userspace has
1306 			 * not set up a proper pointer then tough luck.
1307 			 */
1308 			put_user(0, tsk->clear_child_tid);
1309 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1310 					1, NULL, NULL, 0, 0);
1311 		}
1312 		tsk->clear_child_tid = NULL;
1313 	}
1314 
1315 	/*
1316 	 * All done, finally we can wake up parent and return this mm to him.
1317 	 * Also kthread_stop() uses this completion for synchronization.
1318 	 */
1319 	if (tsk->vfork_done)
1320 		complete_vfork_done(tsk);
1321 }
1322 
1323 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1324 {
1325 	futex_exit_release(tsk);
1326 	mm_release(tsk, mm);
1327 }
1328 
1329 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1330 {
1331 	futex_exec_release(tsk);
1332 	mm_release(tsk, mm);
1333 }
1334 
1335 /**
1336  * dup_mm() - duplicates an existing mm structure
1337  * @tsk: the task_struct with which the new mm will be associated.
1338  * @oldmm: the mm to duplicate.
1339  *
1340  * Allocates a new mm structure and duplicates the provided @oldmm structure
1341  * content into it.
1342  *
1343  * Return: the duplicated mm or NULL on failure.
1344  */
1345 static struct mm_struct *dup_mm(struct task_struct *tsk,
1346 				struct mm_struct *oldmm)
1347 {
1348 	struct mm_struct *mm;
1349 	int err;
1350 
1351 	mm = allocate_mm();
1352 	if (!mm)
1353 		goto fail_nomem;
1354 
1355 	memcpy(mm, oldmm, sizeof(*mm));
1356 
1357 	if (!mm_init(mm, tsk, mm->user_ns))
1358 		goto fail_nomem;
1359 
1360 	err = dup_mmap(mm, oldmm);
1361 	if (err)
1362 		goto free_pt;
1363 
1364 	mm->hiwater_rss = get_mm_rss(mm);
1365 	mm->hiwater_vm = mm->total_vm;
1366 
1367 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1368 		goto free_pt;
1369 
1370 	return mm;
1371 
1372 free_pt:
1373 	/* don't put binfmt in mmput, we haven't got module yet */
1374 	mm->binfmt = NULL;
1375 	mm_init_owner(mm, NULL);
1376 	mmput(mm);
1377 
1378 fail_nomem:
1379 	return NULL;
1380 }
1381 
1382 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1383 {
1384 	struct mm_struct *mm, *oldmm;
1385 	int retval;
1386 
1387 	tsk->min_flt = tsk->maj_flt = 0;
1388 	tsk->nvcsw = tsk->nivcsw = 0;
1389 #ifdef CONFIG_DETECT_HUNG_TASK
1390 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1391 	tsk->last_switch_time = 0;
1392 #endif
1393 
1394 	tsk->mm = NULL;
1395 	tsk->active_mm = NULL;
1396 
1397 	/*
1398 	 * Are we cloning a kernel thread?
1399 	 *
1400 	 * We need to steal a active VM for that..
1401 	 */
1402 	oldmm = current->mm;
1403 	if (!oldmm)
1404 		return 0;
1405 
1406 	/* initialize the new vmacache entries */
1407 	vmacache_flush(tsk);
1408 
1409 	if (clone_flags & CLONE_VM) {
1410 		mmget(oldmm);
1411 		mm = oldmm;
1412 		goto good_mm;
1413 	}
1414 
1415 	retval = -ENOMEM;
1416 	mm = dup_mm(tsk, current->mm);
1417 	if (!mm)
1418 		goto fail_nomem;
1419 
1420 good_mm:
1421 	tsk->mm = mm;
1422 	tsk->active_mm = mm;
1423 	return 0;
1424 
1425 fail_nomem:
1426 	return retval;
1427 }
1428 
1429 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1430 {
1431 	struct fs_struct *fs = current->fs;
1432 	if (clone_flags & CLONE_FS) {
1433 		/* tsk->fs is already what we want */
1434 		spin_lock(&fs->lock);
1435 		if (fs->in_exec) {
1436 			spin_unlock(&fs->lock);
1437 			return -EAGAIN;
1438 		}
1439 		fs->users++;
1440 		spin_unlock(&fs->lock);
1441 		return 0;
1442 	}
1443 	tsk->fs = copy_fs_struct(fs);
1444 	if (!tsk->fs)
1445 		return -ENOMEM;
1446 	return 0;
1447 }
1448 
1449 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1450 {
1451 	struct files_struct *oldf, *newf;
1452 	int error = 0;
1453 
1454 	/*
1455 	 * A background process may not have any files ...
1456 	 */
1457 	oldf = current->files;
1458 	if (!oldf)
1459 		goto out;
1460 
1461 	if (clone_flags & CLONE_FILES) {
1462 		atomic_inc(&oldf->count);
1463 		goto out;
1464 	}
1465 
1466 	newf = dup_fd(oldf, &error);
1467 	if (!newf)
1468 		goto out;
1469 
1470 	tsk->files = newf;
1471 	error = 0;
1472 out:
1473 	return error;
1474 }
1475 
1476 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1477 {
1478 #ifdef CONFIG_BLOCK
1479 	struct io_context *ioc = current->io_context;
1480 	struct io_context *new_ioc;
1481 
1482 	if (!ioc)
1483 		return 0;
1484 	/*
1485 	 * Share io context with parent, if CLONE_IO is set
1486 	 */
1487 	if (clone_flags & CLONE_IO) {
1488 		ioc_task_link(ioc);
1489 		tsk->io_context = ioc;
1490 	} else if (ioprio_valid(ioc->ioprio)) {
1491 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1492 		if (unlikely(!new_ioc))
1493 			return -ENOMEM;
1494 
1495 		new_ioc->ioprio = ioc->ioprio;
1496 		put_io_context(new_ioc);
1497 	}
1498 #endif
1499 	return 0;
1500 }
1501 
1502 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1503 {
1504 	struct sighand_struct *sig;
1505 
1506 	if (clone_flags & CLONE_SIGHAND) {
1507 		refcount_inc(&current->sighand->count);
1508 		return 0;
1509 	}
1510 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1511 	rcu_assign_pointer(tsk->sighand, sig);
1512 	if (!sig)
1513 		return -ENOMEM;
1514 
1515 	refcount_set(&sig->count, 1);
1516 	spin_lock_irq(&current->sighand->siglock);
1517 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1518 	spin_unlock_irq(&current->sighand->siglock);
1519 
1520 	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1521 	if (clone_flags & CLONE_CLEAR_SIGHAND)
1522 		flush_signal_handlers(tsk, 0);
1523 
1524 	return 0;
1525 }
1526 
1527 void __cleanup_sighand(struct sighand_struct *sighand)
1528 {
1529 	if (refcount_dec_and_test(&sighand->count)) {
1530 		signalfd_cleanup(sighand);
1531 		/*
1532 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1533 		 * without an RCU grace period, see __lock_task_sighand().
1534 		 */
1535 		kmem_cache_free(sighand_cachep, sighand);
1536 	}
1537 }
1538 
1539 /*
1540  * Initialize POSIX timer handling for a thread group.
