xref: /openbmc/linux/kernel/fork.c (revision e4c0d0e2)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/swap.h>
38 #include <linux/syscalls.h>
39 #include <linux/jiffies.h>
40 #include <linux/tracehook.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/kthread.h>
44 #include <linux/task_io_accounting_ops.h>
45 #include <linux/rcupdate.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/audit.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/profile.h>
52 #include <linux/rmap.h>
53 #include <linux/ksm.h>
54 #include <linux/acct.h>
55 #include <linux/tsacct_kern.h>
56 #include <linux/cn_proc.h>
57 #include <linux/freezer.h>
58 #include <linux/delayacct.h>
59 #include <linux/taskstats_kern.h>
60 #include <linux/random.h>
61 #include <linux/tty.h>
62 #include <linux/blkdev.h>
63 #include <linux/fs_struct.h>
64 #include <linux/magic.h>
65 #include <linux/perf_event.h>
66 #include <linux/posix-timers.h>
67 #include <linux/user-return-notifier.h>
68 #include <linux/oom.h>
69 #include <linux/khugepaged.h>
70 
71 #include <asm/pgtable.h>
72 #include <asm/pgalloc.h>
73 #include <asm/uaccess.h>
74 #include <asm/mmu_context.h>
75 #include <asm/cacheflush.h>
76 #include <asm/tlbflush.h>
77 
78 #include <trace/events/sched.h>
79 
80 /*
81  * Protected counters by write_lock_irq(&tasklist_lock)
82  */
83 unsigned long total_forks;	/* Handle normal Linux uptimes. */
84 int nr_threads; 		/* The idle threads do not count.. */
85 
86 int max_threads;		/* tunable limit on nr_threads */
87 
88 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
89 
90 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
91 
92 #ifdef CONFIG_PROVE_RCU
93 int lockdep_tasklist_lock_is_held(void)
94 {
95 	return lockdep_is_held(&tasklist_lock);
96 }
97 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
98 #endif /* #ifdef CONFIG_PROVE_RCU */
99 
100 int nr_processes(void)
101 {
102 	int cpu;
103 	int total = 0;
104 
105 	for_each_possible_cpu(cpu)
106 		total += per_cpu(process_counts, cpu);
107 
108 	return total;
109 }
110 
111 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
112 # define alloc_task_struct_node(node)		\
113 		kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node)
114 # define free_task_struct(tsk)			\
115 		kmem_cache_free(task_struct_cachep, (tsk))
116 static struct kmem_cache *task_struct_cachep;
117 #endif
118 
119 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
120 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
121 						  int node)
122 {
123 #ifdef CONFIG_DEBUG_STACK_USAGE
124 	gfp_t mask = GFP_KERNEL | __GFP_ZERO;
125 #else
126 	gfp_t mask = GFP_KERNEL;
127 #endif
128 	struct page *page = alloc_pages_node(node, mask, THREAD_SIZE_ORDER);
129 
130 	return page ? page_address(page) : NULL;
131 }
132 
133 static inline void free_thread_info(struct thread_info *ti)
134 {
135 	free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
136 }
137 #endif
138 
139 /* SLAB cache for signal_struct structures (tsk->signal) */
140 static struct kmem_cache *signal_cachep;
141 
142 /* SLAB cache for sighand_struct structures (tsk->sighand) */
143 struct kmem_cache *sighand_cachep;
144 
145 /* SLAB cache for files_struct structures (tsk->files) */
146 struct kmem_cache *files_cachep;
147 
148 /* SLAB cache for fs_struct structures (tsk->fs) */
149 struct kmem_cache *fs_cachep;
150 
151 /* SLAB cache for vm_area_struct structures */
152 struct kmem_cache *vm_area_cachep;
153 
154 /* SLAB cache for mm_struct structures (tsk->mm) */
155 static struct kmem_cache *mm_cachep;
156 
157 static void account_kernel_stack(struct thread_info *ti, int account)
158 {
159 	struct zone *zone = page_zone(virt_to_page(ti));
160 
161 	mod_zone_page_state(zone, NR_KERNEL_STACK, account);
162 }
163 
164 void free_task(struct task_struct *tsk)
165 {
166 	prop_local_destroy_single(&tsk->dirties);
167 	account_kernel_stack(tsk->stack, -1);
168 	free_thread_info(tsk->stack);
169 	rt_mutex_debug_task_free(tsk);
170 	ftrace_graph_exit_task(tsk);
171 	free_task_struct(tsk);
172 }
173 EXPORT_SYMBOL(free_task);
174 
175 static inline void free_signal_struct(struct signal_struct *sig)
176 {
177 	taskstats_tgid_free(sig);
178 	sched_autogroup_exit(sig);
179 	kmem_cache_free(signal_cachep, sig);
180 }
181 
182 static inline void put_signal_struct(struct signal_struct *sig)
183 {
184 	if (atomic_dec_and_test(&sig->sigcnt))
185 		free_signal_struct(sig);
186 }
187 
188 void __put_task_struct(struct task_struct *tsk)
189 {
190 	WARN_ON(!tsk->exit_state);
191 	WARN_ON(atomic_read(&tsk->usage));
192 	WARN_ON(tsk == current);
193 
194 	exit_creds(tsk);
195 	delayacct_tsk_free(tsk);
196 	put_signal_struct(tsk->signal);
197 
198 	if (!profile_handoff_task(tsk))
199 		free_task(tsk);
200 }
201 EXPORT_SYMBOL_GPL(__put_task_struct);
202 
203 /*
204  * macro override instead of weak attribute alias, to workaround
205  * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
206  */
207 #ifndef arch_task_cache_init
208 #define arch_task_cache_init()
209 #endif
210 
211 void __init fork_init(unsigned long mempages)
212 {
213 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
214 #ifndef ARCH_MIN_TASKALIGN
215 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
216 #endif
217 	/* create a slab on which task_structs can be allocated */
218 	task_struct_cachep =
219 		kmem_cache_create("task_struct", sizeof(struct task_struct),
220 			ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
221 #endif
222 
223 	/* do the arch specific task caches init */
224 	arch_task_cache_init();
225 
226 	/*
227 	 * The default maximum number of threads is set to a safe
228 	 * value: the thread structures can take up at most half
229 	 * of memory.
