1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/coredump.h> 20 #include <linux/sched/user.h> 21 #include <linux/sched/numa_balancing.h> 22 #include <linux/sched/stat.h> 23 #include <linux/sched/task.h> 24 #include <linux/sched/task_stack.h> 25 #include <linux/sched/cputime.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/binfmts.h> 41 #include <linux/mman.h> 42 #include <linux/mmu_notifier.h> 43 #include <linux/fs.h> 44 #include <linux/mm.h> 45 #include <linux/vmacache.h> 46 #include <linux/nsproxy.h> 47 #include <linux/capability.h> 48 #include <linux/cpu.h> 49 #include <linux/cgroup.h> 50 #include <linux/security.h> 51 #include <linux/hugetlb.h> 52 #include <linux/seccomp.h> 53 #include <linux/swap.h> 54 #include <linux/syscalls.h> 55 #include <linux/jiffies.h> 56 #include <linux/futex.h> 57 #include <linux/compat.h> 58 #include <linux/kthread.h> 59 #include <linux/task_io_accounting_ops.h> 60 #include <linux/rcupdate.h> 61 #include <linux/ptrace.h> 62 #include <linux/mount.h> 63 #include <linux/audit.h> 64 #include <linux/memcontrol.h> 65 #include <linux/ftrace.h> 66 #include <linux/proc_fs.h> 67 #include <linux/profile.h> 68 #include <linux/rmap.h> 69 #include <linux/ksm.h> 70 #include <linux/acct.h> 71 #include <linux/userfaultfd_k.h> 72 #include <linux/tsacct_kern.h> 73 #include <linux/cn_proc.h> 74 #include <linux/freezer.h> 75 #include <linux/delayacct.h> 76 #include <linux/taskstats_kern.h> 77 #include <linux/random.h> 78 #include <linux/tty.h> 79 #include <linux/blkdev.h> 80 #include <linux/fs_struct.h> 81 #include <linux/magic.h> 82 #include <linux/perf_event.h> 83 #include <linux/posix-timers.h> 84 #include <linux/user-return-notifier.h> 85 #include <linux/oom.h> 86 #include <linux/khugepaged.h> 87 #include <linux/signalfd.h> 88 #include <linux/uprobes.h> 89 #include <linux/aio.h> 90 #include <linux/compiler.h> 91 #include <linux/sysctl.h> 92 #include <linux/kcov.h> 93 #include <linux/livepatch.h> 94 #include <linux/thread_info.h> 95 #include <linux/stackleak.h> 96 #include <linux/kasan.h> 97 #include <linux/scs.h> 98 99 #include <asm/pgalloc.h> 100 #include <linux/uaccess.h> 101 #include <asm/mmu_context.h> 102 #include <asm/cacheflush.h> 103 #include <asm/tlbflush.h> 104 105 #include <trace/events/sched.h> 106 107 #define CREATE_TRACE_POINTS 108 #include <trace/events/task.h> 109 110 /* 111 * Minimum number of threads to boot the kernel 112 */ 113 #define MIN_THREADS 20 114 115 /* 116 * Maximum number of threads 117 */ 118 #define MAX_THREADS FUTEX_TID_MASK 119 120 /* 121 * Protected counters by write_lock_irq(&tasklist_lock) 122 */ 123 unsigned long total_forks; /* Handle normal Linux uptimes. */ 124 int nr_threads; /* The idle threads do not count.. */ 125 126 static int max_threads; /* tunable limit on nr_threads */ 127 128 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) 129 130 static const char * const resident_page_types[] = { 131 NAMED_ARRAY_INDEX(MM_FILEPAGES), 132 NAMED_ARRAY_INDEX(MM_ANONPAGES), 133 NAMED_ARRAY_INDEX(MM_SWAPENTS), 134 NAMED_ARRAY_INDEX(MM_SHMEMPAGES), 135 }; 136 137 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 138 139 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 140 141 #ifdef CONFIG_PROVE_RCU 142 int lockdep_tasklist_lock_is_held(void) 143 { 144 return lockdep_is_held(&tasklist_lock); 145 } 146 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 147 #endif /* #ifdef CONFIG_PROVE_RCU */ 148 149 int nr_processes(void) 150 { 151 int cpu; 152 int total = 0; 153 154 for_each_possible_cpu(cpu) 155 total += per_cpu(process_counts, cpu); 156 157 return total; 158 } 159 160 void __weak arch_release_task_struct(struct task_struct *tsk) 161 { 162 } 163 164 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 165 static struct kmem_cache *task_struct_cachep; 166 167 static inline struct task_struct *alloc_task_struct_node(int node) 168 { 169 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 170 } 171 172 static inline void free_task_struct(struct task_struct *tsk) 173 { 174 kmem_cache_free(task_struct_cachep, tsk); 175 } 176 #endif 177 178 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR 179 180 /* 181 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 182 * kmemcache based allocator. 183 */ 184 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 185 186 #ifdef CONFIG_VMAP_STACK 187 /* 188 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 189 * flush. Try to minimize the number of calls by caching stacks. 190 */ 191 #define NR_CACHED_STACKS 2 192 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 193 194 static int free_vm_stack_cache(unsigned int cpu) 195 { 196 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 197 int i; 198 199 for (i = 0; i < NR_CACHED_STACKS; i++) { 200 struct vm_struct *vm_stack = cached_vm_stacks[i]; 201 202 if (!vm_stack) 203 continue; 204 205 vfree(vm_stack->addr); 206 cached_vm_stacks[i] = NULL; 207 } 208 209 return 0; 210 } 211 #endif 212 213 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node) 214 { 215 #ifdef CONFIG_VMAP_STACK 216 void *stack; 217 int i; 218 219 for (i = 0; i < NR_CACHED_STACKS; i++) { 220 struct vm_struct *s; 221 222 s = this_cpu_xchg(cached_stacks[i], NULL); 223 224 if (!s) 225 continue; 226 227 /* Clear the KASAN shadow of the stack. */ 228 kasan_unpoison_shadow(s->addr, THREAD_SIZE); 229 230 /* Clear stale pointers from reused stack. */ 231 memset(s->addr, 0, THREAD_SIZE); 232 233 tsk->stack_vm_area = s; 234 tsk->stack = s->addr; 235 return s->addr; 236 } 237 238 /* 239 * Allocated stacks are cached and later reused by new threads, 240 * so memcg accounting is performed manually on assigning/releasing 241 * stacks to tasks. Drop __GFP_ACCOUNT. 242 */ 243 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, 244 VMALLOC_START, VMALLOC_END, 245 THREADINFO_GFP & ~__GFP_ACCOUNT, 246 PAGE_KERNEL, 247 0, node, __builtin_return_address(0)); 248 249 /* 250 * We can't call find_vm_area() in interrupt context, and 251 * free_thread_stack() can be called in interrupt context, 252 * so cache the vm_struct. 253 */ 254 if (stack) { 255 tsk->stack_vm_area = find_vm_area(stack); 256 tsk->stack = stack; 257 } 258 return stack; 259 #else 260 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 261 THREAD_SIZE_ORDER); 262 263 if (likely(page)) { 264 tsk->stack = kasan_reset_tag(page_address(page)); 265 return tsk->stack; 266 } 267 return NULL; 268 #endif 269 } 270 271 static inline void free_thread_stack(struct task_struct *tsk) 272 { 273 #ifdef CONFIG_VMAP_STACK 274 struct vm_struct *vm = task_stack_vm_area(tsk); 275 276 if (vm) { 277 int i; 278 279 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 280 memcg_kmem_uncharge_page(vm->pages[i], 0); 281 282 for (i = 0; i < NR_CACHED_STACKS; i++) { 283 if (this_cpu_cmpxchg(cached_stacks[i], 284 NULL, tsk->stack_vm_area) != NULL) 285 continue; 286 287 return; 288 } 289 290 vfree_atomic(tsk->stack); 291 return; 292 } 293 #endif 294 295 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER); 296 } 297 # else 298 static struct kmem_cache *thread_stack_cache; 299 300 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, 301 int node) 302 { 303 unsigned long *stack; 304 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 305 stack = kasan_reset_tag(stack); 306 tsk->stack = stack; 307 return stack; 308 } 309 310 static void free_thread_stack(struct task_struct *tsk) 311 { 312 kmem_cache_free(thread_stack_cache, tsk->stack); 313 } 314 315 void thread_stack_cache_init(void) 316 { 317 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 318 THREAD_SIZE, THREAD_SIZE, 0, 0, 319 THREAD_SIZE, NULL); 320 BUG_ON(thread_stack_cache == NULL); 321 } 322 # endif 323 #endif 324 325 /* SLAB cache for signal_struct structures (tsk->signal) */ 326 static struct kmem_cache *signal_cachep; 327 328 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 329 struct kmem_cache *sighand_cachep; 330 331 /* SLAB cache for files_struct structures (tsk->files) */ 332 struct kmem_cache *files_cachep; 333 334 /* SLAB cache for fs_struct structures (tsk->fs) */ 335 struct kmem_cache *fs_cachep; 336 337 /* SLAB cache for vm_area_struct structures */ 338 static struct kmem_cache *vm_area_cachep; 339 340 /* SLAB cache for mm_struct structures (tsk->mm) */ 341 static struct kmem_cache *mm_cachep; 342 343 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) 344 { 345 struct vm_area_struct *vma; 346 347 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 348 if (vma) 349 vma_init(vma, mm); 350 return vma; 351 } 352 353 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) 354 { 355 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 356 357 if (new) { 358 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags); 359 ASSERT_EXCLUSIVE_WRITER(orig->vm_file); 360 /* 361 * orig->shared.rb may be modified concurrently, but the clone 362 * will be reinitialized. 