1 /* 2 * linux/kernel/fork.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * 'fork.c' contains the help-routines for the 'fork' system call 9 * (see also entry.S and others). 10 * Fork is rather simple, once you get the hang of it, but the memory 11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 12 */ 13 14 #include <linux/slab.h> 15 #include <linux/init.h> 16 #include <linux/unistd.h> 17 #include <linux/module.h> 18 #include <linux/vmalloc.h> 19 #include <linux/completion.h> 20 #include <linux/personality.h> 21 #include <linux/mempolicy.h> 22 #include <linux/sem.h> 23 #include <linux/file.h> 24 #include <linux/fdtable.h> 25 #include <linux/iocontext.h> 26 #include <linux/key.h> 27 #include <linux/binfmts.h> 28 #include <linux/mman.h> 29 #include <linux/mmu_notifier.h> 30 #include <linux/fs.h> 31 #include <linux/nsproxy.h> 32 #include <linux/capability.h> 33 #include <linux/cpu.h> 34 #include <linux/cgroup.h> 35 #include <linux/security.h> 36 #include <linux/hugetlb.h> 37 #include <linux/swap.h> 38 #include <linux/syscalls.h> 39 #include <linux/jiffies.h> 40 #include <linux/tracehook.h> 41 #include <linux/futex.h> 42 #include <linux/compat.h> 43 #include <linux/kthread.h> 44 #include <linux/task_io_accounting_ops.h> 45 #include <linux/rcupdate.h> 46 #include <linux/ptrace.h> 47 #include <linux/mount.h> 48 #include <linux/audit.h> 49 #include <linux/memcontrol.h> 50 #include <linux/ftrace.h> 51 #include <linux/profile.h> 52 #include <linux/rmap.h> 53 #include <linux/ksm.h> 54 #include <linux/acct.h> 55 #include <linux/tsacct_kern.h> 56 #include <linux/cn_proc.h> 57 #include <linux/freezer.h> 58 #include <linux/delayacct.h> 59 #include <linux/taskstats_kern.h> 60 #include <linux/random.h> 61 #include <linux/tty.h> 62 #include <linux/blkdev.h> 63 #include <linux/fs_struct.h> 64 #include <linux/magic.h> 65 #include <linux/perf_event.h> 66 #include <linux/posix-timers.h> 67 #include <linux/user-return-notifier.h> 68 #include <linux/oom.h> 69 #include <linux/khugepaged.h> 70 71 #include <asm/pgtable.h> 72 #include <asm/pgalloc.h> 73 #include <asm/uaccess.h> 74 #include <asm/mmu_context.h> 75 #include <asm/cacheflush.h> 76 #include <asm/tlbflush.h> 77 78 #include <trace/events/sched.h> 79 80 /* 81 * Protected counters by write_lock_irq(&tasklist_lock) 82 */ 83 unsigned long total_forks; /* Handle normal Linux uptimes. */ 84 int nr_threads; /* The idle threads do not count.. */ 85 86 int max_threads; /* tunable limit on nr_threads */ 87 88 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 89 90 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 91 92 #ifdef CONFIG_PROVE_RCU 93 int lockdep_tasklist_lock_is_held(void) 94 { 95 return lockdep_is_held(&tasklist_lock); 96 } 97 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 98 #endif /* #ifdef CONFIG_PROVE_RCU */ 99 100 int nr_processes(void) 101 { 102 int cpu; 103 int total = 0; 104 105 for_each_possible_cpu(cpu) 106 total += per_cpu(process_counts, cpu); 107 108 return total; 109 } 110 111 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR 112 # define alloc_task_struct_node(node) \ 113 kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node) 114 # define free_task_struct(tsk) \ 115 kmem_cache_free(task_struct_cachep, (tsk)) 116 static struct kmem_cache *task_struct_cachep; 117 #endif 118 119 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR 120 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk, 121 int node) 122 { 123 #ifdef CONFIG_DEBUG_STACK_USAGE 124 gfp_t mask = GFP_KERNEL | __GFP_ZERO; 125 #else 126 gfp_t mask = GFP_KERNEL; 127 #endif 128 struct page *page = alloc_pages_node(node, mask, THREAD_SIZE_ORDER); 129 130 return page ? page_address(page) : NULL; 131 } 132 133 static inline void free_thread_info(struct thread_info *ti) 134 { 135 free_pages((unsigned long)ti, THREAD_SIZE_ORDER); 136 } 137 #endif 138 139 /* SLAB cache for signal_struct structures (tsk->signal) */ 140 static struct kmem_cache *signal_cachep; 141 142 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 143 struct kmem_cache *sighand_cachep; 144 145 /* SLAB cache for files_struct structures (tsk->files) */ 146 struct kmem_cache *files_cachep; 147 148 /* SLAB cache for fs_struct structures (tsk->fs) */ 149 struct kmem_cache *fs_cachep; 150 151 /* SLAB cache for vm_area_struct structures */ 152 struct kmem_cache *vm_area_cachep; 153 154 /* SLAB cache for mm_struct structures (tsk->mm) */ 155 static struct kmem_cache *mm_cachep; 156 157 static void