230 	 */
231 	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
232 
233 	/*
234 	 * we need to allow at least 20 threads to boot a system
235 	 */
236 	if(max_threads < 20)
237 		max_threads = 20;
238 
239 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
240 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
241 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
242 		init_task.signal->rlim[RLIMIT_NPROC];
243 }
244 
245 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
246 					       struct task_struct *src)
247 {
248 	*dst = *src;
249 	return 0;
250 }
251 
252 static struct task_struct *dup_task_struct(struct task_struct *orig)
253 {
254 	struct task_struct *tsk;
255 	struct thread_info *ti;
256 	unsigned long *stackend;
257 	int node = tsk_fork_get_node(orig);
258 	int err;
259 
260 	prepare_to_copy(orig);
261 
262 	tsk = alloc_task_struct_node(node);
263 	if (!tsk)
264 		return NULL;
265 
266 	ti = alloc_thread_info_node(tsk, node);
267 	if (!ti) {
268 		free_task_struct(tsk);
269 		return NULL;
270 	}
271 
272  	err = arch_dup_task_struct(tsk, orig);
273 	if (err)
274 		goto out;
275 
276 	tsk->stack = ti;
277 
278 	err = prop_local_init_single(&tsk->dirties);
279 	if (err)
280 		goto out;
281 
282 	setup_thread_stack(tsk, orig);
283 	clear_user_return_notifier(tsk);
284 	clear_tsk_need_resched(tsk);
285 	stackend = end_of_stack(tsk);
286 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
287 
288 #ifdef CONFIG_CC_STACKPROTECTOR
289 	tsk->stack_canary = get_random_int();
290 #endif
291 
292 	/* One for us, one for whoever does the "release_task()" (usually parent) */
293 	atomic_set(&tsk->usage,2);
294 	atomic_set(&tsk->fs_excl, 0);
295 #ifdef CONFIG_BLK_DEV_IO_TRACE
296 	tsk->btrace_seq = 0;
297 #endif
298 	tsk->splice_pipe = NULL;
299 
300 	account_kernel_stack(ti, 1);
301 
302 	return tsk;
303 
304 out:
305 	free_thread_info(ti);
306 	free_task_struct(tsk);
307 	return NULL;
308 }
309 
310 #ifdef CONFIG_MMU
311 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
312 {
313 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
314 	struct rb_node **rb_link, *rb_parent;
315 	int retval;
316 	unsigned long charge;
317 	struct mempolicy *pol;
318 
319 	down_write(&oldmm->mmap_sem);
320 	flush_cache_dup_mm(oldmm);
321 	/*
322 	 * Not linked in yet - no deadlock potential:
323 	 */
324 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
325 
326 	mm->locked_vm = 0;
327 	mm->mmap = NULL;
328 	mm->mmap_cache = NULL;
329 	mm->free_area_cache = oldmm->mmap_base;
330 	mm->cached_hole_size = ~0UL;
331 	mm->map_count = 0;
332 	cpumask_clear(mm_cpumask(mm));
333 	mm->mm_rb = RB_ROOT;
334 	rb_link = &mm->mm_rb.rb_node;
335 	rb_parent = NULL;
336 	pprev = &mm->mmap;
337 	retval = ksm_fork(mm, oldmm);
338 	if (retval)
339 		goto out;
340 	retval = khugepaged_fork(mm, oldmm);
341 	if (retval)
342 		goto out;
343 
344 	prev = NULL;
345 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
346 		struct file *file;
347 
348 		if (mpnt->vm_flags & VM_DONTCOPY) {
349 			long pages = vma_pages(mpnt);
350 			mm->total_vm -= pages;
351 			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
352 								-pages);
353 			continue;
354 		}
355 		charge = 0;
356 		if (mpnt->vm_flags & VM_ACCOUNT) {
357 			unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
358 			if (security_vm_enough_memory(len))
359 				goto fail_nomem;
360 			charge = len;
361 		}
362 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
363 		if (!tmp)
364 			goto fail_nomem;
365 		*tmp = *mpnt;
366 		INIT_LIST_HEAD(&tmp->anon_vma_chain);
367 		pol = mpol_dup(vma_policy(mpnt));
368 		retval = PTR_ERR(pol);
369 		if (IS_ERR(pol))
370 			goto fail_nomem_policy;
371 		vma_set_policy(tmp, pol);
372 		tmp->vm_mm = mm;
373 		if (anon_vma_fork(tmp, mpnt))
374 			goto fail_nomem_anon_vma_fork;
375 		tmp->vm_flags &= ~VM_LOCKED;
376 		tmp->vm_next = tmp->vm_prev = NULL;
377 		file = tmp->vm_file;
378 		if (file) {
379 			struct inode *inode = file->f_path.dentry->d_inode;
380 			struct address_space *mapping = file->f_mapping;
381 
382 			get_file(file);
383 			if (tmp->vm_flags & VM_DENYWRITE)
384 				atomic_dec(&inode->i_writecount);
385 			mutex_lock(&mapping->i_mmap_mutex);
386 			if (tmp->vm_flags & VM_SHARED)
387 				mapping->i_mmap_writable++;
388 			flush_dcache_mmap_lock(mapping);
389 			/* insert tmp into the share list, just after mpnt */
390 			vma_prio_tree_add(tmp, mpnt);
391 			flush_dcache_mmap_unlock(mapping);
392 			mutex_unlock(&mapping->i_mmap_mutex);
393 		}
394 
395 		/*
396 		 * Clear hugetlb-related page reserves for children. This only
397 		 * affects MAP_PRIVATE mappings. Faults generated by the child
398 		 * are not guaranteed to succeed, even if read-only
399 		 */
400 		if (is_vm_hugetlb_page(tmp))
401 			reset_vma_resv_huge_pages(tmp);
402 
403 		/*
404 		 * Link in the new vma and copy the page table entries.
405 		 */
406 		*pprev = tmp;
407 		pprev = &tmp->vm_next;
408 		tmp->vm_prev = prev;
409 		prev = tmp;
410 
411 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
412 		rb_link = &tmp->vm_rb.rb_right;
413 		rb_parent = &tmp->vm_rb;
414 
415 		mm->map_count++;
416 		retval = copy_page_range(mm, oldmm, mpnt);
417 
418 		if (tmp->vm_ops && tmp->vm_ops->open)
419 			tmp->vm_ops->open(tmp);
420 
421 		if (retval)
422 			goto out;
423 	}
424 	/* a new mm has just been created */
425 	arch_dup_mmap(oldmm, mm);
426 	retval = 0;
427 out:
428 	up_write(&mm->mmap_sem);
429 	flush_tlb_mm(oldmm);
430 	up_write(&oldmm->mmap_sem);
431 	return retval;
432 fail_nomem_anon_vma_fork:
433 	mpol_put(pol);
434 fail_nomem_policy:
435 	kmem_cache_free(vm_area_cachep, tmp);
436 fail_nomem:
437 	retval = -ENOMEM;
438 	vm_unacct_memory(charge);
439 	goto out;
440 }
441 
442 static inline int mm_alloc_pgd(struct mm_struct * mm)
443 {
444 	mm->pgd = pgd_alloc(mm);
445 	if (unlikely(!mm->pgd))
446 		return -ENOMEM;
447 	return 0;
448 }
449 
450 static inline void mm_free_pgd(struct mm_struct * mm)
451 {
452 	pgd_free(mm, mm->pgd);
453 }
454 #else
455 #define dup_mmap(mm, oldmm)	(0)
456 #define mm_alloc_pgd(mm)	(0)
457 #define mm_free_pgd(mm)
458 #endif /* CONFIG_MMU */
459 
460 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
461 
462 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
463 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
464 
465 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
466 
467 static int __init coredump_filter_setup(char *s)
468 {
469 	default_dump_filter =
470 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
471 		MMF_DUMP_FILTER_MASK;
472 	return 1;
473 }
474 
475 __setup("coredump_filter=", coredump_filter_setup);
476 
477 #include <linux/init_task.h>
478 
479 static void mm_init_aio(struct mm_struct *mm)
480 {
481 #ifdef CONFIG_AIO
482 	spin_lock_init(&mm->ioctx_lock);
483 	INIT_HLIST_HEAD(&mm->ioctx_list);
484 #endif
485 }
486 
487 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
488 {
489 	atomic_set(&mm->mm_users, 1);
490 	atomic_set(&mm->mm_count, 1);
491 	init_rwsem(&mm->mmap_sem);
492 	INIT_LIST_HEAD(&mm->mmlist);
493 	mm->flags = (current->mm) ?