363 */ 364 *new = data_race(*orig); 365 INIT_LIST_HEAD(&new->anon_vma_chain); 366 new->vm_next = new->vm_prev = NULL; 367 } 368 return new; 369 } 370 371 void vm_area_free(struct vm_area_struct *vma) 372 { 373 kmem_cache_free(vm_area_cachep, vma); 374 } 375 376 static void account_kernel_stack(struct task_struct *tsk, int account) 377 { 378 void *stack = task_stack_page(tsk); 379 struct vm_struct *vm = task_stack_vm_area(tsk); 380 381 382 /* All stack pages are in the same node. */ 383 if (vm) 384 mod_lruvec_page_state(vm->pages[0], NR_KERNEL_STACK_KB, 385 account * (THREAD_SIZE / 1024)); 386 else 387 mod_lruvec_slab_state(stack, NR_KERNEL_STACK_KB, 388 account * (THREAD_SIZE / 1024)); 389 } 390 391 static int memcg_charge_kernel_stack(struct task_struct *tsk) 392 { 393 #ifdef CONFIG_VMAP_STACK 394 struct vm_struct *vm = task_stack_vm_area(tsk); 395 int ret; 396 397 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0); 398 399 if (vm) { 400 int i; 401 402 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 403 404 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 405 /* 406 * If memcg_kmem_charge_page() fails, page->mem_cgroup 407 * pointer is NULL, and memcg_kmem_uncharge_page() in 408 * free_thread_stack() will ignore this page. 409 */ 410 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 411 0); 412 if (ret) 413 return ret; 414 } 415 } 416 #endif 417 return 0; 418 } 419 420 static void release_task_stack(struct task_struct *tsk) 421 { 422 if (WARN_ON(tsk->state != TASK_DEAD)) 423 return; /* Better to leak the stack than to free prematurely */ 424 425 account_kernel_stack(tsk, -1); 426 free_thread_stack(tsk); 427 tsk->stack = NULL; 428 #ifdef CONFIG_VMAP_STACK 429 tsk->stack_vm_area = NULL; 430 #endif 431 } 432 433 #ifdef CONFIG_THREAD_INFO_IN_TASK 434 void put_task_stack(struct task_struct *tsk) 435 { 436 if (refcount_dec_and_test(&tsk->stack_refcount)) 437 release_task_stack(tsk); 438 } 439 #endif 440 441 void free_task(struct task_struct *tsk) 442 { 443 scs_release(tsk); 444 445 #ifndef CONFIG_THREAD_INFO_IN_TASK 446 /* 447 * The task is finally done with both the stack and thread_info, 448 * so free both. 449 */ 450 release_task_stack(tsk); 451 #else 452 /* 453 * If the task had a separate stack allocation, it should be gone 454 * by now. 455 */ 456 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 457 #endif 458 rt_mutex_debug_task_free(tsk); 459 ftrace_graph_exit_task(tsk); 460 arch_release_task_struct(tsk); 461 if (tsk->flags & PF_KTHREAD) 462 free_kthread_struct(tsk); 463 free_task_struct(tsk); 464 } 465 EXPORT_SYMBOL(free_task); 466 467 #ifdef CONFIG_MMU 468 static __latent_entropy int dup_mmap(struct mm_struct *mm, 469 struct mm_struct *oldmm) 470 { 471 struct vm_area_struct *mpnt, *tmp, *prev, **pprev; 472 struct rb_node **rb_link, *rb_parent; 473 int retval; 474 unsigned long charge; 475 LIST_HEAD(uf); 476 477 uprobe_start_dup_mmap(); 478 if (mmap_write_lock_killable(oldmm)) { 479 retval = -EINTR; 480 goto fail_uprobe_end; 481 } 482 flush_cache_dup_mm(oldmm); 483 uprobe_dup_mmap(oldmm, mm); 484 /* 485 * Not linked in yet - no deadlock potential: 486 */ 487 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING); 488 489 /* No ordering required: file already has been exposed. */ 490 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm)); 491 492 mm->total_vm = oldmm->total_vm; 493 mm->data_vm = oldmm->data_vm; 494 mm->exec_vm = oldmm->exec_vm; 495 mm->stack_vm = oldmm->stack_vm; 496 497 rb_link = &mm->mm_rb.rb_node; 498 rb_parent = NULL; 499 pprev = &mm->mmap; 500 retval = ksm_fork(mm, oldmm); 501 if (retval) 502 goto out; 503 retval = khugepaged_fork(mm, oldmm); 504 if (retval) 505 goto out; 506 507 prev = NULL; 508 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { 509 struct file *file; 510 511 if (mpnt->vm_flags & VM_DONTCOPY) { 512 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 513 continue; 514 } 515 charge = 0; 516 /* 517 * Don't duplicate many vmas if we've been oom-killed (for 518 * example) 519 */ 520 if (fatal_signal_pending(current)) { 521 retval = -EINTR; 522 goto out; 523 } 524 if (mpnt->vm_flags & VM_ACCOUNT) { 525 unsigned long len = vma_pages(mpnt); 526 527 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 528 goto fail_nomem; 529 charge = len; 530 } 531 tmp = vm_area_dup(mpnt); 532 if (!tmp) 533 goto fail_nomem; 534 retval = vma_dup_policy(mpnt, tmp); 535 if (retval) 536 goto fail_nomem_policy; 537 tmp->vm_mm = mm; 538 retval = dup_userfaultfd(tmp, &uf); 539 if (retval) 540 goto fail_nomem_anon_vma_fork; 541 if (tmp->vm_flags & VM_WIPEONFORK) { 542 /* 543 * VM_WIPEONFORK gets a clean slate in the child. 544 * Don't prepare anon_vma until fault since we don't 545 * copy page for current vma. 546 */ 547 tmp->anon_vma = NULL; 548 } else if (anon_vma_fork(tmp, mpnt)) 549 goto fail_nomem_anon_vma_fork; 550 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT); 551 file = tmp->vm_file; 552 if (file) { 553 struct inode *inode = file_inode(file); 554 struct address_space *mapping = file->f_mapping; 555 556 get_file(file); 557 if (tmp->vm_flags & VM_DENYWRITE) 558 atomic_dec(&inode->i_writecount); 559 i_mmap_lock_write(mapping); 560 if (tmp->vm_flags & VM_SHARED) 561 atomic_inc(&mapping->i_mmap_writable); 562 flush_dcache_mmap_lock(mapping); 563 /* insert tmp into the share list, just after mpnt */ 564 vma_interval_tree_insert_after(tmp, mpnt, 565 &mapping->i_mmap); 566 flush_dcache_mmap_unlock(mapping); 567 i_mmap_unlock_write(mapping); 568 } 569 570 /* 571 * Clear hugetlb-related page reserves for children. This only 572 * affects MAP_PRIVATE mappings. Faults generated by the child 573 * are not guaranteed to succeed, even if read-only 574 */ 575 if (is_vm_hugetlb_page(tmp)) 576 reset_vma_resv_huge_pages(tmp); 577 578 /* 579 * Link in the new vma and copy the page table entries. 580 */ 581 *pprev = tmp; 582 pprev = &tmp->vm_next; 583 tmp->vm_prev = prev; 584 prev = tmp; 585 586 __vma_link_rb(mm, tmp, rb_link, rb_parent); 587 rb_link = &tmp->vm_rb.rb_right; 588 rb_parent = &tmp->vm_rb; 589 590 mm->map_count++; 591 if (!(tmp->vm_flags & VM_WIPEONFORK)) 592 retval = copy_page_range(mm, oldmm, mpnt, tmp); 593 594 if (tmp->vm_ops && tmp->vm_ops->open) 595 tmp->vm_ops->open(tmp); 596 597 if (retval) 598 goto out; 599 } 600 /* a new mm has just been created */ 601 retval = arch_dup_mmap(oldmm, mm); 602 out: 603 mmap_write_unlock(mm); 604 flush_tlb_mm(oldmm); 605 mmap_write_unlock(oldmm); 606 dup_userfaultfd_complete(&uf); 607 fail_uprobe_end: 608 uprobe_end_dup_mmap(); 609 return retval; 610 fail_nomem_anon_vma_fork: 611 mpol_put(vma_policy(tmp)); 612 fail_nomem_policy: 613 vm_area_free(tmp); 614 fail_nomem: 615 retval = -ENOMEM; 616 vm_unacct_memory(charge); 617 goto out; 618 } 619 620 static inline int mm_alloc_pgd(struct mm_struct *mm) 621 { 622 mm->pgd = pgd_alloc(mm); 623 if (unlikely(!mm->pgd)) 624 return -ENOMEM; 625 return 0; 626 } 627 628 static inline void mm_free_pgd(struct mm_struct *mm) 629 { 630 pgd_free(mm, mm->pgd); 631 } 632 #else 633 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 634 { 635 mmap_write_lock(oldmm); 636 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm)); 637 mmap_write_unlock(oldmm); 638 return 0; 639 } 640 #define mm_alloc_pgd(mm) (0) 641 #define mm_free_pgd(mm) 642 #endif /* CONFIG_MMU */ 643 644 static void check_mm(struct mm_struct *mm) 645 { 646 int i; 647 648 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, 649 "Please make sure 'struct resident_page_types[]' is updated as well"); 650 651 for (i = 0; i < NR_MM_COUNTERS; i++) { 652 long x = atomic_long_read(&mm->rss_stat.count[i]); 653 654 if (unlikely(x)) 655 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n", 656 mm, resident_page_types[i], x); 657 } 658 659 if (mm_pgtables_bytes(mm)) 660 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 661 mm_pgtables_bytes(mm)); 662 663 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 664 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 665 #endif 666 } 667 668 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 669 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 670 671 /* 672 * Called when the last reference to the mm 673 * is dropped: either by a lazy thread or by 674 * mmput. Free the page directory and the mm. 675 */ 676 void __mmdrop(struct mm_struct *mm) 677 { 678 BUG_ON(mm == &init_mm); 679 WARN_ON_ONCE(mm == current->mm); 680 WARN_ON_ONCE(mm == current->active_mm); 681 mm_free_pgd(mm); 682 destroy_context(mm); 683 mmu_notifier_subscriptions_destroy(mm); 684 check_mm(mm); 685 put_user_ns(mm->user_ns); 686 free_mm(mm); 687 } 688 EXPORT_SYMBOL_GPL(__mmdrop); 689 690 static void mmdrop_async_fn(struct work_struct *work) 691 { 692 struct mm_struct *mm; 693 694 mm = container_of(work, struct mm_struct, async_put_work); 695 __mmdrop(mm); 696 } 697 698 static void mmdrop_async(struct mm_struct *mm) 699 { 700 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 701 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 702 schedule_work(&mm->async_put_work); 703 } 704 } 705 706 static inline void free_signal_struct(struct signal_struct *sig) 707 { 708 taskstats_tgid_free(sig); 709 sched_autogroup_exit(sig); 710 /* 711 * __mmdrop is not safe to call from softirq context on x86 due to 712 * pgd_dtor so postpone it to the async context 713 */ 714 if (sig->oom_mm) 715 mmdrop_async(sig->oom_mm); 716 kmem_cache_free(signal_cachep, sig); 717 } 718 719 static inline void put_signal_struct(struct signal_struct *sig) 720 { 721 if (refcount_dec_and_test(&sig->sigcnt)) 722 free_signal_struct(sig); 723 } 724 725 void __put_task_struct(struct task_struct *tsk) 726 { 727 WARN_ON(!tsk->exit_state); 728 WARN_ON(refcount_read(&tsk->usage)); 729 WARN_ON(tsk == current); 730 731 cgroup_free(tsk); 732 task_numa_free(tsk, true); 733 security_task_free(tsk); 734 exit_creds(tsk); 735 delayacct_tsk_free(tsk); 736 put_signal_struct(tsk->signal); 737 738 if (!profile_handoff_task(tsk)) 739 free_task(tsk); 740 } 741 EXPORT_SYMBOL_GPL(__put_task_struct); 742 743 void __init __weak arch_task_cache_init(void) { } 744 745 /* 746 * set_max_threads 747 */ 748 static void set_max_threads(unsigned int max_threads_suggested) 749 { 750 u64 threads; 751 unsigned long nr_pages = totalram_pages(); 752 753 /* 754 * The number of threads shall be limited such that the thread 755 * structures may only consume a small part of the available memory. 756 */ 757 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 758 threads = MAX_THREADS; 759 else 760 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 761 (u64) THREAD_SIZE * 8UL); 762 763 if (threads > max_threads_suggested) 764 threads = max_threads_suggested; 765 766 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 767 } 768 769 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 770 /* Initialized by the architecture: */ 771 int arch_task_struct_size __read_mostly; 772 #endif 773 774 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 775 static void task_struct_whitelist(unsigned long *offset, unsigned long *size) 776 { 777 /* Fetch thread_struct whitelist for the architecture. */ 778 arch_thread_struct_whitelist(offset, size); 779 780 /* 781 * Handle zero-sized whitelist or empty thread_struct, otherwise 782 * adjust offset to position of thread_struct in task_struct. 