xref: /openbmc/linux/kernel/fork.c (revision e5c86679)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/sched/autogroup.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/coredump.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/numa_balancing.h>
20 #include <linux/sched/stat.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/task_stack.h>
23 #include <linux/sched/cputime.h>
24 #include <linux/rtmutex.h>
25 #include <linux/init.h>
26 #include <linux/unistd.h>
27 #include <linux/module.h>
28 #include <linux/vmalloc.h>
29 #include <linux/completion.h>
30 #include <linux/personality.h>
31 #include <linux/mempolicy.h>
32 #include <linux/sem.h>
33 #include <linux/file.h>
34 #include <linux/fdtable.h>
35 #include <linux/iocontext.h>
36 #include <linux/key.h>
37 #include <linux/binfmts.h>
38 #include <linux/mman.h>
39 #include <linux/mmu_notifier.h>
40 #include <linux/fs.h>
41 #include <linux/mm.h>
42 #include <linux/vmacache.h>
43 #include <linux/nsproxy.h>
44 #include <linux/capability.h>
45 #include <linux/cpu.h>
46 #include <linux/cgroup.h>
47 #include <linux/security.h>
48 #include <linux/hugetlb.h>
49 #include <linux/seccomp.h>
50 #include <linux/swap.h>
51 #include <linux/syscalls.h>
52 #include <linux/jiffies.h>
53 #include <linux/futex.h>
54 #include <linux/compat.h>
55 #include <linux/kthread.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/rcupdate.h>
58 #include <linux/ptrace.h>
59 #include <linux/mount.h>
60 #include <linux/audit.h>
61 #include <linux/memcontrol.h>
62 #include <linux/ftrace.h>
63 #include <linux/proc_fs.h>
64 #include <linux/profile.h>
65 #include <linux/rmap.h>
66 #include <linux/ksm.h>
67 #include <linux/acct.h>
68 #include <linux/userfaultfd_k.h>
69 #include <linux/tsacct_kern.h>
70 #include <linux/cn_proc.h>
71 #include <linux/freezer.h>
72 #include <linux/delayacct.h>
73 #include <linux/taskstats_kern.h>
74 #include <linux/random.h>
75 #include <linux/tty.h>
76 #include <linux/blkdev.h>
77 #include <linux/fs_struct.h>
78 #include <linux/magic.h>
79 #include <linux/perf_event.h>
80 #include <linux/posix-timers.h>
81 #include <linux/user-return-notifier.h>
82 #include <linux/oom.h>
83 #include <linux/khugepaged.h>
84 #include <linux/signalfd.h>
85 #include <linux/uprobes.h>
86 #include <linux/aio.h>
87 #include <linux/compiler.h>
88 #include <linux/sysctl.h>
89 #include <linux/kcov.h>
90 
91 #include <asm/pgtable.h>
92 #include <asm/pgalloc.h>
93 #include <linux/uaccess.h>
94 #include <asm/mmu_context.h>
95 #include <asm/cacheflush.h>
96 #include <asm/tlbflush.h>
97 
98 #include <trace/events/sched.h>
99 
100 #define CREATE_TRACE_POINTS
101 #include <trace/events/task.h>
102 
103 /*
104  * Minimum number of threads to boot the kernel
105  */
106 #define MIN_THREADS 20
107 
108 /*
109  * Maximum number of threads
110  */
111 #define MAX_THREADS FUTEX_TID_MASK
112 
113 /*
114  * Protected counters by write_lock_irq(&tasklist_lock)
115  */
116 unsigned long total_forks;	/* Handle normal Linux uptimes. */
117 int nr_threads;			/* The idle threads do not count.. */
118 
119 int max_threads;		/* tunable limit on nr_threads */
120 
121 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
122 
123 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
124 
125 #ifdef CONFIG_PROVE_RCU
126 int lockdep_tasklist_lock_is_held(void)
127 {
128 	return lockdep_is_held(&tasklist_lock);
129 }
130 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
131 #endif /* #ifdef CONFIG_PROVE_RCU */
132 
133 int nr_processes(void)
134 {
135 	int cpu;
136 	int total = 0;
137 
138 	for_each_possible_cpu(cpu)
139 		total += per_cpu(process_counts, cpu);
140 
141 	return total;
142 }
143 
144 void __weak arch_release_task_struct(struct task_struct *tsk)
145 {
146 }
147 
148 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
149 static struct kmem_cache *task_struct_cachep;
150 
151 static inline struct task_struct *alloc_task_struct_node(int node)
152 {
153 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
154 }
155 
156 static inline void free_task_struct(struct task_struct *tsk)
157 {
158 	kmem_cache_free(task_struct_cachep, tsk);
159 }
160 #endif
161 
162 void __weak arch_release_thread_stack(unsigned long *stack)
163 {
164 }
165 
166 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
167 
168 /*
169  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
170  * kmemcache based allocator.
171  */
172 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
173 
174 #ifdef CONFIG_VMAP_STACK
175 /*
176  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
177  * flush.  Try to minimize the number of calls by caching stacks.
178  */
179 #define NR_CACHED_STACKS 2
180 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
181 #endif
182 
183 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
184 {
185 #ifdef CONFIG_VMAP_STACK
186 	void *stack;
187 	int i;
188 
189 	local_irq_disable();
190 	for (i = 0; i < NR_CACHED_STACKS; i++) {
191 		struct vm_struct *s = this_cpu_read(cached_stacks[i]);
192 
193 		if (!s)
194 			continue;
195 		this_cpu_write(cached_stacks[i], NULL);
196 
197 		tsk->stack_vm_area = s;
198 		local_irq_enable();
199 		return s->addr;
200 	}
201 	local_irq_enable();
202 
203 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_SIZE,
204 				     VMALLOC_START, VMALLOC_END,
205 				     THREADINFO_GFP | __GFP_HIGHMEM,
206 				     PAGE_KERNEL,
207 				     0, node, __builtin_return_address(0));
208 
209 	/*
210 	 * We can't call find_vm_area() in interrupt context, and
211 	 * free_thread_stack() can be called in interrupt context,
212 	 * so cache the vm_struct.
213 	 */
214 	if (stack)
215 		tsk->stack_vm_area = find_vm_area(stack);
216 	return stack;
217 #else
218 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
219 					     THREAD_SIZE_ORDER);
220 
221 	return page ? page_address(page) : NULL;
222 #endif
223 }
224 
225 static inline void free_thread_stack(struct task_struct *tsk)
226 {
227 #ifdef CONFIG_VMAP_STACK
228 	if (task_stack_vm_area(tsk)) {
229 		unsigned long flags;
230 		int i;
231 
232 		local_irq_save(flags);
233 		for (i = 0; i < NR_CACHED_STACKS; i++) {
234 			if (this_cpu_read(cached_stacks[i]))
235 				continue;
236 
237 			this_cpu_write(cached_stacks[i], tsk->stack_vm_area);
238 			local_irq_restore(flags);
239 			return;
240 		}
241 		local_irq_restore(flags);
242 
243 		vfree_atomic(tsk->stack);
244 		return;
245 	}
246 #endif
247 
248 	__free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
249 }
250 # else
251 static struct kmem_cache *thread_stack_cache;
252 
253 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
254 						  int node)
255 {
256 	return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
257 }
258 
259 static void free_thread_stack(struct task_struct *tsk)
260 {
261 	kmem_cache_free(thread_stack_cache, tsk->stack);
262 }
263 
264 void thread_stack_cache_init(void)
265 {
266 	thread_stack_cache = kmem_cache_create("thread_stack", THREAD_SIZE,
267 					      THREAD_SIZE, 0, NULL);
268 	BUG_ON(thread_stack_cache == NULL);
269 }
270 # endif
271 #endif
272 
273 /* SLAB cache for signal_struct structures (tsk->signal) */
274 static struct kmem_cache *signal_cachep;
275 
276 /* SLAB cache for sighand_struct structures (tsk->sighand) */
277 struct kmem_cache *sighand_cachep;
278 
279 /* SLAB cache for files_struct structures (tsk->files) */
280 struct kmem_cache *files_cachep;
281 
282 /* SLAB cache for fs_struct structures (tsk->fs) */
283 struct kmem_cache *fs_cachep;
284 
285 /* SLAB cache for vm_area_struct structures */
286 struct kmem_cache *vm_area_cachep;
287 
288 /* SLAB cache for mm_struct structures (tsk->mm) */
289 static struct kmem_cache *mm_cachep;
290 
291 static void account_kernel_stack(struct task_struct *tsk, int account)
292 {
293 	void *stack = task_stack_page(tsk);
294 	struct vm_struct *vm = task_stack_vm_area(tsk);
295 
296 	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
297 
298 	if (vm) {
299 		int i;
300 
301 		BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
302 
303 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
304 			mod_zone_page_state(page_zone(vm->pages[i]),
305 					    NR_KERNEL_STACK_KB,
306 					    PAGE_SIZE / 1024 * account);
307 		}
308 
309 		/* All stack pages belong to the same memcg. */
310 		memcg_kmem_update_page_stat(vm->pages[0], MEMCG_KERNEL_STACK_KB,
311 					    account * (THREAD_SIZE / 1024));
312 	} else {
313 		/*
314 		 * All stack pages are in the same zone and belong to the
315 		 * same memcg.