1541  */
1542 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1543 {
1544 	struct posix_cputimers *pct = &sig->posix_cputimers;
1545 	unsigned long cpu_limit;
1546 
1547 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1548 	posix_cputimers_group_init(pct, cpu_limit);
1549 }
1550 
1551 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1552 {
1553 	struct signal_struct *sig;
1554 
1555 	if (clone_flags & CLONE_THREAD)
1556 		return 0;
1557 
1558 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1559 	tsk->signal = sig;
1560 	if (!sig)
1561 		return -ENOMEM;
1562 
1563 	sig->nr_threads = 1;
1564 	atomic_set(&sig->live, 1);
1565 	refcount_set(&sig->sigcnt, 1);
1566 
1567 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1568 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1569 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1570 
1571 	init_waitqueue_head(&sig->wait_chldexit);
1572 	sig->curr_target = tsk;
1573 	init_sigpending(&sig->shared_pending);
1574 	INIT_HLIST_HEAD(&sig->multiprocess);
1575 	seqlock_init(&sig->stats_lock);
1576 	prev_cputime_init(&sig->prev_cputime);
1577 
1578 #ifdef CONFIG_POSIX_TIMERS
1579 	INIT_LIST_HEAD(&sig->posix_timers);
1580 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1581 	sig->real_timer.function = it_real_fn;
1582 #endif
1583 
1584 	task_lock(current->group_leader);
1585 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1586 	task_unlock(current->group_leader);
1587 
1588 	posix_cpu_timers_init_group(sig);
1589 
1590 	tty_audit_fork(sig);
1591 	sched_autogroup_fork(sig);
1592 
1593 	sig->oom_score_adj = current->signal->oom_score_adj;
1594 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1595 
1596 	mutex_init(&sig->cred_guard_mutex);
1597 
1598 	return 0;
1599 }
1600 
1601 static void copy_seccomp(struct task_struct *p)
1602 {
1603 #ifdef CONFIG_SECCOMP
1604 	/*
1605 	 * Must be called with sighand->lock held, which is common to
1606 	 * all threads in the group. Holding cred_guard_mutex is not
1607 	 * needed because this new task is not yet running and cannot
1608 	 * be racing exec.
1609 	 */
1610 	assert_spin_locked(&current->sighand->siglock);
1611 
1612 	/* Ref-count the new filter user, and assign it. */
1613 	get_seccomp_filter(current);
1614 	p->seccomp = current->seccomp;
1615 
1616 	/*
1617 	 * Explicitly enable no_new_privs here in case it got set
1618 	 * between the task_struct being duplicated and holding the
1619 	 * sighand lock. The seccomp state and nnp must be in sync.
1620 	 */
1621 	if (task_no_new_privs(current))
1622 		task_set_no_new_privs(p);
1623 
1624 	/*
1625 	 * If the parent gained a seccomp mode after copying thread
1626 	 * flags and between before we held the sighand lock, we have
1627 	 * to manually enable the seccomp thread flag here.
1628 	 */
1629 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1630 		set_tsk_thread_flag(p, TIF_SECCOMP);
1631 #endif
1632 }
1633 
1634 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1635 {
1636 	current->clear_child_tid = tidptr;
1637 
1638 	return task_pid_vnr(current);
1639 }
1640 
1641 static void rt_mutex_init_task(struct task_struct *p)
1642 {
1643 	raw_spin_lock_init(&p->pi_lock);
1644 #ifdef CONFIG_RT_MUTEXES
1645 	p->pi_waiters = RB_ROOT_CACHED;
1646 	p->pi_top_task = NULL;
1647 	p->pi_blocked_on = NULL;
1648 #endif
1649 }
1650 
1651 static inline void init_task_pid_links(struct task_struct *task)
1652 {
1653 	enum pid_type type;
1654 
1655 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1656 		INIT_HLIST_NODE(&task->pid_links[type]);
1657 	}
1658 }
1659 
1660 static inline void
1661 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1662 {
1663 	if (type == PIDTYPE_PID)
1664 		task->thread_pid = pid;
1665 	else
1666 		task->signal->pids[type] = pid;
1667 }
1668 
1669 static inline void rcu_copy_process(struct task_struct *p)
1670 {
1671 #ifdef CONFIG_PREEMPT_RCU
1672 	p->rcu_read_lock_nesting = 0;
1673 	p->rcu_read_unlock_special.s = 0;
1674 	p->rcu_blocked_node = NULL;
1675 	INIT_LIST_HEAD(&p->rcu_node_entry);
1676 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1677 #ifdef CONFIG_TASKS_RCU
1678 	p->rcu_tasks_holdout = false;
1679 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1680 	p->rcu_tasks_idle_cpu = -1;
1681 #endif /* #ifdef CONFIG_TASKS_RCU */
1682 }
1683 
1684 struct pid *pidfd_pid(const struct file *file)
1685 {
1686 	if (file->f_op == &pidfd_fops)
1687 		return file->private_data;
1688 
1689 	return ERR_PTR(-EBADF);
1690 }
1691 
1692 static int pidfd_release(struct inode *inode, struct file *file)
1693 {
1694 	struct pid *pid = file->private_data;
1695 
1696 	file->private_data = NULL;
1697 	put_pid(pid);
1698 	return 0;
1699 }
1700 
1701 #ifdef CONFIG_PROC_FS
1702 /**
1703  * pidfd_show_fdinfo - print information about a pidfd
1704  * @m: proc fdinfo file
1705  * @f: file referencing a pidfd
1706  *
1707  * Pid:
1708  * This function will print the pid that a given pidfd refers to in the
1709  * pid namespace of the procfs instance.
1710  * If the pid namespace of the process is not a descendant of the pid
1711  * namespace of the procfs instance 0 will be shown as its pid. This is
1712  * similar to calling getppid() on a process whose parent is outside of
1713  * its pid namespace.
1714  *
1715  * NSpid:
1716  * If pid namespaces are supported then this function will also print
1717  * the pid of a given pidfd refers to for all descendant pid namespaces
1718  * starting from the current pid namespace of the instance, i.e. the
1719  * Pid field and the first entry in the NSpid field will be identical.
1720  * If the pid namespace of the process is not a descendant of the pid
1721  * namespace of the procfs instance 0 will be shown as its first NSpid
1722  * entry and no others will be shown.
1723  * Note that this differs from the Pid and NSpid fields in
1724  * /proc/<pid>/status where Pid and NSpid are always shown relative to
1725  * the  pid namespace of the procfs instance. The difference becomes
1726  * obvious when sending around a pidfd between pid namespaces from a
1727  * different branch of the tree, i.e. where no ancestoral relation is
1728  * present between the pid namespaces:
1729  * - create two new pid namespaces ns1 and ns2 in the initial pid
1730  *   namespace (also take care to create new mount namespaces in the
1731  *   new pid namespace and mount procfs)
1732  * - create a process with a pidfd in ns1
1733  * - send pidfd from ns1 to ns2
1734  * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1735  *   have exactly one entry, which is 0
1736  */
1737 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1738 {
1739 	struct pid *pid = f->private_data;
1740 	struct pid_namespace *ns;
1741 	pid_t nr = -1;
1742 
1743 	if (likely(pid_has_task(pid, PIDTYPE_PID))) {
1744 		ns = proc_pid_ns(file_inode(m->file));
1745 		nr = pid_nr_ns(pid, ns);
1746 	}
1747 
1748 	seq_put_decimal_ll(m, "Pid:\t", nr);
1749 
1750 #ifdef CONFIG_PID_NS
1751 	seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1752 	if (nr > 0) {
1753 		int i;
1754 
1755 		/* If nr is non-zero it means that 'pid' is valid and that
1756 		 * ns, i.e. the pid namespace associated with the procfs
1757 		 * instance, is in the pid namespace hierarchy of pid.
