xref: /openbmc/linux/kernel/fork.c (revision e80eb1dc)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14 
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/binfmts.h>
41 #include <linux/mman.h>
42 #include <linux/mmu_notifier.h>
43 #include <linux/fs.h>
44 #include <linux/mm.h>
45 #include <linux/vmacache.h>
46 #include <linux/nsproxy.h>
47 #include <linux/capability.h>
48 #include <linux/cpu.h>
49 #include <linux/cgroup.h>
50 #include <linux/security.h>
51 #include <linux/hugetlb.h>
52 #include <linux/seccomp.h>
53 #include <linux/swap.h>
54 #include <linux/syscalls.h>
55 #include <linux/jiffies.h>
56 #include <linux/futex.h>
57 #include <linux/compat.h>
58 #include <linux/kthread.h>
59 #include <linux/task_io_accounting_ops.h>
60 #include <linux/rcupdate.h>
61 #include <linux/ptrace.h>
62 #include <linux/mount.h>
63 #include <linux/audit.h>
64 #include <linux/memcontrol.h>
65 #include <linux/ftrace.h>
66 #include <linux/proc_fs.h>
67 #include <linux/profile.h>
68 #include <linux/rmap.h>
69 #include <linux/ksm.h>
70 #include <linux/acct.h>
71 #include <linux/userfaultfd_k.h>
72 #include <linux/tsacct_kern.h>
73 #include <linux/cn_proc.h>
74 #include <linux/freezer.h>
75 #include <linux/delayacct.h>
76 #include <linux/taskstats_kern.h>
77 #include <linux/random.h>
78 #include <linux/tty.h>
79 #include <linux/blkdev.h>
80 #include <linux/fs_struct.h>
81 #include <linux/magic.h>
82 #include <linux/perf_event.h>
83 #include <linux/posix-timers.h>
84 #include <linux/user-return-notifier.h>
85 #include <linux/oom.h>
86 #include <linux/khugepaged.h>
87 #include <linux/signalfd.h>
88 #include <linux/uprobes.h>
89 #include <linux/aio.h>
90 #include <linux/compiler.h>
91 #include <linux/sysctl.h>
92 #include <linux/kcov.h>
93 #include <linux/livepatch.h>
94 #include <linux/thread_info.h>
95 #include <linux/stackleak.h>
96 #include <linux/kasan.h>
97 #include <linux/scs.h>
98 
99 #include <asm/pgalloc.h>
100 #include <linux/uaccess.h>
101 #include <asm/mmu_context.h>
102 #include <asm/cacheflush.h>
103 #include <asm/tlbflush.h>
104 
105 #include <trace/events/sched.h>
106 
107 #define CREATE_TRACE_POINTS
108 #include <trace/events/task.h>
109 
110 /*
111  * Minimum number of threads to boot the kernel
112  */
113 #define MIN_THREADS 20
114 
115 /*
116  * Maximum number of threads
117  */
118 #define MAX_THREADS FUTEX_TID_MASK
119 
120 /*
121  * Protected counters by write_lock_irq(&tasklist_lock)
122  */
123 unsigned long total_forks;	/* Handle normal Linux uptimes. */
124 int nr_threads;			/* The idle threads do not count.. */
125 
126 static int max_threads;		/* tunable limit on nr_threads */
127 
128 #define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
129 
130 static const char * const resident_page_types[] = {
131 	NAMED_ARRAY_INDEX(MM_FILEPAGES),
132 	NAMED_ARRAY_INDEX(MM_ANONPAGES),
133 	NAMED_ARRAY_INDEX(MM_SWAPENTS),
134 	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
135 };
136 
137 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
138 
139 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
140 
141 #ifdef CONFIG_PROVE_RCU
142 int lockdep_tasklist_lock_is_held(void)
143 {
144 	return lockdep_is_held(&tasklist_lock);
145 }
146 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
147 #endif /* #ifdef CONFIG_PROVE_RCU */
148 
149 int nr_processes(void)
150 {
151 	int cpu;
152 	int total = 0;
153 
154 	for_each_possible_cpu(cpu)
155 		total += per_cpu(process_counts, cpu);
156 
157 	return total;
158 }
159 
160 void __weak arch_release_task_struct(struct task_struct *tsk)
161 {
162 }
163 
164 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
165 static struct kmem_cache *task_struct_cachep;
166 
167 static inline struct task_struct *alloc_task_struct_node(int node)
168 {
169 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
170 }
171 
172 static inline void free_task_struct(struct task_struct *tsk)
173 {
174 	kmem_cache_free(task_struct_cachep, tsk);
175 }
176 #endif
177 
178 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
179 
180 /*
181  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
182  * kmemcache based allocator.
183  */
184 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
185 
186 #ifdef CONFIG_VMAP_STACK
187 /*
188  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
189  * flush.  Try to minimize the number of calls by caching stacks.
190  */
191 #define NR_CACHED_STACKS 2
192 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
193 
194 static int free_vm_stack_cache(unsigned int cpu)
195 {
196 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
197 	int i;
198 
199 	for (i = 0; i < NR_CACHED_STACKS; i++) {
200 		struct vm_struct *vm_stack = cached_vm_stacks[i];
201 
202 		if (!vm_stack)
203 			continue;
204 
205 		vfree(vm_stack->addr);
206 		cached_vm_stacks[i] = NULL;
207 	}
208 
209 	return 0;
210 }
211 #endif
212 
213 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
214 {
215 #ifdef CONFIG_VMAP_STACK
216 	void *stack;
217 	int i;
218 
219 	for (i = 0; i < NR_CACHED_STACKS; i++) {
220 		struct vm_struct *s;
221 
222 		s = this_cpu_xchg(cached_stacks[i], NULL);
223 
224 		if (!s)
225 			continue;
226 
227 		/* Clear the KASAN shadow of the stack. */
228 		kasan_unpoison_shadow(s->addr, THREAD_SIZE);
229 
230 		/* Clear stale pointers from reused stack. */
231 		memset(s->addr, 0, THREAD_SIZE);
232 
233 		tsk->stack_vm_area = s;
234 		tsk->stack = s->addr;
235 		return s->addr;
236 	}
237 
238 	/*
239 	 * Allocated stacks are cached and later reused by new threads,
240 	 * so memcg accounting is performed manually on assigning/releasing
241 	 * stacks to tasks. Drop __GFP_ACCOUNT.
242 	 */
243 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
244 				     VMALLOC_START, VMALLOC_END,
245 				     THREADINFO_GFP & ~__GFP_ACCOUNT,
246 				     PAGE_KERNEL,
247 				     0, node, __builtin_return_address(0));
248 
249 	/*
250 	 * We can't call find_vm_area() in interrupt context, and
251 	 * free_thread_stack() can be called in interrupt context,
252 	 * so cache the vm_struct.
253 	 */
254 	if (stack) {
255 		tsk->stack_vm_area = find_vm_area(stack);
256 		tsk->stack = stack;
257 	}
258 	return stack;
259 #else
260 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
261 					     THREAD_SIZE_ORDER);
262 
263 	if (likely(page)) {
264 		tsk->stack = page_address(page);
265 		return tsk->stack;
266 	}
267 	return NULL;
268 #endif
269 }
270 
271 static inline void free_thread_stack(struct task_struct *tsk)
272 {
273 #ifdef CONFIG_VMAP_STACK
274 	struct vm_struct *vm = task_stack_vm_area(tsk);
275 
276 	if (vm) {
277 		int i;
278 
279 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
280 			mod_memcg_page_state(vm->pages[i],
281 					     MEMCG_KERNEL_STACK_KB,
282 					     -(int)(PAGE_SIZE / 1024));
283 
284 			memcg_kmem_uncharge_page(vm->pages[i], 0);
285 		}
286 
287 		for (i = 0; i < NR_CACHED_STACKS; i++) {
288 			if (this_cpu_cmpxchg(cached_stacks[i],
289 					NULL, tsk->stack_vm_area) != NULL)
290 				continue;
291 
292 			return;
293 		}
294 
295 		vfree_atomic(tsk->stack);
296 		return;
297 	}
298 #endif
299 
300 	__free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
301 }
302 # else
303 static struct kmem_cache *thread_stack_cache;
304 
305 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
306 						  int node)
307 {
308 	unsigned long *stack;
309 	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
310 	tsk->stack = stack;
311 	return stack;
312 }
313 
314 static void free_thread_stack(struct task_struct *tsk)
315 {
316 	kmem_cache_free(thread_stack_cache, tsk->stack);
317 }
318 
319 void thread_stack_cache_init(void)
320 {
321 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
322 					THREAD_SIZE, THREAD_SIZE, 0, 0,
323 					THREAD_SIZE, NULL);
324 	BUG_ON(thread_stack_cache == NULL);
325 }
326 # endif
327 #endif
328 
329 /* SLAB cache for signal_struct structures (tsk->signal) */
330 static struct kmem_cache *signal_cachep;
331 
332 /* SLAB cache for sighand_struct structures (tsk->sighand) */
333 struct kmem_cache *sighand_cachep;
334 
335 /* SLAB cache for files_struct structures (tsk->files) */
336 struct kmem_cache *files_cachep;
337 
338 /* SLAB cache for fs_struct structures (tsk->fs) */
339 struct kmem_cache *fs_cachep;
340 
341 /* SLAB cache for vm_area_struct structures */
342 static struct kmem_cache *vm_area_cachep;
343 
344 /* SLAB cache for mm_struct structures (tsk->mm) */
345 static struct kmem_cache *mm_cachep;
346 
347 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
348 {
349 	struct vm_area_struct *vma;
350 
351 	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
352 	if (vma)
353 		vma_init(vma, mm);
354 	return vma;
355 }
356 
357 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
358 {
359 	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
360 
361 	if (new) {
362 		*new = *orig;
363 		INIT_LIST_HEAD(&new->anon_vma_chain);
364 		new->vm_next = new->vm_prev = NULL;
365 	}
366 	return new;
367 }
368 
369 void vm_area_free(struct vm_area_struct *vma)
370 {
371 	kmem_cache_free(vm_area_cachep, vma);
372 }
373 
374 static void account_kernel_stack(struct task_struct *tsk, int account)
375 {
376 	void *stack = task_stack_page(tsk);
377 	struct vm_struct *vm = task_stack_vm_area(tsk);
378 
379 	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
380 
381 	if (vm) {
382 		int i;
383 
384 		BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
385 
386 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
387 			mod_zone_page_state(page_zone(vm->pages[i]),
388 					    NR_KERNEL_STACK_KB,
389 					    PAGE_SIZE / 1024 * account);
390 		}
391 	} else {
392 		/*
393 		 * All stack pages are in the same zone and belong to the
394 		 * same memcg.
395 		 */
396 		struct page *first_page = virt_to_page(stack);
397 
398 		mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
399 				    THREAD_SIZE / 1024 * account);
400 
401 		mod_memcg_obj_state(stack, MEMCG_KERNEL_STACK_KB,
402 				    account * (THREAD_SIZE / 1024));
403 	}
404 }
405 
406 static int memcg_charge_kernel_stack(struct task_struct *tsk)
407 {
408 #ifdef CONFIG_VMAP_STACK
409 	struct vm_struct *vm = task_stack_vm_area(tsk);
410 	int ret;
411 
412 	if (vm) {
413 		int i;
414 
415 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
416 			/*
417 			 * If memcg_kmem_charge_page() fails, page->mem_cgroup
418 			 * pointer is NULL, and both memcg_kmem_uncharge_page()
419 			 * and mod_memcg_page_state() in free_thread_stack()
420 			 * will ignore this page. So it's safe.
421 			 */
422 			ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL,
423 						     0);
424 			if (ret)
425 				return ret;
426 
427 			mod_memcg_page_state(vm->pages[i],
428 					     MEMCG_KERNEL_STACK_KB,
429 					     PAGE_SIZE / 1024);
430 		}
431 	}
432 #endif
433 	return 0;
434 }
435 
436 static void release_task_stack(struct task_struct *tsk)
437 {
438 	if (WARN_ON(tsk->state != TASK_DEAD))
439 		return;  /* Better to leak the stack than to free prematurely */
440 
441 	account_kernel_stack(tsk, -1);
442 	free_thread_stack(tsk);
443 	tsk->stack = NULL;
444 #ifdef CONFIG_VMAP_STACK
445 	tsk->stack_vm_area = NULL;
446 #endif
447 }
448 
449 #ifdef CONFIG_THREAD_INFO_IN_TASK
450 void put_task_stack(struct task_struct *tsk)
451 {
452 	if (refcount_dec_and_test(&tsk->stack_refcount))
453 		release_task_stack(tsk);
454 }
455 #endif
456 
457 void free_task(struct task_struct *tsk)
458 {
459 	scs_release(tsk);
460 
461 #ifndef CONFIG_THREAD_INFO_IN_TASK
462 	/*
463 	 * The task is finally done with both the stack and thread_info,
464 	 * so free both.