316 		 */
317 		struct page *first_page = virt_to_page(stack);
318 
319 		mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
320 				    THREAD_SIZE / 1024 * account);
321 
322 		memcg_kmem_update_page_stat(first_page, MEMCG_KERNEL_STACK_KB,
323 					    account * (THREAD_SIZE / 1024));
324 	}
325 }
326 
327 static void release_task_stack(struct task_struct *tsk)
328 {
329 	if (WARN_ON(tsk->state != TASK_DEAD))
330 		return;  /* Better to leak the stack than to free prematurely */
331 
332 	account_kernel_stack(tsk, -1);
333 	arch_release_thread_stack(tsk->stack);
334 	free_thread_stack(tsk);
335 	tsk->stack = NULL;
336 #ifdef CONFIG_VMAP_STACK
337 	tsk->stack_vm_area = NULL;
338 #endif
339 }
340 
341 #ifdef CONFIG_THREAD_INFO_IN_TASK
342 void put_task_stack(struct task_struct *tsk)
343 {
344 	if (atomic_dec_and_test(&tsk->stack_refcount))
345 		release_task_stack(tsk);
346 }
347 #endif
348 
349 void free_task(struct task_struct *tsk)
350 {
351 #ifndef CONFIG_THREAD_INFO_IN_TASK
352 	/*
353 	 * The task is finally done with both the stack and thread_info,
354 	 * so free both.
355 	 */
356 	release_task_stack(tsk);
357 #else
358 	/*
359 	 * If the task had a separate stack allocation, it should be gone
360 	 * by now.
361 	 */
362 	WARN_ON_ONCE(atomic_read(&tsk->stack_refcount) != 0);
363 #endif
364 	rt_mutex_debug_task_free(tsk);
365 	ftrace_graph_exit_task(tsk);
366 	put_seccomp_filter(tsk);
367 	arch_release_task_struct(tsk);
368 	if (tsk->flags & PF_KTHREAD)
369 		free_kthread_struct(tsk);
370 	free_task_struct(tsk);
371 }
372 EXPORT_SYMBOL(free_task);
373 
374 static inline void free_signal_struct(struct signal_struct *sig)
375 {
376 	taskstats_tgid_free(sig);
377 	sched_autogroup_exit(sig);
378 	/*
379 	 * __mmdrop is not safe to call from softirq context on x86 due to
380 	 * pgd_dtor so postpone it to the async context
381 	 */
382 	if (sig->oom_mm)
383 		mmdrop_async(sig->oom_mm);
384 	kmem_cache_free(signal_cachep, sig);
385 }
386 
387 static inline void put_signal_struct(struct signal_struct *sig)
388 {
389 	if (atomic_dec_and_test(&sig->sigcnt))
390 		free_signal_struct(sig);
391 }
392 
393 void __put_task_struct(struct task_struct *tsk)
394 {
395 	WARN_ON(!tsk->exit_state);
396 	WARN_ON(atomic_read(&tsk->usage));
397 	WARN_ON(tsk == current);
398 
399 	cgroup_free(tsk);
400 	task_numa_free(tsk);
401 	security_task_free(tsk);
402 	exit_creds(tsk);
403 	delayacct_tsk_free(tsk);
404 	put_signal_struct(tsk->signal);
405 
406 	if (!profile_handoff_task(tsk))
407 		free_task(tsk);
408 }
409 EXPORT_SYMBOL_GPL(__put_task_struct);
410 
411 void __init __weak arch_task_cache_init(void) { }
412 
413 /*
414  * set_max_threads
415  */
416 static void set_max_threads(unsigned int max_threads_suggested)
417 {
418 	u64 threads;
419 
420 	/*
421 	 * The number of threads shall be limited such that the thread
422 	 * structures may only consume a small part of the available memory.
423 	 */
424 	if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
425 		threads = MAX_THREADS;
426 	else
427 		threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
428 				    (u64) THREAD_SIZE * 8UL);
429 
430 	if (threads > max_threads_suggested)
431 		threads = max_threads_suggested;
432 
433 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
434 }
435 
436 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
437 /* Initialized by the architecture: */
438 int arch_task_struct_size __read_mostly;
439 #endif
440 
441 void __init fork_init(void)
442 {
443 	int i;
444 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
445 #ifndef ARCH_MIN_TASKALIGN
446 #define ARCH_MIN_TASKALIGN	0
447 #endif
448 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
449 
450 	/* create a slab on which task_structs can be allocated */
451 	task_struct_cachep = kmem_cache_create("task_struct",
452 			arch_task_struct_size, align,
453 			SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT, NULL);
454 #endif
455 
456 	/* do the arch specific task caches init */
457 	arch_task_cache_init();
458 
459 	set_max_threads(MAX_THREADS);
460 
461 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
462 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
463 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
464 		init_task.signal->rlim[RLIMIT_NPROC];
465 
466 	for (i = 0; i < UCOUNT_COUNTS; i++) {
467 		init_user_ns.ucount_max[i] = max_threads/2;
468 	}
469 }
470 
471 int __weak arch_dup_task_struct(struct task_struct *dst,
472 					       struct task_struct *src)
473 {
474 	*dst = *src;
475 	return 0;
476 }
477 
478 void set_task_stack_end_magic(struct task_struct *tsk)
479 {
480 	unsigned long *stackend;
481 
482 	stackend = end_of_stack(tsk);
483 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
484 }
485 
486 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
487 {
488 	struct task_struct *tsk;
489 	unsigned long *stack;
490 	struct vm_struct *stack_vm_area;
491 	int err;
492 
493 	if (node == NUMA_NO_NODE)
494 		node = tsk_fork_get_node(orig);
495 	tsk = alloc_task_struct_node(node);
496 	if (!tsk)
497 		return NULL;
498 
499 	stack = alloc_thread_stack_node(tsk, node);
500 	if (!stack)
501 		goto free_tsk;
502 
503 	stack_vm_area = task_stack_vm_area(tsk);
504 
505 	err = arch_dup_task_struct(tsk, orig);
506 
507 	/*
508 	 * arch_dup_task_struct() clobbers the stack-related fields.  Make
509 	 * sure they're properly initialized before using any stack-related
510 	 * functions again.
511 	 */
512 	tsk->stack = stack;
513 #ifdef CONFIG_VMAP_STACK
514 	tsk->stack_vm_area = stack_vm_area;
515 #endif
516 #ifdef CONFIG_THREAD_INFO_IN_TASK
517 	atomic_set(&tsk->stack_refcount, 1);
518 #endif
519 
520 	if (err)
521 		goto free_stack;
522 
523 #ifdef CONFIG_SECCOMP
524 	/*
525 	 * We must handle setting up seccomp filters once we're under
526 	 * the sighand lock in case orig has changed between now and
527 	 * then. Until then, filter must be NULL to avoid messing up
528 	 * the usage counts on the error path calling free_task.
529 	 */
530 	tsk->seccomp.filter = NULL;
531 #endif
532 
533 	setup_thread_stack(tsk, orig);
534 	clear_user_return_notifier(tsk);
535 	clear_tsk_need_resched(tsk);
536 	set_task_stack_end_magic(tsk);
537 
538 #ifdef CONFIG_CC_STACKPROTECTOR
539 	tsk->stack_canary = get_random_int();
540 #endif
541 
542 	/*
543 	 * One for us, one for whoever does the "release_task()" (usually
544 	 * parent)
545 	 */
546 	atomic_set(&tsk->usage, 2);
547 #ifdef CONFIG_BLK_DEV_IO_TRACE
548 	tsk->btrace_seq = 0;
549 #endif
550 	tsk->splice_pipe = NULL;
551 	tsk->task_frag.page = NULL;
552 	tsk->wake_q.next = NULL;
553 
554 	account_kernel_stack(tsk, 1);
555 
556 	kcov_task_init(tsk);
557 
558 	return tsk;
559 
560 free_stack:
561 	free_thread_stack(tsk);
562 free_tsk:
563 	free_task_struct(tsk);
564 	return NULL;
565 }
566 
567 #ifdef CONFIG_MMU
568 static __latent_entropy int dup_mmap(struct mm_struct *mm,
569 					struct mm_struct *oldmm)
570 {
571 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
572 	struct rb_node **rb_link, *rb_parent;
573 	int retval;
574 	unsigned long charge;
575 	LIST_HEAD(uf);
576 
577 	uprobe_start_dup_mmap();
578 	if (down_write_killable(&oldmm->mmap_sem)) {
579 		retval = -EINTR;
580 		goto fail_uprobe_end;
581 	}
582 	flush_cache_dup_mm(oldmm);
583 	uprobe_dup_mmap(oldmm, mm);
584 	/*
585 	 * Not linked in yet - no deadlock potential:
586 	 */
587 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
588 
589 	/* No ordering required: file already has been exposed. */
590 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
591 
592 	mm->total_vm = oldmm->total_vm;
593 	mm->data_vm = oldmm->data_vm;
594 	mm->exec_vm = oldmm->exec_vm;
595 	mm->stack_vm = oldmm->stack_vm;
596 
597 	rb_link = &mm->mm_rb.rb_node;
598 	rb_parent = NULL;
599 	pprev = &mm->mmap;
600 	retval = ksm_fork(mm, oldmm);
601 	if (retval)
602 		goto out;
603 	retval = khugepaged_fork(mm, oldmm);
604 	if (retval)
605 		goto out;
606 
607 	prev = NULL;
608 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
609 		struct file *file;
610 
611 		if (mpnt->vm_flags & VM_DONTCOPY) {
612 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
613 			continue;
614 		}
615 		charge = 0;
616 		if (mpnt->vm_flags & VM_ACCOUNT) {
617 			unsigned long len = vma_pages(mpnt);
618 
619 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
620 				goto fail_nomem;
621 			charge = len;
622 		}
623 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
624 		if (!tmp)
625 			goto fail_nomem;
626 		*tmp = *mpnt;
627 		INIT_LIST_HEAD(&tmp->anon_vma_chain);
628 		retval = vma_dup_policy(mpnt, tmp);
629 		if (retval)
630 			goto fail_nomem_policy;
631 		tmp->vm_mm = mm;
632 		retval = dup_userfaultfd(tmp, &uf);
633 		if (retval)
634 			goto fail_nomem_anon_vma_fork;
635 		if (anon_vma_fork(tmp, mpnt))
636 			goto fail_nomem_anon_vma_fork;
637 		tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
638 		tmp->vm_next = tmp->vm_prev = NULL;
639 		file = tmp->vm_file;
640 		if (file) {
641 			struct inode *inode = file_inode(file);
642 			struct address_space *mapping = file->f_mapping;
643 
644 			get_file(file);
645 			if (tmp->vm_flags & VM_DENYWRITE)
646 				atomic_dec(&inode->i_writecount);
647 			i_mmap_lock_write(mapping);
648 			if (tmp->vm_flags & VM_SHARED)
649 				atomic_inc(&mapping->i_mmap_writable);
650 			flush_dcache_mmap_lock(mapping);
651 			/* insert tmp into the share list, just after mpnt */
652 			vma_interval_tree_insert_after(tmp, mpnt,
653 					&mapping->i_mmap);
654 			flush_dcache_mmap_unlock(mapping);
655 			i_mmap_unlock_write(mapping);
656 		}
657 
658 		/*
659 		 * Clear hugetlb-related page reserves for children. This only
660 		 * affects MAP_PRIVATE mappings. Faults generated by the child
661 		 * are not guaranteed to succeed, even if read-only
662 		 */
663 		if (is_vm_hugetlb_page(tmp))
664 			reset_vma_resv_huge_pages(tmp);
665 
666 		/*
667 		 * Link in the new vma and copy the page table entries.