1758 		 * Start at one below the already printed level.
1759 		 */
1760 		for (i = ns->level + 1; i <= pid->level; i++)
1761 			seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
1762 	}
1763 #endif
1764 	seq_putc(m, '\n');
1765 }
1766 #endif
1767 
1768 /*
1769  * Poll support for process exit notification.
1770  */
1771 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1772 {
1773 	struct task_struct *task;
1774 	struct pid *pid = file->private_data;
1775 	__poll_t poll_flags = 0;
1776 
1777 	poll_wait(file, &pid->wait_pidfd, pts);
1778 
1779 	rcu_read_lock();
1780 	task = pid_task(pid, PIDTYPE_PID);
1781 	/*
1782 	 * Inform pollers only when the whole thread group exits.
1783 	 * If the thread group leader exits before all other threads in the
1784 	 * group, then poll(2) should block, similar to the wait(2) family.
1785 	 */
1786 	if (!task || (task->exit_state && thread_group_empty(task)))
1787 		poll_flags = EPOLLIN | EPOLLRDNORM;
1788 	rcu_read_unlock();
1789 
1790 	return poll_flags;
1791 }
1792 
1793 const struct file_operations pidfd_fops = {
1794 	.release = pidfd_release,
1795 	.poll = pidfd_poll,
1796 #ifdef CONFIG_PROC_FS
1797 	.show_fdinfo = pidfd_show_fdinfo,
1798 #endif
1799 };
1800 
1801 static void __delayed_free_task(struct rcu_head *rhp)
1802 {
1803 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1804 
1805 	free_task(tsk);
1806 }
1807 
1808 static __always_inline void delayed_free_task(struct task_struct *tsk)
1809 {
1810 	if (IS_ENABLED(CONFIG_MEMCG))
1811 		call_rcu(&tsk->rcu, __delayed_free_task);
1812 	else
1813 		free_task(tsk);
1814 }
1815 
1816 /*
1817  * This creates a new process as a copy of the old one,
1818  * but does not actually start it yet.
1819  *
1820  * It copies the registers, and all the appropriate
1821  * parts of the process environment (as per the clone
1822  * flags). The actual kick-off is left to the caller.
1823  */
1824 static __latent_entropy struct task_struct *copy_process(
1825 					struct pid *pid,
1826 					int trace,
1827 					int node,
1828 					struct kernel_clone_args *args)
1829 {
1830 	int pidfd = -1, retval;
1831 	struct task_struct *p;
1832 	struct multiprocess_signals delayed;
1833 	struct file *pidfile = NULL;
1834 	u64 clone_flags = args->flags;
1835 
1836 	/*
1837 	 * Don't allow sharing the root directory with processes in a different
1838 	 * namespace
1839 	 */
1840 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1841 		return ERR_PTR(-EINVAL);
1842 
1843 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1844 		return ERR_PTR(-EINVAL);
1845 
1846 	/*
1847 	 * Thread groups must share signals as well, and detached threads
1848 	 * can only be started up within the thread group.
1849 	 */
1850 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1851 		return ERR_PTR(-EINVAL);
1852 
1853 	/*
1854 	 * Shared signal handlers imply shared VM. By way of the above,
1855 	 * thread groups also imply shared VM. Blocking this case allows
1856 	 * for various simplifications in other code.
1857 	 */
1858 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1859 		return ERR_PTR(-EINVAL);
1860 
1861 	/*
1862 	 * Siblings of global init remain as zombies on exit since they are
1863 	 * not reaped by their parent (swapper). To solve this and to avoid
1864 	 * multi-rooted process trees, prevent global and container-inits
1865 	 * from creating siblings.
1866 	 */
1867 	if ((clone_flags & CLONE_PARENT) &&
1868 				current->signal->flags & SIGNAL_UNKILLABLE)
1869 		return ERR_PTR(-EINVAL);
1870 
1871 	/*
1872 	 * If the new process will be in a different pid or user namespace
1873 	 * do not allow it to share a thread group with the forking task.
1874 	 */
1875 	if (clone_flags & CLONE_THREAD) {
1876 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1877 		    (task_active_pid_ns(current) !=
1878 				current->nsproxy->pid_ns_for_children))
1879 			return ERR_PTR(-EINVAL);
1880 	}
1881 
1882 	if (clone_flags & CLONE_PIDFD) {
1883 		/*
1884 		 * - CLONE_DETACHED is blocked so that we can potentially
1885 		 *   reuse it later for CLONE_PIDFD.
1886 		 * - CLONE_THREAD is blocked until someone really needs it.
1887 		 */
1888 		if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
1889 			return ERR_PTR(-EINVAL);
1890 	}
1891 
1892 	/*
1893 	 * Force any signals received before this point to be delivered
1894 	 * before the fork happens.  Collect up signals sent to multiple
1895 	 * processes that happen during the fork and delay them so that
1896 	 * they appear to happen after the fork.
1897 	 */
1898 	sigemptyset(&delayed.signal);
1899 	INIT_HLIST_NODE(&delayed.node);
1900 
1901 	spin_lock_irq(&current->sighand->siglock);
1902 	if (!(clone_flags & CLONE_THREAD))
1903 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
1904 	recalc_sigpending();
1905 	spin_unlock_irq(&current->sighand->siglock);
1906 	retval = -ERESTARTNOINTR;
1907 	if (signal_pending(current))
1908 		goto fork_out;
1909 
1910 	retval = -ENOMEM;
1911 	p = dup_task_struct(current, node);
1912 	if (!p)
1913 		goto fork_out;
1914 
1915 	/*
1916 	 * This _must_ happen before we call free_task(), i.e. before we jump
1917 	 * to any of the bad_fork_* labels. This is to avoid freeing
1918 	 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1919 	 * kernel threads (PF_KTHREAD).
1920 	 */
1921 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
1922 	/*
1923 	 * Clear TID on mm_release()?
1924 	 */
1925 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
1926 
1927 	ftrace_graph_init_task(p);
1928 
1929 	rt_mutex_init_task(p);
1930 
1931 #ifdef CONFIG_PROVE_LOCKING
1932 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1933 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1934 #endif
1935 	retval = -EAGAIN;
1936 	if (atomic_read(&p->real_cred->user->processes) >=
1937 			task_rlimit(p, RLIMIT_NPROC)) {
1938 		if (p->real_cred->user != INIT_USER &&
1939 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1940 			goto bad_fork_free;
1941 	}
1942 	current->flags &= ~PF_NPROC_EXCEEDED;
1943 
1944 	retval = copy_creds(p, clone_flags);
1945 	if (retval < 0)
1946 		goto bad_fork_free;
1947 
1948 	/*
1949 	 * If multiple threads are within copy_process(), then this check
1950 	 * triggers too late. This doesn't hurt, the check is only there
1951 	 * to stop root fork bombs.
