xref: /openbmc/linux/kernel/fork.c (revision e8e0929d)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/swap.h>
38 #include <linux/syscalls.h>
39 #include <linux/jiffies.h>
40 #include <linux/tracehook.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/task_io_accounting_ops.h>
44 #include <linux/rcupdate.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/audit.h>
48 #include <linux/memcontrol.h>
49 #include <linux/ftrace.h>
50 #include <linux/profile.h>
51 #include <linux/rmap.h>
52 #include <linux/ksm.h>
53 #include <linux/acct.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/freezer.h>
57 #include <linux/delayacct.h>
58 #include <linux/taskstats_kern.h>
59 #include <linux/random.h>
60 #include <linux/tty.h>
61 #include <linux/proc_fs.h>
62 #include <linux/blkdev.h>
63 #include <linux/fs_struct.h>
64 #include <linux/magic.h>
65 #include <linux/perf_event.h>
66 #include <linux/posix-timers.h>
67 
68 #include <asm/pgtable.h>
69 #include <asm/pgalloc.h>
70 #include <asm/uaccess.h>
71 #include <asm/mmu_context.h>
72 #include <asm/cacheflush.h>
73 #include <asm/tlbflush.h>
74 
75 #include <trace/events/sched.h>
76 
77 /*
78  * Protected counters by write_lock_irq(&tasklist_lock)
79  */
80 unsigned long total_forks;	/* Handle normal Linux uptimes. */
81 int nr_threads; 		/* The idle threads do not count.. */
82 
83 int max_threads;		/* tunable limit on nr_threads */
84 
85 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
86 
87 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
88 
89 int nr_processes(void)
90 {
91 	int cpu;
92 	int total = 0;
93 
94 	for_each_online_cpu(cpu)
95 		total += per_cpu(process_counts, cpu);
96 
97 	return total;
98 }
99 
100 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
101 # define alloc_task_struct()	kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
102 # define free_task_struct(tsk)	kmem_cache_free(task_struct_cachep, (tsk))
103 static struct kmem_cache *task_struct_cachep;
104 #endif
105 
106 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
107 static inline struct thread_info *alloc_thread_info(struct task_struct *tsk)
108 {
109 #ifdef CONFIG_DEBUG_STACK_USAGE
110 	gfp_t mask = GFP_KERNEL | __GFP_ZERO;
111 #else
112 	gfp_t mask = GFP_KERNEL;
113 #endif
114 	return (struct thread_info *)__get_free_pages(mask, THREAD_SIZE_ORDER);
115 }
116 
117 static inline void free_thread_info(struct thread_info *ti)
118 {
119 	free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
120 }
121 #endif
122 
123 /* SLAB cache for signal_struct structures (tsk->signal) */
124 static struct kmem_cache *signal_cachep;
125 
126 /* SLAB cache for sighand_struct structures (tsk->sighand) */
127 struct kmem_cache *sighand_cachep;
128 
129 /* SLAB cache for files_struct structures (tsk->files) */
130 struct kmem_cache *files_cachep;
131 
132 /* SLAB cache for fs_struct structures (tsk->fs) */
133 struct kmem_cache *fs_cachep;
134 
135 /* SLAB cache for vm_area_struct structures */
136 struct kmem_cache *vm_area_cachep;
137 
138 /* SLAB cache for mm_struct structures (tsk->mm) */
139 static struct kmem_cache *mm_cachep;
140 
141 static void account_kernel_stack(struct thread_info *ti, int account)
142 {
143 	struct zone *zone = page_zone(virt_to_page(ti));
144 
145 	mod_zone_page_state(zone, NR_KERNEL_STACK, account);
146 }
147 
148 void free_task(struct task_struct *tsk)
149 {
150 	prop_local_destroy_single(&tsk->dirties);
151 	account_kernel_stack(tsk->stack, -1);
152 	free_thread_info(tsk->stack);
153 	rt_mutex_debug_task_free(tsk);
154 	ftrace_graph_exit_task(tsk);
155 	free_task_struct(tsk);
156 }
157 EXPORT_SYMBOL(free_task);
158 
159 void __put_task_struct(struct task_struct *tsk)
160 {
161 	WARN_ON(!tsk->exit_state);
162 	WARN_ON(atomic_read(&tsk->usage));
163 	WARN_ON(tsk == current);
164 
165 	exit_creds(tsk);
166 	delayacct_tsk_free(tsk);
167 
168 	if (!profile_handoff_task(tsk))
169 		free_task(tsk);
170 }
171 
172 /*
173  * macro override instead of weak attribute alias, to workaround
174  * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
175  */
176 #ifndef arch_task_cache_init
177 #define arch_task_cache_init()
178 #endif
179 
180 void __init fork_init(unsigned long mempages)
181 {
182 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
183 #ifndef ARCH_MIN_TASKALIGN
184 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
185 #endif
186 	/* create a slab on which task_structs can be allocated */
187 	task_struct_cachep =
188 		kmem_cache_create("task_struct", sizeof(struct task_struct),
189 			ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
190 #endif
191 
192 	/* do the arch specific task caches init */
193 	arch_task_cache_init();
194 
195 	/*
196 	 * The default maximum number of threads is set to a safe
197 	 * value: the thread structures can take up at most half
198 	 * of memory.