668 		 */
669 		*pprev = tmp;
670 		pprev = &tmp->vm_next;
671 		tmp->vm_prev = prev;
672 		prev = tmp;
673 
674 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
675 		rb_link = &tmp->vm_rb.rb_right;
676 		rb_parent = &tmp->vm_rb;
677 
678 		mm->map_count++;
679 		retval = copy_page_range(mm, oldmm, mpnt);
680 
681 		if (tmp->vm_ops && tmp->vm_ops->open)
682 			tmp->vm_ops->open(tmp);
683 
684 		if (retval)
685 			goto out;
686 	}
687 	/* a new mm has just been created */
688 	arch_dup_mmap(oldmm, mm);
689 	retval = 0;
690 out:
691 	up_write(&mm->mmap_sem);
692 	flush_tlb_mm(oldmm);
693 	up_write(&oldmm->mmap_sem);
694 	dup_userfaultfd_complete(&uf);
695 fail_uprobe_end:
696 	uprobe_end_dup_mmap();
697 	return retval;
698 fail_nomem_anon_vma_fork:
699 	mpol_put(vma_policy(tmp));
700 fail_nomem_policy:
701 	kmem_cache_free(vm_area_cachep, tmp);
702 fail_nomem:
703 	retval = -ENOMEM;
704 	vm_unacct_memory(charge);
705 	goto out;
706 }
707 
708 static inline int mm_alloc_pgd(struct mm_struct *mm)
709 {
710 	mm->pgd = pgd_alloc(mm);
711 	if (unlikely(!mm->pgd))
712 		return -ENOMEM;
713 	return 0;
714 }
715 
716 static inline void mm_free_pgd(struct mm_struct *mm)
717 {
718 	pgd_free(mm, mm->pgd);
719 }
720 #else
721 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
722 {
723 	down_write(&oldmm->mmap_sem);
724 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
725 	up_write(&oldmm->mmap_sem);
726 	return 0;
727 }
728 #define mm_alloc_pgd(mm)	(0)
729 #define mm_free_pgd(mm)
730 #endif /* CONFIG_MMU */
731 
732 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
733 
734 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
735 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
736 
737 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
738 
739 static int __init coredump_filter_setup(char *s)
740 {
741 	default_dump_filter =
742 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
743 		MMF_DUMP_FILTER_MASK;
744 	return 1;
745 }
746 
747 __setup("coredump_filter=", coredump_filter_setup);
748 
749 #include <linux/init_task.h>
750 
751 static void mm_init_aio(struct mm_struct *mm)
752 {
753 #ifdef CONFIG_AIO
754 	spin_lock_init(&mm->ioctx_lock);
755 	mm->ioctx_table = NULL;
756 #endif
757 }
758 
759 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
760 {
761 #ifdef CONFIG_MEMCG
762 	mm->owner = p;
763 #endif
764 }
765 
766 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
767 	struct user_namespace *user_ns)
768 {
769 	mm->mmap = NULL;
770 	mm->mm_rb = RB_ROOT;
771 	mm->vmacache_seqnum = 0;
772 	atomic_set(&mm->mm_users, 1);
773 	atomic_set(&mm->mm_count, 1);
774 	init_rwsem(&mm->mmap_sem);
775 	INIT_LIST_HEAD(&mm->mmlist);
776 	mm->core_state = NULL;
777 	atomic_long_set(&mm->nr_ptes, 0);
778 	mm_nr_pmds_init(mm);
779 	mm->map_count = 0;
780 	mm->locked_vm = 0;
781 	mm->pinned_vm = 0;
782 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
783 	spin_lock_init(&mm->page_table_lock);
784 	mm_init_cpumask(mm);
785 	mm_init_aio(mm);
786 	mm_init_owner(mm, p);
787 	mmu_notifier_mm_init(mm);
788 	clear_tlb_flush_pending(mm);
789 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
790 	mm->pmd_huge_pte = NULL;
791 #endif
792 
793 	if (current->mm) {
794 		mm->flags = current->mm->flags & MMF_INIT_MASK;
795 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
796 	} else {
797 		mm->flags = default_dump_filter;
798 		mm->def_flags = 0;
799 	}
800 
801 	if (mm_alloc_pgd(mm))
802 		goto fail_nopgd;
803 
804 	if (init_new_context(p, mm))
805 		goto fail_nocontext;
806 
807 	mm->user_ns = get_user_ns(user_ns);
808 	return mm;
809 
810 fail_nocontext:
811 	mm_free_pgd(mm);
812 fail_nopgd:
813 	free_mm(mm);
814 	return NULL;
815 }
816 
817 static void check_mm(struct mm_struct *mm)
818 {
819 	int i;
820 
821 	for (i = 0; i < NR_MM_COUNTERS; i++) {
822 		long x = atomic_long_read(&mm->rss_stat.count[i]);
823 
824 		if (unlikely(x))
825 			printk(KERN_ALERT "BUG: Bad rss-counter state "
826 					  "mm:%p idx:%d val:%ld\n", mm, i, x);
827 	}
828 
829 	if (atomic_long_read(&mm->nr_ptes))
830 		pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
831 				atomic_long_read(&mm->nr_ptes));
832 	if (mm_nr_pmds(mm))
833 		pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
834 				mm_nr_pmds(mm));
835 
836 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
837 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
838 #endif
839 }
840 
841 /*
842  * Allocate and initialize an mm_struct.
843  */
844 struct mm_struct *mm_alloc(void)
845 {
846 	struct mm_struct *mm;
847 
848 	mm = allocate_mm();
849 	if (!mm)
850 		return NULL;
851 
852 	memset(mm, 0, sizeof(*mm));
853 	return mm_init(mm, current, current_user_ns());
854 }
855 
856 /*
857  * Called when the last reference to the mm
858  * is dropped: either by a lazy thread or by
859  * mmput. Free the page directory and the mm.
860  */
861 void __mmdrop(struct mm_struct *mm)
862 {
863 	BUG_ON(mm == &init_mm);
864 	mm_free_pgd(mm);
865 	destroy_context(mm);
866 	mmu_notifier_mm_destroy(mm);
867 	check_mm(mm);
868 	put_user_ns(mm->user_ns);
869 	free_mm(mm);
870 }
871 EXPORT_SYMBOL_GPL(__mmdrop);
872 
873 static inline void __mmput(struct mm_struct *mm)
874 {
875 	VM_BUG_ON(atomic_read(&mm->mm_users));
876 
877 	uprobe_clear_state(mm);
878 	exit_aio(mm);
879 	ksm_exit(mm);
880 	khugepaged_exit(mm); /* must run before exit_mmap */
881 	exit_mmap(mm);
882 	mm_put_huge_zero_page(mm);
883 	set_mm_exe_file(mm, NULL);
884 	if (!list_empty(&mm->mmlist)) {
885 		spin_lock(&mmlist_lock);
886 		list_del(&mm->mmlist);
887 		spin_unlock(&mmlist_lock);
888 	}
889 	if (mm->binfmt)
890 		module_put(mm->binfmt->module);
891 	set_bit(MMF_OOM_SKIP, &mm->flags);
892 	mmdrop(mm);
893 }
894 
895 /*
896  * Decrement the use count and release all resources for an mm.
897  */
898 void mmput(struct mm_struct *mm)
899 {
900 	might_sleep();
901 
902 	if (atomic_dec_and_test(&mm->mm_users))
903 		__mmput(mm);
904 }
905 EXPORT_SYMBOL_GPL(mmput);
906 
907 #ifdef CONFIG_MMU
908 static void mmput_async_fn(struct work_struct *work)
909 {
910 	struct mm_struct *mm = container_of(work, struct mm_struct, async_put_work);
911 	__mmput(mm);
912 }
913 
914 void mmput_async(struct mm_struct *mm)
915 {
916 	if (atomic_dec_and_test(&mm->mm_users)) {
917 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
918 		schedule_work(&mm->async_put_work);
919 	}
920 }
921 #endif
922 
923 /**
924  * set_mm_exe_file - change a reference to the mm's executable file
925  *
926  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
927  *
928  * Main users are mmput() and sys_execve(). Callers prevent concurrent
929  * invocations: in mmput() nobody alive left, in execve task is single
930  * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
931  * mm->exe_file, but does so without using set_mm_exe_file() in order
932  * to do avoid the need for any locks.
933  */
934 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
935 {
936 	struct file *old_exe_file;
937 
938 	/*
939 	 * It is safe to dereference the exe_file without RCU as
940 	 * this function is only called if nobody else can access
941 	 * this mm -- see comment above for justification.