494 		(current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
495 	mm->core_state = NULL;
496 	mm->nr_ptes = 0;
497 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
498 	spin_lock_init(&mm->page_table_lock);
499 	mm->free_area_cache = TASK_UNMAPPED_BASE;
500 	mm->cached_hole_size = ~0UL;
501 	mm_init_aio(mm);
502 	mm_init_owner(mm, p);
503 	atomic_set(&mm->oom_disable_count, 0);
504 
505 	if (likely(!mm_alloc_pgd(mm))) {
506 		mm->def_flags = 0;
507 		mmu_notifier_mm_init(mm);
508 		return mm;
509 	}
510 
511 	free_mm(mm);
512 	return NULL;
513 }
514 
515 /*
516  * Allocate and initialize an mm_struct.
517  */
518 struct mm_struct * mm_alloc(void)
519 {
520 	struct mm_struct * mm;
521 
522 	mm = allocate_mm();
523 	if (!mm)
524 		return NULL;
525 
526 	memset(mm, 0, sizeof(*mm));
527 	mm_init_cpumask(mm);
528 	return mm_init(mm, current);
529 }
530 
531 /*
532  * Called when the last reference to the mm
533  * is dropped: either by a lazy thread or by
534  * mmput. Free the page directory and the mm.
535  */
536 void __mmdrop(struct mm_struct *mm)
537 {
538 	BUG_ON(mm == &init_mm);
539 	mm_free_pgd(mm);
540 	destroy_context(mm);
541 	mmu_notifier_mm_destroy(mm);
542 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
543 	VM_BUG_ON(mm->pmd_huge_pte);
544 #endif
545 	free_mm(mm);
546 }
547 EXPORT_SYMBOL_GPL(__mmdrop);
548 
549 /*
550  * Decrement the use count and release all resources for an mm.
551  */
552 void mmput(struct mm_struct *mm)
553 {
554 	might_sleep();
555 
556 	if (atomic_dec_and_test(&mm->mm_users)) {
557 		exit_aio(mm);
558 		ksm_exit(mm);
559 		khugepaged_exit(mm); /* must run before exit_mmap */
560 		exit_mmap(mm);
561 		set_mm_exe_file(mm, NULL);
562 		if (!list_empty(&mm->mmlist)) {
563 			spin_lock(&mmlist_lock);
564 			list_del(&mm->mmlist);
565 			spin_unlock(&mmlist_lock);
566 		}
567 		put_swap_token(mm);
568 		if (mm->binfmt)
569 			module_put(mm->binfmt->module);
570 		mmdrop(mm);
571 	}
572 }
573 EXPORT_SYMBOL_GPL(mmput);
574 
575 /*
576  * We added or removed a vma mapping the executable. The vmas are only mapped
577  * during exec and are not mapped with the mmap system call.
578  * Callers must hold down_write() on the mm's mmap_sem for these
579  */
580 void added_exe_file_vma(struct mm_struct *mm)
581 {
582 	mm->num_exe_file_vmas++;
583 }
584 
585 void removed_exe_file_vma(struct mm_struct *mm)
586 {
587 	mm->num_exe_file_vmas--;
588 	if ((mm->num_exe_file_vmas == 0) && mm->exe_file){
589 		fput(mm->exe_file);
590 		mm->exe_file = NULL;
591 	}
592 
593 }
594 
595 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
596 {
597 	if (new_exe_file)
598 		get_file(new_exe_file);
599 	if (mm->exe_file)
600 		fput(mm->exe_file);
601 	mm->exe_file = new_exe_file;
602 	mm->num_exe_file_vmas = 0;
603 }
604 
605 struct file *get_mm_exe_file(struct mm_struct *mm)
606 {
607 	struct file *exe_file;
608 
609 	/* We need mmap_sem to protect against races with removal of
610 	 * VM_EXECUTABLE vmas */
611 	down_read(&mm->mmap_sem);
612 	exe_file = mm->exe_file;
613 	if (exe_file)
614 		get_file(exe_file);
615 	up_read(&mm->mmap_sem);
616 	return exe_file;
617 }
618 
619 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
620 {
621 	/* It's safe to write the exe_file pointer without exe_file_lock because
622 	 * this is called during fork when the task is not yet in /proc */
623 	newmm->exe_file = get_mm_exe_file(oldmm);
624 }
625 
626 /**
627  * get_task_mm - acquire a reference to the task's mm
628  *
629  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
630  * this kernel workthread has transiently adopted a user mm with use_mm,
631  * to do its AIO) is not set and if so returns a reference to it, after
632  * bumping up the use count.  User must release the mm via mmput()
633  * after use.  Typically used by /proc and ptrace.
634  */
635 struct mm_struct *get_task_mm(struct task_struct *task)
636 {
637 	struct mm_struct *mm;
638 
639 	task_lock(task);
640 	mm = task->mm;
641 	if (mm) {
642 		if (task->flags & PF_KTHREAD)
643 			mm = NULL;
644 		else
645 			atomic_inc(&mm->mm_users);
646 	}
647 	task_unlock(task);
648 	return mm;
649 }
650 EXPORT_SYMBOL_GPL(get_task_mm);
651 
652 /* Please note the differences between mmput and mm_release.
653  * mmput is called whenever we stop holding onto a mm_struct,
654  * error success whatever.
655  *
656  * mm_release is called after a mm_struct has been removed
657  * from the current process.
658  *
659  * This difference is important for error handling, when we
660  * only half set up a mm_struct for a new process and need to restore
661  * the old one.  Because we mmput the new mm_struct before
662  * restoring the old one. . .
663  * Eric Biederman 10 January 1998
664  */
665 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
666 {
667 	struct completion *vfork_done = tsk->vfork_done;
668 
669 	/* Get rid of any futexes when releasing the mm */
670 #ifdef CONFIG_FUTEX
671 	if (unlikely(tsk->robust_list)) {
672 		exit_robust_list(tsk);
673 		tsk->robust_list = NULL;
674 	}
675 #ifdef CONFIG_COMPAT
676 	if (unlikely(tsk->compat_robust_list)) {
677 		compat_exit_robust_list(tsk);
678 		tsk->compat_robust_list = NULL;
679 	}
680 #endif
681 	if (unlikely(!list_empty(&tsk->pi_state_list)))
682 		exit_pi_state_list(tsk);
683 #endif
684 
685 	/* Get rid of any cached register state */
686 	deactivate_mm(tsk, mm);
687 
688 	/* notify parent sleeping on vfork() */
689 	if (vfork_done) {
690 		tsk->vfork_done = NULL;
691 		complete(vfork_done);
692 	}
693 
694 	/*
695 	 * If we're exiting normally, clear a user-space tid field if
696 	 * requested.  We leave this alone when dying by signal, to leave
697 	 * the value intact in a core dump, and to save the unnecessary
698 	 * trouble otherwise.  Userland only wants this done for a sys_exit.