199 	 */
200 	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
201 
202 	/*
203 	 * we need to allow at least 20 threads to boot a system
204 	 */
205 	if(max_threads < 20)
206 		max_threads = 20;
207 
208 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
209 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
210 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
211 		init_task.signal->rlim[RLIMIT_NPROC];
212 }
213 
214 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
215 					       struct task_struct *src)
216 {
217 	*dst = *src;
218 	return 0;
219 }
220 
221 static struct task_struct *dup_task_struct(struct task_struct *orig)
222 {
223 	struct task_struct *tsk;
224 	struct thread_info *ti;
225 	unsigned long *stackend;
226 
227 	int err;
228 
229 	prepare_to_copy(orig);
230 
231 	tsk = alloc_task_struct();
232 	if (!tsk)
233 		return NULL;
234 
235 	ti = alloc_thread_info(tsk);
236 	if (!ti) {
237 		free_task_struct(tsk);
238 		return NULL;
239 	}
240 
241  	err = arch_dup_task_struct(tsk, orig);
242 	if (err)
243 		goto out;
244 
245 	tsk->stack = ti;
246 
247 	err = prop_local_init_single(&tsk->dirties);
248 	if (err)
249 		goto out;
250 
251 	setup_thread_stack(tsk, orig);
252 	stackend = end_of_stack(tsk);
253 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
254 
255 #ifdef CONFIG_CC_STACKPROTECTOR
256 	tsk->stack_canary = get_random_int();
257 #endif
258 
259 	/* One for us, one for whoever does the "release_task()" (usually parent) */
260 	atomic_set(&tsk->usage,2);
261 	atomic_set(&tsk->fs_excl, 0);
262 #ifdef CONFIG_BLK_DEV_IO_TRACE
263 	tsk->btrace_seq = 0;
264 #endif
265 	tsk->splice_pipe = NULL;
266 
267 	account_kernel_stack(ti, 1);
268 
269 	return tsk;
270 
271 out:
272 	free_thread_info(ti);
273 	free_task_struct(tsk);
274 	return NULL;
275 }
276 
277 #ifdef CONFIG_MMU
278 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
279 {
280 	struct vm_area_struct *mpnt, *tmp, **pprev;
281 	struct rb_node **rb_link, *rb_parent;
282 	int retval;
283 	unsigned long charge;
284 	struct mempolicy *pol;
285 
286 	down_write(&oldmm->mmap_sem);
287 	flush_cache_dup_mm(oldmm);
288 	/*
289 	 * Not linked in yet - no deadlock potential:
290 	 */
291 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
292 
293 	mm->locked_vm = 0;
294 	mm->mmap = NULL;
295 	mm->mmap_cache = NULL;
296 	mm->free_area_cache = oldmm->mmap_base;
297 	mm->cached_hole_size = ~0UL;
298 	mm->map_count = 0;
299 	cpumask_clear(mm_cpumask(mm));
300 	mm->mm_rb = RB_ROOT;
301 	rb_link = &mm->mm_rb.rb_node;
302 	rb_parent = NULL;
303 	pprev = &mm->mmap;
304 	retval = ksm_fork(mm, oldmm);
305 	if (retval)
306 		goto out;
307 
308 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
309 		struct file *file;
310 
311 		if (mpnt->vm_flags & VM_DONTCOPY) {
312 			long pages = vma_pages(mpnt);
313 			mm->total_vm -= pages;
314 			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
315 								-pages);
316 			continue;
317 		}
318 		charge = 0;
319 		if (mpnt->vm_flags & VM_ACCOUNT) {
320 			unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
321 			if (security_vm_enough_memory(len))
322 				goto fail_nomem;
323 			charge = len;
324 		}
325 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
326 		if (!tmp)
327 			goto fail_nomem;
328 		*tmp = *mpnt;
329 		pol = mpol_dup(vma_policy(mpnt));
330 		retval = PTR_ERR(pol);
331 		if (IS_ERR(pol))
332 			goto fail_nomem_policy;
333 		vma_set_policy(tmp, pol);
334 		tmp->vm_flags &= ~VM_LOCKED;
335 		tmp->vm_mm = mm;
336 		tmp->vm_next = NULL;
337 		anon_vma_link(tmp);
338 		file = tmp->vm_file;
339 		if (file) {
340 			struct inode *inode = file->f_path.dentry->d_inode;
341 			struct address_space *mapping = file->f_mapping;
342 
343 			get_file(file);
344 			if (tmp->vm_flags & VM_DENYWRITE)
345 				atomic_dec(&inode->i_writecount);
346 			spin_lock(&mapping->i_mmap_lock);
347 			if (tmp->vm_flags & VM_SHARED)
348 				mapping->i_mmap_writable++;
349 			tmp->vm_truncate_count = mpnt->vm_truncate_count;
350 			flush_dcache_mmap_lock(mapping);
351 			/* insert tmp into the share list, just after mpnt */
352 			vma_prio_tree_add(tmp, mpnt);
353 			flush_dcache_mmap_unlock(mapping);
354 			spin_unlock(&mapping->i_mmap_lock);
355 		}
356 
357 		/*
358 		 * Clear hugetlb-related page reserves for children. This only
359 		 * affects MAP_PRIVATE mappings. Faults generated by the child
360 		 * are not guaranteed to succeed, even if read-only
361 		 */
362 		if (is_vm_hugetlb_page(tmp))
363 			reset_vma_resv_huge_pages(tmp);
364 
365 		/*
366 		 * Link in the new vma and copy the page table entries.
367 		 */
368 		*pprev = tmp;
369 		pprev = &tmp->vm_next;
370 
371 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
372 		rb_link = &tmp->vm_rb.rb_right;
373 		rb_parent = &tmp->vm_rb;
374 
375 		mm->map_count++;
376 		retval = copy_page_range(mm, oldmm, mpnt);
377 
378 		if (tmp->vm_ops && tmp->vm_ops->open)
379 			tmp->vm_ops->open(tmp);
380 
381 		if (retval)
382 			goto out;
383 	}
384 	/* a new mm has just been created */
385 	arch_dup_mmap(oldmm, mm);
386 	retval = 0;
387 out:
388 	up_write(&mm->mmap_sem);
389 	flush_tlb_mm(oldmm);
390 	up_write(&oldmm->mmap_sem);
391 	return retval;
392 fail_nomem_policy:
393 	kmem_cache_free(vm_area_cachep, tmp);
394 fail_nomem:
395 	retval = -ENOMEM;
396 	vm_unacct_memory(charge);
397 	goto out;
398 }
399 
400 static inline int mm_alloc_pgd(struct mm_struct * mm)
401 {
402 	mm->pgd = pgd_alloc(mm);
403 	if (unlikely(!mm->pgd))
404 		return -ENOMEM;
405 	return 0;
406 }
407 
408 static inline void mm_free_pgd(struct mm_struct * mm)
409 {
410 	pgd_free(mm, mm->pgd);
411 }
412 #else
413 #define dup_mmap(mm, oldmm)	(0)
414 #define mm_alloc_pgd(mm)	(0)
415 #define mm_free_pgd(mm)
416 #endif /* CONFIG_MMU */
417 
418 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
419 
420 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
421 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
422 
423 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
424 
425 static int __init coredump_filter_setup(char *s)
426 {
427 	default_dump_filter =
428 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
429 		MMF_DUMP_FILTER_MASK;
430 	return 1;
431 }
432 
433 __setup("coredump_filter=", coredump_filter_setup);
434 
435 #include <linux/init_task.h>
436 
437 static void mm_init_aio(struct mm_struct *mm)
438 {
439 #ifdef CONFIG_AIO
440 	spin_lock_init(&mm->ioctx_lock);
441 	INIT_HLIST_HEAD(&mm->ioctx_list);
442 #endif
443 }
444 
445 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
446 {
447 	atomic_set(&mm->mm_users, 1);
448 	atomic_set(&mm->mm_count, 1);
449 	init_rwsem(&mm->mmap_sem);
450 	INIT_LIST_HEAD(&mm->mmlist);
451 	mm->flags = (current->mm) ?
452 		(current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
453 	mm->core_state = NULL;
454 	mm->nr_ptes = 0;
455 	set_mm_counter(mm, file_rss, 0);
456 	set_mm_counter(mm, anon_rss, 0);
457 	spin_lock_init(&mm->page_table_lock);
458 	mm->free_area_cache = TASK_UNMAPPED_BASE;
459 	mm->cached_hole_size = ~0UL;
460 	mm_init_aio(mm);
461 	mm_init_owner(mm, p);
462 
463 	if (likely(!mm_alloc_pgd(mm))) {
464 		mm->def_flags = 0;
465 		mmu_notifier_mm_init(mm);
466 		return mm;
467 	}
468 
469 	free_mm(mm);
470 	return NULL;
471 }
472 
473 /*
474  * Allocate and initialize an mm_struct.
475  */
476 struct mm_struct * mm_alloc(void)
477 {
478 	struct mm_struct * mm;
479 
480 	mm = allocate_mm();
481 	if (mm) {
482 		memset(mm, 0, sizeof(*mm));
483 		mm = mm_init(mm, current);
484 	}
485 	return mm;
486 }
487 
488 /*
489  * Called when the last reference to the mm
490  * is dropped: either by a lazy thread or by
491  * mmput. Free the page directory and the mm.