465 	 */
466 	release_task_stack(tsk);
467 #else
468 	/*
469 	 * If the task had a separate stack allocation, it should be gone
470 	 * by now.
471 	 */
472 	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
473 #endif
474 	rt_mutex_debug_task_free(tsk);
475 	ftrace_graph_exit_task(tsk);
476 	put_seccomp_filter(tsk);
477 	arch_release_task_struct(tsk);
478 	if (tsk->flags & PF_KTHREAD)
479 		free_kthread_struct(tsk);
480 	free_task_struct(tsk);
481 }
482 EXPORT_SYMBOL(free_task);
483 
484 #ifdef CONFIG_MMU
485 static __latent_entropy int dup_mmap(struct mm_struct *mm,
486 					struct mm_struct *oldmm)
487 {
488 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
489 	struct rb_node **rb_link, *rb_parent;
490 	int retval;
491 	unsigned long charge;
492 	LIST_HEAD(uf);
493 
494 	uprobe_start_dup_mmap();
495 	if (mmap_write_lock_killable(oldmm)) {
496 		retval = -EINTR;
497 		goto fail_uprobe_end;
498 	}
499 	flush_cache_dup_mm(oldmm);
500 	uprobe_dup_mmap(oldmm, mm);
501 	/*
502 	 * Not linked in yet - no deadlock potential:
503 	 */
504 	mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
505 
506 	/* No ordering required: file already has been exposed. */
507 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
508 
509 	mm->total_vm = oldmm->total_vm;
510 	mm->data_vm = oldmm->data_vm;
511 	mm->exec_vm = oldmm->exec_vm;
512 	mm->stack_vm = oldmm->stack_vm;
513 
514 	rb_link = &mm->mm_rb.rb_node;
515 	rb_parent = NULL;
516 	pprev = &mm->mmap;
517 	retval = ksm_fork(mm, oldmm);
518 	if (retval)
519 		goto out;
520 	retval = khugepaged_fork(mm, oldmm);
521 	if (retval)
522 		goto out;
523 
524 	prev = NULL;
525 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
526 		struct file *file;
527 
528 		if (mpnt->vm_flags & VM_DONTCOPY) {
529 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
530 			continue;
531 		}
532 		charge = 0;
533 		/*
534 		 * Don't duplicate many vmas if we've been oom-killed (for
535 		 * example)
536 		 */
537 		if (fatal_signal_pending(current)) {
538 			retval = -EINTR;
539 			goto out;
540 		}
541 		if (mpnt->vm_flags & VM_ACCOUNT) {
542 			unsigned long len = vma_pages(mpnt);
543 
544 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
545 				goto fail_nomem;
546 			charge = len;
547 		}
548 		tmp = vm_area_dup(mpnt);
549 		if (!tmp)
550 			goto fail_nomem;
551 		retval = vma_dup_policy(mpnt, tmp);
552 		if (retval)
553 			goto fail_nomem_policy;
554 		tmp->vm_mm = mm;
555 		retval = dup_userfaultfd(tmp, &uf);
556 		if (retval)
557 			goto fail_nomem_anon_vma_fork;
558 		if (tmp->vm_flags & VM_WIPEONFORK) {
559 			/*
560 			 * VM_WIPEONFORK gets a clean slate in the child.
561 			 * Don't prepare anon_vma until fault since we don't
562 			 * copy page for current vma.
563 			 */
564 			tmp->anon_vma = NULL;
565 		} else if (anon_vma_fork(tmp, mpnt))
566 			goto fail_nomem_anon_vma_fork;
567 		tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
568 		file = tmp->vm_file;
569 		if (file) {
570 			struct inode *inode = file_inode(file);
571 			struct address_space *mapping = file->f_mapping;
572 
573 			get_file(file);
574 			if (tmp->vm_flags & VM_DENYWRITE)
575 				atomic_dec(&inode->i_writecount);
576 			i_mmap_lock_write(mapping);
577 			if (tmp->vm_flags & VM_SHARED)
578 				atomic_inc(&mapping->i_mmap_writable);
579 			flush_dcache_mmap_lock(mapping);
580 			/* insert tmp into the share list, just after mpnt */
581 			vma_interval_tree_insert_after(tmp, mpnt,
582 					&mapping->i_mmap);
583 			flush_dcache_mmap_unlock(mapping);
584 			i_mmap_unlock_write(mapping);
585 		}
586 
587 		/*
588 		 * Clear hugetlb-related page reserves for children. This only
589 		 * affects MAP_PRIVATE mappings. Faults generated by the child
590 		 * are not guaranteed to succeed, even if read-only
591 		 */
592 		if (is_vm_hugetlb_page(tmp))
593 			reset_vma_resv_huge_pages(tmp);
594 
595 		/*
596 		 * Link in the new vma and copy the page table entries.
597 		 */
598 		*pprev = tmp;
599 		pprev = &tmp->vm_next;
600 		tmp->vm_prev = prev;
601 		prev = tmp;
602 
603 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
604 		rb_link = &tmp->vm_rb.rb_right;
605 		rb_parent = &tmp->vm_rb;
606 
607 		mm->map_count++;
608 		if (!(tmp->vm_flags & VM_WIPEONFORK))
609 			retval = copy_page_range(mm, oldmm, mpnt);
610 
611 		if (tmp->vm_ops && tmp->vm_ops->open)
612 			tmp->vm_ops->open(tmp);
613 
614 		if (retval)
615 			goto out;
616 	}
617 	/* a new mm has just been created */
618 	retval = arch_dup_mmap(oldmm, mm);
619 out:
620 	mmap_write_unlock(mm);
621 	flush_tlb_mm(oldmm);
622 	mmap_write_unlock(oldmm);
623 	dup_userfaultfd_complete(&uf);
624 fail_uprobe_end:
625 	uprobe_end_dup_mmap();
626 	return retval;
627 fail_nomem_anon_vma_fork:
628 	mpol_put(vma_policy(tmp));
629 fail_nomem_policy:
630 	vm_area_free(tmp);
631 fail_nomem:
632 	retval = -ENOMEM;
633 	vm_unacct_memory(charge);
634 	goto out;
635 }
636 
637 static inline int mm_alloc_pgd(struct mm_struct *mm)
638 {
639 	mm->pgd = pgd_alloc(mm);
640 	if (unlikely(!mm->pgd))
641 		return -ENOMEM;
642 	return 0;
643 }
644 
645 static inline void mm_free_pgd(struct mm_struct *mm)
646 {
647 	pgd_free(mm, mm->pgd);
648 }
649 #else
650 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
651 {
652 	mmap_write_lock(oldmm);
653 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
654 	mmap_write_unlock(oldmm);
655 	return 0;
656 }
657 #define mm_alloc_pgd(mm)	(0)
658 #define mm_free_pgd(mm)
659 #endif /* CONFIG_MMU */
660 
661 static void check_mm(struct mm_struct *mm)
662 {
663 	int i;
664 
665 	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
666 			 "Please make sure 'struct resident_page_types[]' is updated as well");
667 
668 	for (i = 0; i < NR_MM_COUNTERS; i++) {
669 		long x = atomic_long_read(&mm->rss_stat.count[i]);
670 
671 		if (unlikely(x))
672 			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
673 				 mm, resident_page_types[i], x);
674 	}
675 
676 	if (mm_pgtables_bytes(mm))
677 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
678 				mm_pgtables_bytes(mm));
679 
680 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
681 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
682 #endif
683 }
684 
685 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
686 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
687 
688 /*
689  * Called when the last reference to the mm
690  * is dropped: either by a lazy thread or by
691  * mmput. Free the page directory and the mm.
692  */
693 void __mmdrop(struct mm_struct *mm)
694 {
695 	BUG_ON(mm == &init_mm);
696 	WARN_ON_ONCE(mm == current->mm);
697 	WARN_ON_ONCE(mm == current->active_mm);
698 	mm_free_pgd(mm);
699 	destroy_context(mm);
700 	mmu_notifier_subscriptions_destroy(mm);
701 	check_mm(mm);
702 	put_user_ns(mm->user_ns);
703 	free_mm(mm);
704 }
705 EXPORT_SYMBOL_GPL(__mmdrop);
706 
707 static void mmdrop_async_fn(struct work_struct *work)
708 {
709 	struct mm_struct *mm;
710 
711 	mm = container_of(work, struct mm_struct, async_put_work);
712 	__mmdrop(mm);
713 }
714 
715 static void mmdrop_async(struct mm_struct *mm)
716 {
717 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
718 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
719 		schedule_work(&mm->async_put_work);
720 	}
721 }
722 
723 static inline void free_signal_struct(struct signal_struct *sig)
724 {
725 	taskstats_tgid_free(sig);
726 	sched_autogroup_exit(sig);
727 	/*
728 	 * __mmdrop is not safe to call from softirq context on x86 due to
729 	 * pgd_dtor so postpone it to the async context
730 	 */
731 	if (sig->oom_mm)
732 		mmdrop_async(sig->oom_mm);
733 	kmem_cache_free(signal_cachep, sig);
734 }
735 
736 static inline void put_signal_struct(struct signal_struct *sig)
737 {
738 	if (refcount_dec_and_test(&sig->sigcnt))
739 		free_signal_struct(sig);
740 }
741 
742 void __put_task_struct(struct task_struct *tsk)
743 {
744 	WARN_ON(!tsk->exit_state);
745 	WARN_ON(refcount_read(&tsk->usage));
746 	WARN_ON(tsk == current);
747 
748 	cgroup_free(tsk);
749 	task_numa_free(tsk, true);
750 	security_task_free(tsk);
751 	exit_creds(tsk);
752 	delayacct_tsk_free(tsk);
753 	put_signal_struct(tsk->signal);
754 
755 	if (!profile_handoff_task(tsk))
756 		free_task(tsk);
757 }
758 EXPORT_SYMBOL_GPL(__put_task_struct);
759 
760 void __init __weak arch_task_cache_init(void) { }
761 
762 /*
763  * set_max_threads
764  */
765 static void set_max_threads(unsigned int max_threads_suggested)
766 {
767 	u64 threads;
768 	unsigned long nr_pages = totalram_pages();
769 
770 	/*
771 	 * The number of threads shall be limited such that the thread
772 	 * structures may only consume a small part of the available memory.
773 	 */
774 	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
775 		threads = MAX_THREADS;
776 	else
777 		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
778 				    (u64) THREAD_SIZE * 8UL);
779 
780 	if (threads > max_threads_suggested)
781 		threads = max_threads_suggested;
782 
783 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
784 }
785 
786 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
787 /* Initialized by the architecture: */
788 int arch_task_struct_size __read_mostly;
789 #endif
790 
791 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
792 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
793 {
794 	/* Fetch thread_struct whitelist for the architecture. */
795 	arch_thread_struct_whitelist(offset, size);
796 
797 	/*
798 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
799 	 * adjust offset to position of thread_struct in task_struct.