942 	 */
943 	old_exe_file = rcu_dereference_raw(mm->exe_file);
944 
945 	if (new_exe_file)
946 		get_file(new_exe_file);
947 	rcu_assign_pointer(mm->exe_file, new_exe_file);
948 	if (old_exe_file)
949 		fput(old_exe_file);
950 }
951 
952 /**
953  * get_mm_exe_file - acquire a reference to the mm's executable file
954  *
955  * Returns %NULL if mm has no associated executable file.
956  * User must release file via fput().
957  */
958 struct file *get_mm_exe_file(struct mm_struct *mm)
959 {
960 	struct file *exe_file;
961 
962 	rcu_read_lock();
963 	exe_file = rcu_dereference(mm->exe_file);
964 	if (exe_file && !get_file_rcu(exe_file))
965 		exe_file = NULL;
966 	rcu_read_unlock();
967 	return exe_file;
968 }
969 EXPORT_SYMBOL(get_mm_exe_file);
970 
971 /**
972  * get_task_exe_file - acquire a reference to the task's executable file
973  *
974  * Returns %NULL if task's mm (if any) has no associated executable file or
975  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
976  * User must release file via fput().
977  */
978 struct file *get_task_exe_file(struct task_struct *task)
979 {
980 	struct file *exe_file = NULL;
981 	struct mm_struct *mm;
982 
983 	task_lock(task);
984 	mm = task->mm;
985 	if (mm) {
986 		if (!(task->flags & PF_KTHREAD))
987 			exe_file = get_mm_exe_file(mm);
988 	}
989 	task_unlock(task);
990 	return exe_file;
991 }
992 EXPORT_SYMBOL(get_task_exe_file);
993 
994 /**
995  * get_task_mm - acquire a reference to the task's mm
996  *
997  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
998  * this kernel workthread has transiently adopted a user mm with use_mm,
999  * to do its AIO) is not set and if so returns a reference to it, after
1000  * bumping up the use count.  User must release the mm via mmput()
1001  * after use.  Typically used by /proc and ptrace.
1002  */
1003 struct mm_struct *get_task_mm(struct task_struct *task)
1004 {
1005 	struct mm_struct *mm;
1006 
1007 	task_lock(task);
1008 	mm = task->mm;
1009 	if (mm) {
1010 		if (task->flags & PF_KTHREAD)
1011 			mm = NULL;
1012 		else
1013 			mmget(mm);
1014 	}
1015 	task_unlock(task);
1016 	return mm;
1017 }
1018 EXPORT_SYMBOL_GPL(get_task_mm);
1019 
1020 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1021 {
1022 	struct mm_struct *mm;
1023 	int err;
1024 
1025 	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
1026 	if (err)
1027 		return ERR_PTR(err);
1028 
1029 	mm = get_task_mm(task);
1030 	if (mm && mm != current->mm &&
1031 			!ptrace_may_access(task, mode)) {
1032 		mmput(mm);
1033 		mm = ERR_PTR(-EACCES);
1034 	}
1035 	mutex_unlock(&task->signal->cred_guard_mutex);
1036 
1037 	return mm;
1038 }
1039 
1040 static void complete_vfork_done(struct task_struct *tsk)
1041 {
1042 	struct completion *vfork;
1043 
1044 	task_lock(tsk);
1045 	vfork = tsk->vfork_done;
1046 	if (likely(vfork)) {
1047 		tsk->vfork_done = NULL;
1048 		complete(vfork);
1049 	}
1050 	task_unlock(tsk);
1051 }
1052 
1053 static int wait_for_vfork_done(struct task_struct *child,
1054 				struct completion *vfork)
1055 {
1056 	int killed;
1057 
1058 	freezer_do_not_count();
1059 	killed = wait_for_completion_killable(vfork);
1060 	freezer_count();
1061 
1062 	if (killed) {
1063 		task_lock(child);
1064 		child->vfork_done = NULL;
1065 		task_unlock(child);
1066 	}
1067 
1068 	put_task_struct(child);
1069 	return killed;
1070 }
1071 
1072 /* Please note the differences between mmput and mm_release.
1073  * mmput is called whenever we stop holding onto a mm_struct,
1074  * error success whatever.
1075  *
1076  * mm_release is called after a mm_struct has been removed
1077  * from the current process.
1078  *
1079  * This difference is important for error handling, when we
1080  * only half set up a mm_struct for a new process and need to restore
1081  * the old one.  Because we mmput the new mm_struct before
1082  * restoring the old one. . .
1083  * Eric Biederman 10 January 1998
1084  */
1085 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1086 {
1087 	/* Get rid of any futexes when releasing the mm */
1088 #ifdef CONFIG_FUTEX
1089 	if (unlikely(tsk->robust_list)) {
1090 		exit_robust_list(tsk);
1091 		tsk->robust_list = NULL;
1092 	}
1093 #ifdef CONFIG_COMPAT
1094 	if (unlikely(tsk->compat_robust_list)) {
1095 		compat_exit_robust_list(tsk);
1096 		tsk->compat_robust_list = NULL;
1097 	}
1098 #endif
1099 	if (unlikely(!list_empty(&tsk->pi_state_list)))
1100 		exit_pi_state_list(tsk);
1101 #endif
1102 
1103 	uprobe_free_utask(tsk);
1104 
1105 	/* Get rid of any cached register state */
1106 	deactivate_mm(tsk, mm);
1107 
1108 	/*
1109 	 * Signal userspace if we're not exiting with a core dump
1110 	 * because we want to leave the value intact for debugging
1111 	 * purposes.
1112 	 */
1113 	if (tsk->clear_child_tid) {
1114 		if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1115 		    atomic_read(&mm->mm_users) > 1) {
1116 			/*
1117 			 * We don't check the error code - if userspace has
1118 			 * not set up a proper pointer then tough luck.
1119 			 */
1120 			put_user(0, tsk->clear_child_tid);
1121 			sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
1122 					1, NULL, NULL, 0);
1123 		}
1124 		tsk->clear_child_tid = NULL;
1125 	}
1126 
1127 	/*
1128 	 * All done, finally we can wake up parent and return this mm to him.
1129 	 * Also kthread_stop() uses this completion for synchronization.
1130 	 */
1131 	if (tsk->vfork_done)
1132 		complete_vfork_done(tsk);
1133 }
1134 
1135 /*
1136  * Allocate a new mm structure and copy contents from the
1137  * mm structure of the passed in task structure.
1138  */
1139 static struct mm_struct *dup_mm(struct task_struct *tsk)
1140 {
1141 	struct mm_struct *mm, *oldmm = current->mm;
1142 	int err;
1143 
1144 	mm = allocate_mm();
1145 	if (!mm)
1146 		goto fail_nomem;
1147 
1148 	memcpy(mm, oldmm, sizeof(*mm));
1149 
1150 	if (!mm_init(mm, tsk, mm->user_ns))
1151 		goto fail_nomem;
1152 
1153 	err = dup_mmap(mm, oldmm);
1154 	if (err)
1155 		goto free_pt;
1156 
1157 	mm->hiwater_rss = get_mm_rss(mm);
1158 	mm->hiwater_vm = mm->total_vm;
1159 
1160 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1161 		goto free_pt;
1162 
1163 	return mm;
1164 
1165 free_pt:
1166 	/* don't put binfmt in mmput, we haven't got module yet */
1167 	mm->binfmt = NULL;
1168 	mmput(mm);
1169 
1170 fail_nomem:
1171 	return NULL;
1172 }
1173 
1174 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1175 {
1176 	struct mm_struct *mm, *oldmm;
1177 	int retval;
1178 
1179 	tsk->min_flt = tsk->maj_flt = 0;
1180 	tsk->nvcsw = tsk->nivcsw = 0;
1181 #ifdef CONFIG_DETECT_HUNG_TASK
1182 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1183 #endif
1184 
1185 	tsk->mm = NULL;
1186 	tsk->active_mm = NULL;
1187 
1188 	/*
1189 	 * Are we cloning a kernel thread?
1190 	 *
1191 	 * We need to steal a active VM for that..
1192 	 */
1193 	oldmm = current->mm;
1194 	if (!oldmm)
1195 		return 0;
1196 
1197 	/* initialize the new vmacache entries */
1198 	vmacache_flush(tsk);
1199 
1200 	if (clone_flags & CLONE_VM) {
1201 		mmget(oldmm);
1202 		mm = oldmm;
1203 		goto good_mm;
1204 	}
1205 
1206 	retval = -ENOMEM;
1207 	mm = dup_mm(tsk);
1208 	if (!mm)
1209 		goto fail_nomem;
1210 
1211 good_mm:
1212 	tsk->mm = mm;
1213 	tsk->active_mm = mm;
1214 	return 0;
1215 
1216 fail_nomem:
1217 	return retval;
1218 }
1219 
1220 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1221 {
1222 	struct fs_struct *fs = current->fs;
1223 	if (clone_flags & CLONE_FS) {
1224 		/* tsk->fs is already what we want */
1225 		spin_lock(&fs->lock);
1226 		if (fs->in_exec) {
1227 			spin_unlock(&fs->lock);
1228 			return -EAGAIN;
1229 		}
1230 		fs->users++;
1231 		spin_unlock(&fs->lock);
1232 		return 0;
1233 	}
1234 	tsk->fs = copy_fs_struct(fs);
1235 	if (!tsk->fs)
1236 		return -ENOMEM;
1237 	return 0;
1238 }
1239 
1240 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1241 {
1242 	struct files_struct *oldf, *newf;
1243 	int error = 0;
1244 
1245 	/*
1246 	 * A background process may not have any files ...