783 */ 784 if (unlikely(*size == 0)) 785 *offset = 0; 786 else 787 *offset += offsetof(struct task_struct, thread); 788 } 789 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */ 790 791 void __init fork_init(void) 792 { 793 int i; 794 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 795 #ifndef ARCH_MIN_TASKALIGN 796 #define ARCH_MIN_TASKALIGN 0 797 #endif 798 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 799 unsigned long useroffset, usersize; 800 801 /* create a slab on which task_structs can be allocated */ 802 task_struct_whitelist(&useroffset, &usersize); 803 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 804 arch_task_struct_size, align, 805 SLAB_PANIC|SLAB_ACCOUNT, 806 useroffset, usersize, NULL); 807 #endif 808 809 /* do the arch specific task caches init */ 810 arch_task_cache_init(); 811 812 set_max_threads(MAX_THREADS); 813 814 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 815 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 816 init_task.signal->rlim[RLIMIT_SIGPENDING] = 817 init_task.signal->rlim[RLIMIT_NPROC]; 818 819 for (i = 0; i < UCOUNT_COUNTS; i++) { 820 init_user_ns.ucount_max[i] = max_threads/2; 821 } 822 823 #ifdef CONFIG_VMAP_STACK 824 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 825 NULL, free_vm_stack_cache); 826 #endif 827 828 scs_init(); 829 830 lockdep_init_task(&init_task); 831 uprobes_init(); 832 } 833 834 int __weak arch_dup_task_struct(struct task_struct *dst, 835 struct task_struct *src) 836 { 837 *dst = *src; 838 return 0; 839 } 840 841 void set_task_stack_end_magic(struct task_struct *tsk) 842 { 843 unsigned long *stackend; 844 845 stackend = end_of_stack(tsk); 846 *stackend = STACK_END_MAGIC; /* for overflow detection */ 847 } 848 849 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 850 { 851 struct task_struct *tsk; 852 unsigned long *stack; 853 struct vm_struct *stack_vm_area __maybe_unused; 854 int err; 855 856 if (node == NUMA_NO_NODE) 857 node = tsk_fork_get_node(orig); 858 tsk = alloc_task_struct_node(node); 859 if (!tsk) 860 return NULL; 861 862 stack = alloc_thread_stack_node(tsk, node); 863 if (!stack) 864 goto free_tsk; 865 866 if (memcg_charge_kernel_stack(tsk)) 867 goto free_stack; 868 869 stack_vm_area = task_stack_vm_area(tsk); 870 871 err = arch_dup_task_struct(tsk, orig); 872 873 /* 874 * arch_dup_task_struct() clobbers the stack-related fields. Make 875 * sure they're properly initialized before using any stack-related 876 * functions again. 877 */ 878 tsk->stack = stack; 879 #ifdef CONFIG_VMAP_STACK 880 tsk->stack_vm_area = stack_vm_area; 881 #endif 882 #ifdef CONFIG_THREAD_INFO_IN_TASK 883 refcount_set(&tsk->stack_refcount, 1); 884 #endif 885 886 if (err) 887 goto free_stack; 888 889 err = scs_prepare(tsk, node); 890 if (err) 891 goto free_stack; 892 893 #ifdef CONFIG_SECCOMP 894 /* 895 * We must handle setting up seccomp filters once we're under 896 * the sighand lock in case orig has changed between now and 897 * then. Until then, filter must be NULL to avoid messing up 898 * the usage counts on the error path calling free_task. 899 */ 900 tsk->seccomp.filter = NULL; 901 #endif 902 903 setup_thread_stack(tsk, orig); 904 clear_user_return_notifier(tsk); 905 clear_tsk_need_resched(tsk); 906 set_task_stack_end_magic(tsk); 907 908 #ifdef CONFIG_STACKPROTECTOR 909 tsk->stack_canary = get_random_canary(); 910 #endif 911 if (orig->cpus_ptr == &orig->cpus_mask) 912 tsk->cpus_ptr = &tsk->cpus_mask; 913 914 /* 915 * One for the user space visible state that goes away when reaped. 916 * One for the scheduler. 917 */ 918 refcount_set(&tsk->rcu_users, 2); 919 /* One for the rcu users */ 920 refcount_set(&tsk->usage, 1); 921 #ifdef CONFIG_BLK_DEV_IO_TRACE 922 tsk->btrace_seq = 0; 923 #endif 924 tsk->splice_pipe = NULL; 925 tsk->task_frag.page = NULL; 926 tsk->wake_q.next = NULL; 927 928 account_kernel_stack(tsk, 1); 929 930 kcov_task_init(tsk); 931 932 #ifdef CONFIG_FAULT_INJECTION 933 tsk->fail_nth = 0; 934 #endif 935 936 #ifdef CONFIG_BLK_CGROUP 937 tsk->throttle_queue = NULL; 938 tsk->use_memdelay = 0; 939 #endif 940 941 #ifdef CONFIG_MEMCG 942 tsk->active_memcg = NULL; 943 #endif 944 return tsk; 945 946 free_stack: 947 free_thread_stack(tsk); 948 free_tsk: 949 free_task_struct(tsk); 950 return NULL; 951 } 952 953 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 954 955 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 956 957 static int __init coredump_filter_setup(char *s) 958 { 959 default_dump_filter = 960 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 961 MMF_DUMP_FILTER_MASK; 962 return 1; 963 } 964 965 __setup("coredump_filter=", coredump_filter_setup); 966 967 #include <linux/init_task.h> 968 969 static void mm_init_aio(struct mm_struct *mm) 970 { 971 #ifdef CONFIG_AIO 972 spin_lock_init(&mm->ioctx_lock); 973 mm->ioctx_table = NULL; 974 #endif 975 } 976 977 static __always_inline void mm_clear_owner(struct mm_struct *mm, 978 struct task_struct *p) 979 { 980 #ifdef CONFIG_MEMCG 981 if (mm->owner == p) 982 WRITE_ONCE(mm->owner, NULL); 983 #endif 984 } 985 986 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 987 { 988 #ifdef CONFIG_MEMCG 989 mm->owner = p; 990 #endif 991 } 992 993 static void mm_init_uprobes_state(struct mm_struct *mm) 994 { 995 #ifdef CONFIG_UPROBES 996 mm->uprobes_state.xol_area = NULL; 997 #endif 998 } 999 1000 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 1001 struct user_namespace *user_ns) 1002 { 1003 mm->mmap = NULL; 1004 mm->mm_rb = RB_ROOT; 1005 mm->vmacache_seqnum = 0; 1006 atomic_set(&mm->mm_users, 1); 1007 atomic_set(&mm->mm_count, 1); 1008 mmap_init_lock(mm); 1009 INIT_LIST_HEAD(&mm->mmlist); 1010 mm->core_state = NULL; 1011 mm_pgtables_bytes_init(mm); 1012 mm->map_count = 0; 1013 mm->locked_vm = 0; 1014 atomic_set(&mm->has_pinned, 0); 1015 atomic64_set(&mm->pinned_vm, 0); 1016 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1017 spin_lock_init(&mm->page_table_lock); 1018 spin_lock_init(&mm->arg_lock); 1019 mm_init_cpumask(mm); 1020 mm_init_aio(mm); 1021 mm_init_owner(mm, p); 1022 RCU_INIT_POINTER(mm->exe_file, NULL); 1023 mmu_notifier_subscriptions_init(mm); 1024 init_tlb_flush_pending(mm); 1025 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 1026 mm->pmd_huge_pte = NULL; 1027 #endif 1028 mm_init_uprobes_state(mm); 1029 1030 if (current->mm) { 1031 mm->flags = current->mm->flags & MMF_INIT_MASK; 1032 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1033 } else { 1034 mm->flags = default_dump_filter; 1035 mm->def_flags = 0; 1036 } 1037 1038 if (mm_alloc_pgd(mm)) 1039 goto fail_nopgd; 1040 1041 if (init_new_context(p, mm)) 1042 goto fail_nocontext; 1043 1044 mm->user_ns = get_user_ns(user_ns); 1045 return mm; 1046 1047 fail_nocontext: 1048 mm_free_pgd(mm); 1049 fail_nopgd: 1050 free_mm(mm); 1051 return NULL; 1052 } 1053 1054 /* 1055 * Allocate and initialize an mm_struct. 1056 */ 1057 struct mm_struct *mm_alloc(void) 1058 { 1059 struct mm_struct *mm; 1060 1061 mm = allocate_mm(); 1062 if (!mm) 1063 return NULL; 1064 1065 memset(mm, 0, sizeof(*mm)); 1066 return mm_init(mm, current, current_user_ns()); 1067 } 1068 1069 static inline void __mmput(struct mm_struct *mm) 1070 { 1071 VM_BUG_ON(atomic_read(&mm->mm_users)); 1072 1073 uprobe_clear_state(mm); 1074 exit_aio(mm); 1075 ksm_exit(mm); 1076 khugepaged_exit(mm); /* must run before exit_mmap */ 1077 exit_mmap(mm); 1078 mm_put_huge_zero_page(mm); 1079 set_mm_exe_file(mm, NULL); 1080 if (!list_empty(&mm->mmlist)) { 1081 spin_lock(&mmlist_lock); 1082 list_del(&mm->mmlist); 1083 spin_unlock(&mmlist_lock); 1084 } 1085 if (mm->binfmt) 1086 module_put(mm->binfmt->module); 1087 mmdrop(mm); 1088 } 1089 1090 /* 1091 * Decrement the use count and release all resources for an mm. 1092 */ 1093 void mmput(struct mm_struct *mm) 1094 { 1095 might_sleep(); 1096 1097 if (atomic_dec_and_test(&mm->mm_users)) 1098 __mmput(mm); 1099 } 1100 EXPORT_SYMBOL_GPL(mmput); 1101 1102 #ifdef CONFIG_MMU 1103 static void mmput_async_fn(struct work_struct *work) 1104 { 1105 struct mm_struct *mm = container_of(work, struct mm_struct, 1106 async_put_work); 1107 1108 __mmput(mm); 1109 } 1110 1111 void mmput_async(struct mm_struct *mm) 1112 { 1113 if (atomic_dec_and_test(&mm->mm_users)) { 1114 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1115 schedule_work(&mm->async_put_work); 1116 } 1117 } 1118 #endif 1119 1120 /** 1121 * set_mm_exe_file - change a reference to the mm's executable file 1122 * 1123 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1124 * 1125 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1126 * invocations: in mmput() nobody alive left, in execve task is single 1127 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the 1128 * mm->exe_file, but does so without using set_mm_exe_file() in order 1129 * to do avoid the need for any locks. 1130 */ 1131 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1132 { 1133 struct file *old_exe_file; 1134 1135 /* 1136 * It is safe to dereference the exe_file without RCU as 1137 * this function is only called if nobody else can access 1138 * this mm -- see comment above for justification. 1139 */ 1140 old_exe_file = rcu_dereference_raw(mm->exe_file); 1141 1142 if (new_exe_file) 1143 get_file(new_exe_file); 1144 rcu_assign_pointer(mm->exe_file, new_exe_file); 1145 if (old_exe_file) 1146 fput(old_exe_file); 1147 } 1148 1149 /** 1150 * get_mm_exe_file - acquire a reference to the mm's executable file 1151 * 1152 * Returns %NULL if mm has no associated executable file. 1153 * User must release file via fput(). 1154 */ 1155 struct file *get_mm_exe_file(struct mm_struct *mm) 1156 { 1157 struct file *exe_file; 1158 1159 rcu_read_lock(); 1160 exe_file = rcu_dereference(mm->exe_file); 1161 if (exe_file && !get_file_rcu(exe_file)) 1162 exe_file = NULL; 1163 rcu_read_unlock(); 1164 return exe_file; 1165 } 1166 EXPORT_SYMBOL(get_mm_exe_file); 1167 1168 /** 1169 * get_task_exe_file - acquire a reference to the task's executable file 1170 * 1171 * Returns %NULL if task's mm (if any) has no associated executable file or 1172 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1173 * User must release file via fput(). 1174 */ 1175 struct file *get_task_exe_file(struct task_struct *task) 1176 { 1177 struct file *exe_file = NULL; 1178 struct mm_struct *mm; 1179 1180 task_lock(task); 1181 mm = task->mm; 1182 if (mm) { 1183 if (!(task->flags & PF_KTHREAD)) 1184 exe_file = get_mm_exe_file(mm); 1185 } 1186 task_unlock(task); 1187 return exe_file; 1188 } 1189 EXPORT_SYMBOL(get_task_exe_file); 1190 1191 /** 1192 * get_task_mm - acquire a reference to the task's mm 1193 * 1194 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1195 * this kernel workthread has transiently adopted a user mm with use_mm, 1196 * to do its AIO) is not set and if so returns a reference to it, after 1197 * bumping up the use count. User must release the mm via mmput() 1198 * after use. Typically used by /proc and ptrace. 