800 	 */
801 	if (unlikely(*size == 0))
802 		*offset = 0;
803 	else
804 		*offset += offsetof(struct task_struct, thread);
805 }
806 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
807 
808 void __init fork_init(void)
809 {
810 	int i;
811 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
812 #ifndef ARCH_MIN_TASKALIGN
813 #define ARCH_MIN_TASKALIGN	0
814 #endif
815 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
816 	unsigned long useroffset, usersize;
817 
818 	/* create a slab on which task_structs can be allocated */
819 	task_struct_whitelist(&useroffset, &usersize);
820 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
821 			arch_task_struct_size, align,
822 			SLAB_PANIC|SLAB_ACCOUNT,
823 			useroffset, usersize, NULL);
824 #endif
825 
826 	/* do the arch specific task caches init */
827 	arch_task_cache_init();
828 
829 	set_max_threads(MAX_THREADS);
830 
831 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
832 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
833 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
834 		init_task.signal->rlim[RLIMIT_NPROC];
835 
836 	for (i = 0; i < UCOUNT_COUNTS; i++) {
837 		init_user_ns.ucount_max[i] = max_threads/2;
838 	}
839 
840 #ifdef CONFIG_VMAP_STACK
841 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
842 			  NULL, free_vm_stack_cache);
843 #endif
844 
845 	scs_init();
846 
847 	lockdep_init_task(&init_task);
848 	uprobes_init();
849 }
850 
851 int __weak arch_dup_task_struct(struct task_struct *dst,
852 					       struct task_struct *src)
853 {
854 	*dst = *src;
855 	return 0;
856 }
857 
858 void set_task_stack_end_magic(struct task_struct *tsk)
859 {
860 	unsigned long *stackend;
861 
862 	stackend = end_of_stack(tsk);
863 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
864 }
865 
866 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
867 {
868 	struct task_struct *tsk;
869 	unsigned long *stack;
870 	struct vm_struct *stack_vm_area __maybe_unused;
871 	int err;
872 
873 	if (node == NUMA_NO_NODE)
874 		node = tsk_fork_get_node(orig);
875 	tsk = alloc_task_struct_node(node);
876 	if (!tsk)
877 		return NULL;
878 
879 	stack = alloc_thread_stack_node(tsk, node);
880 	if (!stack)
881 		goto free_tsk;
882 
883 	if (memcg_charge_kernel_stack(tsk))
884 		goto free_stack;
885 
886 	stack_vm_area = task_stack_vm_area(tsk);
887 
888 	err = arch_dup_task_struct(tsk, orig);
889 
890 	/*
891 	 * arch_dup_task_struct() clobbers the stack-related fields.  Make
892 	 * sure they're properly initialized before using any stack-related
893 	 * functions again.
894 	 */
895 	tsk->stack = stack;
896 #ifdef CONFIG_VMAP_STACK
897 	tsk->stack_vm_area = stack_vm_area;
898 #endif
899 #ifdef CONFIG_THREAD_INFO_IN_TASK
900 	refcount_set(&tsk->stack_refcount, 1);
901 #endif
902 
903 	if (err)
904 		goto free_stack;
905 
906 	err = scs_prepare(tsk, node);
907 	if (err)
908 		goto free_stack;
909 
910 #ifdef CONFIG_SECCOMP
911 	/*
912 	 * We must handle setting up seccomp filters once we're under
913 	 * the sighand lock in case orig has changed between now and
914 	 * then. Until then, filter must be NULL to avoid messing up
915 	 * the usage counts on the error path calling free_task.
916 	 */
917 	tsk->seccomp.filter = NULL;
918 #endif
919 
920 	setup_thread_stack(tsk, orig);
921 	clear_user_return_notifier(tsk);
922 	clear_tsk_need_resched(tsk);
923 	set_task_stack_end_magic(tsk);
924 
925 #ifdef CONFIG_STACKPROTECTOR
926 	tsk->stack_canary = get_random_canary();
927 #endif
928 	if (orig->cpus_ptr == &orig->cpus_mask)
929 		tsk->cpus_ptr = &tsk->cpus_mask;
930 
931 	/*
932 	 * One for the user space visible state that goes away when reaped.
933 	 * One for the scheduler.
934 	 */
935 	refcount_set(&tsk->rcu_users, 2);
936 	/* One for the rcu users */
937 	refcount_set(&tsk->usage, 1);
938 #ifdef CONFIG_BLK_DEV_IO_TRACE
939 	tsk->btrace_seq = 0;
940 #endif
941 	tsk->splice_pipe = NULL;
942 	tsk->task_frag.page = NULL;
943 	tsk->wake_q.next = NULL;
944 
945 	account_kernel_stack(tsk, 1);
946 
947 	kcov_task_init(tsk);
948 
949 #ifdef CONFIG_FAULT_INJECTION
950 	tsk->fail_nth = 0;
951 #endif
952 
953 #ifdef CONFIG_BLK_CGROUP
954 	tsk->throttle_queue = NULL;
955 	tsk->use_memdelay = 0;
956 #endif
957 
958 #ifdef CONFIG_MEMCG
959 	tsk->active_memcg = NULL;
960 #endif
961 	return tsk;
962 
963 free_stack:
964 	free_thread_stack(tsk);
965 free_tsk:
966 	free_task_struct(tsk);
967 	return NULL;
968 }
969 
970 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
971 
972 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
973 
974 static int __init coredump_filter_setup(char *s)
975 {
976 	default_dump_filter =
977 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
978 		MMF_DUMP_FILTER_MASK;
979 	return 1;
980 }
981 
982 __setup("coredump_filter=", coredump_filter_setup);
983 
984 #include <linux/init_task.h>
985 
986 static void mm_init_aio(struct mm_struct *mm)
987 {
988 #ifdef CONFIG_AIO
989 	spin_lock_init(&mm->ioctx_lock);
990 	mm->ioctx_table = NULL;
991 #endif
992 }
993 
994 static __always_inline void mm_clear_owner(struct mm_struct *mm,
995 					   struct task_struct *p)
996 {
997 #ifdef CONFIG_MEMCG
998 	if (mm->owner == p)
999 		WRITE_ONCE(mm->owner, NULL);
1000 #endif
1001 }
1002 
1003 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1004 {
1005 #ifdef CONFIG_MEMCG
1006 	mm->owner = p;
1007 #endif
1008 }
1009 
1010 static void mm_init_uprobes_state(struct mm_struct *mm)
1011 {
1012 #ifdef CONFIG_UPROBES
1013 	mm->uprobes_state.xol_area = NULL;
1014 #endif
1015 }
1016 
1017 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1018 	struct user_namespace *user_ns)
1019 {
1020 	mm->mmap = NULL;
1021 	mm->mm_rb = RB_ROOT;
1022 	mm->vmacache_seqnum = 0;
1023 	atomic_set(&mm->mm_users, 1);
1024 	atomic_set(&mm->mm_count, 1);
1025 	mmap_init_lock(mm);
1026 	INIT_LIST_HEAD(&mm->mmlist);
1027 	mm->core_state = NULL;
1028 	mm_pgtables_bytes_init(mm);
1029 	mm->map_count = 0;
1030 	mm->locked_vm = 0;
1031 	atomic64_set(&mm->pinned_vm, 0);
1032 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1033 	spin_lock_init(&mm->page_table_lock);
1034 	spin_lock_init(&mm->arg_lock);
1035 	mm_init_cpumask(mm);
1036 	mm_init_aio(mm);
1037 	mm_init_owner(mm, p);
1038 	RCU_INIT_POINTER(mm->exe_file, NULL);
1039 	mmu_notifier_subscriptions_init(mm);
1040 	init_tlb_flush_pending(mm);
1041 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1042 	mm->pmd_huge_pte = NULL;
1043 #endif
1044 	mm_init_uprobes_state(mm);
1045 
1046 	if (current->mm) {
1047 		mm->flags = current->mm->flags & MMF_INIT_MASK;
1048 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1049 	} else {
1050 		mm->flags = default_dump_filter;
1051 		mm->def_flags = 0;
1052 	}
1053 
1054 	if (mm_alloc_pgd(mm))
1055 		goto fail_nopgd;
1056 
1057 	if (init_new_context(p, mm))
1058 		goto fail_nocontext;
1059 
1060 	mm->user_ns = get_user_ns(user_ns);
1061 	return mm;
1062 
1063 fail_nocontext:
1064 	mm_free_pgd(mm);
1065 fail_nopgd:
1066 	free_mm(mm);
1067 	return NULL;
1068 }
1069 
1070 /*
1071  * Allocate and initialize an mm_struct.
1072  */
1073 struct mm_struct *mm_alloc(void)
1074 {
1075 	struct mm_struct *mm;
1076 
1077 	mm = allocate_mm();
1078 	if (!mm)
1079 		return NULL;
1080 
1081 	memset(mm, 0, sizeof(*mm));
1082 	return mm_init(mm, current, current_user_ns());
1083 }
1084 
1085 static inline void __mmput(struct mm_struct *mm)
1086 {
1087 	VM_BUG_ON(atomic_read(&mm->mm_users));
1088 
1089 	uprobe_clear_state(mm);
1090 	exit_aio(mm);
1091 	ksm_exit(mm);
1092 	khugepaged_exit(mm); /* must run before exit_mmap */
1093 	exit_mmap(mm);
1094 	mm_put_huge_zero_page(mm);
1095 	set_mm_exe_file(mm, NULL);
1096 	if (!list_empty(&mm->mmlist)) {
1097 		spin_lock(&mmlist_lock);
1098 		list_del(&mm->mmlist);
1099 		spin_unlock(&mmlist_lock);
1100 	}
1101 	if (mm->binfmt)
1102 		module_put(mm->binfmt->module);
1103 	mmdrop(mm);
1104 }
1105 
1106 /*
1107  * Decrement the use count and release all resources for an mm.
1108  */
1109 void mmput(struct mm_struct *mm)
1110 {
1111 	might_sleep();
1112 
1113 	if (atomic_dec_and_test(&mm->mm_users))
1114 		__mmput(mm);
1115 }
1116 EXPORT_SYMBOL_GPL(mmput);
1117 
1118 #ifdef CONFIG_MMU
1119 static void mmput_async_fn(struct work_struct *work)
1120 {
1121 	struct mm_struct *mm = container_of(work, struct mm_struct,
1122 					    async_put_work);
1123 
1124 	__mmput(mm);
1125 }
1126 
1127 void mmput_async(struct mm_struct *mm)
1128 {
1129 	if (atomic_dec_and_test(&mm->mm_users)) {
1130 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1131 		schedule_work(&mm->async_put_work);
1132 	}
1133 }
1134 #endif
1135 
1136 /**
1137  * set_mm_exe_file - change a reference to the mm's executable file
1138  *
1139  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1140  *
1141  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1142  * invocations: in mmput() nobody alive left, in execve task is single
1143  * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1144  * mm->exe_file, but does so without using set_mm_exe_file() in order
1145  * to do avoid the need for any locks.
1146  */
1147 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1148 {
1149 	struct file *old_exe_file;
1150 
1151 	/*
1152 	 * It is safe to dereference the exe_file without RCU as
1153 	 * this function is only called if nobody else can access
1154 	 * this mm -- see comment above for justification.
1155 	 */
1156 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1157 
1158 	if (new_exe_file)
1159 		get_file(new_exe_file);
1160 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1161 	if (old_exe_file)
1162 		fput(old_exe_file);
1163 }
1164 
1165 /**
1166  * get_mm_exe_file - acquire a reference to the mm's executable file
1167  *
1168  * Returns %NULL if mm has no associated executable file.
1169  * User must release file via fput().
1170  */
1171 struct file *get_mm_exe_file(struct mm_struct *mm)
1172 {
1173 	struct file *exe_file;
1174 
1175 	rcu_read_lock();
1176 	exe_file = rcu_dereference(mm->exe_file);
1177 	if (exe_file && !get_file_rcu(exe_file))
1178 		exe_file = NULL;
1179 	rcu_read_unlock();
1180 	return exe_file;
1181 }
1182 EXPORT_SYMBOL(get_mm_exe_file);
1183 
1184 /**
1185  * get_task_exe_file - acquire a reference to the task's executable file
1186  *
1187  * Returns %NULL if task's mm (if any) has no associated executable file or
1188  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1189  * User must release file via fput().
1190  */
1191 struct file *get_task_exe_file(struct task_struct *task)
1192 {
1193 	struct file *exe_file = NULL;
1194 	struct mm_struct *mm;
1195 
1196 	task_lock(task);
1197 	mm = task->mm;
1198 	if (mm) {
1199 		if (!(task->flags & PF_KTHREAD))
1200 			exe_file = get_mm_exe_file(mm);
1201 	}
1202 	task_unlock(task);
1203 	return exe_file;
1204 }
1205 EXPORT_SYMBOL(get_task_exe_file);
1206 
1207 /**
1208  * get_task_mm - acquire a reference to the task's mm
1209  *
1210  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1211  * this kernel workthread has transiently adopted a user mm with use_mm,
1212  * to do its AIO) is not set and if so returns a reference to it, after
1213  * bumping up the use count.  User must release the mm via mmput()
1214  * after use.  Typically used by /proc and ptrace.