1247 	 */
1248 	oldf = current->files;
1249 	if (!oldf)
1250 		goto out;
1251 
1252 	if (clone_flags & CLONE_FILES) {
1253 		atomic_inc(&oldf->count);
1254 		goto out;
1255 	}
1256 
1257 	newf = dup_fd(oldf, &error);
1258 	if (!newf)
1259 		goto out;
1260 
1261 	tsk->files = newf;
1262 	error = 0;
1263 out:
1264 	return error;
1265 }
1266 
1267 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1268 {
1269 #ifdef CONFIG_BLOCK
1270 	struct io_context *ioc = current->io_context;
1271 	struct io_context *new_ioc;
1272 
1273 	if (!ioc)
1274 		return 0;
1275 	/*
1276 	 * Share io context with parent, if CLONE_IO is set
1277 	 */
1278 	if (clone_flags & CLONE_IO) {
1279 		ioc_task_link(ioc);
1280 		tsk->io_context = ioc;
1281 	} else if (ioprio_valid(ioc->ioprio)) {
1282 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1283 		if (unlikely(!new_ioc))
1284 			return -ENOMEM;
1285 
1286 		new_ioc->ioprio = ioc->ioprio;
1287 		put_io_context(new_ioc);
1288 	}
1289 #endif
1290 	return 0;
1291 }
1292 
1293 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1294 {
1295 	struct sighand_struct *sig;
1296 
1297 	if (clone_flags & CLONE_SIGHAND) {
1298 		atomic_inc(&current->sighand->count);
1299 		return 0;
1300 	}
1301 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1302 	rcu_assign_pointer(tsk->sighand, sig);
1303 	if (!sig)
1304 		return -ENOMEM;
1305 
1306 	atomic_set(&sig->count, 1);
1307 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1308 	return 0;
1309 }
1310 
1311 void __cleanup_sighand(struct sighand_struct *sighand)
1312 {
1313 	if (atomic_dec_and_test(&sighand->count)) {
1314 		signalfd_cleanup(sighand);
1315 		/*
1316 		 * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
1317 		 * without an RCU grace period, see __lock_task_sighand().
1318 		 */
1319 		kmem_cache_free(sighand_cachep, sighand);
1320 	}
1321 }
1322 
1323 #ifdef CONFIG_POSIX_TIMERS
1324 /*
1325  * Initialize POSIX timer handling for a thread group.
1326  */
1327 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1328 {
1329 	unsigned long cpu_limit;
1330 
1331 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1332 	if (cpu_limit != RLIM_INFINITY) {
1333 		sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC;
1334 		sig->cputimer.running = true;
1335 	}
1336 
1337 	/* The timer lists. */
1338 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
1339 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
1340 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
1341 }
1342 #else
1343 static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { }
1344 #endif
1345 
1346 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1347 {
1348 	struct signal_struct *sig;
1349 
1350 	if (clone_flags & CLONE_THREAD)
1351 		return 0;
1352 
1353 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1354 	tsk->signal = sig;
1355 	if (!sig)
1356 		return -ENOMEM;
1357 
1358 	sig->nr_threads = 1;
1359 	atomic_set(&sig->live, 1);
1360 	atomic_set(&sig->sigcnt, 1);
1361 
1362 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1363 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1364 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1365 
1366 	init_waitqueue_head(&sig->wait_chldexit);
1367 	sig->curr_target = tsk;
1368 	init_sigpending(&sig->shared_pending);
1369 	seqlock_init(&sig->stats_lock);
1370 	prev_cputime_init(&sig->prev_cputime);
1371 
1372 #ifdef CONFIG_POSIX_TIMERS
1373 	INIT_LIST_HEAD(&sig->posix_timers);
1374 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1375 	sig->real_timer.function = it_real_fn;
1376 #endif
1377 
1378 	task_lock(current->group_leader);
1379 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1380 	task_unlock(current->group_leader);
1381 
1382 	posix_cpu_timers_init_group(sig);
1383 
1384 	tty_audit_fork(sig);
1385 	sched_autogroup_fork(sig);
1386 
1387 	sig->oom_score_adj = current->signal->oom_score_adj;
1388 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1389 
1390 	mutex_init(&sig->cred_guard_mutex);
1391 
1392 	return 0;
1393 }
1394 
1395 static void copy_seccomp(struct task_struct *p)
1396 {
1397 #ifdef CONFIG_SECCOMP
1398 	/*
1399 	 * Must be called with sighand->lock held, which is common to
1400 	 * all threads in the group. Holding cred_guard_mutex is not
1401 	 * needed because this new task is not yet running and cannot
1402 	 * be racing exec.
1403 	 */
1404 	assert_spin_locked(&current->sighand->siglock);
1405 
1406 	/* Ref-count the new filter user, and assign it. */
1407 	get_seccomp_filter(current);
1408 	p->seccomp = current->seccomp;
1409 
1410 	/*
1411 	 * Explicitly enable no_new_privs here in case it got set
1412 	 * between the task_struct being duplicated and holding the
1413 	 * sighand lock. The seccomp state and nnp must be in sync.
1414 	 */
1415 	if (task_no_new_privs(current))
1416 		task_set_no_new_privs(p);
1417 
1418 	/*
1419 	 * If the parent gained a seccomp mode after copying thread
1420 	 * flags and between before we held the sighand lock, we have
1421 	 * to manually enable the seccomp thread flag here.
1422 	 */
1423 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1424 		set_tsk_thread_flag(p, TIF_SECCOMP);
1425 #endif
1426 }
1427 
1428 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1429 {
1430 	current->clear_child_tid = tidptr;
1431 
1432 	return task_pid_vnr(current);
1433 }
1434 
1435 static void rt_mutex_init_task(struct task_struct *p)
1436 {
1437 	raw_spin_lock_init(&p->pi_lock);
1438 #ifdef CONFIG_RT_MUTEXES
1439 	p->pi_waiters = RB_ROOT;
1440 	p->pi_waiters_leftmost = NULL;
1441 	p->pi_blocked_on = NULL;
1442 #endif
1443 }
1444 
1445 #ifdef CONFIG_POSIX_TIMERS
1446 /*
1447  * Initialize POSIX timer handling for a single task.
1448  */
1449 static void posix_cpu_timers_init(struct task_struct *tsk)
1450 {
1451 	tsk->cputime_expires.prof_exp = 0;
1452 	tsk->cputime_expires.virt_exp = 0;
1453 	tsk->cputime_expires.sched_exp = 0;
1454 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1455 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1456 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1457 }
1458 #else
1459 static inline void posix_cpu_timers_init(struct task_struct *tsk) { }
1460 #endif
1461 
1462 static inline void
1463 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1464 {
1465 	 task->pids[type].pid = pid;
1466 }
1467 
1468 static inline void rcu_copy_process(struct task_struct *p)
1469 {
1470 #ifdef CONFIG_PREEMPT_RCU
1471 	p->rcu_read_lock_nesting = 0;
1472 	p->rcu_read_unlock_special.s = 0;
1473 	p->rcu_blocked_node = NULL;
1474 	INIT_LIST_HEAD(&p->rcu_node_entry);
1475 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1476 #ifdef CONFIG_TASKS_RCU
1477 	p->rcu_tasks_holdout = false;
1478 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1479 	p->rcu_tasks_idle_cpu = -1;
1480 #endif /* #ifdef CONFIG_TASKS_RCU */
1481 }
1482 
1483 /*
1484  * This creates a new process as a copy of the old one,
1485  * but does not actually start it yet.
1486  *
1487  * It copies the registers, and all the appropriate
1488  * parts of the process environment (as per the clone
1489  * flags). The actual kick-off is left to the caller.
1490  */
1491 static __latent_entropy struct task_struct *copy_process(
1492 					unsigned long clone_flags,
1493 					unsigned long stack_start,
1494 					unsigned long stack_size,
1495 					int __user *child_tidptr,
1496 					struct pid *pid,
1497 					int trace,
1498 					unsigned long tls,
1499 					int node)
1500 {
1501 	int retval;
1502 	struct task_struct *p;
1503 
1504 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1505 		return ERR_PTR(-EINVAL);
1506 
1507 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1508 		return ERR_PTR(-EINVAL);
1509 
1510 	/*
1511 	 * Thread groups must share signals as well, and detached threads
1512 	 * can only be started up within the thread group.
1513 	 */
1514 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1515 		return ERR_PTR(-EINVAL);
1516 
1517 	/*
1518 	 * Shared signal handlers imply shared VM. By way of the above,
1519 	 * thread groups also imply shared VM. Blocking this case allows
1520 	 * for various simplifications in other code.
1521 	 */
1522 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1523 		return ERR_PTR(-EINVAL);
1524 
1525 	/*
1526 	 * Siblings of global init remain as zombies on exit since they are
1527 	 * not reaped by their parent (swapper). To solve this and to avoid
1528 	 * multi-rooted process trees, prevent global and container-inits
1529 	 * from creating siblings.
1530 	 */
1531 	if ((clone_flags & CLONE_PARENT) &&
1532 				current->signal->flags & SIGNAL_UNKILLABLE)
1533 		return ERR_PTR(-EINVAL);
1534 
1535 	/*
1536 	 * If the new process will be in a different pid or user namespace
1537 	 * do not allow it to share a thread group with the forking task.
1538 	 */
1539 	if (clone_flags & CLONE_THREAD) {
1540 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1541 		    (task_active_pid_ns(current) !=
1542 				current->nsproxy->pid_ns_for_children))
1543 			return ERR_PTR(-EINVAL);
1544 	}
1545 
1546 	retval = security_task_create(clone_flags);
1547 	if (retval)
1548 		goto fork_out;
1549 
1550 	retval = -ENOMEM;
1551 	p = dup_task_struct(current, node);
1552 	if (!p)
1553 		goto fork_out;
1554 
1555 	ftrace_graph_init_task(p);
1556 
1557 	rt_mutex_init_task(p);
1558 
1559 #ifdef CONFIG_PROVE_LOCKING
1560 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1561 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1562 #endif
1563 	retval = -EAGAIN;
1564 	if (atomic_read(&p->real_cred->user->processes) >=
1565 			task_rlimit(p, RLIMIT_NPROC)) {
1566 		if (p->real_cred->user != INIT_USER &&
1567 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1568 			goto bad_fork_free;
1569 	}
1570 	current->flags &= ~PF_NPROC_EXCEEDED;
1571 
1572 	retval = copy_creds(p, clone_flags);
1573 	if (retval < 0)
1574 		goto bad_fork_free;
1575 
1576 	/*
1577 	 * If multiple threads are within copy_process(), then this check
1578 	 * triggers too late. This doesn't hurt, the check is only there
1579 	 * to stop root fork bombs.