1952 	 */
1953 	retval = -EAGAIN;
1954 	if (nr_threads >= max_threads)
1955 		goto bad_fork_cleanup_count;
1956 
1957 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1958 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1959 	p->flags |= PF_FORKNOEXEC;
1960 	INIT_LIST_HEAD(&p->children);
1961 	INIT_LIST_HEAD(&p->sibling);
1962 	rcu_copy_process(p);
1963 	p->vfork_done = NULL;
1964 	spin_lock_init(&p->alloc_lock);
1965 
1966 	init_sigpending(&p->pending);
1967 
1968 	p->utime = p->stime = p->gtime = 0;
1969 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1970 	p->utimescaled = p->stimescaled = 0;
1971 #endif
1972 	prev_cputime_init(&p->prev_cputime);
1973 
1974 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1975 	seqcount_init(&p->vtime.seqcount);
1976 	p->vtime.starttime = 0;
1977 	p->vtime.state = VTIME_INACTIVE;
1978 #endif
1979 
1980 #if defined(SPLIT_RSS_COUNTING)
1981 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1982 #endif
1983 
1984 	p->default_timer_slack_ns = current->timer_slack_ns;
1985 
1986 #ifdef CONFIG_PSI
1987 	p->psi_flags = 0;
1988 #endif
1989 
1990 	task_io_accounting_init(&p->ioac);
1991 	acct_clear_integrals(p);
1992 
1993 	posix_cputimers_init(&p->posix_cputimers);
1994 
1995 	p->io_context = NULL;
1996 	audit_set_context(p, NULL);
1997 	cgroup_fork(p);
1998 #ifdef CONFIG_NUMA
1999 	p->mempolicy = mpol_dup(p->mempolicy);
2000 	if (IS_ERR(p->mempolicy)) {
2001 		retval = PTR_ERR(p->mempolicy);
2002 		p->mempolicy = NULL;
2003 		goto bad_fork_cleanup_threadgroup_lock;
2004 	}
2005 #endif
2006 #ifdef CONFIG_CPUSETS
2007 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2008 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2009 	seqcount_init(&p->mems_allowed_seq);
2010 #endif
2011 #ifdef CONFIG_TRACE_IRQFLAGS
2012 	p->irq_events = 0;
2013 	p->hardirqs_enabled = 0;
2014 	p->hardirq_enable_ip = 0;
2015 	p->hardirq_enable_event = 0;
2016 	p->hardirq_disable_ip = _THIS_IP_;
2017 	p->hardirq_disable_event = 0;
2018 	p->softirqs_enabled = 1;
2019 	p->softirq_enable_ip = _THIS_IP_;
2020 	p->softirq_enable_event = 0;
2021 	p->softirq_disable_ip = 0;
2022 	p->softirq_disable_event = 0;
2023 	p->hardirq_context = 0;
2024 	p->softirq_context = 0;
2025 #endif
2026 
2027 	p->pagefault_disabled = 0;
2028 
2029 #ifdef CONFIG_LOCKDEP
2030 	lockdep_init_task(p);
2031 #endif
2032 
2033 #ifdef CONFIG_DEBUG_MUTEXES
2034 	p->blocked_on = NULL; /* not blocked yet */
2035 #endif
2036 #ifdef CONFIG_BCACHE
2037 	p->sequential_io	= 0;
2038 	p->sequential_io_avg	= 0;
2039 #endif
2040 
2041 	/* Perform scheduler related setup. Assign this task to a CPU. */
2042 	retval = sched_fork(clone_flags, p);
2043 	if (retval)
2044 		goto bad_fork_cleanup_policy;
2045 
2046 	retval = perf_event_init_task(p);
2047 	if (retval)
2048 		goto bad_fork_cleanup_policy;
2049 	retval = audit_alloc(p);
2050 	if (retval)
2051 		goto bad_fork_cleanup_perf;
2052 	/* copy all the process information */
2053 	shm_init_task(p);
2054 	retval = security_task_alloc(p, clone_flags);
2055 	if (retval)
2056 		goto bad_fork_cleanup_audit;
2057 	retval = copy_semundo(clone_flags, p);
2058 	if (retval)
2059 		goto bad_fork_cleanup_security;
2060 	retval = copy_files(clone_flags, p);
2061 	if (retval)
2062 		goto bad_fork_cleanup_semundo;
2063 	retval = copy_fs(clone_flags, p);
2064 	if (retval)
2065 		goto bad_fork_cleanup_files;
2066 	retval = copy_sighand(clone_flags, p);
2067 	if (retval)
2068 		goto bad_fork_cleanup_fs;
2069 	retval = copy_signal(clone_flags, p);
2070 	if (retval)
2071 		goto bad_fork_cleanup_sighand;
2072 	retval = copy_mm(clone_flags, p);
2073 	if (retval)
2074 		goto bad_fork_cleanup_signal;
2075 	retval = copy_namespaces(clone_flags, p);
2076 	if (retval)
2077 		goto bad_fork_cleanup_mm;
2078 	retval = copy_io(clone_flags, p);
2079 	if (retval)
2080 		goto bad_fork_cleanup_namespaces;
2081 	retval = copy_thread_tls(clone_flags, args->stack, args->stack_size, p,
2082 				 args->tls);
2083 	if (retval)
2084 		goto bad_fork_cleanup_io;
2085 
2086 	stackleak_task_init(p);
2087 
2088 	if (pid != &init_struct_pid) {
2089 		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2090 				args->set_tid_size);
2091 		if (IS_ERR(pid)) {
2092 			retval = PTR_ERR(pid);
2093 			goto bad_fork_cleanup_thread;
2094 		}
2095 	}
2096 
2097 	/*
2098 	 * This has to happen after we've potentially unshared the file
2099 	 * descriptor table (so that the pidfd doesn't leak into the child
2100 	 * if the fd table isn't shared).
2101 	 */
2102 	if (clone_flags & CLONE_PIDFD) {
2103 		retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2104 		if (retval < 0)
2105 			goto bad_fork_free_pid;
2106 
2107 		pidfd = retval;
2108 
2109 		pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2110 					      O_RDWR | O_CLOEXEC);
2111 		if (IS_ERR(pidfile)) {
2112 			put_unused_fd(pidfd);
2113 			retval = PTR_ERR(pidfile);
2114 			goto bad_fork_free_pid;
2115 		}
2116 		get_pid(pid);	/* held by pidfile now */
2117 
2118 		retval = put_user(pidfd, args->pidfd);
2119 		if (retval)
2120 			goto bad_fork_put_pidfd;
2121 	}
2122 
2123 #ifdef CONFIG_BLOCK
2124 	p->plug = NULL;
2125 #endif
2126 	futex_init_task(p);
2127 
2128 	/*
2129 	 * sigaltstack should be cleared when sharing the same VM
2130 	 */
2131 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2132 		sas_ss_reset(p);
2133 
2134 	/*
2135 	 * Syscall tracing and stepping should be turned off in the
2136 	 * child regardless of CLONE_PTRACE.
2137 	 */
2138 	user_disable_single_step(p);
2139 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
2140 #ifdef TIF_SYSCALL_EMU
2141 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
2142 #endif
2143 	clear_tsk_latency_tracing(p);
2144 
2145 	/* ok, now we should be set up.. */
2146 	p->pid = pid_nr(pid);
2147 	if (clone_flags & CLONE_THREAD) {
2148 		p->exit_signal = -1;
2149 		p->group_leader = current->group_leader;
2150 		p->tgid = current->tgid;
2151 	} else {
2152 		if (clone_flags & CLONE_PARENT)
2153 			p->exit_signal = current->group_leader->exit_signal;
2154 		else
2155 			p->exit_signal = args->exit_signal;
2156 		p->group_leader = p;
2157 		p->tgid = p->pid;
2158 	}
2159 
2160 	p->nr_dirtied = 0;
2161 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2162 	p->dirty_paused_when = 0;
2163 
2164 	p->pdeath_signal = 0;
2165 	INIT_LIST_HEAD(&p->thread_group);
2166 	p->task_works = NULL;
2167 
2168 	cgroup_threadgroup_change_begin(current);
2169 	/*
2170 	 * Ensure that the cgroup subsystem policies allow the new process to be
2171 	 * forked. It should be noted the the new process's css_set can be changed
2172 	 * between here and cgroup_post_fork() if an organisation operation is in
2173 	 * progress.