1199 */ 1200 struct mm_struct *get_task_mm(struct task_struct *task) 1201 { 1202 struct mm_struct *mm; 1203 1204 task_lock(task); 1205 mm = task->mm; 1206 if (mm) { 1207 if (task->flags & PF_KTHREAD) 1208 mm = NULL; 1209 else 1210 mmget(mm); 1211 } 1212 task_unlock(task); 1213 return mm; 1214 } 1215 EXPORT_SYMBOL_GPL(get_task_mm); 1216 1217 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1218 { 1219 struct mm_struct *mm; 1220 int err; 1221 1222 err = mutex_lock_killable(&task->signal->exec_update_mutex); 1223 if (err) 1224 return ERR_PTR(err); 1225 1226 mm = get_task_mm(task); 1227 if (mm && mm != current->mm && 1228 !ptrace_may_access(task, mode)) { 1229 mmput(mm); 1230 mm = ERR_PTR(-EACCES); 1231 } 1232 mutex_unlock(&task->signal->exec_update_mutex); 1233 1234 return mm; 1235 } 1236 1237 static void complete_vfork_done(struct task_struct *tsk) 1238 { 1239 struct completion *vfork; 1240 1241 task_lock(tsk); 1242 vfork = tsk->vfork_done; 1243 if (likely(vfork)) { 1244 tsk->vfork_done = NULL; 1245 complete(vfork); 1246 } 1247 task_unlock(tsk); 1248 } 1249 1250 static int wait_for_vfork_done(struct task_struct *child, 1251 struct completion *vfork) 1252 { 1253 int killed; 1254 1255 freezer_do_not_count(); 1256 cgroup_enter_frozen(); 1257 killed = wait_for_completion_killable(vfork); 1258 cgroup_leave_frozen(false); 1259 freezer_count(); 1260 1261 if (killed) { 1262 task_lock(child); 1263 child->vfork_done = NULL; 1264 task_unlock(child); 1265 } 1266 1267 put_task_struct(child); 1268 return killed; 1269 } 1270 1271 /* Please note the differences between mmput and mm_release. 1272 * mmput is called whenever we stop holding onto a mm_struct, 1273 * error success whatever. 1274 * 1275 * mm_release is called after a mm_struct has been removed 1276 * from the current process. 1277 * 1278 * This difference is important for error handling, when we 1279 * only half set up a mm_struct for a new process and need to restore 1280 * the old one. Because we mmput the new mm_struct before 1281 * restoring the old one. . . 1282 * Eric Biederman 10 January 1998 1283 */ 1284 static void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1285 { 1286 uprobe_free_utask(tsk); 1287 1288 /* Get rid of any cached register state */ 1289 deactivate_mm(tsk, mm); 1290 1291 /* 1292 * Signal userspace if we're not exiting with a core dump 1293 * because we want to leave the value intact for debugging 1294 * purposes. 1295 */ 1296 if (tsk->clear_child_tid) { 1297 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) && 1298 atomic_read(&mm->mm_users) > 1) { 1299 /* 1300 * We don't check the error code - if userspace has 1301 * not set up a proper pointer then tough luck. 1302 */ 1303 put_user(0, tsk->clear_child_tid); 1304 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1305 1, NULL, NULL, 0, 0); 1306 } 1307 tsk->clear_child_tid = NULL; 1308 } 1309 1310 /* 1311 * All done, finally we can wake up parent and return this mm to him. 1312 * Also kthread_stop() uses this completion for synchronization. 1313 */ 1314 if (tsk->vfork_done) 1315 complete_vfork_done(tsk); 1316 } 1317 1318 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1319 { 1320 futex_exit_release(tsk); 1321 mm_release(tsk, mm); 1322 } 1323 1324 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1325 { 1326 futex_exec_release(tsk); 1327 mm_release(tsk, mm); 1328 } 1329 1330 /** 1331 * dup_mm() - duplicates an existing mm structure 1332 * @tsk: the task_struct with which the new mm will be associated. 1333 * @oldmm: the mm to duplicate. 1334 * 1335 * Allocates a new mm structure and duplicates the provided @oldmm structure 1336 * content into it. 1337 * 1338 * Return: the duplicated mm or NULL on failure. 1339 */ 1340 static struct mm_struct *dup_mm(struct task_struct *tsk, 1341 struct mm_struct *oldmm) 1342 { 1343 struct mm_struct *mm; 1344 int err; 1345 1346 mm = allocate_mm(); 1347 if (!mm) 1348 goto fail_nomem; 1349 1350 memcpy(mm, oldmm, sizeof(*mm)); 1351 1352 if (!mm_init(mm, tsk, mm->user_ns)) 1353 goto fail_nomem; 1354 1355 err = dup_mmap(mm, oldmm); 1356 if (err) 1357 goto free_pt; 1358 1359 mm->hiwater_rss = get_mm_rss(mm); 1360 mm->hiwater_vm = mm->total_vm; 1361 1362 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1363 goto free_pt; 1364 1365 return mm; 1366 1367 free_pt: 1368 /* don't put binfmt in mmput, we haven't got module yet */ 1369 mm->binfmt = NULL; 1370 mm_init_owner(mm, NULL); 1371 mmput(mm); 1372 1373 fail_nomem: 1374 return NULL; 1375 } 1376 1377 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1378 { 1379 struct mm_struct *mm, *oldmm; 1380 int retval; 1381 1382 tsk->min_flt = tsk->maj_flt = 0; 1383 tsk->nvcsw = tsk->nivcsw = 0; 1384 #ifdef CONFIG_DETECT_HUNG_TASK 1385 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1386 tsk->last_switch_time = 0; 1387 #endif 1388 1389 tsk->mm = NULL; 1390 tsk->active_mm = NULL; 1391 1392 /* 1393 * Are we cloning a kernel thread? 1394 * 1395 * We need to steal a active VM for that.. 1396 */ 1397 oldmm = current->mm; 1398 if (!oldmm) 1399 return 0; 1400 1401 /* initialize the new vmacache entries */ 1402 vmacache_flush(tsk); 1403 1404 if (clone_flags & CLONE_VM) { 1405 mmget(oldmm); 1406 mm = oldmm; 1407 goto good_mm; 1408 } 1409 1410 retval = -ENOMEM; 1411 mm = dup_mm(tsk, current->mm); 1412 if (!mm) 1413 goto fail_nomem; 1414 1415 good_mm: 1416 tsk->mm = mm; 1417 tsk->active_mm = mm; 1418 return 0; 1419 1420 fail_nomem: 1421 return retval; 1422 } 1423 1424 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1425 { 1426 struct fs_struct *fs = current->fs; 1427 if (clone_flags & CLONE_FS) { 1428 /* tsk->fs is already what we want */ 1429 spin_lock(&fs->lock); 1430 if (fs->in_exec) { 1431 spin_unlock(&fs->lock); 1432 return -EAGAIN; 1433 } 1434 fs->users++; 1435 spin_unlock(&fs->lock); 1436 return 0; 1437 } 1438 tsk->fs = copy_fs_struct(fs); 1439 if (!tsk->fs) 1440 return -ENOMEM; 1441 return 0; 1442 } 1443 1444 static int copy_files(unsigned long clone_flags, struct task_struct *tsk) 1445 { 1446 struct files_struct *oldf, *newf; 1447 int error = 0; 1448 1449 /* 1450 * A background process may not have any files ... 1451 */ 1452 oldf = current->files; 1453 if (!oldf) 1454 goto out; 1455 1456 if (clone_flags & CLONE_FILES) { 1457 atomic_inc(&oldf->count); 1458 goto out; 1459 } 1460 1461 newf = dup_fd(oldf, NR_OPEN_MAX, &error); 1462 if (!newf) 1463 goto out; 1464 1465 tsk->files = newf; 1466 error = 0; 1467 out: 1468 return error; 1469 } 1470 1471 static int copy_io(unsigned long clone_flags, struct task_struct *tsk) 1472 { 1473 #ifdef CONFIG_BLOCK 1474 struct io_context *ioc = current->io_context; 1475 struct io_context *new_ioc; 1476 1477 if (!ioc) 1478 return 0; 1479 /* 1480 * Share io context with parent, if CLONE_IO is set 1481 */ 1482 if (clone_flags & CLONE_IO) { 1483 ioc_task_link(ioc); 1484 tsk->io_context = ioc; 1485 } else if (ioprio_valid(ioc->ioprio)) { 1486 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE); 1487 if (unlikely(!new_ioc)) 1488 return -ENOMEM; 1489 1490 new_ioc->ioprio = ioc->ioprio; 1491 put_io_context(new_ioc); 1492 } 1493 #endif 1494 return 0; 1495 } 1496 1497 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1498 { 1499 struct sighand_struct *sig; 1500 1501 if (clone_flags & CLONE_SIGHAND) { 1502 refcount_inc(¤t->sighand->count); 1503 return 0; 1504 } 1505 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1506 RCU_INIT_POINTER(tsk->sighand, sig); 1507 if (!sig) 1508 return -ENOMEM; 1509 1510 refcount_set(&sig->count, 1); 1511 spin_lock_irq(¤t->sighand->siglock); 1512 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1513 spin_unlock_irq(¤t->sighand->siglock); 1514 1515 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */ 1516 if (clone_flags & CLONE_CLEAR_SIGHAND) 1517 flush_signal_handlers(tsk, 0); 1518 1519 return 0; 1520 } 1521 1522 void __cleanup_sighand(struct sighand_struct *sighand) 1523 { 1524 if (refcount_dec_and_test(&sighand->count)) { 1525 signalfd_cleanup(sighand); 1526 /* 1527 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1528 * without an RCU grace period, see __lock_task_sighand(). 1529 */ 1530 kmem_cache_free(sighand_cachep, sighand); 1531 } 1532 } 1533 1534 /* 1535 * Initialize POSIX timer handling for a thread group. 1536 */ 1537 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1538 { 1539 struct posix_cputimers *pct = &sig->posix_cputimers; 1540 unsigned long cpu_limit; 1541 1542 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1543 posix_cputimers_group_init(pct, cpu_limit); 1544 } 1545 1546 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1547 { 1548 struct signal_struct *sig; 1549 1550 if (clone_flags & CLONE_THREAD) 1551 return 0; 1552 1553 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1554 tsk->signal = sig; 1555 if (!sig) 1556 return -ENOMEM; 1557 1558 sig->nr_threads = 1; 1559 atomic_set(&sig->live, 1); 1560 refcount_set(&sig->sigcnt, 1); 1561 1562 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1563 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1564 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1565 1566 init_waitqueue_head(&sig->wait_chldexit); 1567 sig->curr_target = tsk; 1568 init_sigpending(&sig->shared_pending); 1569 INIT_HLIST_HEAD(&sig->multiprocess); 1570 seqlock_init(&sig->stats_lock); 1571 prev_cputime_init(&sig->prev_cputime); 1572 1573 #ifdef CONFIG_POSIX_TIMERS 1574 INIT_LIST_HEAD(&sig->posix_timers); 1575 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1576 sig->real_timer.function = it_real_fn; 1577 #endif 1578 1579 task_lock(current->group_leader); 1580 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1581 task_unlock(current->group_leader); 1582 1583 posix_cpu_timers_init_group(sig); 1584 1585 tty_audit_fork(sig); 1586 sched_autogroup_fork(sig); 1587 1588 sig->oom_score_adj = current->signal->oom_score_adj; 1589 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1590 1591 mutex_init(&sig->cred_guard_mutex); 1592 mutex_init(&sig->exec_update_mutex); 1593 1594 return 0; 1595 } 1596 1597 static void copy_seccomp(struct task_struct *p) 1598 { 1599 #ifdef CONFIG_SECCOMP 1600 /* 1601 * Must be called with sighand->lock held, which is common to 1602 * all threads in the group. Holding cred_guard_mutex is not 1603 * needed because this new task is not yet running and cannot 1604 * be racing exec. 1605 */ 1606 assert_spin_locked(¤t->sighand->siglock); 1607 1608 /* Ref-count the new filter user, and assign it. */ 1609 get_seccomp_filter(current); 1610 p->seccomp = current->seccomp; 1611 1612 /* 1613 * Explicitly enable no_new_privs here in case it got set 1614 * between