1580 	 */
1581 	retval = -EAGAIN;
1582 	if (nr_threads >= max_threads)
1583 		goto bad_fork_cleanup_count;
1584 
1585 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1586 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1587 	p->flags |= PF_FORKNOEXEC;
1588 	INIT_LIST_HEAD(&p->children);
1589 	INIT_LIST_HEAD(&p->sibling);
1590 	rcu_copy_process(p);
1591 	p->vfork_done = NULL;
1592 	spin_lock_init(&p->alloc_lock);
1593 
1594 	init_sigpending(&p->pending);
1595 
1596 	p->utime = p->stime = p->gtime = 0;
1597 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1598 	p->utimescaled = p->stimescaled = 0;
1599 #endif
1600 	prev_cputime_init(&p->prev_cputime);
1601 
1602 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1603 	seqcount_init(&p->vtime_seqcount);
1604 	p->vtime_snap = 0;
1605 	p->vtime_snap_whence = VTIME_INACTIVE;
1606 #endif
1607 
1608 #if defined(SPLIT_RSS_COUNTING)
1609 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1610 #endif
1611 
1612 	p->default_timer_slack_ns = current->timer_slack_ns;
1613 
1614 	task_io_accounting_init(&p->ioac);
1615 	acct_clear_integrals(p);
1616 
1617 	posix_cpu_timers_init(p);
1618 
1619 	p->start_time = ktime_get_ns();
1620 	p->real_start_time = ktime_get_boot_ns();
1621 	p->io_context = NULL;
1622 	p->audit_context = NULL;
1623 	cgroup_fork(p);
1624 #ifdef CONFIG_NUMA
1625 	p->mempolicy = mpol_dup(p->mempolicy);
1626 	if (IS_ERR(p->mempolicy)) {
1627 		retval = PTR_ERR(p->mempolicy);
1628 		p->mempolicy = NULL;
1629 		goto bad_fork_cleanup_threadgroup_lock;
1630 	}
1631 #endif
1632 #ifdef CONFIG_CPUSETS
1633 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1634 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1635 	seqcount_init(&p->mems_allowed_seq);
1636 #endif
1637 #ifdef CONFIG_TRACE_IRQFLAGS
1638 	p->irq_events = 0;
1639 	p->hardirqs_enabled = 0;
1640 	p->hardirq_enable_ip = 0;
1641 	p->hardirq_enable_event = 0;
1642 	p->hardirq_disable_ip = _THIS_IP_;
1643 	p->hardirq_disable_event = 0;
1644 	p->softirqs_enabled = 1;
1645 	p->softirq_enable_ip = _THIS_IP_;
1646 	p->softirq_enable_event = 0;
1647 	p->softirq_disable_ip = 0;
1648 	p->softirq_disable_event = 0;
1649 	p->hardirq_context = 0;
1650 	p->softirq_context = 0;
1651 #endif
1652 
1653 	p->pagefault_disabled = 0;
1654 
1655 #ifdef CONFIG_LOCKDEP
1656 	p->lockdep_depth = 0; /* no locks held yet */
1657 	p->curr_chain_key = 0;
1658 	p->lockdep_recursion = 0;
1659 #endif
1660 
1661 #ifdef CONFIG_DEBUG_MUTEXES
1662 	p->blocked_on = NULL; /* not blocked yet */
1663 #endif
1664 #ifdef CONFIG_BCACHE
1665 	p->sequential_io	= 0;
1666 	p->sequential_io_avg	= 0;
1667 #endif
1668 
1669 	/* Perform scheduler related setup. Assign this task to a CPU. */
1670 	retval = sched_fork(clone_flags, p);
1671 	if (retval)
1672 		goto bad_fork_cleanup_policy;
1673 
1674 	retval = perf_event_init_task(p);
1675 	if (retval)
1676 		goto bad_fork_cleanup_policy;
1677 	retval = audit_alloc(p);
1678 	if (retval)
1679 		goto bad_fork_cleanup_perf;
1680 	/* copy all the process information */
1681 	shm_init_task(p);
1682 	retval = copy_semundo(clone_flags, p);
1683 	if (retval)
1684 		goto bad_fork_cleanup_audit;
1685 	retval = copy_files(clone_flags, p);
1686 	if (retval)
1687 		goto bad_fork_cleanup_semundo;
1688 	retval = copy_fs(clone_flags, p);
1689 	if (retval)
1690 		goto bad_fork_cleanup_files;
1691 	retval = copy_sighand(clone_flags, p);
1692 	if (retval)
1693 		goto bad_fork_cleanup_fs;
1694 	retval = copy_signal(clone_flags, p);
1695 	if (retval)
1696 		goto bad_fork_cleanup_sighand;
1697 	retval = copy_mm(clone_flags, p);
1698 	if (retval)
1699 		goto bad_fork_cleanup_signal;
1700 	retval = copy_namespaces(clone_flags, p);
1701 	if (retval)
1702 		goto bad_fork_cleanup_mm;
1703 	retval = copy_io(clone_flags, p);
1704 	if (retval)
1705 		goto bad_fork_cleanup_namespaces;
1706 	retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1707 	if (retval)
1708 		goto bad_fork_cleanup_io;
1709 
1710 	if (pid != &init_struct_pid) {
1711 		pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1712 		if (IS_ERR(pid)) {
1713 			retval = PTR_ERR(pid);
1714 			goto bad_fork_cleanup_thread;
1715 		}
1716 	}
1717 
1718 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1719 	/*
1720 	 * Clear TID on mm_release()?
1721 	 */
1722 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1723 #ifdef CONFIG_BLOCK
1724 	p->plug = NULL;
1725 #endif
1726 #ifdef CONFIG_FUTEX
1727 	p->robust_list = NULL;
1728 #ifdef CONFIG_COMPAT
1729 	p->compat_robust_list = NULL;
1730 #endif
1731 	INIT_LIST_HEAD(&p->pi_state_list);
1732 	p->pi_state_cache = NULL;
1733 #endif
1734 	/*
1735 	 * sigaltstack should be cleared when sharing the same VM
1736 	 */
1737 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1738 		sas_ss_reset(p);
1739 
1740 	/*
1741 	 * Syscall tracing and stepping should be turned off in the
1742 	 * child regardless of CLONE_PTRACE.
1743 	 */
1744 	user_disable_single_step(p);
1745 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1746 #ifdef TIF_SYSCALL_EMU
1747 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1748 #endif
1749 	clear_all_latency_tracing(p);
1750 
1751 	/* ok, now we should be set up.. */
1752 	p->pid = pid_nr(pid);
1753 	if (clone_flags & CLONE_THREAD) {
1754 		p->exit_signal = -1;
1755 		p->group_leader = current->group_leader;
1756 		p->tgid = current->tgid;
1757 	} else {
1758 		if (clone_flags & CLONE_PARENT)
1759 			p->exit_signal = current->group_leader->exit_signal;
1760 		else
1761 			p->exit_signal = (clone_flags & CSIGNAL);
1762 		p->group_leader = p;
1763 		p->tgid = p->pid;
1764 	}
1765 
1766 	p->nr_dirtied = 0;
1767 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1768 	p->dirty_paused_when = 0;
1769 
1770 	p->pdeath_signal = 0;
1771 	INIT_LIST_HEAD(&p->thread_group);
1772 	p->task_works = NULL;
1773 
1774 	cgroup_threadgroup_change_begin(current);
1775 	/*
1776 	 * Ensure that the cgroup subsystem policies allow the new process to be
1777 	 * forked. It should be noted the the new process's css_set can be changed
1778 	 * between here and cgroup_post_fork() if an organisation operation is in
1779 	 * progress.
1780 	 */
1781 	retval = cgroup_can_fork(p);
1782 	if (retval)
1783 		goto bad_fork_free_pid;
1784 
1785 	/*
1786 	 * Make it visible to the rest of the system, but dont wake it up yet.
1787 	 * Need tasklist lock for parent etc handling!
1788 	 */
1789 	write_lock_irq(&tasklist_lock);
1790 
1791 	/* CLONE_PARENT re-uses the old parent */
1792 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1793 		p->real_parent = current->real_parent;
1794 		p->parent_exec_id = current->parent_exec_id;
1795 	} else {
1796 		p->real_parent = current;
1797 		p->parent_exec_id = current->self_exec_id;
1798 	}
1799 
1800 	spin_lock(&current->sighand->siglock);
1801 
1802 	/*
1803 	 * Copy seccomp details explicitly here, in case they were changed
1804 	 * before holding sighand lock.
1805 	 */
1806 	copy_seccomp(p);
1807 
1808 	/*
1809 	 * Process group and session signals need to be delivered to just the
1810 	 * parent before the fork or both the parent and the child after the
1811 	 * fork. Restart if a signal comes in before we add the new process to
1812 	 * it's process group.