699 	 */
700 	if (tsk->clear_child_tid) {
701 		if (!(tsk->flags & PF_SIGNALED) &&
702 		    atomic_read(&mm->mm_users) > 1) {
703 			/*
704 			 * We don't check the error code - if userspace has
705 			 * not set up a proper pointer then tough luck.
706 			 */
707 			put_user(0, tsk->clear_child_tid);
708 			sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
709 					1, NULL, NULL, 0);
710 		}
711 		tsk->clear_child_tid = NULL;
712 	}
713 }
714 
715 /*
716  * Allocate a new mm structure and copy contents from the
717  * mm structure of the passed in task structure.
718  */
719 struct mm_struct *dup_mm(struct task_struct *tsk)
720 {
721 	struct mm_struct *mm, *oldmm = current->mm;
722 	int err;
723 
724 	if (!oldmm)
725 		return NULL;
726 
727 	mm = allocate_mm();
728 	if (!mm)
729 		goto fail_nomem;
730 
731 	memcpy(mm, oldmm, sizeof(*mm));
732 	mm_init_cpumask(mm);
733 
734 	/* Initializing for Swap token stuff */
735 	mm->token_priority = 0;
736 	mm->last_interval = 0;
737 
738 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
739 	mm->pmd_huge_pte = NULL;
740 #endif
741 
742 	if (!mm_init(mm, tsk))
743 		goto fail_nomem;
744 
745 	if (init_new_context(tsk, mm))
746 		goto fail_nocontext;
747 
748 	dup_mm_exe_file(oldmm, mm);
749 
750 	err = dup_mmap(mm, oldmm);
751 	if (err)
752 		goto free_pt;
753 
754 	mm->hiwater_rss = get_mm_rss(mm);
755 	mm->hiwater_vm = mm->total_vm;
756 
757 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
758 		goto free_pt;
759 
760 	return mm;
761 
762 free_pt:
763 	/* don't put binfmt in mmput, we haven't got module yet */
764 	mm->binfmt = NULL;
765 	mmput(mm);
766 
767 fail_nomem:
768 	return NULL;
769 
770 fail_nocontext:
771 	/*
772 	 * If init_new_context() failed, we cannot use mmput() to free the mm
773 	 * because it calls destroy_context()
774 	 */
775 	mm_free_pgd(mm);
776 	free_mm(mm);
777 	return NULL;
778 }
779 
780 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
781 {
782 	struct mm_struct * mm, *oldmm;
783 	int retval;
784 
785 	tsk->min_flt = tsk->maj_flt = 0;
786 	tsk->nvcsw = tsk->nivcsw = 0;
787 #ifdef CONFIG_DETECT_HUNG_TASK
788 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
789 #endif
790 
791 	tsk->mm = NULL;
792 	tsk->active_mm = NULL;
793 
794 	/*
795 	 * Are we cloning a kernel thread?
796 	 *
797 	 * We need to steal a active VM for that..
798 	 */
799 	oldmm = current->mm;
800 	if (!oldmm)
801 		return 0;
802 
803 	if (clone_flags & CLONE_VM) {
804 		atomic_inc(&oldmm->mm_users);
805 		mm = oldmm;
806 		goto good_mm;
807 	}
808 
809 	retval = -ENOMEM;
810 	mm = dup_mm(tsk);
811 	if (!mm)
812 		goto fail_nomem;
813 
814 good_mm:
815 	/* Initializing for Swap token stuff */
816 	mm->token_priority = 0;
817 	mm->last_interval = 0;
818 	if (tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
819 		atomic_inc(&mm->oom_disable_count);
820 
821 	tsk->mm = mm;
822 	tsk->active_mm = mm;
823 	return 0;
824 
825 fail_nomem:
826 	return retval;
827 }
828 
829 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
830 {
831 	struct fs_struct *fs = current->fs;
832 	if (clone_flags & CLONE_FS) {
833 		/* tsk->fs is already what we want */
834 		spin_lock(&fs->lock);
835 		if (fs->in_exec) {
836 			spin_unlock(&fs->lock);
837 			return -EAGAIN;
838 		}
839 		fs->users++;
840 		spin_unlock(&fs->lock);
841 		return 0;
842 	}
843 	tsk->fs = copy_fs_struct(fs);
844 	if (!tsk->fs)
845 		return -ENOMEM;
846 	return 0;
847 }
848 
849 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
850 {
851 	struct files_struct *oldf, *newf;
852 	int error = 0;
853 
854 	/*
855 	 * A background process may not have any files ...
856 	 */
857 	oldf = current->files;
858 	if (!oldf)
859 		goto out;
860 
861 	if (clone_flags & CLONE_FILES) {
862 		atomic_inc(&oldf->count);
863 		goto out;
864 	}
865 
866 	newf = dup_fd(oldf, &error);
867 	if (!newf)
868 		goto out;
869 
870 	tsk->files = newf;
871 	error = 0;
872 out:
873 	return error;
874 }
875 
876 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
877 {
878 #ifdef CONFIG_BLOCK
879 	struct io_context *ioc = current->io_context;
880 
881 	if (!ioc)
882 		return 0;
883 	/*
884 	 * Share io context with parent, if CLONE_IO is set
885 	 */
886 	if (clone_flags & CLONE_IO) {
887 		tsk->io_context = ioc_task_link(ioc);
888 		if (unlikely(!tsk->io_context))
889 			return -ENOMEM;
890 	} else if (ioprio_valid(ioc->ioprio)) {
891 		tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
892 		if (unlikely(!tsk->io_context))
893 			return -ENOMEM;
894 
895 		tsk->io_context->ioprio = ioc->ioprio;
896 	}
897 #endif
898 	return 0;
899 }
900 
901 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
902 {
903 	struct sighand_struct *sig;
904 
905 	if (clone_flags & CLONE_SIGHAND) {
906 		atomic_inc(&current->sighand->count);
907 		return 0;
908 	}
909 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
910 	rcu_assign_pointer(tsk->sighand, sig);
911 	if (!sig)
912 		return -ENOMEM;
913 	atomic_set(&sig->count, 1);
914 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
915 	return 0;
916 }
917 
918 void __cleanup_sighand(struct sighand_struct *sighand)
919 {
920 	if (atomic_dec_and_test(&sighand->count))
921 		kmem_cache_free(sighand_cachep, sighand);
922 }
923 
924 
925 /*
926  * Initialize POSIX timer handling for a thread group.