1215  */
1216 struct mm_struct *get_task_mm(struct task_struct *task)
1217 {
1218 	struct mm_struct *mm;
1219 
1220 	task_lock(task);
1221 	mm = task->mm;
1222 	if (mm) {
1223 		if (task->flags & PF_KTHREAD)
1224 			mm = NULL;
1225 		else
1226 			mmget(mm);
1227 	}
1228 	task_unlock(task);
1229 	return mm;
1230 }
1231 EXPORT_SYMBOL_GPL(get_task_mm);
1232 
1233 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1234 {
1235 	struct mm_struct *mm;
1236 	int err;
1237 
1238 	err =  mutex_lock_killable(&task->signal->exec_update_mutex);
1239 	if (err)
1240 		return ERR_PTR(err);
1241 
1242 	mm = get_task_mm(task);
1243 	if (mm && mm != current->mm &&
1244 			!ptrace_may_access(task, mode)) {
1245 		mmput(mm);
1246 		mm = ERR_PTR(-EACCES);
1247 	}
1248 	mutex_unlock(&task->signal->exec_update_mutex);
1249 
1250 	return mm;
1251 }
1252 
1253 static void complete_vfork_done(struct task_struct *tsk)
1254 {
1255 	struct completion *vfork;
1256 
1257 	task_lock(tsk);
1258 	vfork = tsk->vfork_done;
1259 	if (likely(vfork)) {
1260 		tsk->vfork_done = NULL;
1261 		complete(vfork);
1262 	}
1263 	task_unlock(tsk);
1264 }
1265 
1266 static int wait_for_vfork_done(struct task_struct *child,
1267 				struct completion *vfork)
1268 {
1269 	int killed;
1270 
1271 	freezer_do_not_count();
1272 	cgroup_enter_frozen();
1273 	killed = wait_for_completion_killable(vfork);
1274 	cgroup_leave_frozen(false);
1275 	freezer_count();
1276 
1277 	if (killed) {
1278 		task_lock(child);
1279 		child->vfork_done = NULL;
1280 		task_unlock(child);
1281 	}
1282 
1283 	put_task_struct(child);
1284 	return killed;
1285 }
1286 
1287 /* Please note the differences between mmput and mm_release.
1288  * mmput is called whenever we stop holding onto a mm_struct,
1289  * error success whatever.
1290  *
1291  * mm_release is called after a mm_struct has been removed
1292  * from the current process.
1293  *
1294  * This difference is important for error handling, when we
1295  * only half set up a mm_struct for a new process and need to restore
1296  * the old one.  Because we mmput the new mm_struct before
1297  * restoring the old one. . .
1298  * Eric Biederman 10 January 1998
1299  */
1300 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1301 {
1302 	uprobe_free_utask(tsk);
1303 
1304 	/* Get rid of any cached register state */
1305 	deactivate_mm(tsk, mm);
1306 
1307 	/*
1308 	 * Signal userspace if we're not exiting with a core dump
1309 	 * because we want to leave the value intact for debugging
1310 	 * purposes.
1311 	 */
1312 	if (tsk->clear_child_tid) {
1313 		if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1314 		    atomic_read(&mm->mm_users) > 1) {
1315 			/*
1316 			 * We don't check the error code - if userspace has
1317 			 * not set up a proper pointer then tough luck.
1318 			 */
1319 			put_user(0, tsk->clear_child_tid);
1320 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1321 					1, NULL, NULL, 0, 0);
1322 		}
1323 		tsk->clear_child_tid = NULL;
1324 	}
1325 
1326 	/*
1327 	 * All done, finally we can wake up parent and return this mm to him.
1328 	 * Also kthread_stop() uses this completion for synchronization.
1329 	 */
1330 	if (tsk->vfork_done)
1331 		complete_vfork_done(tsk);
1332 }
1333 
1334 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1335 {
1336 	futex_exit_release(tsk);
1337 	mm_release(tsk, mm);
1338 }
1339 
1340 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1341 {
1342 	futex_exec_release(tsk);
1343 	mm_release(tsk, mm);
1344 }
1345 
1346 /**
1347  * dup_mm() - duplicates an existing mm structure
1348  * @tsk: the task_struct with which the new mm will be associated.
1349  * @oldmm: the mm to duplicate.
1350  *
1351  * Allocates a new mm structure and duplicates the provided @oldmm structure
1352  * content into it.
1353  *
1354  * Return: the duplicated mm or NULL on failure.
1355  */
1356 static struct mm_struct *dup_mm(struct task_struct *tsk,
1357 				struct mm_struct *oldmm)
1358 {
1359 	struct mm_struct *mm;
1360 	int err;
1361 
1362 	mm = allocate_mm();
1363 	if (!mm)
1364 		goto fail_nomem;
1365 
1366 	memcpy(mm, oldmm, sizeof(*mm));
1367 
1368 	if (!mm_init(mm, tsk, mm->user_ns))
1369 		goto fail_nomem;
1370 
1371 	err = dup_mmap(mm, oldmm);
1372 	if (err)
1373 		goto free_pt;
1374 
1375 	mm->hiwater_rss = get_mm_rss(mm);
1376 	mm->hiwater_vm = mm->total_vm;
1377 
1378 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1379 		goto free_pt;
1380 
1381 	return mm;
1382 
1383 free_pt:
1384 	/* don't put binfmt in mmput, we haven't got module yet */
1385 	mm->binfmt = NULL;
1386 	mm_init_owner(mm, NULL);
1387 	mmput(mm);
1388 
1389 fail_nomem:
1390 	return NULL;
1391 }
1392 
1393 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1394 {
1395 	struct mm_struct *mm, *oldmm;
1396 	int retval;
1397 
1398 	tsk->min_flt = tsk->maj_flt = 0;
1399 	tsk->nvcsw = tsk->nivcsw = 0;
1400 #ifdef CONFIG_DETECT_HUNG_TASK
1401 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1402 	tsk->last_switch_time = 0;
1403 #endif
1404 
1405 	tsk->mm = NULL;
1406 	tsk->active_mm = NULL;
1407 
1408 	/*
1409 	 * Are we cloning a kernel thread?
1410 	 *
1411 	 * We need to steal a active VM for that..
1412 	 */
1413 	oldmm = current->mm;
1414 	if (!oldmm)
1415 		return 0;
1416 
1417 	/* initialize the new vmacache entries */
1418 	vmacache_flush(tsk);
1419 
1420 	if (clone_flags & CLONE_VM) {
1421 		mmget(oldmm);
1422 		mm = oldmm;
1423 		goto good_mm;
1424 	}
1425 
1426 	retval = -ENOMEM;
1427 	mm = dup_mm(tsk, current->mm);
1428 	if (!mm)
1429 		goto fail_nomem;
1430 
1431 good_mm:
1432 	tsk->mm = mm;
1433 	tsk->active_mm = mm;
1434 	return 0;
1435 
1436 fail_nomem:
1437 	return retval;
1438 }
1439 
1440 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1441 {
1442 	struct fs_struct *fs = current->fs;
1443 	if (clone_flags & CLONE_FS) {
1444 		/* tsk->fs is already what we want */
1445 		spin_lock(&fs->lock);
1446 		if (fs->in_exec) {
1447 			spin_unlock(&fs->lock);
1448 			return -EAGAIN;
1449 		}
1450 		fs->users++;
1451 		spin_unlock(&fs->lock);
1452 		return 0;
1453 	}
1454 	tsk->fs = copy_fs_struct(fs);
1455 	if (!tsk->fs)
1456 		return -ENOMEM;
1457 	return 0;
1458 }
1459 
1460 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1461 {
1462 	struct files_struct *oldf, *newf;
1463 	int error = 0;
1464 
1465 	/*
1466 	 * A background process may not have any files ...
1467 	 */
1468 	oldf = current->files;
1469 	if (!oldf)
1470 		goto out;
1471 
1472 	if (clone_flags & CLONE_FILES) {
1473 		atomic_inc(&oldf->count);
1474 		goto out;
1475 	}
1476 
1477 	newf = dup_fd(oldf, &error);
1478 	if (!newf)
1479 		goto out;
1480 
1481 	tsk->files = newf;
1482 	error = 0;
1483 out:
1484 	return error;
1485 }
1486 
1487 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1488 {
1489 #ifdef CONFIG_BLOCK
1490 	struct io_context *ioc = current->io_context;
1491 	struct io_context *new_ioc;
1492 
1493 	if (!ioc)
1494 		return 0;
1495 	/*
1496 	 * Share io context with parent, if CLONE_IO is set
1497 	 */
1498 	if (clone_flags & CLONE_IO) {
1499 		ioc_task_link(ioc);
1500 		tsk->io_context = ioc;
1501 	} else if (ioprio_valid(ioc->ioprio)) {
1502 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1503 		if (unlikely(!new_ioc))
1504 			return -ENOMEM;
1505 
1506 		new_ioc->ioprio = ioc->ioprio;
1507 		put_io_context(new_ioc);
1508 	}
1509 #endif
1510 	return 0;
1511 }
1512 
1513 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1514 {
1515 	struct sighand_struct *sig;
1516 
1517 	if (clone_flags & CLONE_SIGHAND) {
1518 		refcount_inc(&current->sighand->count);
1519 		return 0;
1520 	}
1521 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1522 	RCU_INIT_POINTER(tsk->sighand, sig);
1523 	if (!sig)
1524 		return -ENOMEM;
1525 
1526 	refcount_set(&sig->count, 1);
1527 	spin_lock_irq(&current->sighand->siglock);
1528 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1529 	spin_unlock_irq(&current->sighand->siglock);
1530 
1531 	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1532 	if (clone_flags & CLONE_CLEAR_SIGHAND)
1533 		flush_signal_handlers(tsk, 0);
1534 
1535 	return 0;
1536 }
1537 
1538 void __cleanup_sighand(struct sighand_struct *sighand)
1539 {
1540 	if (refcount_dec_and_test(&sighand->count)) {
1541 		signalfd_cleanup(sighand);
1542 		/*
1543 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1544 		 * without an RCU grace period, see __lock_task_sighand().
1545 		 */
1546 		kmem_cache_free(sighand_cachep, sighand);
1547 	}
1548 }
1549 
1550 /*
1551  * Initialize POSIX timer handling for a thread group.
1552  */
1553 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1554 {
1555 	struct posix_cputimers *pct = &sig->posix_cputimers;
1556 	unsigned long cpu_limit;
1557 
1558 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1559 	posix_cputimers_group_init(pct, cpu_limit);
1560 }
1561 
1562 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1563 {
1564 	struct signal_struct *sig;
1565 
1566 	if (clone_flags & CLONE_THREAD)
1567 		return 0;
1568 
1569 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1570 	tsk->signal = sig;
1571 	if (!sig)
1572 		return -ENOMEM;
1573 
1574 	sig->nr_threads = 1;
1575 	atomic_set(&sig->live, 1);
1576 	refcount_set(&sig->sigcnt, 1);
1577 
1578 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1579 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1580 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1581 
1582 	init_waitqueue_head(&sig->wait_chldexit);
1583 	sig->curr_target = tsk;
1584 	init_sigpending(&sig->shared_pending);
1585 	INIT_HLIST_HEAD(&sig->multiprocess);
1586 	seqlock_init(&sig->stats_lock);
1587 	prev_cputime_init(&sig->prev_cputime);
1588 
1589 #ifdef CONFIG_POSIX_TIMERS
1590 	INIT_LIST_HEAD(&sig->posix_timers);
1591 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1592 	sig->real_timer.function = it_real_fn;
1593 #endif
1594 
1595 	task_lock(current->group_leader);
1596 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1597 	task_unlock(current->group_leader);
1598 
1599 	posix_cpu_timers_init_group(sig);
1600 
1601 	tty_audit_fork(sig);
1602 	sched_autogroup_fork(sig);
1603 
1604 	sig->oom_score_adj = current->signal->oom_score_adj;
1605 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1606 
1607 	mutex_init(&sig->cred_guard_mutex);
1608 	mutex_init(&sig->exec_update_mutex);
1609 
1610 	return 0;
1611 }
1612 
1613 static void copy_seccomp(struct task_struct *p)
1614 {
1615 #ifdef CONFIG_SECCOMP
1616 	/*
1617 	 * Must be called with sighand->lock held, which is common to
1618 	 * all threads in the group. Holding cred_guard_mutex is not
1619 	 * needed because this new task is not yet running and cannot
1620 	 * be racing exec.
1621 	 */
1622 	assert_spin_locked(&current->sighand->siglock);
1623 
1624 	/* Ref-count the new filter user, and assign it. */
1625 	get_seccomp_filter(current);
1626 	p->seccomp = current->seccomp;
1627 
1628 	/*
1629 	 * Explicitly enable no_new_privs here in case it got set
1630 	 * between the task_struct being duplicated and holding the
1631 	 * sighand lock. The seccomp state and nnp must be in sync.