1813 	 * A fatal signal pending means that current will exit, so the new
1814 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1815 	*/
1816 	recalc_sigpending();
1817 	if (signal_pending(current)) {
1818 		spin_unlock(&current->sighand->siglock);
1819 		write_unlock_irq(&tasklist_lock);
1820 		retval = -ERESTARTNOINTR;
1821 		goto bad_fork_cancel_cgroup;
1822 	}
1823 
1824 	if (likely(p->pid)) {
1825 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1826 
1827 		init_task_pid(p, PIDTYPE_PID, pid);
1828 		if (thread_group_leader(p)) {
1829 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1830 			init_task_pid(p, PIDTYPE_SID, task_session(current));
1831 
1832 			if (is_child_reaper(pid)) {
1833 				ns_of_pid(pid)->child_reaper = p;
1834 				p->signal->flags |= SIGNAL_UNKILLABLE;
1835 			}
1836 
1837 			p->signal->leader_pid = pid;
1838 			p->signal->tty = tty_kref_get(current->signal->tty);
1839 			/*
1840 			 * Inherit has_child_subreaper flag under the same
1841 			 * tasklist_lock with adding child to the process tree
1842 			 * for propagate_has_child_subreaper optimization.
1843 			 */
1844 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
1845 							 p->real_parent->signal->is_child_subreaper;
1846 			list_add_tail(&p->sibling, &p->real_parent->children);
1847 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1848 			attach_pid(p, PIDTYPE_PGID);
1849 			attach_pid(p, PIDTYPE_SID);
1850 			__this_cpu_inc(process_counts);
1851 		} else {
1852 			current->signal->nr_threads++;
1853 			atomic_inc(&current->signal->live);
1854 			atomic_inc(&current->signal->sigcnt);
1855 			list_add_tail_rcu(&p->thread_group,
1856 					  &p->group_leader->thread_group);
1857 			list_add_tail_rcu(&p->thread_node,
1858 					  &p->signal->thread_head);
1859 		}
1860 		attach_pid(p, PIDTYPE_PID);
1861 		nr_threads++;
1862 	}
1863 
1864 	total_forks++;
1865 	spin_unlock(&current->sighand->siglock);
1866 	syscall_tracepoint_update(p);
1867 	write_unlock_irq(&tasklist_lock);
1868 
1869 	proc_fork_connector(p);
1870 	cgroup_post_fork(p);
1871 	cgroup_threadgroup_change_end(current);
1872 	perf_event_fork(p);
1873 
1874 	trace_task_newtask(p, clone_flags);
1875 	uprobe_copy_process(p, clone_flags);
1876 
1877 	return p;
1878 
1879 bad_fork_cancel_cgroup:
1880 	cgroup_cancel_fork(p);
1881 bad_fork_free_pid:
1882 	cgroup_threadgroup_change_end(current);
1883 	if (pid != &init_struct_pid)
1884 		free_pid(pid);
1885 bad_fork_cleanup_thread:
1886 	exit_thread(p);
1887 bad_fork_cleanup_io:
1888 	if (p->io_context)
1889 		exit_io_context(p);
1890 bad_fork_cleanup_namespaces:
1891 	exit_task_namespaces(p);
1892 bad_fork_cleanup_mm:
1893 	if (p->mm)
1894 		mmput(p->mm);
1895 bad_fork_cleanup_signal:
1896 	if (!(clone_flags & CLONE_THREAD))
1897 		free_signal_struct(p->signal);
1898 bad_fork_cleanup_sighand:
1899 	__cleanup_sighand(p->sighand);
1900 bad_fork_cleanup_fs:
1901 	exit_fs(p); /* blocking */
1902 bad_fork_cleanup_files:
1903 	exit_files(p); /* blocking */
1904 bad_fork_cleanup_semundo:
1905 	exit_sem(p);
1906 bad_fork_cleanup_audit:
1907 	audit_free(p);
1908 bad_fork_cleanup_perf:
1909 	perf_event_free_task(p);
1910 bad_fork_cleanup_policy:
1911 #ifdef CONFIG_NUMA
1912 	mpol_put(p->mempolicy);
1913 bad_fork_cleanup_threadgroup_lock:
1914 #endif
1915 	delayacct_tsk_free(p);
1916 bad_fork_cleanup_count:
1917 	atomic_dec(&p->cred->user->processes);
1918 	exit_creds(p);
1919 bad_fork_free:
1920 	p->state = TASK_DEAD;
1921 	put_task_stack(p);
1922 	free_task(p);
1923 fork_out:
1924 	return ERR_PTR(retval);
1925 }
1926 
1927 static inline void init_idle_pids(struct pid_link *links)
1928 {
1929 	enum pid_type type;
1930 
1931 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1932 		INIT_HLIST_NODE(&links[type].node); /* not really needed */
1933 		links[type].pid = &init_struct_pid;
1934 	}
1935 }
1936 
1937 struct task_struct *fork_idle(int cpu)
1938 {
1939 	struct task_struct *task;
1940 	task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
1941 			    cpu_to_node(cpu));
1942 	if (!IS_ERR(task)) {
1943 		init_idle_pids(task->pids);
1944 		init_idle(task, cpu);
1945 	}
1946 
1947 	return task;
1948 }
1949 
1950 /*
1951  *  Ok, this is the main fork-routine.
1952  *
1953  * It copies the process, and if successful kick-starts
1954  * it and waits for it to finish using the VM if required.
1955  */
1956 long _do_fork(unsigned long clone_flags,
1957 	      unsigned long stack_start,
1958 	      unsigned long stack_size,
1959 	      int __user *parent_tidptr,
1960 	      int __user *child_tidptr,
1961 	      unsigned long tls)
1962 {
1963 	struct task_struct *p;
1964 	int trace = 0;
1965 	long nr;
1966 
1967 	/*
1968 	 * Determine whether and which event to report to ptracer.  When
1969 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
1970 	 * requested, no event is reported; otherwise, report if the event
1971 	 * for the type of forking is enabled.
1972 	 */
1973 	if (!(clone_flags & CLONE_UNTRACED)) {
1974 		if (clone_flags & CLONE_VFORK)
1975 			trace = PTRACE_EVENT_VFORK;
1976 		else if ((clone_flags & CSIGNAL) != SIGCHLD)
1977 			trace = PTRACE_EVENT_CLONE;
1978 		else
1979 			trace = PTRACE_EVENT_FORK;
1980 
1981 		if (likely(!ptrace_event_enabled(current, trace)))
1982 			trace = 0;
1983 	}
1984 
1985 	p = copy_process(clone_flags, stack_start, stack_size,
1986 			 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
1987 	add_latent_entropy();
1988 	/*
1989 	 * Do this prior waking up the new thread - the thread pointer
1990 	 * might get invalid after that point, if the thread exits quickly.
1991 	 */
1992 	if (!IS_ERR(p)) {
1993 		struct completion vfork;
1994 		struct pid *pid;
1995 
1996 		trace_sched_process_fork(current, p);
1997 
1998 		pid = get_task_pid(p, PIDTYPE_PID);
1999 		nr = pid_vnr(pid);
2000 
2001 		if (clone_flags & CLONE_PARENT_SETTID)
2002 			put_user(nr, parent_tidptr);
2003 
2004 		if (clone_flags & CLONE_VFORK) {
2005 			p->vfork_done = &vfork;
2006 			init_completion(&vfork);
2007 			get_task_struct(p);
2008 		}
2009 
2010 		wake_up_new_task(p);
2011 
2012 		/* forking complete and child started to run, tell ptracer */
2013 		if (unlikely(trace))
2014 			ptrace_event_pid(trace, pid);
2015 
2016 		if (clone_flags & CLONE_VFORK) {
2017 			if (!wait_for_vfork_done(p, &vfork))
2018 				ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2019 		}
2020 
2021 		put_pid(pid);
2022 	} else {
2023 		nr = PTR_ERR(p);
2024 	}
2025 	return nr;
2026 }
2027 
2028 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2029 /* For compatibility with architectures that call do_fork directly rather than
2030  * using the syscall entry points below. */
2031 long do_fork(unsigned long clone_flags,
2032 	      unsigned long stack_start,
2033 	      unsigned long stack_size,
2034 	      int __user *parent_tidptr,
2035 	      int __user *child_tidptr)
2036 {
2037 	return _do_fork(clone_flags, stack_start, stack_size,
2038 			parent_tidptr, child_tidptr, 0);
2039 }
2040 #endif
2041 
2042 /*
2043  * Create a kernel thread.