492  */
493 void __mmdrop(struct mm_struct *mm)
494 {
495 	BUG_ON(mm == &init_mm);
496 	mm_free_pgd(mm);
497 	destroy_context(mm);
498 	mmu_notifier_mm_destroy(mm);
499 	free_mm(mm);
500 }
501 EXPORT_SYMBOL_GPL(__mmdrop);
502 
503 /*
504  * Decrement the use count and release all resources for an mm.
505  */
506 void mmput(struct mm_struct *mm)
507 {
508 	might_sleep();
509 
510 	if (atomic_dec_and_test(&mm->mm_users)) {
511 		exit_aio(mm);
512 		ksm_exit(mm);
513 		exit_mmap(mm);
514 		set_mm_exe_file(mm, NULL);
515 		if (!list_empty(&mm->mmlist)) {
516 			spin_lock(&mmlist_lock);
517 			list_del(&mm->mmlist);
518 			spin_unlock(&mmlist_lock);
519 		}
520 		put_swap_token(mm);
521 		if (mm->binfmt)
522 			module_put(mm->binfmt->module);
523 		mmdrop(mm);
524 	}
525 }
526 EXPORT_SYMBOL_GPL(mmput);
527 
528 /**
529  * get_task_mm - acquire a reference to the task's mm
530  *
531  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
532  * this kernel workthread has transiently adopted a user mm with use_mm,
533  * to do its AIO) is not set and if so returns a reference to it, after
534  * bumping up the use count.  User must release the mm via mmput()
535  * after use.  Typically used by /proc and ptrace.
536  */
537 struct mm_struct *get_task_mm(struct task_struct *task)
538 {
539 	struct mm_struct *mm;
540 
541 	task_lock(task);
542 	mm = task->mm;
543 	if (mm) {
544 		if (task->flags & PF_KTHREAD)
545 			mm = NULL;
546 		else
547 			atomic_inc(&mm->mm_users);
548 	}
549 	task_unlock(task);
550 	return mm;
551 }
552 EXPORT_SYMBOL_GPL(get_task_mm);
553 
554 /* Please note the differences between mmput and mm_release.
555  * mmput is called whenever we stop holding onto a mm_struct,
556  * error success whatever.
557  *
558  * mm_release is called after a mm_struct has been removed
559  * from the current process.
560  *
561  * This difference is important for error handling, when we
562  * only half set up a mm_struct for a new process and need to restore
563  * the old one.  Because we mmput the new mm_struct before
564  * restoring the old one. . .
565  * Eric Biederman 10 January 1998
566  */
567 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
568 {
569 	struct completion *vfork_done = tsk->vfork_done;
570 
571 	/* Get rid of any futexes when releasing the mm */
572 #ifdef CONFIG_FUTEX
573 	if (unlikely(tsk->robust_list))
574 		exit_robust_list(tsk);
575 #ifdef CONFIG_COMPAT
576 	if (unlikely(tsk->compat_robust_list))
577 		compat_exit_robust_list(tsk);
578 #endif
579 #endif
580 
581 	/* Get rid of any cached register state */
582 	deactivate_mm(tsk, mm);
583 
584 	/* notify parent sleeping on vfork() */
585 	if (vfork_done) {
586 		tsk->vfork_done = NULL;
587 		complete(vfork_done);
588 	}
589 
590 	/*
591 	 * If we're exiting normally, clear a user-space tid field if
592 	 * requested.  We leave this alone when dying by signal, to leave
593 	 * the value intact in a core dump, and to save the unnecessary
594 	 * trouble otherwise.  Userland only wants this done for a sys_exit.
595 	 */
596 	if (tsk->clear_child_tid) {
597 		if (!(tsk->flags & PF_SIGNALED) &&
598 		    atomic_read(&mm->mm_users) > 1) {
599 			/*
600 			 * We don't check the error code - if userspace has
601 			 * not set up a proper pointer then tough luck.
602 			 */
603 			put_user(0, tsk->clear_child_tid);
604 			sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
605 					1, NULL, NULL, 0);
606 		}
607 		tsk->clear_child_tid = NULL;
608 	}
609 }
610 
611 /*
612  * Allocate a new mm structure and copy contents from the
613  * mm structure of the passed in task structure.
614  */
615 struct mm_struct *dup_mm(struct task_struct *tsk)
616 {
617 	struct mm_struct *mm, *oldmm = current->mm;
618 	int err;
619 
620 	if (!oldmm)
621 		return NULL;
622 
623 	mm = allocate_mm();
624 	if (!mm)
625 		goto fail_nomem;
626 
627 	memcpy(mm, oldmm, sizeof(*mm));
628 
629 	/* Initializing for Swap token stuff */
630 	mm->token_priority = 0;
631 	mm->last_interval = 0;
632 
633 	if (!mm_init(mm, tsk))
634 		goto fail_nomem;
635 
636 	if (init_new_context(tsk, mm))
637 		goto fail_nocontext;
638 
639 	dup_mm_exe_file(oldmm, mm);
640 
641 	err = dup_mmap(mm, oldmm);
642 	if (err)
643 		goto free_pt;
644 
645 	mm->hiwater_rss = get_mm_rss(mm);
646 	mm->hiwater_vm = mm->total_vm;
647 
648 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
649 		goto free_pt;
650 
651 	return mm;
652 
653 free_pt:
654 	/* don't put binfmt in mmput, we haven't got module yet */
655 	mm->binfmt = NULL;
656 	mmput(mm);
657 
658 fail_nomem:
659 	return NULL;
660 
661 fail_nocontext:
662 	/*
663 	 * If init_new_context() failed, we cannot use mmput() to free the mm
664 	 * because it calls destroy_context()
665 	 */
666 	mm_free_pgd(mm);
667 	free_mm(mm);
668 	return NULL;
669 }
670 
671 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
672 {
673 	struct mm_struct * mm, *oldmm;
674 	int retval;
675 
676 	tsk->min_flt = tsk->maj_flt = 0;
677 	tsk->nvcsw = tsk->nivcsw = 0;
678 #ifdef CONFIG_DETECT_HUNG_TASK
679 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
680 #endif
681 
682 	tsk->mm = NULL;
683 	tsk->active_mm = NULL;
684 
685 	/*
686 	 * Are we cloning a kernel thread?
687 	 *
688 	 * We need to steal a active VM for that..
689 	 */
690 	oldmm = current->mm;
691 	if (!oldmm)
692 		return 0;
693 
694 	if (clone_flags & CLONE_VM) {
695 		atomic_inc(&oldmm->mm_users);
696 		mm = oldmm;
697 		goto good_mm;
698 	}
699 
700 	retval = -ENOMEM;
701 	mm = dup_mm(tsk);
702 	if (!mm)
703 		goto fail_nomem;
704 
705 good_mm:
706 	/* Initializing for Swap token stuff */
707 	mm->token_priority = 0;
708 	mm->last_interval = 0;
709 
710 	tsk->mm = mm;
711 	tsk->active_mm = mm;
712 	return 0;
713 
714 fail_nomem:
715 	return retval;
716 }
717 
718 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
719 {
720 	struct fs_struct *fs = current->fs;
721 	if (clone_flags & CLONE_FS) {
722 		/* tsk->fs is already what we want */
723 		write_lock(&fs->lock);
724 		if (fs->in_exec) {
725 			write_unlock(&fs->lock);
726 			return -EAGAIN;
727 		}
728 		fs->users++;
729 		write_unlock(&fs->lock);
730 		return 0;
731 	}
732 	tsk->fs = copy_fs_struct(fs);
733 	if (!tsk->fs)
734 		return -ENOMEM;
735 	return 0;
736 }
737 
738 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
739 {
740 	struct files_struct *oldf, *newf;
741 	int error = 0;
742 
743 	/*
744 	 * A background process may not have any files ...