1632 	 */
1633 	if (task_no_new_privs(current))
1634 		task_set_no_new_privs(p);
1635 
1636 	/*
1637 	 * If the parent gained a seccomp mode after copying thread
1638 	 * flags and between before we held the sighand lock, we have
1639 	 * to manually enable the seccomp thread flag here.
1640 	 */
1641 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1642 		set_tsk_thread_flag(p, TIF_SECCOMP);
1643 #endif
1644 }
1645 
1646 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1647 {
1648 	current->clear_child_tid = tidptr;
1649 
1650 	return task_pid_vnr(current);
1651 }
1652 
1653 static void rt_mutex_init_task(struct task_struct *p)
1654 {
1655 	raw_spin_lock_init(&p->pi_lock);
1656 #ifdef CONFIG_RT_MUTEXES
1657 	p->pi_waiters = RB_ROOT_CACHED;
1658 	p->pi_top_task = NULL;
1659 	p->pi_blocked_on = NULL;
1660 #endif
1661 }
1662 
1663 static inline void init_task_pid_links(struct task_struct *task)
1664 {
1665 	enum pid_type type;
1666 
1667 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1668 		INIT_HLIST_NODE(&task->pid_links[type]);
1669 	}
1670 }
1671 
1672 static inline void
1673 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1674 {
1675 	if (type == PIDTYPE_PID)
1676 		task->thread_pid = pid;
1677 	else
1678 		task->signal->pids[type] = pid;
1679 }
1680 
1681 static inline void rcu_copy_process(struct task_struct *p)
1682 {
1683 #ifdef CONFIG_PREEMPT_RCU
1684 	p->rcu_read_lock_nesting = 0;
1685 	p->rcu_read_unlock_special.s = 0;
1686 	p->rcu_blocked_node = NULL;
1687 	INIT_LIST_HEAD(&p->rcu_node_entry);
1688 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1689 #ifdef CONFIG_TASKS_RCU
1690 	p->rcu_tasks_holdout = false;
1691 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1692 	p->rcu_tasks_idle_cpu = -1;
1693 #endif /* #ifdef CONFIG_TASKS_RCU */
1694 #ifdef CONFIG_TASKS_TRACE_RCU
1695 	p->trc_reader_nesting = 0;
1696 	p->trc_reader_special.s = 0;
1697 	INIT_LIST_HEAD(&p->trc_holdout_list);
1698 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1699 }
1700 
1701 struct pid *pidfd_pid(const struct file *file)
1702 {
1703 	if (file->f_op == &pidfd_fops)
1704 		return file->private_data;
1705 
1706 	return ERR_PTR(-EBADF);
1707 }
1708 
1709 static int pidfd_release(struct inode *inode, struct file *file)
1710 {
1711 	struct pid *pid = file->private_data;
1712 
1713 	file->private_data = NULL;
1714 	put_pid(pid);
1715 	return 0;
1716 }
1717 
1718 #ifdef CONFIG_PROC_FS
1719 /**
1720  * pidfd_show_fdinfo - print information about a pidfd
1721  * @m: proc fdinfo file
1722  * @f: file referencing a pidfd
1723  *
1724  * Pid:
1725  * This function will print the pid that a given pidfd refers to in the
1726  * pid namespace of the procfs instance.
1727  * If the pid namespace of the process is not a descendant of the pid
1728  * namespace of the procfs instance 0 will be shown as its pid. This is
1729  * similar to calling getppid() on a process whose parent is outside of
1730  * its pid namespace.
1731  *
1732  * NSpid:
1733  * If pid namespaces are supported then this function will also print
1734  * the pid of a given pidfd refers to for all descendant pid namespaces
1735  * starting from the current pid namespace of the instance, i.e. the
1736  * Pid field and the first entry in the NSpid field will be identical.
1737  * If the pid namespace of the process is not a descendant of the pid
1738  * namespace of the procfs instance 0 will be shown as its first NSpid
1739  * entry and no others will be shown.
1740  * Note that this differs from the Pid and NSpid fields in
1741  * /proc/<pid>/status where Pid and NSpid are always shown relative to
1742  * the  pid namespace of the procfs instance. The difference becomes
1743  * obvious when sending around a pidfd between pid namespaces from a
1744  * different branch of the tree, i.e. where no ancestoral relation is
1745  * present between the pid namespaces:
1746  * - create two new pid namespaces ns1 and ns2 in the initial pid
1747  *   namespace (also take care to create new mount namespaces in the
1748  *   new pid namespace and mount procfs)
1749  * - create a process with a pidfd in ns1
1750  * - send pidfd from ns1 to ns2
1751  * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1752  *   have exactly one entry, which is 0
1753  */
1754 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1755 {
1756 	struct pid *pid = f->private_data;
1757 	struct pid_namespace *ns;
1758 	pid_t nr = -1;
1759 
1760 	if (likely(pid_has_task(pid, PIDTYPE_PID))) {
1761 		ns = proc_pid_ns(file_inode(m->file)->i_sb);
1762 		nr = pid_nr_ns(pid, ns);
1763 	}
1764 
1765 	seq_put_decimal_ll(m, "Pid:\t", nr);
1766 
1767 #ifdef CONFIG_PID_NS
1768 	seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1769 	if (nr > 0) {
1770 		int i;
1771 
1772 		/* If nr is non-zero it means that 'pid' is valid and that
1773 		 * ns, i.e. the pid namespace associated with the procfs
1774 		 * instance, is in the pid namespace hierarchy of pid.
1775 		 * Start at one below the already printed level.
1776 		 */
1777 		for (i = ns->level + 1; i <= pid->level; i++)
1778 			seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
1779 	}
1780 #endif
1781 	seq_putc(m, '\n');
1782 }
1783 #endif
1784 
1785 /*
1786  * Poll support for process exit notification.
1787  */
1788 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1789 {
1790 	struct pid *pid = file->private_data;
1791 	__poll_t poll_flags = 0;
1792 
1793 	poll_wait(file, &pid->wait_pidfd, pts);
1794 
1795 	/*
1796 	 * Inform pollers only when the whole thread group exits.
1797 	 * If the thread group leader exits before all other threads in the
1798 	 * group, then poll(2) should block, similar to the wait(2) family.
1799 	 */
1800 	if (thread_group_exited(pid))
1801 		poll_flags = EPOLLIN | EPOLLRDNORM;
1802 
1803 	return poll_flags;
1804 }
1805 
1806 const struct file_operations pidfd_fops = {
1807 	.release = pidfd_release,
1808 	.poll = pidfd_poll,
1809 #ifdef CONFIG_PROC_FS
1810 	.show_fdinfo = pidfd_show_fdinfo,
1811 #endif
1812 };
1813 
1814 static void __delayed_free_task(struct rcu_head *rhp)
1815 {
1816 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1817 
1818 	free_task(tsk);
1819 }
1820 
1821 static __always_inline void delayed_free_task(struct task_struct *tsk)
1822 {
1823 	if (IS_ENABLED(CONFIG_MEMCG))
1824 		call_rcu(&tsk->rcu, __delayed_free_task);
1825 	else
1826 		free_task(tsk);
1827 }
1828 
1829 /*
1830  * This creates a new process as a copy of the old one,
1831  * but does not actually start it yet.
1832  *
1833  * It copies the registers, and all the appropriate
1834  * parts of the process environment (as per the clone
1835  * flags). The actual kick-off is left to the caller.
1836  */
1837 static __latent_entropy struct task_struct *copy_process(
1838 					struct pid *pid,
1839 					int trace,
1840 					int node,
1841 					struct kernel_clone_args *args)
1842 {
1843 	int pidfd = -1, retval;
1844 	struct task_struct *p;
1845 	struct multiprocess_signals delayed;
1846 	struct file *pidfile = NULL;
1847 	u64 clone_flags = args->flags;
1848 	struct nsproxy *nsp = current->nsproxy;
1849 
1850 	/*
1851 	 * Don't allow sharing the root directory with processes in a different
1852 	 * namespace
1853 	 */
1854 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1855 		return ERR_PTR(-EINVAL);
1856 
1857 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1858 		return ERR_PTR(-EINVAL);
1859 
1860 	/*
1861 	 * Thread groups must share signals as well, and detached threads
1862 	 * can only be started up within the thread group.
1863 	 */
1864 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1865 		return ERR_PTR(-EINVAL);
1866 
1867 	/*
1868 	 * Shared signal handlers imply shared VM. By way of the above,
1869 	 * thread groups also imply shared VM. Blocking this case allows
1870 	 * for various simplifications in other code.
1871 	 */
1872 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1873 		return ERR_PTR(-EINVAL);
1874 
1875 	/*
1876 	 * Siblings of global init remain as zombies on exit since they are
1877 	 * not reaped by their parent (swapper). To solve this and to avoid
1878 	 * multi-rooted process trees, prevent global and container-inits
1879 	 * from creating siblings.
1880 	 */
1881 	if ((clone_flags & CLONE_PARENT) &&
1882 				current->signal->flags & SIGNAL_UNKILLABLE)
1883 		return ERR_PTR(-EINVAL);
1884 
1885 	/*
1886 	 * If the new process will be in a different pid or user namespace
1887 	 * do not allow it to share a thread group with the forking task.
1888 	 */
1889 	if (clone_flags & CLONE_THREAD) {
1890 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1891 		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
1892 			return ERR_PTR(-EINVAL);
1893 	}
1894 
1895 	/*
1896 	 * If the new process will be in a different time namespace
1897 	 * do not allow it to share VM or a thread group with the forking task.
1898 	 */
1899 	if (clone_flags & (CLONE_THREAD | CLONE_VM)) {
1900 		if (nsp->time_ns != nsp->time_ns_for_children)
1901 			return ERR_PTR(-EINVAL);
1902 	}
1903 
1904 	if (clone_flags & CLONE_PIDFD) {
1905 		/*
1906 		 * - CLONE_DETACHED is blocked so that we can potentially
1907 		 *   reuse it later for CLONE_PIDFD.
1908 		 * - CLONE_THREAD is blocked until someone really needs it.
1909 		 */
1910 		if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
1911 			return ERR_PTR(-EINVAL);
1912 	}
1913 
1914 	/*
1915 	 * Force any signals received before this point to be delivered
1916 	 * before the fork happens.  Collect up signals sent to multiple
1917 	 * processes that happen during the fork and delay them so that
1918 	 * they appear to happen after the fork.
1919 	 */
1920 	sigemptyset(&delayed.signal);
1921 	INIT_HLIST_NODE(&delayed.node);
1922 
1923 	spin_lock_irq(&current->sighand->siglock);
1924 	if (!(clone_flags & CLONE_THREAD))
1925 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
1926 	recalc_sigpending();
1927 	spin_unlock_irq(&current->sighand->siglock);
1928 	retval = -ERESTARTNOINTR;
1929 	if (signal_pending(current))
1930 		goto fork_out;
1931 
1932 	retval = -ENOMEM;
1933 	p = dup_task_struct(current, node);
1934 	if (!p)
1935 		goto fork_out;
1936 
1937 	/*
1938 	 * This _must_ happen before we call free_task(), i.e. before we jump
1939 	 * to any of the bad_fork_* labels. This is to avoid freeing
1940 	 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1941 	 * kernel threads (PF_KTHREAD).
1942 	 */
1943 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
1944 	/*
1945 	 * Clear TID on mm_release()?
1946 	 */
1947 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
1948 
1949 	ftrace_graph_init_task(p);
1950 
1951 	rt_mutex_init_task(p);
1952 
1953 #ifdef CONFIG_PROVE_LOCKING
1954 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1955 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1956 #endif
1957 	retval = -EAGAIN;
1958 	if (atomic_read(&p->real_cred->user->processes) >=
1959 			task_rlimit(p, RLIMIT_NPROC)) {
1960 		if (p->real_cred->user != INIT_USER &&
1961 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1962 			goto bad_fork_free;
1963 	}
1964 	current->flags &= ~PF_NPROC_EXCEEDED;
1965 
1966 	retval = copy_creds(p, clone_flags);
1967 	if (retval < 0)
1968 		goto bad_fork_free;
1969 
1970 	/*
1971 	 * If multiple threads are within copy_process(), then this check
1972 	 * triggers too late. This doesn't hurt, the check is only there
1973 	 * to stop root fork bombs.