927  */
928 static void posix_cpu_timers_init_group(struct signal_struct *sig)
929 {
930 	unsigned long cpu_limit;
931 
932 	/* Thread group counters. */
933 	thread_group_cputime_init(sig);
934 
935 	cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
936 	if (cpu_limit != RLIM_INFINITY) {
937 		sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
938 		sig->cputimer.running = 1;
939 	}
940 
941 	/* The timer lists. */
942 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
943 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
944 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
945 }
946 
947 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
948 {
949 	struct signal_struct *sig;
950 
951 	if (clone_flags & CLONE_THREAD)
952 		return 0;
953 
954 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
955 	tsk->signal = sig;
956 	if (!sig)
957 		return -ENOMEM;
958 
959 	sig->nr_threads = 1;
960 	atomic_set(&sig->live, 1);
961 	atomic_set(&sig->sigcnt, 1);
962 	init_waitqueue_head(&sig->wait_chldexit);
963 	if (clone_flags & CLONE_NEWPID)
964 		sig->flags |= SIGNAL_UNKILLABLE;
965 	sig->curr_target = tsk;
966 	init_sigpending(&sig->shared_pending);
967 	INIT_LIST_HEAD(&sig->posix_timers);
968 
969 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
970 	sig->real_timer.function = it_real_fn;
971 
972 	task_lock(current->group_leader);
973 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
974 	task_unlock(current->group_leader);
975 
976 	posix_cpu_timers_init_group(sig);
977 
978 	tty_audit_fork(sig);
979 	sched_autogroup_fork(sig);
980 
981 #ifdef CONFIG_CGROUPS
982 	init_rwsem(&sig->threadgroup_fork_lock);
983 #endif
984 
985 	sig->oom_adj = current->signal->oom_adj;
986 	sig->oom_score_adj = current->signal->oom_score_adj;
987 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
988 
989 	mutex_init(&sig->cred_guard_mutex);
990 
991 	return 0;
992 }
993 
994 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
995 {
996 	unsigned long new_flags = p->flags;
997 
998 	new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
999 	new_flags |= PF_FORKNOEXEC;
1000 	new_flags |= PF_STARTING;
1001 	p->flags = new_flags;
1002 	clear_freeze_flag(p);
1003 }
1004 
1005 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1006 {
1007 	current->clear_child_tid = tidptr;
1008 
1009 	return task_pid_vnr(current);
1010 }
1011 
1012 static void rt_mutex_init_task(struct task_struct *p)
1013 {
1014 	raw_spin_lock_init(&p->pi_lock);
1015 #ifdef CONFIG_RT_MUTEXES
1016 	plist_head_init_raw(&p->pi_waiters, &p->pi_lock);
1017 	p->pi_blocked_on = NULL;
1018 #endif
1019 }
1020 
1021 #ifdef CONFIG_MM_OWNER
1022 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1023 {
1024 	mm->owner = p;
1025 }
1026 #endif /* CONFIG_MM_OWNER */
1027 
1028 /*
1029  * Initialize POSIX timer handling for a single task.
1030  */
1031 static void posix_cpu_timers_init(struct task_struct *tsk)
1032 {
1033 	tsk->cputime_expires.prof_exp = cputime_zero;
1034 	tsk->cputime_expires.virt_exp = cputime_zero;
1035 	tsk->cputime_expires.sched_exp = 0;
1036 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1037 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1038 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1039 }
1040 
1041 /*
1042  * This creates a new process as a copy of the old one,
1043  * but does not actually start it yet.
1044  *
1045  * It copies the registers, and all the appropriate
1046  * parts of the process environment (as per the clone
1047  * flags). The actual kick-off is left to the caller.
1048  */
1049 static struct task_struct *copy_process(unsigned long clone_flags,
1050 					unsigned long stack_start,
1051 					struct pt_regs *regs,
1052 					unsigned long stack_size,
1053 					int __user *child_tidptr,
1054 					struct pid *pid,
1055 					int trace)
1056 {
1057 	int retval;
1058 	struct task_struct *p;
1059 	int cgroup_callbacks_done = 0;
1060 
1061 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1062 		return ERR_PTR(-EINVAL);
1063 
1064 	/*
1065 	 * Thread groups must share signals as well, and detached threads
1066 	 * can only be started up within the thread group.
1067 	 */
1068 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1069 		return ERR_PTR(-EINVAL);
1070 
1071 	/*
1072 	 * Shared signal handlers imply shared VM. By way of the above,
1073 	 * thread groups also imply shared VM. Blocking this case allows
1074 	 * for various simplifications in other code.
1075 	 */
1076 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1077 		return ERR_PTR(-EINVAL);
1078 
1079 	/*
1080 	 * Siblings of global init remain as zombies on exit since they are
1081 	 * not reaped by their parent (swapper). To solve this and to avoid
1082 	 * multi-rooted process trees, prevent global and container-inits
1083 	 * from creating siblings.
1084 	 */
1085 	if ((clone_flags & CLONE_PARENT) &&
1086 				current->signal->flags & SIGNAL_UNKILLABLE)
1087 		return ERR_PTR(-EINVAL);
1088 
1089 	retval = security_task_create(clone_flags);
1090 	if (retval)
1091 		goto fork_out;
1092 
1093 	retval = -ENOMEM;
1094 	p = dup_task_struct(current);
1095 	if (!p)
1096 		goto fork_out;
1097 
1098 	ftrace_graph_init_task(p);
1099 
1100 	rt_mutex_init_task(p);
1101 
1102 #ifdef CONFIG_PROVE_LOCKING
1103 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1104 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1105 #endif
1106 	retval = -EAGAIN;
1107 	if (atomic_read(&p->real_cred->user->processes) >=
1108 			task_rlimit(p, RLIMIT_NPROC)) {
1109 		if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1110 		    p->real_cred->user != INIT_USER)
1111 			goto bad_fork_free;
1112 	}
1113 
1114 	retval = copy_creds(p, clone_flags);
1115 	if (retval < 0)
1116 		goto bad_fork_free;
1117 
1118 	/*
1119 	 * If multiple threads are within copy_process(), then this check
1120 	 * triggers too late. This doesn't hurt, the check is only there
1121 	 * to stop root fork bombs.