the task_struct being duplicated and holding the 1615 * sighand lock. The seccomp state and nnp must be in sync. 1616 */ 1617 if (task_no_new_privs(current)) 1618 task_set_no_new_privs(p); 1619 1620 /* 1621 * If the parent gained a seccomp mode after copying thread 1622 * flags and between before we held the sighand lock, we have 1623 * to manually enable the seccomp thread flag here. 1624 */ 1625 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1626 set_tsk_thread_flag(p, TIF_SECCOMP); 1627 #endif 1628 } 1629 1630 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1631 { 1632 current->clear_child_tid = tidptr; 1633 1634 return task_pid_vnr(current); 1635 } 1636 1637 static void rt_mutex_init_task(struct task_struct *p) 1638 { 1639 raw_spin_lock_init(&p->pi_lock); 1640 #ifdef CONFIG_RT_MUTEXES 1641 p->pi_waiters = RB_ROOT_CACHED; 1642 p->pi_top_task = NULL; 1643 p->pi_blocked_on = NULL; 1644 #endif 1645 } 1646 1647 static inline void init_task_pid_links(struct task_struct *task) 1648 { 1649 enum pid_type type; 1650 1651 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 1652 INIT_HLIST_NODE(&task->pid_links[type]); 1653 } 1654 } 1655 1656 static inline void 1657 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1658 { 1659 if (type == PIDTYPE_PID) 1660 task->thread_pid = pid; 1661 else 1662 task->signal->pids[type] = pid; 1663 } 1664 1665 static inline void rcu_copy_process(struct task_struct *p) 1666 { 1667 #ifdef CONFIG_PREEMPT_RCU 1668 p->rcu_read_lock_nesting = 0; 1669 p->rcu_read_unlock_special.s = 0; 1670 p->rcu_blocked_node = NULL; 1671 INIT_LIST_HEAD(&p->rcu_node_entry); 1672 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1673 #ifdef CONFIG_TASKS_RCU 1674 p->rcu_tasks_holdout = false; 1675 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1676 p->rcu_tasks_idle_cpu = -1; 1677 #endif /* #ifdef CONFIG_TASKS_RCU */ 1678 #ifdef CONFIG_TASKS_TRACE_RCU 1679 p->trc_reader_nesting = 0; 1680 p->trc_reader_special.s = 0; 1681 INIT_LIST_HEAD(&p->trc_holdout_list); 1682 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1683 } 1684 1685 struct pid *pidfd_pid(const struct file *file) 1686 { 1687 if (file->f_op == &pidfd_fops) 1688 return file->private_data; 1689 1690 return ERR_PTR(-EBADF); 1691 } 1692 1693 static int pidfd_release(struct inode *inode, struct file *file) 1694 { 1695 struct pid *pid = file->private_data; 1696 1697 file->private_data = NULL; 1698 put_pid(pid); 1699 return 0; 1700 } 1701 1702 #ifdef CONFIG_PROC_FS 1703 /** 1704 * pidfd_show_fdinfo - print information about a pidfd 1705 * @m: proc fdinfo file 1706 * @f: file referencing a pidfd 1707 * 1708 * Pid: 1709 * This function will print the pid that a given pidfd refers to in the 1710 * pid namespace of the procfs instance. 1711 * If the pid namespace of the process is not a descendant of the pid 1712 * namespace of the procfs instance 0 will be shown as its pid. This is 1713 * similar to calling getppid() on a process whose parent is outside of 1714 * its pid namespace. 1715 * 1716 * NSpid: 1717 * If pid namespaces are supported then this function will also print 1718 * the pid of a given pidfd refers to for all descendant pid namespaces 1719 * starting from the current pid namespace of the instance, i.e. the 1720 * Pid field and the first entry in the NSpid field will be identical. 1721 * If the pid namespace of the process is not a descendant of the pid 1722 * namespace of the procfs instance 0 will be shown as its first NSpid 1723 * entry and no others will be shown. 1724 * Note that this differs from the Pid and NSpid fields in 1725 * /proc/<pid>/status where Pid and NSpid are always shown relative to 1726 * the pid namespace of the procfs instance. The difference becomes 1727 * obvious when sending around a pidfd between pid namespaces from a 1728 * different branch of the tree, i.e. where no ancestoral relation is 1729 * present between the pid namespaces: 1730 * - create two new pid namespaces ns1 and ns2 in the initial pid 1731 * namespace (also take care to create new mount namespaces in the 1732 * new pid namespace and mount procfs) 1733 * - create a process with a pidfd in ns1 1734 * - send pidfd from ns1 to ns2 1735 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid 1736 * have exactly one entry, which is 0 1737 */ 1738 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f) 1739 { 1740 struct pid *pid = f->private_data; 1741 struct pid_namespace *ns; 1742 pid_t nr = -1; 1743 1744 if (likely(pid_has_task(pid, PIDTYPE_PID))) { 1745 ns = proc_pid_ns(file_inode(m->file)->i_sb); 1746 nr = pid_nr_ns(pid, ns); 1747 } 1748 1749 seq_put_decimal_ll(m, "Pid:\t", nr); 1750 1751 #ifdef CONFIG_PID_NS 1752 seq_put_decimal_ll(m, "\nNSpid:\t", nr); 1753 if (nr > 0) { 1754 int i; 1755 1756 /* If nr is non-zero it means that 'pid' is valid and that 1757 * ns, i.e. the pid namespace associated with the procfs 1758 * instance, is in the pid namespace hierarchy of pid. 1759 * Start at one below the already printed level. 1760 */ 1761 for (i = ns->level + 1; i <= pid->level; i++) 1762 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr); 1763 } 1764 #endif 1765 seq_putc(m, '\n'); 1766 } 1767 #endif 1768 1769 /* 1770 * Poll support for process exit notification. 1771 */ 1772 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts) 1773 { 1774 struct pid *pid = file->private_data; 1775 __poll_t poll_flags = 0; 1776 1777 poll_wait(file, &pid->wait_pidfd, pts); 1778 1779 /* 1780 * Inform pollers only when the whole thread group exits. 1781 * If the thread group leader exits before all other threads in the 1782 * group, then poll(2) should block, similar to the wait(2) family. 1783 */ 1784 if (thread_group_exited(pid)) 1785 poll_flags = EPOLLIN | EPOLLRDNORM; 1786 1787 return poll_flags; 1788 } 1789 1790 const struct file_operations pidfd_fops = { 1791 .release = pidfd_release, 1792 .poll = pidfd_poll, 1793 #ifdef CONFIG_PROC_FS 1794 .show_fdinfo = pidfd_show_fdinfo, 1795 #endif 1796 }; 1797 1798 static void __delayed_free_task(struct rcu_head *rhp) 1799 { 1800 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 1801 1802 free_task(tsk); 1803 } 1804 1805 static __always_inline void delayed_free_task(struct task_struct *tsk) 1806 { 1807 if (IS_ENABLED(CONFIG_MEMCG)) 1808 call_rcu(&tsk->rcu, __delayed_free_task); 1809 else 1810 free_task(tsk); 1811 } 1812 1813 /* 1814 * This creates a new process as a copy of the old one, 1815 * but does not actually start it yet. 1816 * 1817 * It copies the registers, and all the appropriate 1818 * parts of the process environment (as per the clone 1819 * flags). The actual kick-off is left to the caller. 1820 */ 1821 static __latent_entropy struct task_struct *copy_process( 1822 struct pid *pid, 1823 int trace, 1824 int node, 1825 struct kernel_clone_args *args) 1826 { 1827 int pidfd = -1, retval; 1828 struct task_struct *p; 1829 struct multiprocess_signals delayed; 1830 struct file *pidfile = NULL; 1831 u64 clone_flags = args->flags; 1832 struct nsproxy *nsp = current->nsproxy; 1833 1834 /* 1835 * Don't allow sharing the root directory with processes in a different 1836 * namespace 1837 */ 1838 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 1839 return ERR_PTR(-EINVAL); 1840 1841 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 1842 return ERR_PTR(-EINVAL); 1843 1844 /* 1845 * Thread groups must share signals as well, and detached threads 1846 * can only be started up within the thread group. 1847 */ 1848 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 1849 return ERR_PTR(-EINVAL); 1850 1851 /* 1852 * Shared signal handlers imply shared VM. By way of the above, 1853 * thread groups also imply shared VM. Blocking this case allows 1854 * for various simplifications in other code. 1855 */ 1856 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 1857 return ERR_PTR(-EINVAL); 1858 1859 /* 1860 * Siblings of global init remain as zombies on exit since they are 1861 * not reaped by their parent (swapper). To solve this and to avoid 1862 * multi-rooted process trees, prevent global and container-inits 1863 * from creating siblings. 1864 */ 1865 if ((clone_flags & CLONE_PARENT) && 1866 current->signal->flags & SIGNAL_UNKILLABLE) 1867 return ERR_PTR(-EINVAL); 1868 1869 /* 1870 * If the new process will be in a different pid or user namespace 1871 * do not allow it to share a thread group with the forking task. 1872 */ 1873 if (clone_flags & CLONE_THREAD) { 1874 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 1875 (task_active_pid_ns(current) != nsp->pid_ns_for_children)) 1876 return ERR_PTR(-EINVAL); 1877 } 1878 1879 /* 1880 * If the new process will be in a different time namespace 1881 * do not allow it to share VM or a thread group with the forking task. 1882 */ 1883 if (clone_flags & (CLONE_THREAD | CLONE_VM)) { 1884 if (nsp->time_ns != nsp->time_ns_for_children) 1885 return ERR_PTR(-EINVAL); 1886 } 1887 1888 if (clone_flags & CLONE_PIDFD) { 1889 /* 1890 * - CLONE_DETACHED is blocked so that we can potentially 1891 * reuse it later for CLONE_PIDFD. 1892 * - CLONE_THREAD is blocked until someone really needs it. 1893 */ 1894 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD)) 1895 return ERR_PTR(-EINVAL); 1896 } 1897 1898 /* 1899 * Force any signals received before this point to be delivered 1900 * before the fork happens. Collect up signals sent to multiple 1901 * processes that happen during the fork and delay them so that 1902 * they appear to happen after the fork. 1903 */ 1904 sigemptyset(&delayed.signal); 1905 INIT_HLIST_NODE(&delayed.node); 1906 1907 spin_lock_irq(¤t->sighand->siglock); 1908 if (!(clone_flags & CLONE_THREAD)) 1909 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 1910 recalc_sigpending(); 1911 spin_unlock_irq(¤t->sighand->siglock); 1912 retval = -ERESTARTNOINTR; 1913 if (signal_pending(current)) 1914 goto fork_out; 1915 1916 retval = -ENOMEM; 1917 p = dup_task_struct(current, node); 1918 if (!p) 1919 goto fork_out; 1920 1921 /* 1922 * This _must_ happen before we call free_task(), i.e. before we jump 1923 * to any of the bad_fork_* labels. This is to avoid freeing 1924 * p->set_child_tid which is (ab)used as a kthread's data pointer for 1925 * kernel threads (PF_KTHREAD). 1926 */ 1927 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; 1928 /* 1929 * Clear TID on mm_release()? 