2174 	 */
2175 	retval = cgroup_can_fork(p);
2176 	if (retval)
2177 		goto bad_fork_cgroup_threadgroup_change_end;
2178 
2179 	/*
2180 	 * From this point on we must avoid any synchronous user-space
2181 	 * communication until we take the tasklist-lock. In particular, we do
2182 	 * not want user-space to be able to predict the process start-time by
2183 	 * stalling fork(2) after we recorded the start_time but before it is
2184 	 * visible to the system.
2185 	 */
2186 
2187 	p->start_time = ktime_get_ns();
2188 	p->start_boottime = ktime_get_boottime_ns();
2189 
2190 	/*
2191 	 * Make it visible to the rest of the system, but dont wake it up yet.
2192 	 * Need tasklist lock for parent etc handling!
2193 	 */
2194 	write_lock_irq(&tasklist_lock);
2195 
2196 	/* CLONE_PARENT re-uses the old parent */
2197 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2198 		p->real_parent = current->real_parent;
2199 		p->parent_exec_id = current->parent_exec_id;
2200 	} else {
2201 		p->real_parent = current;
2202 		p->parent_exec_id = current->self_exec_id;
2203 	}
2204 
2205 	klp_copy_process(p);
2206 
2207 	spin_lock(&current->sighand->siglock);
2208 
2209 	/*
2210 	 * Copy seccomp details explicitly here, in case they were changed
2211 	 * before holding sighand lock.
2212 	 */
2213 	copy_seccomp(p);
2214 
2215 	rseq_fork(p, clone_flags);
2216 
2217 	/* Don't start children in a dying pid namespace */
2218 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2219 		retval = -ENOMEM;
2220 		goto bad_fork_cancel_cgroup;
2221 	}
2222 
2223 	/* Let kill terminate clone/fork in the middle */
2224 	if (fatal_signal_pending(current)) {
2225 		retval = -EINTR;
2226 		goto bad_fork_cancel_cgroup;
2227 	}
2228 
2229 	/* past the last point of failure */
2230 	if (pidfile)
2231 		fd_install(pidfd, pidfile);
2232 
2233 	init_task_pid_links(p);
2234 	if (likely(p->pid)) {
2235 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2236 
2237 		init_task_pid(p, PIDTYPE_PID, pid);
2238 		if (thread_group_leader(p)) {
2239 			init_task_pid(p, PIDTYPE_TGID, pid);
2240 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2241 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2242 
2243 			if (is_child_reaper(pid)) {
2244 				ns_of_pid(pid)->child_reaper = p;
2245 				p->signal->flags |= SIGNAL_UNKILLABLE;
2246 			}
2247 			p->signal->shared_pending.signal = delayed.signal;
2248 			p->signal->tty = tty_kref_get(current->signal->tty);
2249 			/*
2250 			 * Inherit has_child_subreaper flag under the same
2251 			 * tasklist_lock with adding child to the process tree
2252 			 * for propagate_has_child_subreaper optimization.
2253 			 */
2254 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2255 							 p->real_parent->signal->is_child_subreaper;
2256 			list_add_tail(&p->sibling, &p->real_parent->children);
2257 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2258 			attach_pid(p, PIDTYPE_TGID);
2259 			attach_pid(p, PIDTYPE_PGID);
2260 			attach_pid(p, PIDTYPE_SID);
2261 			__this_cpu_inc(process_counts);
2262 		} else {
2263 			current->signal->nr_threads++;
2264 			atomic_inc(&current->signal->live);
2265 			refcount_inc(&current->signal->sigcnt);
2266 			task_join_group_stop(p);
2267 			list_add_tail_rcu(&p->thread_group,
2268 					  &p->group_leader->thread_group);
2269 			list_add_tail_rcu(&p->thread_node,
2270 					  &p->signal->thread_head);
2271 		}
2272 		attach_pid(p, PIDTYPE_PID);
2273 		nr_threads++;
2274 	}
2275 	total_forks++;
2276 	hlist_del_init(&delayed.node);
2277 	spin_unlock(&current->sighand->siglock);
2278 	syscall_tracepoint_update(p);
2279 	write_unlock_irq(&tasklist_lock);
2280 
2281 	proc_fork_connector(p);
2282 	cgroup_post_fork(p);
2283 	cgroup_threadgroup_change_end(current);
2284 	perf_event_fork(p);
2285 
2286 	trace_task_newtask(p, clone_flags);
2287 	uprobe_copy_process(p, clone_flags);
2288 
2289 	return p;
2290 
2291 bad_fork_cancel_cgroup:
2292 	spin_unlock(&current->sighand->siglock);
2293 	write_unlock_irq(&tasklist_lock);
2294 	cgroup_cancel_fork(p);
2295 bad_fork_cgroup_threadgroup_change_end:
2296 	cgroup_threadgroup_change_end(current);
2297 bad_fork_put_pidfd:
2298 	if (clone_flags & CLONE_PIDFD) {
2299 		fput(pidfile);
2300 		put_unused_fd(pidfd);
2301 	}
2302 bad_fork_free_pid:
2303 	if (pid != &init_struct_pid)
2304 		free_pid(pid);
2305 bad_fork_cleanup_thread:
2306 	exit_thread(p);
2307 bad_fork_cleanup_io:
2308 	if (p->io_context)
2309 		exit_io_context(p);
2310 bad_fork_cleanup_namespaces:
2311 	exit_task_namespaces(p);
2312 bad_fork_cleanup_mm:
2313 	if (p->mm) {
2314 		mm_clear_owner(p->mm, p);
2315 		mmput(p->mm);
2316 	}
2317 bad_fork_cleanup_signal:
2318 	if (!(clone_flags & CLONE_THREAD))
2319 		free_signal_struct(p->signal);
2320 bad_fork_cleanup_sighand:
2321 	__cleanup_sighand(p->sighand);
2322 bad_fork_cleanup_fs:
2323 	exit_fs(p); /* blocking */
2324 bad_fork_cleanup_files:
2325 	exit_files(p); /* blocking */
2326 bad_fork_cleanup_semundo:
2327 	exit_sem(p);
2328 bad_fork_cleanup_security:
2329 	security_task_free(p);
2330 bad_fork_cleanup_audit:
2331 	audit_free(p);
2332 bad_fork_cleanup_perf:
2333 	perf_event_free_task(p);
2334 bad_fork_cleanup_policy:
2335 	lockdep_free_task(p);
2336 #ifdef CONFIG_NUMA
2337 	mpol_put(p->mempolicy);
2338 bad_fork_cleanup_threadgroup_lock:
2339 #endif
2340 	delayacct_tsk_free(p);
2341 bad_fork_cleanup_count:
2342 	atomic_dec(&p->cred->user->processes);
2343 	exit_creds(p);
2344 bad_fork_free:
2345 	p->state = TASK_DEAD;
2346 	put_task_stack(p);
2347 	delayed_free_task(p);
2348 fork_out:
2349 	spin_lock_irq(&current->sighand->siglock);
2350 	hlist_del_init(&delayed.node);
2351 	spin_unlock_irq(&current->sighand->siglock);
2352 	return ERR_PTR(retval);
2353 }
2354 
2355 static inline void init_idle_pids(struct task_struct *idle)
2356 {
2357 	enum pid_type type;
2358 
2359 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2360 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2361 		init_task_pid(idle, type, &init_struct_pid);
2362 	}
2363 }
2364 
2365 struct task_struct *fork_idle(int cpu)
2366 {
2367 	struct task_struct *task;
2368 	struct kernel_clone_args args = {
2369 		.flags = CLONE_VM,
2370 	};
2371 
2372 	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2373 	if (!IS_ERR(task)) {
2374 		init_idle_pids(task);
2375 		init_idle(task, cpu);
2376 	}
2377 
2378 	return task;
2379 }
2380 
2381 struct mm_struct *copy_init_mm(void)
2382 {
2383 	return dup_mm(NULL, &init_mm);
2384 }
2385 
2386 /*
2387  *  Ok, this is the main fork-routine.