1974 	 */
1975 	retval = -EAGAIN;
1976 	if (nr_threads >= max_threads)
1977 		goto bad_fork_cleanup_count;
1978 
1979 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1980 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1981 	p->flags |= PF_FORKNOEXEC;
1982 	INIT_LIST_HEAD(&p->children);
1983 	INIT_LIST_HEAD(&p->sibling);
1984 	rcu_copy_process(p);
1985 	p->vfork_done = NULL;
1986 	spin_lock_init(&p->alloc_lock);
1987 
1988 	init_sigpending(&p->pending);
1989 
1990 	p->utime = p->stime = p->gtime = 0;
1991 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1992 	p->utimescaled = p->stimescaled = 0;
1993 #endif
1994 	prev_cputime_init(&p->prev_cputime);
1995 
1996 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1997 	seqcount_init(&p->vtime.seqcount);
1998 	p->vtime.starttime = 0;
1999 	p->vtime.state = VTIME_INACTIVE;
2000 #endif
2001 
2002 #if defined(SPLIT_RSS_COUNTING)
2003 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2004 #endif
2005 
2006 	p->default_timer_slack_ns = current->timer_slack_ns;
2007 
2008 #ifdef CONFIG_PSI
2009 	p->psi_flags = 0;
2010 #endif
2011 
2012 	task_io_accounting_init(&p->ioac);
2013 	acct_clear_integrals(p);
2014 
2015 	posix_cputimers_init(&p->posix_cputimers);
2016 
2017 	p->io_context = NULL;
2018 	audit_set_context(p, NULL);
2019 	cgroup_fork(p);
2020 #ifdef CONFIG_NUMA
2021 	p->mempolicy = mpol_dup(p->mempolicy);
2022 	if (IS_ERR(p->mempolicy)) {
2023 		retval = PTR_ERR(p->mempolicy);
2024 		p->mempolicy = NULL;
2025 		goto bad_fork_cleanup_threadgroup_lock;
2026 	}
2027 #endif
2028 #ifdef CONFIG_CPUSETS
2029 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2030 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2031 	seqcount_init(&p->mems_allowed_seq);
2032 #endif
2033 #ifdef CONFIG_TRACE_IRQFLAGS
2034 	p->irq_events = 0;
2035 	p->hardirqs_enabled = 0;
2036 	p->hardirq_enable_ip = 0;
2037 	p->hardirq_enable_event = 0;
2038 	p->hardirq_disable_ip = _THIS_IP_;
2039 	p->hardirq_disable_event = 0;
2040 	p->softirqs_enabled = 1;
2041 	p->softirq_enable_ip = _THIS_IP_;
2042 	p->softirq_enable_event = 0;
2043 	p->softirq_disable_ip = 0;
2044 	p->softirq_disable_event = 0;
2045 	p->hardirq_context = 0;
2046 	p->softirq_context = 0;
2047 #endif
2048 
2049 	p->pagefault_disabled = 0;
2050 
2051 #ifdef CONFIG_LOCKDEP
2052 	lockdep_init_task(p);
2053 #endif
2054 
2055 #ifdef CONFIG_DEBUG_MUTEXES
2056 	p->blocked_on = NULL; /* not blocked yet */
2057 #endif
2058 #ifdef CONFIG_BCACHE
2059 	p->sequential_io	= 0;
2060 	p->sequential_io_avg	= 0;
2061 #endif
2062 
2063 	/* Perform scheduler related setup. Assign this task to a CPU. */
2064 	retval = sched_fork(clone_flags, p);
2065 	if (retval)
2066 		goto bad_fork_cleanup_policy;
2067 
2068 	retval = perf_event_init_task(p);
2069 	if (retval)
2070 		goto bad_fork_cleanup_policy;
2071 	retval = audit_alloc(p);
2072 	if (retval)
2073 		goto bad_fork_cleanup_perf;
2074 	/* copy all the process information */
2075 	shm_init_task(p);
2076 	retval = security_task_alloc(p, clone_flags);
2077 	if (retval)
2078 		goto bad_fork_cleanup_audit;
2079 	retval = copy_semundo(clone_flags, p);
2080 	if (retval)
2081 		goto bad_fork_cleanup_security;
2082 	retval = copy_files(clone_flags, p);
2083 	if (retval)
2084 		goto bad_fork_cleanup_semundo;
2085 	retval = copy_fs(clone_flags, p);
2086 	if (retval)
2087 		goto bad_fork_cleanup_files;
2088 	retval = copy_sighand(clone_flags, p);
2089 	if (retval)
2090 		goto bad_fork_cleanup_fs;
2091 	retval = copy_signal(clone_flags, p);
2092 	if (retval)
2093 		goto bad_fork_cleanup_sighand;
2094 	retval = copy_mm(clone_flags, p);
2095 	if (retval)
2096 		goto bad_fork_cleanup_signal;
2097 	retval = copy_namespaces(clone_flags, p);
2098 	if (retval)
2099 		goto bad_fork_cleanup_mm;
2100 	retval = copy_io(clone_flags, p);
2101 	if (retval)
2102 		goto bad_fork_cleanup_namespaces;
2103 	retval = copy_thread_tls(clone_flags, args->stack, args->stack_size, p,
2104 				 args->tls);
2105 	if (retval)
2106 		goto bad_fork_cleanup_io;
2107 
2108 	stackleak_task_init(p);
2109 
2110 	if (pid != &init_struct_pid) {
2111 		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2112 				args->set_tid_size);
2113 		if (IS_ERR(pid)) {
2114 			retval = PTR_ERR(pid);
2115 			goto bad_fork_cleanup_thread;
2116 		}
2117 	}
2118 
2119 	/*
2120 	 * This has to happen after we've potentially unshared the file
2121 	 * descriptor table (so that the pidfd doesn't leak into the child
2122 	 * if the fd table isn't shared).
2123 	 */
2124 	if (clone_flags & CLONE_PIDFD) {
2125 		retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2126 		if (retval < 0)
2127 			goto bad_fork_free_pid;
2128 
2129 		pidfd = retval;
2130 
2131 		pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2132 					      O_RDWR | O_CLOEXEC);
2133 		if (IS_ERR(pidfile)) {
2134 			put_unused_fd(pidfd);
2135 			retval = PTR_ERR(pidfile);
2136 			goto bad_fork_free_pid;
2137 		}
2138 		get_pid(pid);	/* held by pidfile now */
2139 
2140 		retval = put_user(pidfd, args->pidfd);
2141 		if (retval)
2142 			goto bad_fork_put_pidfd;
2143 	}
2144 
2145 #ifdef CONFIG_BLOCK
2146 	p->plug = NULL;
2147 #endif
2148 	futex_init_task(p);
2149 
2150 	/*
2151 	 * sigaltstack should be cleared when sharing the same VM
2152 	 */
2153 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2154 		sas_ss_reset(p);
2155 
2156 	/*
2157 	 * Syscall tracing and stepping should be turned off in the
2158 	 * child regardless of CLONE_PTRACE.
2159 	 */
2160 	user_disable_single_step(p);
2161 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
2162 #ifdef TIF_SYSCALL_EMU
2163 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
2164 #endif
2165 	clear_tsk_latency_tracing(p);
2166 
2167 	/* ok, now we should be set up.. */
2168 	p->pid = pid_nr(pid);
2169 	if (clone_flags & CLONE_THREAD) {
2170 		p->exit_signal = -1;
2171 		p->group_leader = current->group_leader;
2172 		p->tgid = current->tgid;
2173 	} else {
2174 		if (clone_flags & CLONE_PARENT)
2175 			p->exit_signal = current->group_leader->exit_signal;
2176 		else
2177 			p->exit_signal = args->exit_signal;
2178 		p->group_leader = p;
2179 		p->tgid = p->pid;
2180 	}
2181 
2182 	p->nr_dirtied = 0;
2183 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2184 	p->dirty_paused_when = 0;
2185 
2186 	p->pdeath_signal = 0;
2187 	INIT_LIST_HEAD(&p->thread_group);
2188 	p->task_works = NULL;
2189 
2190 	/*
2191 	 * Ensure that the cgroup subsystem policies allow the new process to be
2192 	 * forked. It should be noted the the new process's css_set can be changed
2193 	 * between here and cgroup_post_fork() if an organisation operation is in
2194 	 * progress.
2195 	 */
2196 	retval = cgroup_can_fork(p, args);
2197 	if (retval)
2198 		goto bad_fork_put_pidfd;
2199 
2200 	/*
2201 	 * From this point on we must avoid any synchronous user-space
2202 	 * communication until we take the tasklist-lock. In particular, we do
2203 	 * not want user-space to be able to predict the process start-time by
2204 	 * stalling fork(2) after we recorded the start_time but before it is
2205 	 * visible to the system.
2206 	 */
2207 
2208 	p->start_time = ktime_get_ns();
2209 	p->start_boottime = ktime_get_boottime_ns();
2210 
2211 	/*
2212 	 * Make it visible to the rest of the system, but dont wake it up yet.
2213 	 * Need tasklist lock for parent etc handling!
2214 	 */
2215 	write_lock_irq(&tasklist_lock);
2216 
2217 	/* CLONE_PARENT re-uses the old parent */
2218 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2219 		p->real_parent = current->real_parent;
2220 		p->parent_exec_id = current->parent_exec_id;
2221 	} else {
2222 		p->real_parent = current;
2223 		p->parent_exec_id = current->self_exec_id;
2224 	}
2225 
2226 	klp_copy_process(p);
2227 
2228 	spin_lock(&current->sighand->siglock);
2229 
2230 	/*
2231 	 * Copy seccomp details explicitly here, in case they were changed
2232 	 * before holding sighand lock.
2233 	 */
2234 	copy_seccomp(p);
2235 
2236 	rseq_fork(p, clone_flags);
2237 
2238 	/* Don't start children in a dying pid namespace */
2239 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2240 		retval = -ENOMEM;
2241 		goto bad_fork_cancel_cgroup;
2242 	}
2243 
2244 	/* Let kill terminate clone/fork in the middle */
2245 	if (fatal_signal_pending(current)) {
2246 		retval = -EINTR;
2247 		goto bad_fork_cancel_cgroup;
2248 	}
2249 
2250 	/* past the last point of failure */
2251 	if (pidfile)
2252 		fd_install(pidfd, pidfile);
2253 
2254 	init_task_pid_links(p);
2255 	if (likely(p->pid)) {
2256 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2257 
2258 		init_task_pid(p, PIDTYPE_PID, pid);
2259 		if (thread_group_leader(p)) {
2260 			init_task_pid(p, PIDTYPE_TGID, pid);
2261 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2262 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2263 
2264 			if (is_child_reaper(pid)) {
2265 				ns_of_pid(pid)->child_reaper = p;
2266 				p->signal->flags |= SIGNAL_UNKILLABLE;
2267 			}
2268 			p->signal->shared_pending.signal = delayed.signal;
2269 			p->signal->tty = tty_kref_get(current->signal->tty);
2270 			/*
2271 			 * Inherit has_child_subreaper flag under the same
2272 			 * tasklist_lock with adding child to the process tree
2273 			 * for propagate_has_child_subreaper optimization.