1122 	 */
1123 	retval = -EAGAIN;
1124 	if (nr_threads >= max_threads)
1125 		goto bad_fork_cleanup_count;
1126 
1127 	if (!try_module_get(task_thread_info(p)->exec_domain->module))
1128 		goto bad_fork_cleanup_count;
1129 
1130 	p->did_exec = 0;
1131 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1132 	copy_flags(clone_flags, p);
1133 	INIT_LIST_HEAD(&p->children);
1134 	INIT_LIST_HEAD(&p->sibling);
1135 	rcu_copy_process(p);
1136 	p->vfork_done = NULL;
1137 	spin_lock_init(&p->alloc_lock);
1138 
1139 	init_sigpending(&p->pending);
1140 
1141 	p->utime = cputime_zero;
1142 	p->stime = cputime_zero;
1143 	p->gtime = cputime_zero;
1144 	p->utimescaled = cputime_zero;
1145 	p->stimescaled = cputime_zero;
1146 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1147 	p->prev_utime = cputime_zero;
1148 	p->prev_stime = cputime_zero;
1149 #endif
1150 #if defined(SPLIT_RSS_COUNTING)
1151 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1152 #endif
1153 
1154 	p->default_timer_slack_ns = current->timer_slack_ns;
1155 
1156 	task_io_accounting_init(&p->ioac);
1157 	acct_clear_integrals(p);
1158 
1159 	posix_cpu_timers_init(p);
1160 
1161 	do_posix_clock_monotonic_gettime(&p->start_time);
1162 	p->real_start_time = p->start_time;
1163 	monotonic_to_bootbased(&p->real_start_time);
1164 	p->io_context = NULL;
1165 	p->audit_context = NULL;
1166 	if (clone_flags & CLONE_THREAD)
1167 		threadgroup_fork_read_lock(current);
1168 	cgroup_fork(p);
1169 #ifdef CONFIG_NUMA
1170 	p->mempolicy = mpol_dup(p->mempolicy);
1171  	if (IS_ERR(p->mempolicy)) {
1172  		retval = PTR_ERR(p->mempolicy);
1173  		p->mempolicy = NULL;
1174  		goto bad_fork_cleanup_cgroup;
1175  	}
1176 	mpol_fix_fork_child_flag(p);
1177 #endif
1178 #ifdef CONFIG_TRACE_IRQFLAGS
1179 	p->irq_events = 0;
1180 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1181 	p->hardirqs_enabled = 1;
1182 #else
1183 	p->hardirqs_enabled = 0;
1184 #endif
1185 	p->hardirq_enable_ip = 0;
1186 	p->hardirq_enable_event = 0;
1187 	p->hardirq_disable_ip = _THIS_IP_;
1188 	p->hardirq_disable_event = 0;
1189 	p->softirqs_enabled = 1;
1190 	p->softirq_enable_ip = _THIS_IP_;
1191 	p->softirq_enable_event = 0;
1192 	p->softirq_disable_ip = 0;
1193 	p->softirq_disable_event = 0;
1194 	p->hardirq_context = 0;
1195 	p->softirq_context = 0;
1196 #endif
1197 #ifdef CONFIG_LOCKDEP
1198 	p->lockdep_depth = 0; /* no locks held yet */
1199 	p->curr_chain_key = 0;
1200 	p->lockdep_recursion = 0;
1201 #endif
1202 
1203 #ifdef CONFIG_DEBUG_MUTEXES
1204 	p->blocked_on = NULL; /* not blocked yet */
1205 #endif
1206 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1207 	p->memcg_batch.do_batch = 0;
1208 	p->memcg_batch.memcg = NULL;
1209 #endif
1210 
1211 	/* Perform scheduler related setup. Assign this task to a CPU. */
1212 	sched_fork(p);
1213 
1214 	retval = perf_event_init_task(p);
1215 	if (retval)
1216 		goto bad_fork_cleanup_policy;
1217 
1218 	if ((retval = audit_alloc(p)))
1219 		goto bad_fork_cleanup_policy;
1220 	/* copy all the process information */
1221 	if ((retval = copy_semundo(clone_flags, p)))
1222 		goto bad_fork_cleanup_audit;
1223 	if ((retval = copy_files(clone_flags, p)))
1224 		goto bad_fork_cleanup_semundo;
1225 	if ((retval = copy_fs(clone_flags, p)))
1226 		goto bad_fork_cleanup_files;
1227 	if ((retval = copy_sighand(clone_flags, p)))
1228 		goto bad_fork_cleanup_fs;
1229 	if ((retval = copy_signal(clone_flags, p)))
1230 		goto bad_fork_cleanup_sighand;
1231 	if ((retval = copy_mm(clone_flags, p)))
1232 		goto bad_fork_cleanup_signal;
1233 	if ((retval = copy_namespaces(clone_flags, p)))
1234 		goto bad_fork_cleanup_mm;
1235 	if ((retval = copy_io(clone_flags, p)))
1236 		goto bad_fork_cleanup_namespaces;
1237 	retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1238 	if (retval)
1239 		goto bad_fork_cleanup_io;
1240 
1241 	if (pid != &init_struct_pid) {
1242 		retval = -ENOMEM;
1243 		pid = alloc_pid(p->nsproxy->pid_ns);
1244 		if (!pid)
1245 			goto bad_fork_cleanup_io;
1246 	}
1247 
1248 	p->pid = pid_nr(pid);
1249 	p->tgid = p->pid;
1250 	if (clone_flags & CLONE_THREAD)
1251 		p->tgid = current->tgid;
1252 
1253 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1254 	/*
1255 	 * Clear TID on mm_release()?
1256 	 */
1257 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1258 #ifdef CONFIG_BLOCK
1259 	p->plug = NULL;
1260 #endif
1261 #ifdef CONFIG_FUTEX
1262 	p->robust_list = NULL;
1263 #ifdef CONFIG_COMPAT
1264 	p->compat_robust_list = NULL;
1265 #endif
1266 	INIT_LIST_HEAD(&p->pi_state_list);
1267 	p->pi_state_cache = NULL;
1268 #endif
1269 	/*
1270 	 * sigaltstack should be cleared when sharing the same VM
1271 	 */
1272 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1273 		p->sas_ss_sp = p->sas_ss_size = 0;
1274 
1275 	/*
1276 	 * Syscall tracing and stepping should be turned off in the
1277 	 * child regardless of CLONE_PTRACE.
1278 	 */
1279 	user_disable_single_step(p);
1280 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1281 #ifdef TIF_SYSCALL_EMU
1282 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1283 #endif
1284 	clear_all_latency_tracing(p);
1285 
1286 	/* ok, now we should be set up.. */
1287 	p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1288 	p->pdeath_signal = 0;
1289 	p->exit_state = 0;
1290 
1291 	/*
1292 	 * Ok, make it visible to the rest of the system.
1293 	 * We dont wake it up yet.
1294 	 */
1295 	p->group_leader = p;
1296 	INIT_LIST_HEAD(&p->thread_group);
1297 
1298 	/* Now that the task is set up, run cgroup callbacks if
1299 	 * necessary. We need to run them before the task is visible
1300 	 * on the tasklist. */
1301 	cgroup_fork_callbacks(p);
1302 	cgroup_callbacks_done = 1;
1303 
1304 	/* Need tasklist lock for parent etc handling! */
1305 	write_lock_irq(&tasklist_lock);
1306 
1307 	/* CLONE_PARENT re-uses the old parent */
1308 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1309 		p->real_parent = current->real_parent;
1310 		p->parent_exec_id = current->parent_exec_id;
1311 	} else {
1312 		p->real_parent = current;
1313 		p->parent_exec_id = current->self_exec_id;
1314 	}
1315 
1316 	spin_lock(&current->sighand->siglock);
1317 
1318 	/*
1319 	 * Process group and session signals need to be delivered to just the
1320 	 * parent before the fork or both the parent and the child after the
1321 	 * fork. Restart if a signal comes in before we add the new process to
1322 	 * it's process group.