1930 */ 1931 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; 1932 1933 ftrace_graph_init_task(p); 1934 1935 rt_mutex_init_task(p); 1936 1937 lockdep_assert_irqs_enabled(); 1938 #ifdef CONFIG_PROVE_LOCKING 1939 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 1940 #endif 1941 retval = -EAGAIN; 1942 if (atomic_read(&p->real_cred->user->processes) >= 1943 task_rlimit(p, RLIMIT_NPROC)) { 1944 if (p->real_cred->user != INIT_USER && 1945 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 1946 goto bad_fork_free; 1947 } 1948 current->flags &= ~PF_NPROC_EXCEEDED; 1949 1950 retval = copy_creds(p, clone_flags); 1951 if (retval < 0) 1952 goto bad_fork_free; 1953 1954 /* 1955 * If multiple threads are within copy_process(), then this check 1956 * triggers too late. This doesn't hurt, the check is only there 1957 * to stop root fork bombs. 1958 */ 1959 retval = -EAGAIN; 1960 if (data_race(nr_threads >= max_threads)) 1961 goto bad_fork_cleanup_count; 1962 1963 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 1964 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE); 1965 p->flags |= PF_FORKNOEXEC; 1966 INIT_LIST_HEAD(&p->children); 1967 INIT_LIST_HEAD(&p->sibling); 1968 rcu_copy_process(p); 1969 p->vfork_done = NULL; 1970 spin_lock_init(&p->alloc_lock); 1971 1972 init_sigpending(&p->pending); 1973 1974 p->utime = p->stime = p->gtime = 0; 1975 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 1976 p->utimescaled = p->stimescaled = 0; 1977 #endif 1978 prev_cputime_init(&p->prev_cputime); 1979 1980 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1981 seqcount_init(&p->vtime.seqcount); 1982 p->vtime.starttime = 0; 1983 p->vtime.state = VTIME_INACTIVE; 1984 #endif 1985 1986 #if defined(SPLIT_RSS_COUNTING) 1987 memset(&p->rss_stat, 0, sizeof(p->rss_stat)); 1988 #endif 1989 1990 p->default_timer_slack_ns = current->timer_slack_ns; 1991 1992 #ifdef CONFIG_PSI 1993 p->psi_flags = 0; 1994 #endif 1995 1996 task_io_accounting_init(&p->ioac); 1997 acct_clear_integrals(p); 1998 1999 posix_cputimers_init(&p->posix_cputimers); 2000 2001 p->io_context = NULL; 2002 audit_set_context(p, NULL); 2003 cgroup_fork(p); 2004 #ifdef CONFIG_NUMA 2005 p->mempolicy = mpol_dup(p->mempolicy); 2006 if (IS_ERR(p->mempolicy)) { 2007 retval = PTR_ERR(p->mempolicy); 2008 p->mempolicy = NULL; 2009 goto bad_fork_cleanup_threadgroup_lock; 2010 } 2011 #endif 2012 #ifdef CONFIG_CPUSETS 2013 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 2014 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 2015 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock); 2016 #endif 2017 #ifdef CONFIG_TRACE_IRQFLAGS 2018 memset(&p->irqtrace, 0, sizeof(p->irqtrace)); 2019 p->irqtrace.hardirq_disable_ip = _THIS_IP_; 2020 p->irqtrace.softirq_enable_ip = _THIS_IP_; 2021 p->softirqs_enabled = 1; 2022 p->softirq_context = 0; 2023 #endif 2024 2025 p->pagefault_disabled = 0; 2026 2027 #ifdef CONFIG_LOCKDEP 2028 lockdep_init_task(p); 2029 #endif 2030 2031 #ifdef CONFIG_DEBUG_MUTEXES 2032 p->blocked_on = NULL; /* not blocked yet */ 2033 #endif 2034 #ifdef CONFIG_BCACHE 2035 p->sequential_io = 0; 2036 p->sequential_io_avg = 0; 2037 #endif 2038 2039 /* Perform scheduler related setup. Assign this task to a CPU. */ 2040 retval = sched_fork(clone_flags, p); 2041 if (retval) 2042 goto bad_fork_cleanup_policy; 2043 2044 retval = perf_event_init_task(p); 2045 if (retval) 2046 goto bad_fork_cleanup_policy; 2047 retval = audit_alloc(p); 2048 if (retval) 2049 goto bad_fork_cleanup_perf; 2050 /* copy all the process information */ 2051 shm_init_task(p); 2052 retval = security_task_alloc(p, clone_flags); 2053 if (retval) 2054 goto bad_fork_cleanup_audit; 2055 retval = copy_semundo(clone_flags, p); 2056 if (retval) 2057 goto bad_fork_cleanup_security; 2058 retval = copy_files(clone_flags, p); 2059 if (retval) 2060 goto bad_fork_cleanup_semundo; 2061 retval = copy_fs(clone_flags, p); 2062 if (retval) 2063 goto bad_fork_cleanup_files; 2064 retval = copy_sighand(clone_flags, p); 2065 if (retval) 2066 goto bad_fork_cleanup_fs; 2067 retval = copy_signal(clone_flags, p); 2068 if (retval) 2069 goto bad_fork_cleanup_sighand; 2070 retval = copy_mm(clone_flags, p); 2071 if (retval) 2072 goto bad_fork_cleanup_signal; 2073 retval = copy_namespaces(clone_flags, p); 2074 if (retval) 2075 goto bad_fork_cleanup_mm; 2076 retval = copy_io(clone_flags, p); 2077 if (retval) 2078 goto bad_fork_cleanup_namespaces; 2079 retval = copy_thread(clone_flags, args->stack, args->stack_size, p, args->tls); 2080 if (retval) 2081 goto bad_fork_cleanup_io; 2082 2083 stackleak_task_init(p); 2084 2085 if (pid != &init_struct_pid) { 2086 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid, 2087 args->set_tid_size); 2088 if (IS_ERR(pid)) { 2089 retval = PTR_ERR(pid); 2090 goto bad_fork_cleanup_thread; 2091 } 2092 } 2093 2094 /* 2095 * This has to happen after we've potentially unshared the file 2096 * descriptor table (so that the pidfd doesn't leak into the child 2097 * if the fd table isn't shared). 2098 */ 2099 if (clone_flags & CLONE_PIDFD) { 2100 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 2101 if (retval < 0) 2102 goto bad_fork_free_pid; 2103 2104 pidfd = retval; 2105 2106 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid, 2107 O_RDWR | O_CLOEXEC); 2108 if (IS_ERR(pidfile)) { 2109 put_unused_fd(pidfd); 2110 retval = PTR_ERR(pidfile); 2111 goto bad_fork_free_pid; 2112 } 2113 get_pid(pid); /* held by pidfile now */ 2114 2115 retval = put_user(pidfd, args->pidfd); 2116 if (retval) 2117 goto bad_fork_put_pidfd; 2118 } 2119 2120 #ifdef CONFIG_BLOCK 2121 p->plug = NULL; 2122 #endif 2123 futex_init_task(p); 2124 2125 /* 2126 * sigaltstack should be cleared when sharing the same VM 2127 */ 2128 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2129 sas_ss_reset(p); 2130 2131 /* 2132 * Syscall tracing and stepping should be turned off in the 2133 * child regardless of CLONE_PTRACE. 2134 */ 2135 user_disable_single_step(p); 2136 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE); 2137 #ifdef TIF_SYSCALL_EMU 2138 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU); 2139 #endif 2140 clear_tsk_latency_tracing(p); 2141 2142 /* ok, now we should be set up.. */ 2143 p->pid = pid_nr(pid); 2144 if (clone_flags & CLONE_THREAD) { 2145 p->exit_signal = -1; 2146 p->group_leader = current->group_leader; 2147 p->tgid = current->tgid; 2148 } else { 2149 if (clone_flags & CLONE_PARENT) 2150 p->exit_signal = current->group_leader->exit_signal; 2151 else 2152 p->exit_signal = args->exit_signal; 2153 p->group_leader = p; 2154 p->tgid = p->pid; 2155 } 2156 2157 p->nr_dirtied = 0; 2158 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2159 p->dirty_paused_when = 0; 2160 2161 p->pdeath_signal = 0; 2162 INIT_LIST_HEAD(&p->thread_group); 2163 p->task_works = NULL; 2164 2165 /* 2166 * Ensure that the cgroup subsystem policies allow the new process to be 2167 * forked. It should be noted the the new process's css_set can be changed 2168 * between here and cgroup_post_fork() if an organisation operation is in 2169 * progress. 2170 */ 2171 retval = cgroup_can_fork(p, args); 2172 if (retval) 2173 goto bad_fork_put_pidfd; 2174 2175 /* 2176 * From this point on we must avoid any synchronous user-space 2177 * communication until we take the tasklist-lock. In particular, we do 2178 * not want user-space to be able to predict the process start-time by 2179 * stalling fork(2) after we recorded the start_time but before it is 2180 * visible to the system. 2181 */ 2182 2183 p->start_time = ktime_get_ns(); 2184 p->start_boottime = ktime_get_boottime_ns(); 2185 2186 /* 2187 * Make it visible to the rest of the system, but dont wake it up yet. 2188 * Need tasklist lock for parent etc handling! 2189 */ 2190 write_lock_irq(&tasklist_lock); 2191 2192 /* CLONE_PARENT re-uses the old parent */ 2193 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2194 p->real_parent = current->real_parent; 2195 p->parent_exec_id = current->parent_exec_id; 2196 } else { 2197 p->real_parent = current; 2198 p->parent_exec_id = current->self_exec_id; 2199 } 2200 2201 klp_copy_process(p); 2202 2203 spin_lock(¤t->sighand->siglock); 2204 2205 /* 2206 * Copy seccomp details explicitly here, in case they were changed 2207 * before holding sighand lock. 2208 */ 2209 copy_seccomp(p); 2210 2211 rseq_fork(p, clone_flags); 2212 2213 /* Don't start children in a dying pid namespace */ 2214 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2215 retval = -ENOMEM; 2216 goto bad_fork_cancel_cgroup; 2217 } 2218 2219 /* Let kill terminate clone/fork in the middle */ 2220 if (fatal_signal_pending(current)) { 2221 retval = -EINTR; 2222 goto bad_fork_cancel_cgroup; 2223 } 2224 2225 /* past the last point of failure */ 2226 if (pidfile) 2227 fd_install(pidfd, pidfile); 2228 2229 init_task_pid_links(p); 2230 if (likely(p->pid)) { 2231 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2232 2233 init_task_pid(p, PIDTYPE_PID, pid); 2234 if (thread_group_leader(p)) { 2235 init_task_pid(p, PIDTYPE_TGID, pid); 2236 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2237 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2238 2239 if (is_child_reaper(pid)) { 2240 ns_of_pid(pid)->child_reaper = p; 2241 p->signal->flags |= SIGNAL_UNKILLABLE; 2242 } 2243 p->signal->shared_pending.signal = delayed.signal; 2244 p->signal->tty = tty_kref_get(current->signal->tty); 2245 /* 2246 * Inherit has_child_subreaper flag under the same 2247 * tasklist_lock with adding child to the process tree 2248 * for propagate_has_child_subreaper optimization. 2249 */ 2250 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2251 p->real_parent->signal->is_child_subreaper; 2252 list_add_tail(&p->sibling, &p->real_parent->children); 2253 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2254 attach_pid(p, PIDTYPE_TGID); 2255 attach_pid(p, PIDTYPE_PGID); 2256 attach_pid(p, PIDTYPE_SID); 2257 __this_cpu_inc(process_counts); 2258 } else { 2259 current->signal->nr_threads++; 2260 atomic_inc(¤t->signal->live); 2261 refcount_inc(¤t->signal->sigcnt); 2262 task_join_group_stop(p); 2263 list_add_tail_rcu(&p->thread_group, 2264 &p->group_leader->thread_group); 2265 list_add_tail_rcu(&p->thread_node, 2266 &p->signal->thread_head); 2267 } 2268 attach_pid(p, PIDTYPE_PID); 2269 nr_threads++; 2270 } 2271 total_forks++; 2272 hlist_del_init(&delayed.node); 2273 spin_unlock(¤t->sighand->siglock); 2274 syscall_tracepoint_update(p); 2275 write_unlock_irq(&tasklist_lock); 2276 2277 proc_fork_connector(p); 2278 sched_post_fork(p); 2279 cgroup_post_fork(p, args); 2280 perf_event_fork(p); 2281 2282 trace_task_newtask(p, clone_flags); 2283 uprobe_copy_process(p, clone_flags); 2284 2285 return p; 2286 2287 bad_fork_cancel_cgroup: 2288 spin_unlock(¤t->sighand->siglock); 2289 write_unlock_irq(&tasklist_lock); 2290 cgroup_cancel_fork(p, args); 2291 bad_fork_put_pidfd: 2292 if (clone_flags & CLONE_PIDFD) { 2293 fput(pidfile); 2294 put_unused_fd(pidfd); 2295 } 2296 bad_fork_free_pid: 2297 if (pid != &init_struct_pid) 2298 free_pid(pid); 2299 bad_fork_cleanup_thread: 2300 exit_thread(p); 2301 bad_fork_cleanup_io: 2302 if (p->io_context) 2303 exit_io_context(p); 2304 bad_fork_cleanup_namespaces: 2305 exit_task_namespaces(p); 2306 bad_fork_cleanup_mm: 2307 if (p->mm) { 2308 mm_clear_owner(p->mm, p); 2309 mmput(p->mm); 2310 } 2311 bad_fork_cleanup_signal: 2312 if (!