745 	 */
746 	oldf = current->files;
747 	if (!oldf)
748 		goto out;
749 
750 	if (clone_flags & CLONE_FILES) {
751 		atomic_inc(&oldf->count);
752 		goto out;
753 	}
754 
755 	newf = dup_fd(oldf, &error);
756 	if (!newf)
757 		goto out;
758 
759 	tsk->files = newf;
760 	error = 0;
761 out:
762 	return error;
763 }
764 
765 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
766 {
767 #ifdef CONFIG_BLOCK
768 	struct io_context *ioc = current->io_context;
769 
770 	if (!ioc)
771 		return 0;
772 	/*
773 	 * Share io context with parent, if CLONE_IO is set
774 	 */
775 	if (clone_flags & CLONE_IO) {
776 		tsk->io_context = ioc_task_link(ioc);
777 		if (unlikely(!tsk->io_context))
778 			return -ENOMEM;
779 	} else if (ioprio_valid(ioc->ioprio)) {
780 		tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
781 		if (unlikely(!tsk->io_context))
782 			return -ENOMEM;
783 
784 		tsk->io_context->ioprio = ioc->ioprio;
785 	}
786 #endif
787 	return 0;
788 }
789 
790 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
791 {
792 	struct sighand_struct *sig;
793 
794 	if (clone_flags & CLONE_SIGHAND) {
795 		atomic_inc(&current->sighand->count);
796 		return 0;
797 	}
798 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
799 	rcu_assign_pointer(tsk->sighand, sig);
800 	if (!sig)
801 		return -ENOMEM;
802 	atomic_set(&sig->count, 1);
803 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
804 	return 0;
805 }
806 
807 void __cleanup_sighand(struct sighand_struct *sighand)
808 {
809 	if (atomic_dec_and_test(&sighand->count))
810 		kmem_cache_free(sighand_cachep, sighand);
811 }
812 
813 
814 /*
815  * Initialize POSIX timer handling for a thread group.
816  */
817 static void posix_cpu_timers_init_group(struct signal_struct *sig)
818 {
819 	/* Thread group counters. */
820 	thread_group_cputime_init(sig);
821 
822 	/* Expiration times and increments. */
823 	sig->it[CPUCLOCK_PROF].expires = cputime_zero;
824 	sig->it[CPUCLOCK_PROF].incr = cputime_zero;
825 	sig->it[CPUCLOCK_VIRT].expires = cputime_zero;
826 	sig->it[CPUCLOCK_VIRT].incr = cputime_zero;
827 
828 	/* Cached expiration times. */
829 	sig->cputime_expires.prof_exp = cputime_zero;
830 	sig->cputime_expires.virt_exp = cputime_zero;
831 	sig->cputime_expires.sched_exp = 0;
832 
833 	if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
834 		sig->cputime_expires.prof_exp =
835 			secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
836 		sig->cputimer.running = 1;
837 	}
838 
839 	/* The timer lists. */
840 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
841 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
842 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
843 }
844 
845 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
846 {
847 	struct signal_struct *sig;
848 
849 	if (clone_flags & CLONE_THREAD)
850 		return 0;
851 
852 	sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
853 	tsk->signal = sig;
854 	if (!sig)
855 		return -ENOMEM;
856 
857 	atomic_set(&sig->count, 1);
858 	atomic_set(&sig->live, 1);
859 	init_waitqueue_head(&sig->wait_chldexit);
860 	sig->flags = 0;
861 	if (clone_flags & CLONE_NEWPID)
862 		sig->flags |= SIGNAL_UNKILLABLE;
863 	sig->group_exit_code = 0;
864 	sig->group_exit_task = NULL;
865 	sig->group_stop_count = 0;
866 	sig->curr_target = tsk;
867 	init_sigpending(&sig->shared_pending);
868 	INIT_LIST_HEAD(&sig->posix_timers);
869 
870 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
871 	sig->it_real_incr.tv64 = 0;
872 	sig->real_timer.function = it_real_fn;
873 
874 	sig->leader = 0;	/* session leadership doesn't inherit */
875 	sig->tty_old_pgrp = NULL;
876 	sig->tty = NULL;
877 
878 	sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
879 	sig->gtime = cputime_zero;
880 	sig->cgtime = cputime_zero;
881 	sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
882 	sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
883 	sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
884 	sig->maxrss = sig->cmaxrss = 0;
885 	task_io_accounting_init(&sig->ioac);
886 	sig->sum_sched_runtime = 0;
887 	taskstats_tgid_init(sig);
888 
889 	task_lock(current->group_leader);
890 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
891 	task_unlock(current->group_leader);
892 
893 	posix_cpu_timers_init_group(sig);
894 
895 	acct_init_pacct(&sig->pacct);
896 
897 	tty_audit_fork(sig);
898 
899 	sig->oom_adj = current->signal->oom_adj;
900 
901 	return 0;
902 }
903 
904 void __cleanup_signal(struct signal_struct *sig)
905 {
906 	thread_group_cputime_free(sig);
907 	tty_kref_put(sig->tty);
908 	kmem_cache_free(signal_cachep, sig);
909 }
910 
911 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
912 {
913 	unsigned long new_flags = p->flags;
914 
915 	new_flags &= ~PF_SUPERPRIV;
916 	new_flags |= PF_FORKNOEXEC;
917 	new_flags |= PF_STARTING;
918 	p->flags = new_flags;
919 	clear_freeze_flag(p);
920 }
921 
922 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
923 {
924 	current->clear_child_tid = tidptr;
925 
926 	return task_pid_vnr(current);
927 }
928 
929 static void rt_mutex_init_task(struct task_struct *p)
930 {
931 	spin_lock_init(&p->pi_lock);
932 #ifdef CONFIG_RT_MUTEXES
933 	plist_head_init(&p->pi_waiters, &p->pi_lock);
934 	p->pi_blocked_on = NULL;
935 #endif
936 }
937 
938 #ifdef CONFIG_MM_OWNER
939 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
940 {
941 	mm->owner = p;
942 }
943 #endif /* CONFIG_MM_OWNER */
944 
945 /*
946  * Initialize POSIX timer handling for a single task.
947  */
948 static void posix_cpu_timers_init(struct task_struct *tsk)
949 {
950 	tsk->cputime_expires.prof_exp = cputime_zero;
951 	tsk->cputime_expires.virt_exp = cputime_zero;
952 	tsk->cputime_expires.sched_exp = 0;
953 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
954 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
955 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
956 }
957 
958 /*
959  * This creates a new process as a copy of the old one,
960  * but does not actually start it yet.