2274 			 */
2275 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2276 							 p->real_parent->signal->is_child_subreaper;
2277 			list_add_tail(&p->sibling, &p->real_parent->children);
2278 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2279 			attach_pid(p, PIDTYPE_TGID);
2280 			attach_pid(p, PIDTYPE_PGID);
2281 			attach_pid(p, PIDTYPE_SID);
2282 			__this_cpu_inc(process_counts);
2283 		} else {
2284 			current->signal->nr_threads++;
2285 			atomic_inc(&current->signal->live);
2286 			refcount_inc(&current->signal->sigcnt);
2287 			task_join_group_stop(p);
2288 			list_add_tail_rcu(&p->thread_group,
2289 					  &p->group_leader->thread_group);
2290 			list_add_tail_rcu(&p->thread_node,
2291 					  &p->signal->thread_head);
2292 		}
2293 		attach_pid(p, PIDTYPE_PID);
2294 		nr_threads++;
2295 	}
2296 	total_forks++;
2297 	hlist_del_init(&delayed.node);
2298 	spin_unlock(&current->sighand->siglock);
2299 	syscall_tracepoint_update(p);
2300 	write_unlock_irq(&tasklist_lock);
2301 
2302 	proc_fork_connector(p);
2303 	cgroup_post_fork(p, args);
2304 	perf_event_fork(p);
2305 
2306 	trace_task_newtask(p, clone_flags);
2307 	uprobe_copy_process(p, clone_flags);
2308 
2309 	return p;
2310 
2311 bad_fork_cancel_cgroup:
2312 	spin_unlock(&current->sighand->siglock);
2313 	write_unlock_irq(&tasklist_lock);
2314 	cgroup_cancel_fork(p, args);
2315 bad_fork_put_pidfd:
2316 	if (clone_flags & CLONE_PIDFD) {
2317 		fput(pidfile);
2318 		put_unused_fd(pidfd);
2319 	}
2320 bad_fork_free_pid:
2321 	if (pid != &init_struct_pid)
2322 		free_pid(pid);
2323 bad_fork_cleanup_thread:
2324 	exit_thread(p);
2325 bad_fork_cleanup_io:
2326 	if (p->io_context)
2327 		exit_io_context(p);
2328 bad_fork_cleanup_namespaces:
2329 	exit_task_namespaces(p);
2330 bad_fork_cleanup_mm:
2331 	if (p->mm) {
2332 		mm_clear_owner(p->mm, p);
2333 		mmput(p->mm);
2334 	}
2335 bad_fork_cleanup_signal:
2336 	if (!(clone_flags & CLONE_THREAD))
2337 		free_signal_struct(p->signal);
2338 bad_fork_cleanup_sighand:
2339 	__cleanup_sighand(p->sighand);
2340 bad_fork_cleanup_fs:
2341 	exit_fs(p); /* blocking */
2342 bad_fork_cleanup_files:
2343 	exit_files(p); /* blocking */
2344 bad_fork_cleanup_semundo:
2345 	exit_sem(p);
2346 bad_fork_cleanup_security:
2347 	security_task_free(p);
2348 bad_fork_cleanup_audit:
2349 	audit_free(p);
2350 bad_fork_cleanup_perf:
2351 	perf_event_free_task(p);
2352 bad_fork_cleanup_policy:
2353 	lockdep_free_task(p);
2354 #ifdef CONFIG_NUMA
2355 	mpol_put(p->mempolicy);
2356 bad_fork_cleanup_threadgroup_lock:
2357 #endif
2358 	delayacct_tsk_free(p);
2359 bad_fork_cleanup_count:
2360 	atomic_dec(&p->cred->user->processes);
2361 	exit_creds(p);
2362 bad_fork_free:
2363 	p->state = TASK_DEAD;
2364 	put_task_stack(p);
2365 	delayed_free_task(p);
2366 fork_out:
2367 	spin_lock_irq(&current->sighand->siglock);
2368 	hlist_del_init(&delayed.node);
2369 	spin_unlock_irq(&current->sighand->siglock);
2370 	return ERR_PTR(retval);
2371 }
2372 
2373 static inline void init_idle_pids(struct task_struct *idle)
2374 {
2375 	enum pid_type type;
2376 
2377 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2378 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2379 		init_task_pid(idle, type, &init_struct_pid);
2380 	}
2381 }
2382 
2383 struct task_struct *fork_idle(int cpu)
2384 {
2385 	struct task_struct *task;
2386 	struct kernel_clone_args args = {
2387 		.flags = CLONE_VM,
2388 	};
2389 
2390 	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2391 	if (!IS_ERR(task)) {
2392 		init_idle_pids(task);
2393 		init_idle(task, cpu);
2394 	}
2395 
2396 	return task;
2397 }
2398 
2399 struct mm_struct *copy_init_mm(void)
2400 {
2401 	return dup_mm(NULL, &init_mm);
2402 }
2403 
2404 /*
2405  *  Ok, this is the main fork-routine.
2406  *
2407  * It copies the process, and if successful kick-starts
2408  * it and waits for it to finish using the VM if required.
2409  *
2410  * args->exit_signal is expected to be checked for sanity by the caller.
2411  */
2412 long _do_fork(struct kernel_clone_args *args)
2413 {
2414 	u64 clone_flags = args->flags;
2415 	struct completion vfork;
2416 	struct pid *pid;
2417 	struct task_struct *p;
2418 	int trace = 0;
2419 	long nr;
2420 
2421 	/*
2422 	 * Determine whether and which event to report to ptracer.  When
2423 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2424 	 * requested, no event is reported; otherwise, report if the event
2425 	 * for the type of forking is enabled.
2426 	 */
2427 	if (!(clone_flags & CLONE_UNTRACED)) {
2428 		if (clone_flags & CLONE_VFORK)
2429 			trace = PTRACE_EVENT_VFORK;
2430 		else if (args->exit_signal != SIGCHLD)
2431 			trace = PTRACE_EVENT_CLONE;
2432 		else
2433 			trace = PTRACE_EVENT_FORK;
2434 
2435 		if (likely(!ptrace_event_enabled(current, trace)))
2436 			trace = 0;
2437 	}
2438 
2439 	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2440 	add_latent_entropy();
2441 
2442 	if (IS_ERR(p))
2443 		return PTR_ERR(p);
2444 
2445 	/*
2446 	 * Do this prior waking up the new thread - the thread pointer
2447 	 * might get invalid after that point, if the thread exits quickly.
2448 	 */
2449 	trace_sched_process_fork(current, p);
2450 
2451 	pid = get_task_pid(p, PIDTYPE_PID);
2452 	nr = pid_vnr(pid);
2453 
2454 	if (clone_flags & CLONE_PARENT_SETTID)
2455 		put_user(nr, args->parent_tid);
2456 
2457 	if (clone_flags & CLONE_VFORK) {
2458 		p->vfork_done = &vfork;
2459 		init_completion(&vfork);
2460 		get_task_struct(p);
2461 	}
2462 
2463 	wake_up_new_task(p);
2464 
2465 	/* forking complete and child started to run, tell ptracer */
2466 	if (unlikely(trace))
2467 		ptrace_event_pid(trace, pid);
2468 
2469 	if (clone_flags & CLONE_VFORK) {
2470 		if (!wait_for_vfork_done(p, &vfork))
2471 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2472 	}
2473 
2474 	put_pid(pid);
2475 	return nr;
2476 }
2477 
2478 bool legacy_clone_args_valid(const struct kernel_clone_args *kargs)
2479 {
2480 	/* clone(CLONE_PIDFD) uses parent_tidptr to return a pidfd */
2481 	if ((kargs->flags & CLONE_PIDFD) &&
2482 	    (kargs->flags & CLONE_PARENT_SETTID))
2483 		return false;
2484 
2485 	return true;
2486 }
2487 
2488 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2489 /* For compatibility with architectures that call do_fork directly rather than
2490  * using the syscall entry points below. */
2491 long do_fork(unsigned long clone_flags,
2492 	      unsigned long stack_start,
2493 	      unsigned long stack_size,
2494 	      int __user *parent_tidptr,
2495 	      int __user *child_tidptr)
2496 {
2497 	struct kernel_clone_args args = {
2498 		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
2499 		.pidfd		= parent_tidptr,
2500 		.child_tid	= child_tidptr,
2501 		.parent_tid	= parent_tidptr,
2502 		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
2503 		.stack		= stack_start,
2504 		.stack_size	= stack_size,
2505 	};
2506 
2507 	if (!legacy_clone_args_valid(&args))
2508 		return -EINVAL;
2509 
2510 	return _do_fork(&args);
2511 }
2512 #endif
2513 
2514 /*
2515  * Create a kernel thread.
2516  */
2517 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2518 {
2519 	struct kernel_clone_args args = {
2520 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2521 				    CLONE_UNTRACED) & ~CSIGNAL),
2522 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2523 		.stack		= (unsigned long)fn,
2524 		.stack_size	= (unsigned long)arg,
2525 	};
2526 
2527 	return _do_fork(&args);
2528 }
2529 
2530 #ifdef __ARCH_WANT_SYS_FORK
2531 SYSCALL_DEFINE0(fork)
2532 {
2533 #ifdef CONFIG_MMU
2534 	struct kernel_clone_args args = {
2535 		.exit_signal = SIGCHLD,
2536 	};
2537 
2538 	return _do_fork(&args);
2539 #else
2540 	/* can not support in nommu mode */
2541 	return -EINVAL;
2542 #endif
2543 }
2544 #endif
2545 
2546 #ifdef __ARCH_WANT_SYS_VFORK
2547 SYSCALL_DEFINE0(vfork)
2548 {
2549 	struct kernel_clone_args args = {
2550 		.flags		= CLONE_VFORK | CLONE_VM,
2551 		.exit_signal	= SIGCHLD,
2552 	};
2553 
2554 	return _do_fork(&args);
2555 }
2556 #endif
2557 
2558 #ifdef __ARCH_WANT_SYS_CLONE
2559 #ifdef CONFIG_CLONE_BACKWARDS
2560 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2561 		 int __user *, parent_tidptr,
2562 		 unsigned long, tls,
2563 		 int __user *, child_tidptr)
2564 #elif defined(CONFIG_CLONE_BACKWARDS2)
2565 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2566 		 int __user *, parent_tidptr,
2567 		 int __user *, child_tidptr,
2568 		 unsigned long, tls)
2569 #elif defined(CONFIG_CLONE_BACKWARDS3)
2570 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2571 		int, stack_size,
2572 		int __user *, parent_tidptr,
2573 		int __user *, child_tidptr,
2574 		unsigned long, tls)
2575 #else
2576 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2577 		 int __user *, parent_tidptr,
2578 		 int __user *, child_tidptr,
2579 		 unsigned long, tls)
2580 #endif
2581 {
2582 	struct kernel_clone_args args = {
2583 		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
2584 		.pidfd		= parent_tidptr,
2585 		.child_tid	= child_tidptr,
2586 		.parent_tid	= parent_tidptr,
2587 		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
2588 		.stack		= newsp,
2589 		.tls		= tls,
2590 	};
2591 
2592 	if (!legacy_clone_args_valid(&args))
2593 		return -EINVAL;
2594 
2595 	return _do_fork(&args);
2596 }
2597 #endif
2598 
2599 #ifdef __ARCH_WANT_SYS_CLONE3
2600 
2601 /*
2602  * copy_thread implementations handle CLONE_SETTLS by reading the TLS value from
2603  * the registers containing the syscall arguments for clone. This doesn't work
2604  * with clone3 since the TLS value is passed in clone_args instead.
2605  */
2606 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2607 #error clone3 requires copy_thread_tls support in arch
2608 #endif
2609 
2610 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2611 					      struct clone_args __user *uargs,
2612 					      size_t usize)
2613 {
2614 	int err;
2615 	struct clone_args args;
2616 	pid_t *kset_tid = kargs->set_tid;
2617 
2618 	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2619 		     CLONE_ARGS_SIZE_VER0);
2620 	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2621 		     CLONE_ARGS_SIZE_VER1);
2622 	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2623 		     CLONE_ARGS_SIZE_VER2);
2624 	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2625 
2626 	if (unlikely(usize > PAGE_SIZE))
2627 		return -E2BIG;
2628 	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2629 		return -EINVAL;
2630 
2631 	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2632 	if (err)
2633 		return err;
2634 
2635 	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2636 		return -EINVAL;
2637 
2638 	if (unlikely(!args.set_tid && args.set_tid_size > 0))
2639 		return -EINVAL;
2640 
2641 	if (unlikely(args.set_tid && args.set_tid_size == 0))
2642 		return -EINVAL;
2643 
2644 	/*
2645 	 * Verify that higher 32bits of exit_signal are unset and that
2646 	 * it is a valid signal
2647 	 */
2648 	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2649 		     !valid_signal(args.exit_signal)))
2650 		return -EINVAL;
2651 
2652 	if ((args.flags & CLONE_INTO_CGROUP) &&
2653 	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2654 		return -EINVAL;
2655 
2656 	*kargs = (struct kernel_clone_args){
2657 		.flags		= args.flags,
2658 		.pidfd		= u64_to_user_ptr(args.pidfd),
2659 		.child_tid	= u64_to_user_ptr(args.child_tid),
2660 		.parent_tid	= u64_to_user_ptr(args.parent_tid),
2661 		.exit_signal	= args.exit_signal,
2662 		.stack		= args.stack,
2663 		.stack_size	= args.stack_size,
2664 		.tls		= args.tls,
2665 		.set_tid_size	= args.set_tid_size,
2666 		.cgroup		= args.cgroup,
2667 	};
2668 
2669 	if (args.set_tid &&
2670 		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2671 			(kargs->set_tid_size * sizeof(pid_t))))
2672 		return -EFAULT;
2673 
2674 	kargs->set_tid = kset_tid;
2675 
2676 	return 0;
2677 }
2678 
2679 /**
2680  * clone3_stack_valid - check and prepare stack
2681  * @kargs: kernel clone args
2682  *
2683  * Verify that the stack arguments userspace gave us are sane.