1323 	 * A fatal signal pending means that current will exit, so the new
1324 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1325  	 */
1326 	recalc_sigpending();
1327 	if (signal_pending(current)) {
1328 		spin_unlock(&current->sighand->siglock);
1329 		write_unlock_irq(&tasklist_lock);
1330 		retval = -ERESTARTNOINTR;
1331 		goto bad_fork_free_pid;
1332 	}
1333 
1334 	if (clone_flags & CLONE_THREAD) {
1335 		current->signal->nr_threads++;
1336 		atomic_inc(&current->signal->live);
1337 		atomic_inc(&current->signal->sigcnt);
1338 		p->group_leader = current->group_leader;
1339 		list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1340 	}
1341 
1342 	if (likely(p->pid)) {
1343 		tracehook_finish_clone(p, clone_flags, trace);
1344 
1345 		if (thread_group_leader(p)) {
1346 			if (is_child_reaper(pid))
1347 				p->nsproxy->pid_ns->child_reaper = p;
1348 
1349 			p->signal->leader_pid = pid;
1350 			p->signal->tty = tty_kref_get(current->signal->tty);
1351 			attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1352 			attach_pid(p, PIDTYPE_SID, task_session(current));
1353 			list_add_tail(&p->sibling, &p->real_parent->children);
1354 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1355 			__this_cpu_inc(process_counts);
1356 		}
1357 		attach_pid(p, PIDTYPE_PID, pid);
1358 		nr_threads++;
1359 	}
1360 
1361 	total_forks++;
1362 	spin_unlock(&current->sighand->siglock);
1363 	write_unlock_irq(&tasklist_lock);
1364 	proc_fork_connector(p);
1365 	cgroup_post_fork(p);
1366 	if (clone_flags & CLONE_THREAD)
1367 		threadgroup_fork_read_unlock(current);
1368 	perf_event_fork(p);
1369 	return p;
1370 
1371 bad_fork_free_pid:
1372 	if (pid != &init_struct_pid)
1373 		free_pid(pid);
1374 bad_fork_cleanup_io:
1375 	if (p->io_context)
1376 		exit_io_context(p);
1377 bad_fork_cleanup_namespaces:
1378 	exit_task_namespaces(p);
1379 bad_fork_cleanup_mm:
1380 	if (p->mm) {
1381 		task_lock(p);
1382 		if (p->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1383 			atomic_dec(&p->mm->oom_disable_count);
1384 		task_unlock(p);
1385 		mmput(p->mm);
1386 	}
1387 bad_fork_cleanup_signal:
1388 	if (!(clone_flags & CLONE_THREAD))
1389 		free_signal_struct(p->signal);
1390 bad_fork_cleanup_sighand:
1391 	__cleanup_sighand(p->sighand);
1392 bad_fork_cleanup_fs:
1393 	exit_fs(p); /* blocking */
1394 bad_fork_cleanup_files:
1395 	exit_files(p); /* blocking */
1396 bad_fork_cleanup_semundo:
1397 	exit_sem(p);
1398 bad_fork_cleanup_audit:
1399 	audit_free(p);
1400 bad_fork_cleanup_policy:
1401 	perf_event_free_task(p);
1402 #ifdef CONFIG_NUMA
1403 	mpol_put(p->mempolicy);
1404 bad_fork_cleanup_cgroup:
1405 #endif
1406 	if (clone_flags & CLONE_THREAD)
1407 		threadgroup_fork_read_unlock(current);
1408 	cgroup_exit(p, cgroup_callbacks_done);
1409 	delayacct_tsk_free(p);
1410 	module_put(task_thread_info(p)->exec_domain->module);
1411 bad_fork_cleanup_count:
1412 	atomic_dec(&p->cred->user->processes);
1413 	exit_creds(p);
1414 bad_fork_free:
1415 	free_task(p);
1416 fork_out:
1417 	return ERR_PTR(retval);
1418 }
1419 
1420 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1421 {
1422 	memset(regs, 0, sizeof(struct pt_regs));
1423 	return regs;
1424 }
1425 
1426 static inline void init_idle_pids(struct pid_link *links)
1427 {
1428 	enum pid_type type;
1429 
1430 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1431 		INIT_HLIST_NODE(&links[type].node); /* not really needed */
1432 		links[type].pid = &init_struct_pid;
1433 	}
1434 }
1435 
1436 struct task_struct * __cpuinit fork_idle(int cpu)
1437 {
1438 	struct task_struct *task;
1439 	struct pt_regs regs;
1440 
1441 	task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1442 			    &init_struct_pid, 0);
1443 	if (!IS_ERR(task)) {
1444 		init_idle_pids(task->pids);
1445 		init_idle(task, cpu);
1446 	}
1447 
1448 	return task;
1449 }
1450 
1451 /*
1452  *  Ok, this is the main fork-routine.
1453  *
1454  * It copies the process, and if successful kick-starts
1455  * it and waits for it to finish using the VM if required.
1456  */
1457 long do_fork(unsigned long clone_flags,
1458 	      unsigned long stack_start,
1459 	      struct pt_regs *regs,
1460 	      unsigned long stack_size,
1461 	      int __user *parent_tidptr,
1462 	      int __user *child_tidptr)
1463 {
1464 	struct task_struct *p;
1465 	int trace = 0;
1466 	long nr;
1467 
1468 	/*
1469 	 * Do some preliminary argument and permissions checking before we
1470 	 * actually start allocating stuff
1471 	 */
1472 	if (clone_flags & CLONE_NEWUSER) {
1473 		if (clone_flags & CLONE_THREAD)
1474 			return -EINVAL;
1475 		/* hopefully this check will go away when userns support is
1476 		 * complete
1477 		 */
1478 		if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1479 				!capable(CAP_SETGID))
1480 			return -EPERM;
1481 	}
1482 
1483 	/*
1484 	 * When called from kernel_thread, don't do user tracing stuff.
1485 	 */
1486 	if (likely(user_mode(regs)))
1487 		trace = tracehook_prepare_clone(clone_flags);
1488 
1489 	p = copy_process(clone_flags, stack_start, regs, stack_size,
1490 			 child_tidptr, NULL, trace);
1491 	/*
1492 	 * Do this prior waking up the new thread - the thread pointer
1493 	 * might get invalid after that point, if the thread exits quickly.
1494 	 */
1495 	if (!IS_ERR(p)) {
1496 		struct completion vfork;
1497 
1498 		trace_sched_process_fork(current, p);
1499 
1500 		nr = task_pid_vnr(p);
1501 
1502 		if (clone_flags & CLONE_PARENT_SETTID)
1503 			put_user(nr, parent_tidptr);
1504 
1505 		if (clone_flags & CLONE_VFORK) {
1506 			p->vfork_done = &vfork;
1507 			init_completion(&vfork);
1508 		}
1509 
1510 		audit_finish_fork(p);
1511 		tracehook_report_clone(regs, clone_flags, nr, p);
1512 
1513 		/*
1514 		 * We set PF_STARTING at creation in case tracing wants to
1515 		 * use this to distinguish a fully live task from one that
1516 		 * hasn't gotten to tracehook_report_clone() yet.  Now we
1517 		 * clear it and set the child going.