961  *
962  * It copies the registers, and all the appropriate
963  * parts of the process environment (as per the clone
964  * flags). The actual kick-off is left to the caller.
965  */
966 static struct task_struct *copy_process(unsigned long clone_flags,
967 					unsigned long stack_start,
968 					struct pt_regs *regs,
969 					unsigned long stack_size,
970 					int __user *child_tidptr,
971 					struct pid *pid,
972 					int trace)
973 {
974 	int retval;
975 	struct task_struct *p;
976 	int cgroup_callbacks_done = 0;
977 
978 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
979 		return ERR_PTR(-EINVAL);
980 
981 	/*
982 	 * Thread groups must share signals as well, and detached threads
983 	 * can only be started up within the thread group.
984 	 */
985 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
986 		return ERR_PTR(-EINVAL);
987 
988 	/*
989 	 * Shared signal handlers imply shared VM. By way of the above,
990 	 * thread groups also imply shared VM. Blocking this case allows
991 	 * for various simplifications in other code.
992 	 */
993 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
994 		return ERR_PTR(-EINVAL);
995 
996 	/*
997 	 * Siblings of global init remain as zombies on exit since they are
998 	 * not reaped by their parent (swapper). To solve this and to avoid
999 	 * multi-rooted process trees, prevent global and container-inits
1000 	 * from creating siblings.
1001 	 */
1002 	if ((clone_flags & CLONE_PARENT) &&
1003 				current->signal->flags & SIGNAL_UNKILLABLE)
1004 		return ERR_PTR(-EINVAL);
1005 
1006 	retval = security_task_create(clone_flags);
1007 	if (retval)
1008 		goto fork_out;
1009 
1010 	retval = -ENOMEM;
1011 	p = dup_task_struct(current);
1012 	if (!p)
1013 		goto fork_out;
1014 
1015 	ftrace_graph_init_task(p);
1016 
1017 	rt_mutex_init_task(p);
1018 
1019 #ifdef CONFIG_PROVE_LOCKING
1020 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1021 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1022 #endif
1023 	retval = -EAGAIN;
1024 	if (atomic_read(&p->real_cred->user->processes) >=
1025 			p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
1026 		if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1027 		    p->real_cred->user != INIT_USER)
1028 			goto bad_fork_free;
1029 	}
1030 
1031 	retval = copy_creds(p, clone_flags);
1032 	if (retval < 0)
1033 		goto bad_fork_free;
1034 
1035 	/*
1036 	 * If multiple threads are within copy_process(), then this check
1037 	 * triggers too late. This doesn't hurt, the check is only there
1038 	 * to stop root fork bombs.
1039 	 */
1040 	retval = -EAGAIN;
1041 	if (nr_threads >= max_threads)
1042 		goto bad_fork_cleanup_count;
1043 
1044 	if (!try_module_get(task_thread_info(p)->exec_domain->module))
1045 		goto bad_fork_cleanup_count;
1046 
1047 	p->did_exec = 0;
1048 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1049 	copy_flags(clone_flags, p);
1050 	INIT_LIST_HEAD(&p->children);
1051 	INIT_LIST_HEAD(&p->sibling);
1052 	rcu_copy_process(p);
1053 	p->vfork_done = NULL;
1054 	spin_lock_init(&p->alloc_lock);
1055 
1056 	init_sigpending(&p->pending);
1057 
1058 	p->utime = cputime_zero;
1059 	p->stime = cputime_zero;
1060 	p->gtime = cputime_zero;
1061 	p->utimescaled = cputime_zero;
1062 	p->stimescaled = cputime_zero;
1063 	p->prev_utime = cputime_zero;
1064 	p->prev_stime = cputime_zero;
1065 
1066 	p->default_timer_slack_ns = current->timer_slack_ns;
1067 
1068 	task_io_accounting_init(&p->ioac);
1069 	acct_clear_integrals(p);
1070 
1071 	posix_cpu_timers_init(p);
1072 
1073 	p->lock_depth = -1;		/* -1 = no lock */
1074 	do_posix_clock_monotonic_gettime(&p->start_time);
1075 	p->real_start_time = p->start_time;
1076 	monotonic_to_bootbased(&p->real_start_time);
1077 	p->io_context = NULL;
1078 	p->audit_context = NULL;
1079 	cgroup_fork(p);
1080 #ifdef CONFIG_NUMA
1081 	p->mempolicy = mpol_dup(p->mempolicy);
1082  	if (IS_ERR(p->mempolicy)) {
1083  		retval = PTR_ERR(p->mempolicy);
1084  		p->mempolicy = NULL;
1085  		goto bad_fork_cleanup_cgroup;
1086  	}
1087 	mpol_fix_fork_child_flag(p);
1088 #endif
1089 #ifdef CONFIG_TRACE_IRQFLAGS
1090 	p->irq_events = 0;
1091 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1092 	p->hardirqs_enabled = 1;
1093 #else
1094 	p->hardirqs_enabled = 0;
1095 #endif
1096 	p->hardirq_enable_ip = 0;
1097 	p->hardirq_enable_event = 0;
1098 	p->hardirq_disable_ip = _THIS_IP_;
1099 	p->hardirq_disable_event = 0;
1100 	p->softirqs_enabled = 1;
1101 	p->softirq_enable_ip = _THIS_IP_;
1102 	p->softirq_enable_event = 0;
1103 	p->softirq_disable_ip = 0;
1104 	p->softirq_disable_event = 0;
1105 	p->hardirq_context = 0;
1106 	p->softirq_context = 0;
1107 #endif
1108 #ifdef CONFIG_LOCKDEP
1109 	p->lockdep_depth = 0; /* no locks held yet */
1110 	p->curr_chain_key = 0;
1111 	p->lockdep_recursion = 0;
1112 #endif
1113 
1114 #ifdef CONFIG_DEBUG_MUTEXES
1115 	p->blocked_on = NULL; /* not blocked yet */
1116 #endif
1117 
1118 	p->bts = NULL;
1119 
1120 	p->stack_start = stack_start;
1121 
1122 	/* Perform scheduler related setup. Assign this task to a CPU. */
1123 	sched_fork(p, clone_flags);
1124 
1125 	retval = perf_event_init_task(p);
1126 	if (retval)
1127 		goto bad_fork_cleanup_policy;
1128 
1129 	if ((retval = audit_alloc(p)))
1130 		goto bad_fork_cleanup_policy;
1131 	/* copy all the process information */
1132 	if ((retval = copy_semundo(clone_flags, p)))
1133 		goto bad_fork_cleanup_audit;
1134 	if ((retval = copy_files(clone_flags, p)))
1135 		goto bad_fork_cleanup_semundo;
1136 	if ((retval = copy_fs(clone_flags, p)))
1137 		goto bad_fork_cleanup_files;
1138 	if ((retval = copy_sighand(clone_flags, p)))
1139 		goto bad_fork_cleanup_fs;
1140 	if ((retval = copy_signal(clone_flags, p)))
1141 		goto bad_fork_cleanup_sighand;
1142 	if ((retval = copy_mm(clone_flags, p)))
1143 		goto bad_fork_cleanup_signal;
1144 	if ((retval = copy_namespaces(clone_flags, p)))
1145 		goto bad_fork_cleanup_mm;
1146 	if ((retval = copy_io(clone_flags, p)))
1147 		goto bad_fork_cleanup_namespaces;
1148 	retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1149 	if (retval)
1150 		goto bad_fork_cleanup_io;
1151 
1152 	if (pid != &init_struct_pid) {
1153 		retval = -ENOMEM;
1154 		pid = alloc_pid(p->nsproxy->pid_ns);
1155 		if (!pid)
1156 			goto bad_fork_cleanup_io;
1157 
1158 		if (clone_flags & CLONE_NEWPID) {
1159 			retval = pid_ns_prepare_proc(p->nsproxy->pid_ns);
1160 			if (retval < 0)
1161 				goto bad_fork_free_pid;
1162 		}
1163 	}
1164 
1165 	p->pid = pid_nr(pid);
1166 	p->tgid = p->pid;
1167 	if (clone_flags & CLONE_THREAD)
1168 		p->tgid = current->tgid;
1169 
1170 	if (current->nsproxy != p->nsproxy) {
1171 		retval = ns_cgroup_clone(p, pid);
1172 		if (retval)
1173 			goto bad_fork_free_pid;
1174 	}
1175 
1176 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1177 	/*
1178 	 * Clear TID on mm_release()?