2684  * In addition, set the stack direction for userspace since it's easy for us to
2685  * determine.
2686  */
2687 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2688 {
2689 	if (kargs->stack == 0) {
2690 		if (kargs->stack_size > 0)
2691 			return false;
2692 	} else {
2693 		if (kargs->stack_size == 0)
2694 			return false;
2695 
2696 		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2697 			return false;
2698 
2699 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2700 		kargs->stack += kargs->stack_size;
2701 #endif
2702 	}
2703 
2704 	return true;
2705 }
2706 
2707 static bool clone3_args_valid(struct kernel_clone_args *kargs)
2708 {
2709 	/* Verify that no unknown flags are passed along. */
2710 	if (kargs->flags &
2711 	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
2712 		return false;
2713 
2714 	/*
2715 	 * - make the CLONE_DETACHED bit reuseable for clone3
2716 	 * - make the CSIGNAL bits reuseable for clone3
2717 	 */
2718 	if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2719 		return false;
2720 
2721 	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2722 	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2723 		return false;
2724 
2725 	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2726 	    kargs->exit_signal)
2727 		return false;
2728 
2729 	if (!clone3_stack_valid(kargs))
2730 		return false;
2731 
2732 	return true;
2733 }
2734 
2735 /**
2736  * clone3 - create a new process with specific properties
2737  * @uargs: argument structure
2738  * @size:  size of @uargs
2739  *
2740  * clone3() is the extensible successor to clone()/clone2().
2741  * It takes a struct as argument that is versioned by its size.
2742  *
2743  * Return: On success, a positive PID for the child process.
2744  *         On error, a negative errno number.
2745  */
2746 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2747 {
2748 	int err;
2749 
2750 	struct kernel_clone_args kargs;
2751 	pid_t set_tid[MAX_PID_NS_LEVEL];
2752 
2753 	kargs.set_tid = set_tid;
2754 
2755 	err = copy_clone_args_from_user(&kargs, uargs, size);
2756 	if (err)
2757 		return err;
2758 
2759 	if (!clone3_args_valid(&kargs))
2760 		return -EINVAL;
2761 
2762 	return _do_fork(&kargs);
2763 }
2764 #endif
2765 
2766 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2767 {
2768 	struct task_struct *leader, *parent, *child;
2769 	int res;
2770 
2771 	read_lock(&tasklist_lock);
2772 	leader = top = top->group_leader;
2773 down:
2774 	for_each_thread(leader, parent) {
2775 		list_for_each_entry(child, &parent->children, sibling) {
2776 			res = visitor(child, data);
2777 			if (res) {
2778 				if (res < 0)
2779 					goto out;
2780 				leader = child;
2781 				goto down;
2782 			}
2783 up:
2784 			;
2785 		}
2786 	}
2787 
2788 	if (leader != top) {
2789 		child = leader;
2790 		parent = child->real_parent;
2791 		leader = parent->group_leader;
2792 		goto up;
2793 	}
2794 out:
2795 	read_unlock(&tasklist_lock);
2796 }
2797 
2798 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2799 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2800 #endif
2801 
2802 static void sighand_ctor(void *data)
2803 {
2804 	struct sighand_struct *sighand = data;
2805 
2806 	spin_lock_init(&sighand->siglock);
2807 	init_waitqueue_head(&sighand->signalfd_wqh);
2808 }
2809 
2810 void __init proc_caches_init(void)
2811 {
2812 	unsigned int mm_size;
2813 
2814 	sighand_cachep = kmem_cache_create("sighand_cache",
2815 			sizeof(struct sighand_struct), 0,
2816 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2817 			SLAB_ACCOUNT, sighand_ctor);
2818 	signal_cachep = kmem_cache_create("signal_cache",
2819 			sizeof(struct signal_struct), 0,
2820 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2821 			NULL);
2822 	files_cachep = kmem_cache_create("files_cache",
2823 			sizeof(struct files_struct), 0,
2824 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2825 			NULL);
2826 	fs_cachep = kmem_cache_create("fs_cache",
2827 			sizeof(struct fs_struct), 0,
2828 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2829 			NULL);
2830 
2831 	/*
2832 	 * The mm_cpumask is located at the end of mm_struct, and is
2833 	 * dynamically sized based on the maximum CPU number this system
2834 	 * can have, taking hotplug into account (nr_cpu_ids).
2835 	 */
2836 	mm_size = sizeof(struct mm_struct) + cpumask_size();
2837 
2838 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
2839 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2840 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2841 			offsetof(struct mm_struct, saved_auxv),
2842 			sizeof_field(struct mm_struct, saved_auxv),
2843 			NULL);
2844 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2845 	mmap_init();
2846 	nsproxy_cache_init();
2847 }
2848 
2849 /*
2850  * Check constraints on flags passed to the unshare system call.
2851  */
2852 static int check_unshare_flags(unsigned long unshare_flags)
2853 {
2854 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2855 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2856 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2857 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
2858 				CLONE_NEWTIME))
2859 		return -EINVAL;
2860 	/*
2861 	 * Not implemented, but pretend it works if there is nothing
2862 	 * to unshare.  Note that unsharing the address space or the
2863 	 * signal handlers also need to unshare the signal queues (aka
2864 	 * CLONE_THREAD).
2865 	 */
2866 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2867 		if (!thread_group_empty(current))
2868 			return -EINVAL;
2869 	}
2870 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2871 		if (refcount_read(&current->sighand->count) > 1)
2872 			return -EINVAL;
2873 	}
2874 	if (unshare_flags & CLONE_VM) {
2875 		if (!current_is_single_threaded())
2876 			return -EINVAL;
2877 	}
2878 
2879 	return 0;
2880 }
2881 
2882 /*
2883  * Unshare the filesystem structure if it is being shared
2884  */
2885 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2886 {
2887 	struct fs_struct *fs = current->fs;
2888 
2889 	if (!(unshare_flags & CLONE_FS) || !fs)
2890 		return 0;
2891 
2892 	/* don't need lock here; in the worst case we'll do useless copy */
2893 	if (fs->users == 1)
2894 		return 0;
2895 
2896 	*new_fsp = copy_fs_struct(fs);
2897 	if (!*new_fsp)
2898 		return -ENOMEM;
2899 
2900 	return 0;
2901 }
2902 
2903 /*
2904  * Unshare file descriptor table if it is being shared
2905  */
2906 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2907 {
2908 	struct files_struct *fd = current->files;
2909 	int error = 0;
2910 
2911 	if ((unshare_flags & CLONE_FILES) &&
2912 	    (fd && atomic_read(&fd->count) > 1)) {
2913 		*new_fdp = dup_fd(fd, &error);
2914 		if (!*new_fdp)
2915 			return error;
2916 	}
2917 
2918 	return 0;
2919 }
2920 
2921 /*
2922  * unshare allows a process to 'unshare' part of the process
2923  * context which was originally shared using clone.  copy_*
2924  * functions used by do_fork() cannot be used here directly
2925  * because they modify an inactive task_struct that is being
2926  * constructed. Here we are modifying the current, active,
2927  * task_struct.
2928  */
2929 int ksys_unshare(unsigned long unshare_flags)
2930 {
2931 	struct fs_struct *fs, *new_fs = NULL;
2932 	struct files_struct *fd, *new_fd = NULL;
2933 	struct cred *new_cred = NULL;
2934 	struct nsproxy *new_nsproxy = NULL;
2935 	int do_sysvsem = 0;
2936 	int err;
2937 
2938 	/*
2939 	 * If unsharing a user namespace must also unshare the thread group
2940 	 * and unshare the filesystem root and working directories.
2941 	 */
2942 	if (unshare_flags & CLONE_NEWUSER)
2943 		unshare_flags |= CLONE_THREAD | CLONE_FS;
2944 	/*
2945 	 * If unsharing vm, must also unshare signal handlers.
2946 	 */
2947 	if (unshare_flags & CLONE_VM)
2948 		unshare_flags |= CLONE_SIGHAND;
2949 	/*
2950 	 * If unsharing a signal handlers, must also unshare the signal queues.
2951 	 */
2952 	if (unshare_flags & CLONE_SIGHAND)
2953 		unshare_flags |= CLONE_THREAD;
2954 	/*
2955 	 * If unsharing namespace, must also unshare filesystem information.
2956 	 */
2957 	if (unshare_flags & CLONE_NEWNS)
2958 		unshare_flags |= CLONE_FS;
2959 
2960 	err = check_unshare_flags(unshare_flags);
2961 	if (err)
2962 		goto bad_unshare_out;
2963 	/*
2964 	 * CLONE_NEWIPC must also detach from the undolist: after switching
2965 	 * to a new ipc namespace, the semaphore arrays from the old
2966 	 * namespace are unreachable.
2967 	 */
2968 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2969 		do_sysvsem = 1;
2970 	err = unshare_fs(unshare_flags, &new_fs);
2971 	if (err)
2972 		goto bad_unshare_out;
2973 	err = unshare_fd(unshare_flags, &new_fd);
2974 	if (err)
2975 		goto bad_unshare_cleanup_fs;
2976 	err = unshare_userns(unshare_flags, &new_cred);
2977 	if (err)
2978 		goto bad_unshare_cleanup_fd;
2979 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2980 					 new_cred, new_fs);
2981 	if (err)
2982 		goto bad_unshare_cleanup_cred;
2983 
2984 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2985 		if (do_sysvsem) {
2986 			/*
2987 			 * CLONE_SYSVSEM is equivalent to sys_exit().
2988 			 */
2989 			exit_sem(current);
2990 		}
2991 		if (unshare_flags & CLONE_NEWIPC) {
2992 			/* Orphan segments in old ns (see sem above). */
2993 			exit_shm(current);
2994 			shm_init_task(current);
2995 		}
2996 
2997 		if (new_nsproxy)
2998 			switch_task_namespaces(current, new_nsproxy);
2999 
3000 		task_lock(current);
3001 
3002 		if (new_fs) {
3003 			fs = current->fs;
3004 			spin_lock(&fs->lock);
3005 			current->fs = new_fs;
3006 			if (--fs->users)
3007 				new_fs = NULL;
3008 			else
3009 				new_fs = fs;
3010 			spin_unlock(&fs->lock);
3011 		}
3012 
3013 		if (new_fd) {
3014 			fd = current->files;
3015 			current->files = new_fd;
3016 			new_fd = fd;
3017 		}
3018 
3019 		task_unlock(current);
3020 
3021 		if (new_cred) {
3022 			/* Install the new user namespace */
3023 			commit_creds(new_cred);
3024 			new_cred = NULL;
3025 		}
3026 	}
3027 
3028 	perf_event_namespaces(current);
3029 
3030 bad_unshare_cleanup_cred:
3031 	if (new_cred)
3032 		put_cred(new_cred);
3033 bad_unshare_cleanup_fd:
3034 	if (new_fd)
3035 		put_files_struct(new_fd);
3036 
3037 bad_unshare_cleanup_fs:
3038 	if (new_fs)
3039 		free_fs_struct(new_fs);
3040 
3041 bad_unshare_out:
3042 	return err;
3043 }
3044 
3045 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3046 {
3047 	return ksys_unshare(unshare_flags);
3048 }
3049 
3050 /*
3051  *	Helper to unshare the files of the current task.
3052  *	We don't want to expose copy_files internals to
3053  *	the exec layer of the kernel.
3054  */
3055 
3056 int unshare_files(struct files_struct **displaced)
3057 {
3058 	struct task_struct *task = current;
3059 	struct files_struct *copy = NULL;
3060 	int error;
3061 
3062 	error = unshare_fd(CLONE_FILES, &copy);
3063 	if (error || !copy) {
3064 		*displaced = NULL;
3065 		return error;
3066 	}
3067 	*displaced = task->files;
3068 	task_lock(task);
3069 	task->files = copy;
3070 	task_unlock(task);
3071 	return 0;
3072 }
3073 
3074 int sysctl_max_threads(struct ctl_table *table, int write,
3075 		       void __user *buffer, size_t *lenp, loff_t *ppos)
3076 {
3077 	struct ctl_table t;
3078 	int ret;
3079 	int threads = max_threads;
3080 	int min = 1;
3081 	int max = MAX_THREADS;
3082 
3083 	t = *table;
3084 	t.data = &threads;
3085 	t.extra1 = &min;
3086 	t.extra2 = &max;
3087 
3088 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3089 	if (ret || !write)
3090 		return ret;
3091 
3092 	max_threads = threads;
3093 
3094 	return 0;
3095 }
3096