2388  *
2389  * It copies the process, and if successful kick-starts
2390  * it and waits for it to finish using the VM if required.
2391  *
2392  * args->exit_signal is expected to be checked for sanity by the caller.
2393  */
2394 long _do_fork(struct kernel_clone_args *args)
2395 {
2396 	u64 clone_flags = args->flags;
2397 	struct completion vfork;
2398 	struct pid *pid;
2399 	struct task_struct *p;
2400 	int trace = 0;
2401 	long nr;
2402 
2403 	/*
2404 	 * Determine whether and which event to report to ptracer.  When
2405 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2406 	 * requested, no event is reported; otherwise, report if the event
2407 	 * for the type of forking is enabled.
2408 	 */
2409 	if (!(clone_flags & CLONE_UNTRACED)) {
2410 		if (clone_flags & CLONE_VFORK)
2411 			trace = PTRACE_EVENT_VFORK;
2412 		else if (args->exit_signal != SIGCHLD)
2413 			trace = PTRACE_EVENT_CLONE;
2414 		else
2415 			trace = PTRACE_EVENT_FORK;
2416 
2417 		if (likely(!ptrace_event_enabled(current, trace)))
2418 			trace = 0;
2419 	}
2420 
2421 	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2422 	add_latent_entropy();
2423 
2424 	if (IS_ERR(p))
2425 		return PTR_ERR(p);
2426 
2427 	/*
2428 	 * Do this prior waking up the new thread - the thread pointer
2429 	 * might get invalid after that point, if the thread exits quickly.
2430 	 */
2431 	trace_sched_process_fork(current, p);
2432 
2433 	pid = get_task_pid(p, PIDTYPE_PID);
2434 	nr = pid_vnr(pid);
2435 
2436 	if (clone_flags & CLONE_PARENT_SETTID)
2437 		put_user(nr, args->parent_tid);
2438 
2439 	if (clone_flags & CLONE_VFORK) {
2440 		p->vfork_done = &vfork;
2441 		init_completion(&vfork);
2442 		get_task_struct(p);
2443 	}
2444 
2445 	wake_up_new_task(p);
2446 
2447 	/* forking complete and child started to run, tell ptracer */
2448 	if (unlikely(trace))
2449 		ptrace_event_pid(trace, pid);
2450 
2451 	if (clone_flags & CLONE_VFORK) {
2452 		if (!wait_for_vfork_done(p, &vfork))
2453 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2454 	}
2455 
2456 	put_pid(pid);
2457 	return nr;
2458 }
2459 
2460 bool legacy_clone_args_valid(const struct kernel_clone_args *kargs)
2461 {
2462 	/* clone(CLONE_PIDFD) uses parent_tidptr to return a pidfd */
2463 	if ((kargs->flags & CLONE_PIDFD) &&
2464 	    (kargs->flags & CLONE_PARENT_SETTID))
2465 		return false;
2466 
2467 	return true;
2468 }
2469 
2470 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2471 /* For compatibility with architectures that call do_fork directly rather than
2472  * using the syscall entry points below. */
2473 long do_fork(unsigned long clone_flags,
2474 	      unsigned long stack_start,
2475 	      unsigned long stack_size,
2476 	      int __user *parent_tidptr,
2477 	      int __user *child_tidptr)
2478 {
2479 	struct kernel_clone_args args = {
2480 		.flags		= (clone_flags & ~CSIGNAL),
2481 		.pidfd		= parent_tidptr,
2482 		.child_tid	= child_tidptr,
2483 		.parent_tid	= parent_tidptr,
2484 		.exit_signal	= (clone_flags & CSIGNAL),
2485 		.stack		= stack_start,
2486 		.stack_size	= stack_size,
2487 	};
2488 
2489 	if (!legacy_clone_args_valid(&args))
2490 		return -EINVAL;
2491 
2492 	return _do_fork(&args);
2493 }
2494 #endif
2495 
2496 /*
2497  * Create a kernel thread.
2498  */
2499 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2500 {
2501 	struct kernel_clone_args args = {
2502 		.flags		= ((flags | CLONE_VM | CLONE_UNTRACED) & ~CSIGNAL),
2503 		.exit_signal	= (flags & CSIGNAL),
2504 		.stack		= (unsigned long)fn,
2505 		.stack_size	= (unsigned long)arg,
2506 	};
2507 
2508 	return _do_fork(&args);
2509 }
2510 
2511 #ifdef __ARCH_WANT_SYS_FORK
2512 SYSCALL_DEFINE0(fork)
2513 {
2514 #ifdef CONFIG_MMU
2515 	struct kernel_clone_args args = {
2516 		.exit_signal = SIGCHLD,
2517 	};
2518 
2519 	return _do_fork(&args);
2520 #else
2521 	/* can not support in nommu mode */
2522 	return -EINVAL;
2523 #endif
2524 }
2525 #endif
2526 
2527 #ifdef __ARCH_WANT_SYS_VFORK
2528 SYSCALL_DEFINE0(vfork)
2529 {
2530 	struct kernel_clone_args args = {
2531 		.flags		= CLONE_VFORK | CLONE_VM,
2532 		.exit_signal	= SIGCHLD,
2533 	};
2534 
2535 	return _do_fork(&args);
2536 }
2537 #endif
2538 
2539 #ifdef __ARCH_WANT_SYS_CLONE
2540 #ifdef CONFIG_CLONE_BACKWARDS
2541 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2542 		 int __user *, parent_tidptr,
2543 		 unsigned long, tls,
2544 		 int __user *, child_tidptr)
2545 #elif defined(CONFIG_CLONE_BACKWARDS2)
2546 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2547 		 int __user *, parent_tidptr,
2548 		 int __user *, child_tidptr,
2549 		 unsigned long, tls)
2550 #elif defined(CONFIG_CLONE_BACKWARDS3)
2551 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2552 		int, stack_size,
2553 		int __user *, parent_tidptr,
2554 		int __user *, child_tidptr,
2555 		unsigned long, tls)
2556 #else
2557 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2558 		 int __user *, parent_tidptr,
2559 		 int __user *, child_tidptr,
2560 		 unsigned long, tls)
2561 #endif
2562 {
2563 	struct kernel_clone_args args = {
2564 		.flags		= (clone_flags & ~CSIGNAL),
2565 		.pidfd		= parent_tidptr,
2566 		.child_tid	= child_tidptr,
2567 		.parent_tid	= parent_tidptr,
2568 		.exit_signal	= (clone_flags & CSIGNAL),
2569 		.stack		= newsp,
2570 		.tls		= tls,
2571 	};
2572 
2573 	if (!legacy_clone_args_valid(&args))
2574 		return -EINVAL;
2575 
2576 	return _do_fork(&args);
2577 }
2578 #endif
2579 
2580 #ifdef __ARCH_WANT_SYS_CLONE3
2581 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2582 					      struct clone_args __user *uargs,
2583 					      size_t usize)
2584 {
2585 	int err;
2586 	struct clone_args args;
2587 	pid_t *kset_tid = kargs->set_tid;
2588 
2589 	if (unlikely(usize > PAGE_SIZE))
2590 		return -E2BIG;
2591 	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2592 		return -EINVAL;
2593 
2594 	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2595 	if (err)
2596 		return err;
2597 
2598 	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2599 		return -EINVAL;
2600 
2601 	if (unlikely(!args.set_tid && args.set_tid_size > 0))
2602 		return -EINVAL;
2603 
2604 	if (unlikely(args.set_tid && args.set_tid_size == 0))
2605 		return -EINVAL;
2606 
2607 	/*
2608 	 * Verify that higher 32bits of exit_signal are unset and that
2609 	 * it is a valid signal
2610 	 */