1518 		 */
1519 		p->flags &= ~PF_STARTING;
1520 
1521 		wake_up_new_task(p);
1522 
1523 		tracehook_report_clone_complete(trace, regs,
1524 						clone_flags, nr, p);
1525 
1526 		if (clone_flags & CLONE_VFORK) {
1527 			freezer_do_not_count();
1528 			wait_for_completion(&vfork);
1529 			freezer_count();
1530 			tracehook_report_vfork_done(p, nr);
1531 		}
1532 	} else {
1533 		nr = PTR_ERR(p);
1534 	}
1535 	return nr;
1536 }
1537 
1538 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1539 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1540 #endif
1541 
1542 static void sighand_ctor(void *data)
1543 {
1544 	struct sighand_struct *sighand = data;
1545 
1546 	spin_lock_init(&sighand->siglock);
1547 	init_waitqueue_head(&sighand->signalfd_wqh);
1548 }
1549 
1550 void __init proc_caches_init(void)
1551 {
1552 	sighand_cachep = kmem_cache_create("sighand_cache",
1553 			sizeof(struct sighand_struct), 0,
1554 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1555 			SLAB_NOTRACK, sighand_ctor);
1556 	signal_cachep = kmem_cache_create("signal_cache",
1557 			sizeof(struct signal_struct), 0,
1558 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1559 	files_cachep = kmem_cache_create("files_cache",
1560 			sizeof(struct files_struct), 0,
1561 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1562 	fs_cachep = kmem_cache_create("fs_cache",
1563 			sizeof(struct fs_struct), 0,
1564 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1565 	/*
1566 	 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1567 	 * whole struct cpumask for the OFFSTACK case. We could change
1568 	 * this to *only* allocate as much of it as required by the
1569 	 * maximum number of CPU's we can ever have.  The cpumask_allocation
1570 	 * is at the end of the structure, exactly for that reason.
1571 	 */
1572 	mm_cachep = kmem_cache_create("mm_struct",
1573 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1574 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1575 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1576 	mmap_init();
1577 }
1578 
1579 /*
1580  * Check constraints on flags passed to the unshare system call.
1581  */
1582 static int check_unshare_flags(unsigned long unshare_flags)
1583 {
1584 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1585 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1586 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1587 		return -EINVAL;
1588 	/*
1589 	 * Not implemented, but pretend it works if there is nothing to
1590 	 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1591 	 * needs to unshare vm.
1592 	 */
1593 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1594 		/* FIXME: get_task_mm() increments ->mm_users */
1595 		if (atomic_read(&current->mm->mm_users) > 1)
1596 			return -EINVAL;
1597 	}
1598 
1599 	return 0;
1600 }
1601 
1602 /*
1603  * Unshare the filesystem structure if it is being shared
1604  */
1605 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1606 {
1607 	struct fs_struct *fs = current->fs;
1608 
1609 	if (!(unshare_flags & CLONE_FS) || !fs)
1610 		return 0;
1611 
1612 	/* don't need lock here; in the worst case we'll do useless copy */
1613 	if (fs->users == 1)
1614 		return 0;
1615 
1616 	*new_fsp = copy_fs_struct(fs);
1617 	if (!*new_fsp)
1618 		return -ENOMEM;
1619 
1620 	return 0;
1621 }
1622 
1623 /*
1624  * Unshare file descriptor table if it is being shared
1625  */
1626 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1627 {
1628 	struct files_struct *fd = current->files;
1629 	int error = 0;
1630 
1631 	if ((unshare_flags & CLONE_FILES) &&
1632 	    (fd && atomic_read(&fd->count) > 1)) {
1633 		*new_fdp = dup_fd(fd, &error);
1634 		if (!*new_fdp)
1635 			return error;
1636 	}
1637 
1638 	return 0;
1639 }
1640 
1641 /*
1642  * unshare allows a process to 'unshare' part of the process
1643  * context which was originally shared using clone.  copy_*
1644  * functions used by do_fork() cannot be used here directly
1645  * because they modify an inactive task_struct that is being
1646  * constructed. Here we are modifying the current, active,
1647  * task_struct.
1648  */
1649 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1650 {
1651 	struct fs_struct *fs, *new_fs = NULL;
1652 	struct files_struct *fd, *new_fd = NULL;
1653 	struct nsproxy *new_nsproxy = NULL;
1654 	int do_sysvsem = 0;
1655 	int err;
1656 
1657 	err = check_unshare_flags(unshare_flags);
1658 	if (err)
1659 		goto bad_unshare_out;
1660 
1661 	/*
1662 	 * If unsharing namespace, must also unshare filesystem information.
1663 	 */
1664 	if (unshare_flags & CLONE_NEWNS)
1665 		unshare_flags |= CLONE_FS;
1666 	/*
1667 	 * CLONE_NEWIPC must also detach from the undolist: after switching
1668 	 * to a new ipc namespace, the semaphore arrays from the old
1669 	 * namespace are unreachable.
1670 	 */
1671 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1672 		do_sysvsem = 1;
1673 	if ((err = unshare_fs(unshare_flags, &new_fs)))
1674 		goto bad_unshare_out;
1675 	if ((err = unshare_fd(unshare_flags, &new_fd)))
1676 		goto bad_unshare_cleanup_fs;
1677 	if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1678 			new_fs)))
1679 		goto bad_unshare_cleanup_fd;
1680 
1681 	if (new_fs || new_fd || do_sysvsem || new_nsproxy) {
1682 		if (do_sysvsem) {
1683 			/*
1684 			 * CLONE_SYSVSEM is equivalent to sys_exit().
1685 			 */
1686 			exit_sem(current);
1687 		}
1688 
1689 		if (new_nsproxy) {
1690 			switch_task_namespaces(current, new_nsproxy);
1691 			new_nsproxy = NULL;
1692 		}
1693 
1694 		task_lock(current);
1695 
1696 		if (new_fs) {
1697 			fs = current->fs;
1698 			spin_lock(&fs->lock);
1699 			current->fs = new_fs;
1700 			if (--fs->users)
1701 				new_fs = NULL;
1702 			else
1703 				new_fs = fs;
1704 			spin_unlock(&fs->lock);
1705 		}
1706 
1707 		if (new_fd) {
1708 			fd = current->files;
1709 			current->files = new_fd;
1710 			new_fd = fd;
1711 		}
1712 
1713 		task_unlock(current);
1714 	}
1715 
1716 	if (new_nsproxy)
1717 		put_nsproxy(new_nsproxy);
1718 
1719 bad_unshare_cleanup_fd:
1720 	if (new_fd)
1721 		put_files_struct(new_fd);
1722 
1723 bad_unshare_cleanup_fs:
1724 	if (new_fs)
1725 		free_fs_struct(new_fs);
1726 
1727 bad_unshare_out:
1728 	return err;
1729 }
1730 
1731 /*
1732  *	Helper to unshare the files of the current task.
1733  *	We don't want to expose copy_files internals to
1734  *	the exec layer of the kernel.
1735  */
1736 
1737 int unshare_files(struct files_struct **displaced)
1738 {
1739 	struct task_struct *task = current;
1740 	struct files_struct *copy = NULL;
1741 	int error;
1742 
1743 	error = unshare_fd(CLONE_FILES, &copy);
1744 	if (error || !copy) {
1745 		*displaced = NULL;
1746 		return error;
1747 	}
1748 	*displaced = task->files;
1749 	task_lock(task);
1750 	task->files = copy;
1751 	task_unlock(task);
1752 	return 0;
1753 }
1754