1179 	 */
1180 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1181 #ifdef CONFIG_FUTEX
1182 	p->robust_list = NULL;
1183 #ifdef CONFIG_COMPAT
1184 	p->compat_robust_list = NULL;
1185 #endif
1186 	INIT_LIST_HEAD(&p->pi_state_list);
1187 	p->pi_state_cache = NULL;
1188 #endif
1189 	/*
1190 	 * sigaltstack should be cleared when sharing the same VM
1191 	 */
1192 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1193 		p->sas_ss_sp = p->sas_ss_size = 0;
1194 
1195 	/*
1196 	 * Syscall tracing should be turned off in the child regardless
1197 	 * of CLONE_PTRACE.
1198 	 */
1199 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1200 #ifdef TIF_SYSCALL_EMU
1201 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1202 #endif
1203 	clear_all_latency_tracing(p);
1204 
1205 	/* ok, now we should be set up.. */
1206 	p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1207 	p->pdeath_signal = 0;
1208 	p->exit_state = 0;
1209 
1210 	/*
1211 	 * Ok, make it visible to the rest of the system.
1212 	 * We dont wake it up yet.
1213 	 */
1214 	p->group_leader = p;
1215 	INIT_LIST_HEAD(&p->thread_group);
1216 
1217 	/* Now that the task is set up, run cgroup callbacks if
1218 	 * necessary. We need to run them before the task is visible
1219 	 * on the tasklist. */
1220 	cgroup_fork_callbacks(p);
1221 	cgroup_callbacks_done = 1;
1222 
1223 	/* Need tasklist lock for parent etc handling! */
1224 	write_lock_irq(&tasklist_lock);
1225 
1226 	/*
1227 	 * The task hasn't been attached yet, so its cpus_allowed mask will
1228 	 * not be changed, nor will its assigned CPU.
1229 	 *
1230 	 * The cpus_allowed mask of the parent may have changed after it was
1231 	 * copied first time - so re-copy it here, then check the child's CPU
1232 	 * to ensure it is on a valid CPU (and if not, just force it back to
1233 	 * parent's CPU). This avoids alot of nasty races.
1234 	 */
1235 	p->cpus_allowed = current->cpus_allowed;
1236 	p->rt.nr_cpus_allowed = current->rt.nr_cpus_allowed;
1237 	if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1238 			!cpu_online(task_cpu(p))))
1239 		set_task_cpu(p, smp_processor_id());
1240 
1241 	/* CLONE_PARENT re-uses the old parent */
1242 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1243 		p->real_parent = current->real_parent;
1244 		p->parent_exec_id = current->parent_exec_id;
1245 	} else {
1246 		p->real_parent = current;
1247 		p->parent_exec_id = current->self_exec_id;
1248 	}
1249 
1250 	spin_lock(&current->sighand->siglock);
1251 
1252 	/*
1253 	 * Process group and session signals need to be delivered to just the
1254 	 * parent before the fork or both the parent and the child after the
1255 	 * fork. Restart if a signal comes in before we add the new process to
1256 	 * it's process group.
1257 	 * A fatal signal pending means that current will exit, so the new
1258 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1259  	 */
1260 	recalc_sigpending();
1261 	if (signal_pending(current)) {
1262 		spin_unlock(&current->sighand->siglock);
1263 		write_unlock_irq(&tasklist_lock);
1264 		retval = -ERESTARTNOINTR;
1265 		goto bad_fork_free_pid;
1266 	}
1267 
1268 	if (clone_flags & CLONE_THREAD) {
1269 		atomic_inc(&current->signal->count);
1270 		atomic_inc(&current->signal->live);
1271 		p->group_leader = current->group_leader;
1272 		list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1273 	}
1274 
1275 	if (likely(p->pid)) {
1276 		list_add_tail(&p->sibling, &p->real_parent->children);
1277 		tracehook_finish_clone(p, clone_flags, trace);
1278 
1279 		if (thread_group_leader(p)) {
1280 			if (clone_flags & CLONE_NEWPID)
1281 				p->nsproxy->pid_ns->child_reaper = p;
1282 
1283 			p->signal->leader_pid = pid;
1284 			tty_kref_put(p->signal->tty);
1285 			p->signal->tty = tty_kref_get(current->signal->tty);
1286 			attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1287 			attach_pid(p, PIDTYPE_SID, task_session(current));
1288 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1289 			__get_cpu_var(process_counts)++;
1290 		}
1291 		attach_pid(p, PIDTYPE_PID, pid);
1292 		nr_threads++;
1293 	}
1294 
1295 	total_forks++;
1296 	spin_unlock(&current->sighand->siglock);
1297 	write_unlock_irq(&tasklist_lock);
1298 	proc_fork_connector(p);
1299 	cgroup_post_fork(p);
1300 	perf_event_fork(p);
1301 	return p;
1302 
1303 bad_fork_free_pid:
1304 	if (pid != &init_struct_pid)
1305 		free_pid(pid);
1306 bad_fork_cleanup_io:
1307 	put_io_context(p->io_context);
1308 bad_fork_cleanup_namespaces:
1309 	exit_task_namespaces(p);
1310 bad_fork_cleanup_mm:
1311 	if (p->mm)
1312 		mmput(p->mm);
1313 bad_fork_cleanup_signal:
1314 	if (!(clone_flags & CLONE_THREAD))
1315 		__cleanup_signal(p->signal);
1316 bad_fork_cleanup_sighand:
1317 	__cleanup_sighand(p->sighand);
1318 bad_fork_cleanup_fs:
1319 	exit_fs(p); /* blocking */
1320 bad_fork_cleanup_files:
1321 	exit_files(p); /* blocking */
1322 bad_fork_cleanup_semundo:
1323 	exit_sem(p);
1324 bad_fork_cleanup_audit:
1325 	audit_free(p);
1326 bad_fork_cleanup_policy:
1327 	perf_event_free_task(p);
1328 #ifdef CONFIG_NUMA
1329 	mpol_put(p->mempolicy);
1330 bad_fork_cleanup_cgroup:
1331 #endif
1332 	cgroup_exit(p, cgroup_callbacks_done);
1333 	delayacct_tsk_free(p);
1334 	module_put(task_thread_info(p)->exec_domain->module);
1335 bad_fork_cleanup_count:
1336 	atomic_dec(&p->cred->user->processes);
1337 	exit_creds(p);
1338 bad_fork_free:
1339 	free_task(p);
1340 fork_out:
1341 	return ERR_PTR(retval);
1342 }
1343 
1344 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1345 {
1346 	memset(regs, 0, sizeof(struct pt_regs));
1347 	return regs;
1348 }
1349 
1350 struct task_struct * __cpuinit fork_idle(int cpu)
1351 {
1352 	struct task_struct *task;
1353 	struct pt_regs regs;
1354 
1355 	task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1356 			    &init_struct_pid, 0);
1357 	if (!IS_ERR(task))
1358 		init_idle(task, cpu);
1359 
1360 	return task;
1361 }
1362 
1363 /*
1364  *  Ok, this is the main fork-routine.