2611 	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2612 		     !valid_signal(args.exit_signal)))
2613 		return -EINVAL;
2614 
2615 	*kargs = (struct kernel_clone_args){
2616 		.flags		= args.flags,
2617 		.pidfd		= u64_to_user_ptr(args.pidfd),
2618 		.child_tid	= u64_to_user_ptr(args.child_tid),
2619 		.parent_tid	= u64_to_user_ptr(args.parent_tid),
2620 		.exit_signal	= args.exit_signal,
2621 		.stack		= args.stack,
2622 		.stack_size	= args.stack_size,
2623 		.tls		= args.tls,
2624 		.set_tid_size	= args.set_tid_size,
2625 	};
2626 
2627 	if (args.set_tid &&
2628 		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2629 			(kargs->set_tid_size * sizeof(pid_t))))
2630 		return -EFAULT;
2631 
2632 	kargs->set_tid = kset_tid;
2633 
2634 	return 0;
2635 }
2636 
2637 /**
2638  * clone3_stack_valid - check and prepare stack
2639  * @kargs: kernel clone args
2640  *
2641  * Verify that the stack arguments userspace gave us are sane.
2642  * In addition, set the stack direction for userspace since it's easy for us to
2643  * determine.
2644  */
2645 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2646 {
2647 	if (kargs->stack == 0) {
2648 		if (kargs->stack_size > 0)
2649 			return false;
2650 	} else {
2651 		if (kargs->stack_size == 0)
2652 			return false;
2653 
2654 		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2655 			return false;
2656 
2657 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2658 		kargs->stack += kargs->stack_size;
2659 #endif
2660 	}
2661 
2662 	return true;
2663 }
2664 
2665 static bool clone3_args_valid(struct kernel_clone_args *kargs)
2666 {
2667 	/* Verify that no unknown flags are passed along. */
2668 	if (kargs->flags & ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND))
2669 		return false;
2670 
2671 	/*
2672 	 * - make the CLONE_DETACHED bit reuseable for clone3
2673 	 * - make the CSIGNAL bits reuseable for clone3
2674 	 */
2675 	if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2676 		return false;
2677 
2678 	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2679 	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2680 		return false;
2681 
2682 	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2683 	    kargs->exit_signal)
2684 		return false;
2685 
2686 	if (!clone3_stack_valid(kargs))
2687 		return false;
2688 
2689 	return true;
2690 }
2691 
2692 /**
2693  * clone3 - create a new process with specific properties
2694  * @uargs: argument structure
2695  * @size:  size of @uargs
2696  *
2697  * clone3() is the extensible successor to clone()/clone2().
2698  * It takes a struct as argument that is versioned by its size.
2699  *
2700  * Return: On success, a positive PID for the child process.
2701  *         On error, a negative errno number.
2702  */
2703 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2704 {
2705 	int err;
2706 
2707 	struct kernel_clone_args kargs;
2708 	pid_t set_tid[MAX_PID_NS_LEVEL];
2709 
2710 	kargs.set_tid = set_tid;
2711 
2712 	err = copy_clone_args_from_user(&kargs, uargs, size);
2713 	if (err)
2714 		return err;
2715 
2716 	if (!clone3_args_valid(&kargs))
2717 		return -EINVAL;
2718 
2719 	return _do_fork(&kargs);
2720 }
2721 #endif
2722 
2723 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2724 {
2725 	struct task_struct *leader, *parent, *child;
2726 	int res;
2727 
2728 	read_lock(&tasklist_lock);
2729 	leader = top = top->group_leader;
2730 down:
2731 	for_each_thread(leader, parent) {
2732 		list_for_each_entry(child, &parent->children, sibling) {
2733 			res = visitor(child, data);
2734 			if (res) {
2735 				if (res < 0)
2736 					goto out;
2737 				leader = child;
2738 				goto down;
2739 			}
2740 up:
2741 			;
2742 		}
2743 	}
2744 
2745 	if (leader != top) {
2746 		child = leader;
2747 		parent = child->real_parent;
2748 		leader = parent->group_leader;
2749 		goto up;
2750 	}
2751 out:
2752 	read_unlock(&tasklist_lock);
2753 }
2754 
2755 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2756 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2757 #endif
2758 
2759 static void sighand_ctor(void *data)
2760 {
2761 	struct sighand_struct *sighand = data;
2762 
2763 	spin_lock_init(&sighand->siglock);
2764 	init_waitqueue_head(&sighand->signalfd_wqh);
2765 }
2766 
2767 void __init proc_caches_init(void)
2768 {
2769 	unsigned int mm_size;
2770 
2771 	sighand_cachep = kmem_cache_create("sighand_cache",
2772 			sizeof(struct sighand_struct), 0,
2773 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2774 			SLAB_ACCOUNT, sighand_ctor);
2775 	signal_cachep = kmem_cache_create("signal_cache",
2776 			sizeof(struct signal_struct), 0,
2777 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2778 			NULL);
2779 	files_cachep = kmem_cache_create("files_cache",
2780 			sizeof(struct files_struct), 0,
2781 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2782 			NULL);
2783 	fs_cachep = kmem_cache_create("fs_cache",
2784 			sizeof(struct fs_struct), 0,
2785 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2786 			NULL);
2787 
2788 	/*
2789 	 * The mm_cpumask is located at the end of mm_struct, and is
2790 	 * dynamically sized based on the maximum CPU number this system
2791 	 * can have, taking hotplug into account (nr_cpu_ids).
2792 	 */
2793 	mm_size = sizeof(struct mm_struct) + cpumask_size();
2794 
2795 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
2796 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2797 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2798 			offsetof(struct mm_struct, saved_auxv),
2799 			sizeof_field(struct mm_struct, saved_auxv),
2800 			NULL);
2801 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2802 	mmap_init();
2803 	nsproxy_cache_init();
2804 }
2805 
2806 /*
2807  * Check constraints on flags passed to the unshare system call.
2808  */
2809 static int check_unshare_flags(unsigned long unshare_flags)
2810 {
2811 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2812 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2813 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2814 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2815 		return -EINVAL;
2816 	/*
2817 	 * Not implemented, but pretend it works if there is nothing
2818 	 * to unshare.  Note that unsharing the address space or the
2819 	 * signal handlers also need to unshare the signal queues (aka
2820 	 * CLONE_THREAD).