2044  */
2045 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2046 {
2047 	return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
2048 		(unsigned long)arg, NULL, NULL, 0);
2049 }
2050 
2051 #ifdef __ARCH_WANT_SYS_FORK
2052 SYSCALL_DEFINE0(fork)
2053 {
2054 #ifdef CONFIG_MMU
2055 	return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
2056 #else
2057 	/* can not support in nommu mode */
2058 	return -EINVAL;
2059 #endif
2060 }
2061 #endif
2062 
2063 #ifdef __ARCH_WANT_SYS_VFORK
2064 SYSCALL_DEFINE0(vfork)
2065 {
2066 	return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
2067 			0, NULL, NULL, 0);
2068 }
2069 #endif
2070 
2071 #ifdef __ARCH_WANT_SYS_CLONE
2072 #ifdef CONFIG_CLONE_BACKWARDS
2073 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2074 		 int __user *, parent_tidptr,
2075 		 unsigned long, tls,
2076 		 int __user *, child_tidptr)
2077 #elif defined(CONFIG_CLONE_BACKWARDS2)
2078 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2079 		 int __user *, parent_tidptr,
2080 		 int __user *, child_tidptr,
2081 		 unsigned long, tls)
2082 #elif defined(CONFIG_CLONE_BACKWARDS3)
2083 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2084 		int, stack_size,
2085 		int __user *, parent_tidptr,
2086 		int __user *, child_tidptr,
2087 		unsigned long, tls)
2088 #else
2089 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2090 		 int __user *, parent_tidptr,
2091 		 int __user *, child_tidptr,
2092 		 unsigned long, tls)
2093 #endif
2094 {
2095 	return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
2096 }
2097 #endif
2098 
2099 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2100 {
2101 	struct task_struct *leader, *parent, *child;
2102 	int res;
2103 
2104 	read_lock(&tasklist_lock);
2105 	leader = top = top->group_leader;
2106 down:
2107 	for_each_thread(leader, parent) {
2108 		list_for_each_entry(child, &parent->children, sibling) {
2109 			res = visitor(child, data);
2110 			if (res) {
2111 				if (res < 0)
2112 					goto out;
2113 				leader = child;
2114 				goto down;
2115 			}
2116 up:
2117 			;
2118 		}
2119 	}
2120 
2121 	if (leader != top) {
2122 		child = leader;
2123 		parent = child->real_parent;
2124 		leader = parent->group_leader;
2125 		goto up;
2126 	}
2127 out:
2128 	read_unlock(&tasklist_lock);
2129 }
2130 
2131 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2132 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2133 #endif
2134 
2135 static void sighand_ctor(void *data)
2136 {
2137 	struct sighand_struct *sighand = data;
2138 
2139 	spin_lock_init(&sighand->siglock);
2140 	init_waitqueue_head(&sighand->signalfd_wqh);
2141 }
2142 
2143 void __init proc_caches_init(void)
2144 {
2145 	sighand_cachep = kmem_cache_create("sighand_cache",
2146 			sizeof(struct sighand_struct), 0,
2147 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
2148 			SLAB_NOTRACK|SLAB_ACCOUNT, sighand_ctor);
2149 	signal_cachep = kmem_cache_create("signal_cache",
2150 			sizeof(struct signal_struct), 0,
2151 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2152 			NULL);
2153 	files_cachep = kmem_cache_create("files_cache",
2154 			sizeof(struct files_struct), 0,
2155 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2156 			NULL);
2157 	fs_cachep = kmem_cache_create("fs_cache",
2158 			sizeof(struct fs_struct), 0,
2159 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2160 			NULL);
2161 	/*
2162 	 * FIXME! The "sizeof(struct mm_struct)" currently includes the
2163 	 * whole struct cpumask for the OFFSTACK case. We could change
2164 	 * this to *only* allocate as much of it as required by the
2165 	 * maximum number of CPU's we can ever have.  The cpumask_allocation
2166 	 * is at the end of the structure, exactly for that reason.
2167 	 */
2168 	mm_cachep = kmem_cache_create("mm_struct",
2169 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
2170 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2171 			NULL);
2172 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2173 	mmap_init();
2174 	nsproxy_cache_init();
2175 }
2176 
2177 /*
2178  * Check constraints on flags passed to the unshare system call.
2179  */
2180 static int check_unshare_flags(unsigned long unshare_flags)
2181 {
2182 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2183 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2184 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2185 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2186 		return -EINVAL;
2187 	/*
2188 	 * Not implemented, but pretend it works if there is nothing
2189 	 * to unshare.  Note that unsharing the address space or the
2190 	 * signal handlers also need to unshare the signal queues (aka
2191 	 * CLONE_THREAD).
2192 	 */
2193 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2194 		if (!thread_group_empty(current))
2195 			return -EINVAL;
2196 	}
2197 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2198 		if (atomic_read(&current->sighand->count) > 1)
2199 			return -EINVAL;
2200 	}
2201 	if (unshare_flags & CLONE_VM) {
2202 		if (!current_is_single_threaded())
2203 			return -EINVAL;
2204 	}
2205 
2206 	return 0;
2207 }
2208 
2209 /*
2210  * Unshare the filesystem structure if it is being shared
2211  */
2212 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2213 {
2214 	struct fs_struct *fs = current->fs;
2215 
2216 	if (!(unshare_flags & CLONE_FS) || !fs)
2217 		return 0;
2218 
2219 	/* don't need lock here; in the worst case we'll do useless copy */
2220 	if (fs->users == 1)
2221 		return 0;
2222 
2223 	*new_fsp = copy_fs_struct(fs);
2224 	if (!*new_fsp)
2225 		return -ENOMEM;
2226 
2227 	return 0;
2228 }
2229 
2230 /*
2231  * Unshare file descriptor table if it is being shared
2232  */
2233 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2234 {
2235 	struct files_struct *fd = current->files;
2236 	int error = 0;
2237 
2238 	if ((unshare_flags & CLONE_FILES) &&
2239 	    (fd && atomic_read(&fd->count) > 1)) {
2240 		*new_fdp = dup_fd(fd, &error);
2241 		if (!*new_fdp)
2242 			return error;
2243 	}
2244 
2245 	return 0;
2246 }
2247 
2248 /*
2249  * unshare allows a process to 'unshare' part of the process
2250  * context which was originally shared using clone.  copy_*
2251  * functions used by do_fork() cannot be used here directly
2252  * because they modify an inactive task_struct that is being
2253  * constructed. Here we are modifying the current, active,
2254  * task_struct.
2255  */
2256 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2257 {
2258 	struct fs_struct *fs, *new_fs = NULL;
2259 	struct files_struct *fd, *new_fd = NULL;
2260 	struct cred *new_cred = NULL;
2261 	struct nsproxy *new_nsproxy = NULL;
2262 	int do_sysvsem = 0;
2263 	int err;
2264 
2265 	/*
2266 	 * If unsharing a user namespace must also unshare the thread group
2267 	 * and unshare the filesystem root and working directories.
2268 	 */
2269 	if (unshare_flags & CLONE_NEWUSER)
2270 		unshare_flags |= CLONE_THREAD | CLONE_FS;
2271 	/*
2272 	 * If unsharing vm, must also unshare signal handlers.
2273 	 */
2274 	if (unshare_flags & CLONE_VM)
2275 		unshare_flags |= CLONE_SIGHAND;
2276 	/*
2277 	 * If unsharing a signal handlers, must also unshare the signal queues.
2278 	 */
2279 	if (unshare_flags & CLONE_SIGHAND)
2280 		unshare_flags |= CLONE_THREAD;
2281 	/*
2282 	 * If unsharing namespace, must also unshare filesystem information.
2283 	 */
2284 	if (unshare_flags & CLONE_NEWNS)
2285 		unshare_flags |= CLONE_FS;
2286 
2287 	err = check_unshare_flags(unshare_flags);
2288 	if (err)
2289 		goto bad_unshare_out;
2290 	/*
2291 	 * CLONE_NEWIPC must also detach from the undolist: after switching
2292 	 * to a new ipc namespace, the semaphore arrays from the old
2293 	 * namespace are unreachable.
2294 	 */
2295 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2296 		do_sysvsem = 1;
2297 	err = unshare_fs(unshare_flags, &new_fs);
2298 	if (err)
2299 		goto bad_unshare_out;
2300 	err = unshare_fd(unshare_flags, &new_fd);
2301 	if (err)
2302 		goto bad_unshare_cleanup_fs;
2303 	err = unshare_userns(unshare_flags, &new_cred);
2304 	if (err)
2305 		goto bad_unshare_cleanup_fd;
2306 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2307 					 new_cred, new_fs);
2308 	if (err)
2309 		goto bad_unshare_cleanup_cred;
2310 
2311 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2312 		if (do_sysvsem) {
2313 			/*
2314 			 * CLONE_SYSVSEM is equivalent to sys_exit().
2315 			 */
2316 			exit_sem(current);
2317 		}
2318 		if (unshare_flags & CLONE_NEWIPC) {
2319 			/* Orphan segments in old ns (see sem above). */
2320 			exit_shm(current);
2321 			shm_init_task(current);
2322 		}
2323 
2324 		if (new_nsproxy)
2325 			switch_task_namespaces(current, new_nsproxy);
2326 
2327 		task_lock(current);
2328 
2329 		if (new_fs) {
2330 			fs = current->fs;
2331 			spin_lock(&fs->lock);
2332 			current->fs = new_fs;
2333 			if (--fs->users)
2334 				new_fs = NULL;
2335 			else
2336 				new_fs = fs;
2337 			spin_unlock(&fs->lock);
2338 		}
2339 
2340 		if (new_fd) {
2341 			fd = current->files;
2342 			current->files = new_fd;
2343 			new_fd = fd;
2344 		}
2345 
2346 		task_unlock(current);
2347 
2348 		if (new_cred) {
2349 			/* Install the new user namespace */
2350 			commit_creds(new_cred);
2351 			new_cred = NULL;
2352 		}
2353 	}
2354 
2355 bad_unshare_cleanup_cred:
2356 	if (new_cred)
2357 		put_cred(new_cred);
2358 bad_unshare_cleanup_fd:
2359 	if (new_fd)
2360 		put_files_struct(new_fd);
2361 
2362 bad_unshare_cleanup_fs:
2363 	if (new_fs)
2364 		free_fs_struct(new_fs);
2365 
2366 bad_unshare_out:
2367 	return err;
2368 }
2369 
2370 /*
2371  *	Helper to unshare the files of the current task.
2372  *	We don't want to expose copy_files internals to
2373  *	the exec layer of the kernel.
2374  */
2375 
2376 int unshare_files(struct files_struct **displaced)
2377 {
2378 	struct task_struct *task = current;
2379 	struct files_struct *copy = NULL;
2380 	int error;
2381 
2382 	error = unshare_fd(CLONE_FILES, &copy);
2383 	if (error || !copy) {
2384 		*displaced = NULL;
2385 		return error;
2386 	}
2387 	*displaced = task->files;
2388 	task_lock(task);
2389 	task->files = copy;
2390 	task_unlock(task);
2391 	return 0;
2392 }
2393 
2394 int sysctl_max_threads(struct ctl_table *table, int write,
2395 		       void __user *buffer, size_t *lenp, loff_t *ppos)
2396 {
2397 	struct ctl_table t;
2398 	int ret;
2399 	int threads = max_threads;
2400 	int min = MIN_THREADS;
2401 	int max = MAX_THREADS;
2402 
2403 	t = *table;
2404 	t.data = &threads;
2405 	t.extra1 = &min;
2406 	t.extra2 = &max;
2407 
2408 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2409 	if (ret || !write)
2410 		return ret;
2411 
2412 	set_max_threads(threads);
2413 
2414 	return 0;
2415 }
2416