(clone_flags & CLONE_THREAD)) 2313 free_signal_struct(p->signal); 2314 bad_fork_cleanup_sighand: 2315 __cleanup_sighand(p->sighand); 2316 bad_fork_cleanup_fs: 2317 exit_fs(p); /* blocking */ 2318 bad_fork_cleanup_files: 2319 exit_files(p); /* blocking */ 2320 bad_fork_cleanup_semundo: 2321 exit_sem(p); 2322 bad_fork_cleanup_security: 2323 security_task_free(p); 2324 bad_fork_cleanup_audit: 2325 audit_free(p); 2326 bad_fork_cleanup_perf: 2327 perf_event_free_task(p); 2328 bad_fork_cleanup_policy: 2329 lockdep_free_task(p); 2330 #ifdef CONFIG_NUMA 2331 mpol_put(p->mempolicy); 2332 bad_fork_cleanup_threadgroup_lock: 2333 #endif 2334 delayacct_tsk_free(p); 2335 bad_fork_cleanup_count: 2336 atomic_dec(&p->cred->user->processes); 2337 exit_creds(p); 2338 bad_fork_free: 2339 p->state = TASK_DEAD; 2340 put_task_stack(p); 2341 delayed_free_task(p); 2342 fork_out: 2343 spin_lock_irq(¤t->sighand->siglock); 2344 hlist_del_init(&delayed.node); 2345 spin_unlock_irq(¤t->sighand->siglock); 2346 return ERR_PTR(retval); 2347 } 2348 2349 static inline void init_idle_pids(struct task_struct *idle) 2350 { 2351 enum pid_type type; 2352 2353 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2354 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2355 init_task_pid(idle, type, &init_struct_pid); 2356 } 2357 } 2358 2359 struct task_struct *fork_idle(int cpu) 2360 { 2361 struct task_struct *task; 2362 struct kernel_clone_args args = { 2363 .flags = CLONE_VM, 2364 }; 2365 2366 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); 2367 if (!IS_ERR(task)) { 2368 init_idle_pids(task); 2369 init_idle(task, cpu); 2370 } 2371 2372 return task; 2373 } 2374 2375 struct mm_struct *copy_init_mm(void) 2376 { 2377 return dup_mm(NULL, &init_mm); 2378 } 2379 2380 /* 2381 * Ok, this is the main fork-routine. 2382 * 2383 * It copies the process, and if successful kick-starts 2384 * it and waits for it to finish using the VM if required. 2385 * 2386 * args->exit_signal is expected to be checked for sanity by the caller. 2387 */ 2388 long _do_fork(struct kernel_clone_args *args) 2389 { 2390 u64 clone_flags = args->flags; 2391 struct completion vfork; 2392 struct pid *pid; 2393 struct task_struct *p; 2394 int trace = 0; 2395 long nr; 2396 2397 /* 2398 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument 2399 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are 2400 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate 2401 * field in struct clone_args and it still doesn't make sense to have 2402 * them both point at the same memory location. Performing this check 2403 * here has the advantage that we don't need to have a separate helper 2404 * to check for legacy clone(). 2405 */ 2406 if ((args->flags & CLONE_PIDFD) && 2407 (args->flags & CLONE_PARENT_SETTID) && 2408 (args->pidfd == args->parent_tid)) 2409 return -EINVAL; 2410 2411 /* 2412 * Determine whether and which event to report to ptracer. When 2413 * called from kernel_thread or CLONE_UNTRACED is explicitly 2414 * requested, no event is reported; otherwise, report if the event 2415 * for the type of forking is enabled. 2416 */ 2417 if (!(clone_flags & CLONE_UNTRACED)) { 2418 if (clone_flags & CLONE_VFORK) 2419 trace = PTRACE_EVENT_VFORK; 2420 else if (args->exit_signal != SIGCHLD) 2421 trace = PTRACE_EVENT_CLONE; 2422 else 2423 trace = PTRACE_EVENT_FORK; 2424 2425 if (likely(!ptrace_event_enabled(current, trace))) 2426 trace = 0; 2427 } 2428 2429 p = copy_process(NULL, trace, NUMA_NO_NODE, args); 2430 add_latent_entropy(); 2431 2432 if (IS_ERR(p)) 2433 return PTR_ERR(p); 2434 2435 /* 2436 * Do this prior waking up the new thread - the thread pointer 2437 * might get invalid after that point, if the thread exits quickly. 2438 */ 2439 trace_sched_process_fork(current, p); 2440 2441 pid = get_task_pid(p, PIDTYPE_PID); 2442 nr = pid_vnr(pid); 2443 2444 if (clone_flags & CLONE_PARENT_SETTID) 2445 put_user(nr, args->parent_tid); 2446 2447 if (clone_flags & CLONE_VFORK) { 2448 p->vfork_done = &vfork; 2449 init_completion(&vfork); 2450 get_task_struct(p); 2451 } 2452 2453 wake_up_new_task(p); 2454 2455 /* forking complete and child started to run, tell ptracer */ 2456 if (unlikely(trace)) 2457 ptrace_event_pid(trace, pid); 2458 2459 if (clone_flags & CLONE_VFORK) { 2460 if (!wait_for_vfork_done(p, &vfork)) 2461 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2462 } 2463 2464 put_pid(pid); 2465 return nr; 2466 } 2467 2468 /* 2469 * Create a kernel thread. 2470 */ 2471 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) 2472 { 2473 struct kernel_clone_args args = { 2474 .flags = ((lower_32_bits(flags) | CLONE_VM | 2475 CLONE_UNTRACED) & ~CSIGNAL), 2476 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2477 .stack = (unsigned long)fn, 2478 .stack_size = (unsigned long)arg, 2479 }; 2480 2481 return _do_fork(&args); 2482 } 2483 2484 #ifdef __ARCH_WANT_SYS_FORK 2485 SYSCALL_DEFINE0(fork) 2486 { 2487 #ifdef CONFIG_MMU 2488 struct kernel_clone_args args = { 2489 .exit_signal = SIGCHLD, 2490 }; 2491 2492 return _do_fork(&args); 2493 #else 2494 /* can not support in nommu mode */ 2495 return -EINVAL; 2496 #endif 2497 } 2498 #endif 2499 2500 #ifdef __ARCH_WANT_SYS_VFORK 2501 SYSCALL_DEFINE0(vfork) 2502 { 2503 struct kernel_clone_args args = { 2504 .flags = CLONE_VFORK | CLONE_VM, 2505 .exit_signal = SIGCHLD, 2506 }; 2507 2508 return _do_fork(&args); 2509 } 2510 #endif 2511 2512 #ifdef __ARCH_WANT_SYS_CLONE 2513 #ifdef CONFIG_CLONE_BACKWARDS 2514 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2515 int __user *, parent_tidptr, 2516 unsigned long, tls, 2517 int __user *, child_tidptr) 2518 #elif defined(CONFIG_CLONE_BACKWARDS2) 2519 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 2520 int __user *, parent_tidptr, 2521 int __user *, child_tidptr, 2522 unsigned long, tls) 2523 #elif defined(CONFIG_CLONE_BACKWARDS3) 2524 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 2525 int, stack_size, 2526 int __user *, parent_tidptr, 2527 int __user *, child_tidptr, 2528 unsigned long, tls) 2529 #else 2530 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2531 int __user *, parent_tidptr, 2532 int __user *, child_tidptr, 2533 unsigned long, tls) 2534 #endif 2535 { 2536 struct kernel_clone_args args = { 2537 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), 2538 .pidfd = parent_tidptr, 2539 .child_tid = child_tidptr, 2540 .parent_tid = parent_tidptr, 2541 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), 2542 .stack = newsp, 2543 .tls = tls, 2544 }; 2545 2546 return _do_fork(&args); 2547 } 2548 #endif 2549 2550 #ifdef __ARCH_WANT_SYS_CLONE3 2551 2552 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs, 2553 struct clone_args __user *uargs, 2554 size_t usize) 2555 { 2556 int err; 2557 struct clone_args args; 2558 pid_t *kset_tid = kargs->set_tid; 2559 2560 BUILD_BUG_ON(offsetofend(struct clone_args, tls) != 2561 CLONE_ARGS_SIZE_VER0); 2562 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) != 2563 CLONE_ARGS_SIZE_VER1); 2564 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) != 2565 CLONE_ARGS_SIZE_VER2); 2566 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2); 2567 2568 if (unlikely(usize > PAGE_SIZE)) 2569 return -E2BIG; 2570 if (unlikely(usize < CLONE_ARGS_SIZE_VER0)) 2571 return -EINVAL; 2572 2573 err = copy_struct_from_user(&args, sizeof(args), uargs, usize); 2574 if (err) 2575 return err; 2576 2577 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL)) 2578 return -EINVAL; 2579 2580 if (unlikely(!args.set_tid && args.set_tid_size > 0)) 2581 return -EINVAL; 2582 2583 if (unlikely(args.set_tid && args.set_tid_size == 0)) 2584 return -EINVAL; 2585 2586 /* 2587 * Verify that higher 32bits of exit_signal are unset and that 2588 * it is a valid signal 2589 */ 2590 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || 2591 !valid_signal(args.exit_signal))) 2592 return -EINVAL; 2593 2594 if ((args.flags & CLONE_INTO_CGROUP) && 2595 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2)) 2596 return -EINVAL; 2597 2598 *kargs = (struct kernel_clone_args){ 2599 .flags = args.flags, 2600 .pidfd = u64_to_user_ptr(args.pidfd), 2601 .child_tid = u64_to_user_ptr(args.child_tid), 2602 .parent_tid = u64_to_user_ptr(args.parent_tid), 2603 .exit_signal = args.exit_signal, 2604 .stack = args.stack, 2605 .stack_size = args.stack_size, 2606 .tls = args.tls, 2607 .set_tid_size = args.set_tid_size, 2608 .cgroup = args.cgroup, 2609 }; 2610 2611 if (args.set_tid && 2612 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid), 2613 (kargs->set_tid_size * sizeof(pid_t)))) 2614 return -EFAULT; 2615 2616 kargs->set_tid = kset_tid; 2617 2618 return 0; 2619 } 2620 2621 /** 2622 * clone3_stack_valid - check and prepare stack 2623 * @kargs: kernel clone args 2624 * 2625 * Verify that the stack arguments userspace gave us are sane. 2626 * In addition, set the stack direction for userspace since it's easy for us to 2627 * determine. 