1365  *
1366  * It copies the process, and if successful kick-starts
1367  * it and waits for it to finish using the VM if required.
1368  */
1369 long do_fork(unsigned long clone_flags,
1370 	      unsigned long stack_start,
1371 	      struct pt_regs *regs,
1372 	      unsigned long stack_size,
1373 	      int __user *parent_tidptr,
1374 	      int __user *child_tidptr)
1375 {
1376 	struct task_struct *p;
1377 	int trace = 0;
1378 	long nr;
1379 
1380 	/*
1381 	 * Do some preliminary argument and permissions checking before we
1382 	 * actually start allocating stuff
1383 	 */
1384 	if (clone_flags & CLONE_NEWUSER) {
1385 		if (clone_flags & CLONE_THREAD)
1386 			return -EINVAL;
1387 		/* hopefully this check will go away when userns support is
1388 		 * complete
1389 		 */
1390 		if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1391 				!capable(CAP_SETGID))
1392 			return -EPERM;
1393 	}
1394 
1395 	/*
1396 	 * We hope to recycle these flags after 2.6.26
1397 	 */
1398 	if (unlikely(clone_flags & CLONE_STOPPED)) {
1399 		static int __read_mostly count = 100;
1400 
1401 		if (count > 0 && printk_ratelimit()) {
1402 			char comm[TASK_COMM_LEN];
1403 
1404 			count--;
1405 			printk(KERN_INFO "fork(): process `%s' used deprecated "
1406 					"clone flags 0x%lx\n",
1407 				get_task_comm(comm, current),
1408 				clone_flags & CLONE_STOPPED);
1409 		}
1410 	}
1411 
1412 	/*
1413 	 * When called from kernel_thread, don't do user tracing stuff.
1414 	 */
1415 	if (likely(user_mode(regs)))
1416 		trace = tracehook_prepare_clone(clone_flags);
1417 
1418 	p = copy_process(clone_flags, stack_start, regs, stack_size,
1419 			 child_tidptr, NULL, trace);
1420 	/*
1421 	 * Do this prior waking up the new thread - the thread pointer
1422 	 * might get invalid after that point, if the thread exits quickly.
1423 	 */
1424 	if (!IS_ERR(p)) {
1425 		struct completion vfork;
1426 
1427 		trace_sched_process_fork(current, p);
1428 
1429 		nr = task_pid_vnr(p);
1430 
1431 		if (clone_flags & CLONE_PARENT_SETTID)
1432 			put_user(nr, parent_tidptr);
1433 
1434 		if (clone_flags & CLONE_VFORK) {
1435 			p->vfork_done = &vfork;
1436 			init_completion(&vfork);
1437 		}
1438 
1439 		audit_finish_fork(p);
1440 		tracehook_report_clone(regs, clone_flags, nr, p);
1441 
1442 		/*
1443 		 * We set PF_STARTING at creation in case tracing wants to
1444 		 * use this to distinguish a fully live task from one that
1445 		 * hasn't gotten to tracehook_report_clone() yet.  Now we
1446 		 * clear it and set the child going.
1447 		 */
1448 		p->flags &= ~PF_STARTING;
1449 
1450 		if (unlikely(clone_flags & CLONE_STOPPED)) {
1451 			/*
1452 			 * We'll start up with an immediate SIGSTOP.
1453 			 */
1454 			sigaddset(&p->pending.signal, SIGSTOP);
1455 			set_tsk_thread_flag(p, TIF_SIGPENDING);
1456 			__set_task_state(p, TASK_STOPPED);
1457 		} else {
1458 			wake_up_new_task(p, clone_flags);
1459 		}
1460 
1461 		tracehook_report_clone_complete(trace, regs,
1462 						clone_flags, nr, p);
1463 
1464 		if (clone_flags & CLONE_VFORK) {
1465 			freezer_do_not_count();
1466 			wait_for_completion(&vfork);
1467 			freezer_count();
1468 			tracehook_report_vfork_done(p, nr);
1469 		}
1470 	} else {
1471 		nr = PTR_ERR(p);
1472 	}
1473 	return nr;
1474 }
1475 
1476 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1477 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1478 #endif
1479 
1480 static void sighand_ctor(void *data)
1481 {
1482 	struct sighand_struct *sighand = data;
1483 
1484 	spin_lock_init(&sighand->siglock);
1485 	init_waitqueue_head(&sighand->signalfd_wqh);
1486 }
1487 
1488 void __init proc_caches_init(void)
1489 {
1490 	sighand_cachep = kmem_cache_create("sighand_cache",
1491 			sizeof(struct sighand_struct), 0,
1492 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1493 			SLAB_NOTRACK, sighand_ctor);
1494 	signal_cachep = kmem_cache_create("signal_cache",
1495 			sizeof(struct signal_struct), 0,
1496 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1497 	files_cachep = kmem_cache_create("files_cache",
1498 			sizeof(struct files_struct), 0,
1499 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1500 	fs_cachep = kmem_cache_create("fs_cache",
1501 			sizeof(struct fs_struct), 0,
1502 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1503 	mm_cachep = kmem_cache_create("mm_struct",
1504 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1505 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1506 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1507 	mmap_init();
1508 }
1509 
1510 /*
1511  * Check constraints on flags passed to the unshare system call and
1512  * force unsharing of additional process context as appropriate.
1513  */
1514 static void check_unshare_flags(unsigned long *flags_ptr)
1515 {
1516 	/*
1517 	 * If unsharing a thread from a thread group, must also
1518 	 * unshare vm.
1519 	 */
1520 	if (*flags_ptr & CLONE_THREAD)
1521 		*flags_ptr |= CLONE_VM;
1522 
1523 	/*
1524 	 * If unsharing vm, must also unshare signal handlers.
1525 	 */
1526 	if (*flags_ptr & CLONE_VM)
1527 		*flags_ptr |= CLONE_SIGHAND;
1528 
1529 	/*
1530 	 * If unsharing signal handlers and the task was created
1531 	 * using CLONE_THREAD, then must unshare the thread
1532 	 */
1533 	if ((*flags_ptr & CLONE_SIGHAND) &&
1534 	    (atomic_read(&current->signal->count) > 1))
1535 		*flags_ptr |= CLONE_THREAD;
1536 
1537 	/*
1538 	 * If unsharing namespace, must also unshare filesystem information.