2821 	 */
2822 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2823 		if (!thread_group_empty(current))
2824 			return -EINVAL;
2825 	}
2826 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2827 		if (refcount_read(&current->sighand->count) > 1)
2828 			return -EINVAL;
2829 	}
2830 	if (unshare_flags & CLONE_VM) {
2831 		if (!current_is_single_threaded())
2832 			return -EINVAL;
2833 	}
2834 
2835 	return 0;
2836 }
2837 
2838 /*
2839  * Unshare the filesystem structure if it is being shared
2840  */
2841 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2842 {
2843 	struct fs_struct *fs = current->fs;
2844 
2845 	if (!(unshare_flags & CLONE_FS) || !fs)
2846 		return 0;
2847 
2848 	/* don't need lock here; in the worst case we'll do useless copy */
2849 	if (fs->users == 1)
2850 		return 0;
2851 
2852 	*new_fsp = copy_fs_struct(fs);
2853 	if (!*new_fsp)
2854 		return -ENOMEM;
2855 
2856 	return 0;
2857 }
2858 
2859 /*
2860  * Unshare file descriptor table if it is being shared
2861  */
2862 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2863 {
2864 	struct files_struct *fd = current->files;
2865 	int error = 0;
2866 
2867 	if ((unshare_flags & CLONE_FILES) &&
2868 	    (fd && atomic_read(&fd->count) > 1)) {
2869 		*new_fdp = dup_fd(fd, &error);
2870 		if (!*new_fdp)
2871 			return error;
2872 	}
2873 
2874 	return 0;
2875 }
2876 
2877 /*
2878  * unshare allows a process to 'unshare' part of the process
2879  * context which was originally shared using clone.  copy_*
2880  * functions used by do_fork() cannot be used here directly
2881  * because they modify an inactive task_struct that is being
2882  * constructed. Here we are modifying the current, active,
2883  * task_struct.
2884  */
2885 int ksys_unshare(unsigned long unshare_flags)
2886 {
2887 	struct fs_struct *fs, *new_fs = NULL;
2888 	struct files_struct *fd, *new_fd = NULL;
2889 	struct cred *new_cred = NULL;
2890 	struct nsproxy *new_nsproxy = NULL;
2891 	int do_sysvsem = 0;
2892 	int err;
2893 
2894 	/*
2895 	 * If unsharing a user namespace must also unshare the thread group
2896 	 * and unshare the filesystem root and working directories.
2897 	 */
2898 	if (unshare_flags & CLONE_NEWUSER)
2899 		unshare_flags |= CLONE_THREAD | CLONE_FS;
2900 	/*
2901 	 * If unsharing vm, must also unshare signal handlers.
2902 	 */
2903 	if (unshare_flags & CLONE_VM)
2904 		unshare_flags |= CLONE_SIGHAND;
2905 	/*
2906 	 * If unsharing a signal handlers, must also unshare the signal queues.
2907 	 */
2908 	if (unshare_flags & CLONE_SIGHAND)
2909 		unshare_flags |= CLONE_THREAD;
2910 	/*
2911 	 * If unsharing namespace, must also unshare filesystem information.
2912 	 */
2913 	if (unshare_flags & CLONE_NEWNS)
2914 		unshare_flags |= CLONE_FS;
2915 
2916 	err = check_unshare_flags(unshare_flags);
2917 	if (err)
2918 		goto bad_unshare_out;
2919 	/*
2920 	 * CLONE_NEWIPC must also detach from the undolist: after switching
2921 	 * to a new ipc namespace, the semaphore arrays from the old
2922 	 * namespace are unreachable.
2923 	 */
2924 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2925 		do_sysvsem = 1;
2926 	err = unshare_fs(unshare_flags, &new_fs);
2927 	if (err)
2928 		goto bad_unshare_out;
2929 	err = unshare_fd(unshare_flags, &new_fd);
2930 	if (err)
2931 		goto bad_unshare_cleanup_fs;
2932 	err = unshare_userns(unshare_flags, &new_cred);
2933 	if (err)
2934 		goto bad_unshare_cleanup_fd;
2935 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2936 					 new_cred, new_fs);
2937 	if (err)
2938 		goto bad_unshare_cleanup_cred;
2939 
2940 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2941 		if (do_sysvsem) {
2942 			/*
2943 			 * CLONE_SYSVSEM is equivalent to sys_exit().
2944 			 */
2945 			exit_sem(current);
2946 		}
2947 		if (unshare_flags & CLONE_NEWIPC) {
2948 			/* Orphan segments in old ns (see sem above). */
2949 			exit_shm(current);
2950 			shm_init_task(current);
2951 		}
2952 
2953 		if (new_nsproxy)
2954 			switch_task_namespaces(current, new_nsproxy);
2955 
2956 		task_lock(current);
2957 
2958 		if (new_fs) {
2959 			fs = current->fs;
2960 			spin_lock(&fs->lock);
2961 			current->fs = new_fs;
2962 			if (--fs->users)
2963 				new_fs = NULL;
2964 			else
2965 				new_fs = fs;
2966 			spin_unlock(&fs->lock);
2967 		}
2968 
2969 		if (new_fd) {
2970 			fd = current->files;
2971 			current->files = new_fd;
2972 			new_fd = fd;
2973 		}
2974 
2975 		task_unlock(current);
2976 
2977 		if (new_cred) {
2978 			/* Install the new user namespace */
2979 			commit_creds(new_cred);
2980 			new_cred = NULL;
2981 		}
2982 	}
2983 
2984 	perf_event_namespaces(current);
2985 
2986 bad_unshare_cleanup_cred:
2987 	if (new_cred)
2988 		put_cred(new_cred);
2989 bad_unshare_cleanup_fd:
2990 	if (new_fd)
2991 		put_files_struct(new_fd);
2992 
2993 bad_unshare_cleanup_fs:
2994 	if (new_fs)
2995 		free_fs_struct(new_fs);
2996 
2997 bad_unshare_out:
2998 	return err;
2999 }
3000 
3001 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3002 {
3003 	return ksys_unshare(unshare_flags);
3004 }
3005 
3006 /*
3007  *	Helper to unshare the files of the current task.
3008  *	We don't want to expose copy_files internals to
3009  *	the exec layer of the kernel.
3010  */
3011 
3012 int unshare_files(struct files_struct **displaced)
3013 {
3014 	struct task_struct *task = current;
3015 	struct files_struct *copy = NULL;
3016 	int error;
3017 
3018 	error = unshare_fd(CLONE_FILES, &copy);
3019 	if (error || !copy) {
3020 		*displaced = NULL;
3021 		return error;
3022 	}
3023 	*displaced = task->files;
3024 	task_lock(task);
3025 	task->files = copy;
3026 	task_unlock(task);
3027 	return 0;
3028 }
3029 
3030 int sysctl_max_threads(struct ctl_table *table, int write,
3031 		       void __user *buffer, size_t *lenp, loff_t *ppos)
3032 {
3033 	struct ctl_table t;
3034 	int ret;
3035 	int threads = max_threads;
3036 	int min = 1;
3037 	int max = MAX_THREADS;
3038 
3039 	t = *table;
3040 	t.data = &threads;
3041 	t.extra1 = &min;
3042 	t.extra2 = &max;
3043 
3044 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3045 	if (ret || !write)
3046 		return ret;
3047 
3048 	max_threads = threads;
3049 
3050 	return 0;
3051 }
3052