2628 */ 2629 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs) 2630 { 2631 if (kargs->stack == 0) { 2632 if (kargs->stack_size > 0) 2633 return false; 2634 } else { 2635 if (kargs->stack_size == 0) 2636 return false; 2637 2638 if (!access_ok((void __user *)kargs->stack, kargs->stack_size)) 2639 return false; 2640 2641 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64) 2642 kargs->stack += kargs->stack_size; 2643 #endif 2644 } 2645 2646 return true; 2647 } 2648 2649 static bool clone3_args_valid(struct kernel_clone_args *kargs) 2650 { 2651 /* Verify that no unknown flags are passed along. */ 2652 if (kargs->flags & 2653 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP)) 2654 return false; 2655 2656 /* 2657 * - make the CLONE_DETACHED bit reuseable for clone3 2658 * - make the CSIGNAL bits reuseable for clone3 2659 */ 2660 if (kargs->flags & (CLONE_DETACHED | CSIGNAL)) 2661 return false; 2662 2663 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) == 2664 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) 2665 return false; 2666 2667 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && 2668 kargs->exit_signal) 2669 return false; 2670 2671 if (!clone3_stack_valid(kargs)) 2672 return false; 2673 2674 return true; 2675 } 2676 2677 /** 2678 * clone3 - create a new process with specific properties 2679 * @uargs: argument structure 2680 * @size: size of @uargs 2681 * 2682 * clone3() is the extensible successor to clone()/clone2(). 2683 * It takes a struct as argument that is versioned by its size. 2684 * 2685 * Return: On success, a positive PID for the child process. 2686 * On error, a negative errno number. 2687 */ 2688 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) 2689 { 2690 int err; 2691 2692 struct kernel_clone_args kargs; 2693 pid_t set_tid[MAX_PID_NS_LEVEL]; 2694 2695 kargs.set_tid = set_tid; 2696 2697 err = copy_clone_args_from_user(&kargs, uargs, size); 2698 if (err) 2699 return err; 2700 2701 if (!clone3_args_valid(&kargs)) 2702 return -EINVAL; 2703 2704 return _do_fork(&kargs); 2705 } 2706 #endif 2707 2708 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 2709 { 2710 struct task_struct *leader, *parent, *child; 2711 int res; 2712 2713 read_lock(&tasklist_lock); 2714 leader = top = top->group_leader; 2715 down: 2716 for_each_thread(leader, parent) { 2717 list_for_each_entry(child, &parent->children, sibling) { 2718 res = visitor(child, data); 2719 if (res) { 2720 if (res < 0) 2721 goto out; 2722 leader = child; 2723 goto down; 2724 } 2725 up: 2726 ; 2727 } 2728 } 2729 2730 if (leader != top) { 2731 child = leader; 2732 parent = child->real_parent; 2733 leader = parent->group_leader; 2734 goto up; 2735 } 2736 out: 2737 read_unlock(&tasklist_lock); 2738 } 2739 2740 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 2741 #define ARCH_MIN_MMSTRUCT_ALIGN 0 2742 #endif 2743 2744 static void sighand_ctor(void *data) 2745 { 2746 struct sighand_struct *sighand = data; 2747 2748 spin_lock_init(&sighand->siglock); 2749 init_waitqueue_head(&sighand->signalfd_wqh); 2750 } 2751 2752 void __init proc_caches_init(void) 2753 { 2754 unsigned int mm_size; 2755 2756 sighand_cachep = kmem_cache_create("sighand_cache", 2757 sizeof(struct sighand_struct), 0, 2758 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 2759 SLAB_ACCOUNT, sighand_ctor); 2760 signal_cachep = kmem_cache_create("signal_cache", 2761 sizeof(struct signal_struct), 0, 2762 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2763 NULL); 2764 files_cachep = kmem_cache_create("files_cache", 2765 sizeof(struct files_struct), 0, 2766 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2767 NULL); 2768 fs_cachep = kmem_cache_create("fs_cache", 2769 sizeof(struct fs_struct), 0, 2770 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2771 NULL); 2772 2773 /* 2774 * The mm_cpumask is located at the end of mm_struct, and is 2775 * dynamically sized based on the maximum CPU number this system 2776 * can have, taking hotplug into account (nr_cpu_ids). 2777 */ 2778 mm_size = sizeof(struct mm_struct) + cpumask_size(); 2779 2780 mm_cachep = kmem_cache_create_usercopy("mm_struct", 2781 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 2782 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2783 offsetof(struct mm_struct, saved_auxv), 2784 sizeof_field(struct mm_struct, saved_auxv), 2785 NULL); 2786 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT); 2787 mmap_init(); 2788 nsproxy_cache_init(); 2789 } 2790 2791 /* 2792 * Check constraints on flags passed to the unshare system call. 2793 */ 2794 static int check_unshare_flags(unsigned long unshare_flags) 2795 { 2796 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 2797 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 2798 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 2799 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP| 2800 CLONE_NEWTIME)) 2801 return -EINVAL; 2802 /* 2803 * Not implemented, but pretend it works if there is nothing 2804 * to unshare. Note that unsharing the address space or the 2805 * signal handlers also need to unshare the signal queues (aka 2806 * CLONE_THREAD). 2807 */ 2808 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 2809 if (!thread_group_empty(current)) 2810 return -EINVAL; 2811 } 2812 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 2813 if (refcount_read(¤t->sighand->count) > 1) 2814 return -EINVAL; 2815 } 2816 if (unshare_flags & CLONE_VM) { 2817 if (!current_is_single_threaded()) 2818 return -EINVAL; 2819 } 2820 2821 return 0; 2822 } 2823 2824 /* 2825 * Unshare the filesystem structure if it is being shared 2826 */ 2827 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 2828 { 2829 struct fs_struct *fs = current->fs; 2830 2831 if (!(unshare_flags & CLONE_FS) || !fs) 2832 return 0; 2833 2834 /* don't need lock here; in the worst case we'll do useless copy */ 2835 if (fs->users == 1) 2836 return 0; 2837 2838 *new_fsp = copy_fs_struct(fs); 2839 if (!*new_fsp) 2840 return -ENOMEM; 2841 2842 return 0; 2843 } 2844 2845 /* 2846 * Unshare file descriptor table if it is being shared 2847 */ 2848 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds, 2849 struct files_struct **new_fdp) 2850 { 2851 struct files_struct *fd = current->files; 2852 int error = 0; 2853 2854 if ((unshare_flags & CLONE_FILES) && 2855 (fd && atomic_read(&fd->count) > 1)) { 2856 *new_fdp = dup_fd(fd, max_fds, &error); 2857 if (!*new_fdp) 2858 return error; 2859 } 2860 2861 return 0; 2862 } 2863 2864 /* 2865 * unshare allows a process to 'unshare' part of the process 2866 * context which was originally shared using clone. copy_* 2867 * functions used by _do_fork() cannot be used here directly 2868 * because they modify an inactive task_struct that is being 2869 * constructed. Here we are modifying the current, active, 2870 * task_struct. 2871 */ 2872 int ksys_unshare(unsigned long unshare_flags) 2873 { 2874 struct fs_struct *fs, *new_fs = NULL; 2875 struct files_struct *fd, *new_fd = NULL; 2876 struct cred *new_cred = NULL; 2877 struct nsproxy *new_nsproxy = NULL; 2878 int do_sysvsem = 0; 2879 int err; 2880 2881 /* 2882 * If unsharing a user namespace must also unshare the thread group 2883 * and unshare the filesystem root and working directories. 2884 */ 2885 if (unshare_flags & CLONE_NEWUSER) 2886 unshare_flags |= CLONE_THREAD | CLONE_FS; 2887 /* 2888 * If unsharing vm, must also unshare signal handlers. 2889 */ 2890 if (unshare_flags & CLONE_VM) 2891 unshare_flags |= CLONE_SIGHAND; 2892 /* 2893 * If unsharing a signal handlers, must also unshare the signal queues. 2894 */ 2895 if (unshare_flags & CLONE_SIGHAND) 2896 unshare_flags |= CLONE_THREAD; 2897 /* 2898 * If unsharing namespace, must also unshare filesystem information. 2899 */ 2900 if (unshare_flags & CLONE_NEWNS) 2901 unshare_flags |= CLONE_FS; 2902 2903 err = check_unshare_flags(unshare_flags); 2904 if (err) 2905 goto bad_unshare_out; 2906 /* 2907 * CLONE_NEWIPC must also detach from the undolist: after switching 2908 * to a new ipc namespace, the semaphore arrays from the old 2909 * namespace are unreachable. 2910 */ 2911 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 2912 do_sysvsem = 1; 2913 err = unshare_fs(unshare_flags, &new_fs); 2914 if (err) 2915 goto bad_unshare_out; 2916 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd); 2917 if (err) 2918 goto bad_unshare_cleanup_fs; 2919 err = unshare_userns(unshare_flags, &new_cred); 2920 if (err) 2921 goto bad_unshare_cleanup_fd; 2922 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 2923 new_cred, new_fs); 2924 if (err) 2925 goto bad_unshare_cleanup_cred; 2926 2927 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 2928 if (do_sysvsem) { 2929 /* 2930 * CLONE_SYSVSEM is equivalent to sys_exit(). 2931 */ 2932 exit_sem(current); 2933 } 2934 if (unshare_flags & CLONE_NEWIPC) { 2935 /* Orphan segments in old ns (see sem above). */ 2936 exit_shm(current); 2937 shm_init_task(current); 2938 } 2939 2940 if (new_nsproxy) 2941 switch_task_namespaces(current, new_nsproxy); 2942 2943 task_lock(current); 2944 2945 if (new_fs) { 2946 fs = current->fs; 2947 spin_lock(&fs->lock); 2948 current->fs = new_fs; 2949 if (--fs->users) 2950 new_fs = NULL; 2951 else 2952 new_fs = fs; 2953 spin_unlock(&fs->lock); 2954 } 2955 2956 if (new_fd) { 2957 fd = current->files; 2958 current->files = new_fd; 2959 new_fd = fd; 2960 } 2961 2962 task_unlock(current); 2963 2964 if (new_cred) { 2965 /* Install the new user namespace */ 2966 commit_creds(new_cred); 2967 new_cred = NULL; 2968 } 2969 } 2970 2971 perf_event_namespaces(current); 2972 2973 bad_unshare_cleanup_cred: 2974 if (new_cred) 2975 put_cred(new_cred); 2976 bad_unshare_cleanup_fd: 2977 if (new_fd) 2978 put_files_struct(new_fd); 2979 2980 bad_unshare_cleanup_fs: 2981 if (new_fs) 2982 free_fs_struct(new_fs); 2983 2984 bad_unshare_out: 2985 return err; 2986 } 2987 2988 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 2989 { 2990 return ksys_unshare(unshare_flags); 2991 } 2992 2993 /* 2994 * Helper to unshare the files of the current task. 2995 * We don't want to expose copy_files internals to 2996 * the exec layer of the kernel. 2997 */ 2998 2999 int unshare_files(struct files_struct **displaced) 3000 { 3001 struct task_struct *task = current; 3002 struct files_struct *copy = NULL; 3003 int error; 3004 3005 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, ©); 3006 if (error || !copy) { 3007 *displaced = NULL; 3008 return error; 3009 } 3010 *displaced = task->files; 3011 task_lock(task); 3012 task->files = copy; 3013 task_unlock(task); 3014 return 0; 3015 } 3016 3017 int sysctl_max_threads(struct ctl_table *table, int write, 3018 void *buffer, size_t *lenp, loff_t *ppos) 3019 { 3020 struct ctl_table t; 3021 int ret; 3022 int threads = max_threads; 3023 int min = 1; 3024 int max = MAX_THREADS; 3025 3026 t = *table; 3027 t.data = &threads; 3028 t.extra1 = &min; 3029 t.extra2 = &max; 3030 3031 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3032 if (ret || !write) 3033 return ret; 3034 3035 max_threads = threads; 3036 3037 return 0; 3038 } 3039