1539 	 */
1540 	if (*flags_ptr & CLONE_NEWNS)
1541 		*flags_ptr |= CLONE_FS;
1542 }
1543 
1544 /*
1545  * Unsharing of tasks created with CLONE_THREAD is not supported yet
1546  */
1547 static int unshare_thread(unsigned long unshare_flags)
1548 {
1549 	if (unshare_flags & CLONE_THREAD)
1550 		return -EINVAL;
1551 
1552 	return 0;
1553 }
1554 
1555 /*
1556  * Unshare the filesystem structure if it is being shared
1557  */
1558 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1559 {
1560 	struct fs_struct *fs = current->fs;
1561 
1562 	if (!(unshare_flags & CLONE_FS) || !fs)
1563 		return 0;
1564 
1565 	/* don't need lock here; in the worst case we'll do useless copy */
1566 	if (fs->users == 1)
1567 		return 0;
1568 
1569 	*new_fsp = copy_fs_struct(fs);
1570 	if (!*new_fsp)
1571 		return -ENOMEM;
1572 
1573 	return 0;
1574 }
1575 
1576 /*
1577  * Unsharing of sighand is not supported yet
1578  */
1579 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1580 {
1581 	struct sighand_struct *sigh = current->sighand;
1582 
1583 	if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1584 		return -EINVAL;
1585 	else
1586 		return 0;
1587 }
1588 
1589 /*
1590  * Unshare vm if it is being shared
1591  */
1592 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1593 {
1594 	struct mm_struct *mm = current->mm;
1595 
1596 	if ((unshare_flags & CLONE_VM) &&
1597 	    (mm && atomic_read(&mm->mm_users) > 1)) {
1598 		return -EINVAL;
1599 	}
1600 
1601 	return 0;
1602 }
1603 
1604 /*
1605  * Unshare file descriptor table if it is being shared
1606  */
1607 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1608 {
1609 	struct files_struct *fd = current->files;
1610 	int error = 0;
1611 
1612 	if ((unshare_flags & CLONE_FILES) &&
1613 	    (fd && atomic_read(&fd->count) > 1)) {
1614 		*new_fdp = dup_fd(fd, &error);
1615 		if (!*new_fdp)
1616 			return error;
1617 	}
1618 
1619 	return 0;
1620 }
1621 
1622 /*
1623  * unshare allows a process to 'unshare' part of the process
1624  * context which was originally shared using clone.  copy_*
1625  * functions used by do_fork() cannot be used here directly
1626  * because they modify an inactive task_struct that is being
1627  * constructed. Here we are modifying the current, active,
1628  * task_struct.
1629  */
1630 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1631 {
1632 	int err = 0;
1633 	struct fs_struct *fs, *new_fs = NULL;
1634 	struct sighand_struct *new_sigh = NULL;
1635 	struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1636 	struct files_struct *fd, *new_fd = NULL;
1637 	struct nsproxy *new_nsproxy = NULL;
1638 	int do_sysvsem = 0;
1639 
1640 	check_unshare_flags(&unshare_flags);
1641 
1642 	/* Return -EINVAL for all unsupported flags */
1643 	err = -EINVAL;
1644 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1645 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1646 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1647 		goto bad_unshare_out;
1648 
1649 	/*
1650 	 * CLONE_NEWIPC must also detach from the undolist: after switching
1651 	 * to a new ipc namespace, the semaphore arrays from the old
1652 	 * namespace are unreachable.
1653 	 */
1654 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1655 		do_sysvsem = 1;
1656 	if ((err = unshare_thread(unshare_flags)))
1657 		goto bad_unshare_out;
1658 	if ((err = unshare_fs(unshare_flags, &new_fs)))
1659 		goto bad_unshare_cleanup_thread;
1660 	if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1661 		goto bad_unshare_cleanup_fs;
1662 	if ((err = unshare_vm(unshare_flags, &new_mm)))
1663 		goto bad_unshare_cleanup_sigh;
1664 	if ((err = unshare_fd(unshare_flags, &new_fd)))
1665 		goto bad_unshare_cleanup_vm;
1666 	if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1667 			new_fs)))
1668 		goto bad_unshare_cleanup_fd;
1669 
1670 	if (new_fs ||  new_mm || new_fd || do_sysvsem || new_nsproxy) {
1671 		if (do_sysvsem) {
1672 			/*
1673 			 * CLONE_SYSVSEM is equivalent to sys_exit().
1674 			 */
1675 			exit_sem(current);
1676 		}
1677 
1678 		if (new_nsproxy) {
1679 			switch_task_namespaces(current, new_nsproxy);
1680 			new_nsproxy = NULL;
1681 		}
1682 
1683 		task_lock(current);
1684 
1685 		if (new_fs) {
1686 			fs = current->fs;
1687 			write_lock(&fs->lock);
1688 			current->fs = new_fs;
1689 			if (--fs->users)
1690 				new_fs = NULL;
1691 			else
1692 				new_fs = fs;
1693 			write_unlock(&fs->lock);
1694 		}
1695 
1696 		if (new_mm) {
1697 			mm = current->mm;
1698 			active_mm = current->active_mm;
1699 			current->mm = new_mm;
1700 			current->active_mm = new_mm;
1701 			activate_mm(active_mm, new_mm);
1702 			new_mm = mm;
1703 		}
1704 
1705 		if (new_fd) {
1706 			fd = current->files;
1707 			current->files = new_fd;
1708 			new_fd = fd;
1709 		}
1710 
1711 		task_unlock(current);
1712 	}
1713 
1714 	if (new_nsproxy)
1715 		put_nsproxy(new_nsproxy);
1716 
1717 bad_unshare_cleanup_fd:
1718 	if (new_fd)
1719 		put_files_struct(new_fd);
1720 
1721 bad_unshare_cleanup_vm:
1722 	if (new_mm)
1723 		mmput(new_mm);
1724 
1725 bad_unshare_cleanup_sigh:
1726 	if (new_sigh)
1727 		if (atomic_dec_and_test(&new_sigh->count))
1728 			kmem_cache_free(sighand_cachep, new_sigh);
1729 
1730 bad_unshare_cleanup_fs:
1731 	if (new_fs)
1732 		free_fs_struct(new_fs);
1733 
1734 bad_unshare_cleanup_thread:
1735 bad_unshare_out:
1736 	return err;
1737 }
1738 
1739 /*
1740  *	Helper to unshare the files of the current task.
1741  *	We don't want to expose copy_files internals to
1742  *	the exec layer of the kernel.
1743  */
1744 
1745 int unshare_files(struct files_struct **displaced)
1746 {
1747 	struct task_struct *task = current;
1748 	struct files_struct *copy = NULL;
1749 	int error;
1750 
1751 	error = unshare_fd(CLONE_FILES, &copy);
1752 	if (error || !copy) {
1753 		*displaced = NULL;
1754 		return error;
1755 	}
1756 	*displaced = task->files;
1757 	task_lock(task);
1758 	task->files = copy;
1759 	task_unlock(task);
1760 	return 0;
1761 }
1762