account_kernel_stack(struct thread_info *ti, int account) 158 { 159 struct zone *zone = page_zone(virt_to_page(ti)); 160 161 mod_zone_page_state(zone, NR_KERNEL_STACK, account); 162 } 163 164 void free_task(struct task_struct *tsk) 165 { 166 prop_local_destroy_single(&tsk->dirties); 167 account_kernel_stack(tsk->stack, -1); 168 free_thread_info(tsk->stack); 169 rt_mutex_debug_task_free(tsk); 170 ftrace_graph_exit_task(tsk); 171 free_task_struct(tsk); 172 } 173 EXPORT_SYMBOL(free_task); 174 175 static inline void free_signal_struct(struct signal_struct *sig) 176 { 177 taskstats_tgid_free(sig); 178 sched_autogroup_exit(sig); 179 kmem_cache_free(signal_cachep, sig); 180 } 181 182 static inline void put_signal_struct(struct signal_struct *sig) 183 { 184 if (atomic_dec_and_test(&sig->sigcnt)) 185 free_signal_struct(sig); 186 } 187 188 void __put_task_struct(struct task_struct *tsk) 189 { 190 WARN_ON(!tsk->exit_state); 191 WARN_ON(atomic_read(&tsk->usage)); 192 WARN_ON(tsk == current); 193 194 exit_creds(tsk); 195 delayacct_tsk_free(tsk); 196 put_signal_struct(tsk->signal); 197 198 if (!profile_handoff_task(tsk)) 199 free_task(tsk); 200 } 201 EXPORT_SYMBOL_GPL(__put_task_struct); 202 203 /* 204 * macro override instead of weak attribute alias, to workaround 205 * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions. 206 */ 207 #ifndef arch_task_cache_init 208 #define arch_task_cache_init() 209 #endif 210 211 void __init fork_init(unsigned long mempages) 212 { 213 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR 214 #ifndef ARCH_MIN_TASKALIGN 215 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES 216 #endif 217 /* create a slab on which task_structs can be allocated */ 218 task_struct_cachep = 219 kmem_cache_create("task_struct", sizeof(struct task_struct), 220 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL); 221 #endif 222 223 /* do the arch specific task caches init */ 224 arch_task_cache_init(); 225 226 /* 227 * The default maximum number of threads is set to a safe 228 * value: the thread structures can take up at most half 229 * of memory. 230 */ 231 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE); 232 233 /* 234 * we need to allow at least 20 threads to boot a system 235 */ 236 if(max_threads < 20) 237 max_threads = 20; 238 239 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 240 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 241 init_task.signal->rlim[RLIMIT_SIGPENDING] = 242 init_task.signal->rlim[RLIMIT_NPROC]; 243 } 244 245 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst, 246 struct task_struct *src) 247 { 248 *dst = *src; 249 return 0; 250 } 251 252 static struct task_struct *dup_task_struct(struct task_struct *orig) 253 { 254 struct task_struct *tsk; 255 struct thread_info *ti; 256 unsigned long *stackend; 257 int node = tsk_fork_get_node(orig); 258 int err; 259 260 prepare_to_copy(orig); 261 262 tsk = alloc_task_struct_node(node); 263 if (!tsk) 264 return NULL; 265 266 ti = alloc_thread_info_node(tsk, node); 267 if (!ti) { 268 free_task_struct(tsk); 269 return NULL; 270 } 271 272 err = arch_dup_task_struct(tsk, orig); 273 if (err) 274 goto out; 275 276 tsk->stack = ti; 277 278 err = prop_local_init_single(&tsk->dirties); 279 if (err) 280 goto out; 281 282 setup_thread_stack(tsk, orig); 283 clear_user_return_notifier(tsk); 284 clear_tsk_need_resched(tsk); 285 stackend = end_of_stack(tsk); 286 *stackend = STACK_END_MAGIC; /* for overflow detection */ 287 288 #ifdef CONFIG_CC_STACKPROTECTOR 289 tsk->stack_canary = get_random_int(); 290 #endif 291 292 /* One for us, one for whoever does the "release_task()" (usually parent) */ 293 atomic_set(&tsk->usage,2); 294 atomic_set(&tsk->fs_excl, 0); 295 #ifdef CONFIG_BLK_DEV_IO_TRACE 296 tsk->btrace_seq = 0; 297 #endif 298 tsk->splice_pipe = NULL; 299 300 account_kernel_stack(ti, 1); 301 302 return tsk; 303 304 out: 305 free_thread_info(ti); 306 free_task_struct(tsk); 307 return NULL; 308 } 309 310 #ifdef CONFIG_MMU 311 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 312 { 313 struct vm_area_struct *mpnt, *tmp, *prev, **pprev; 314 struct rb_node **rb_link, *rb_parent; 315 int retval; 316 unsigned long charge; 317 struct mempolicy *pol; 318 319 down_write(&oldmm->mmap_sem); 320 flush_cache_dup_mm(oldmm); 321 /* 322 * Not linked in yet - no deadlock potential: 323 */ 324 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING); 325 326 mm->locked_vm = 0; 327 mm->mmap = NULL; 328 mm->mmap_cache = NULL; 329 mm->free_area_cache = oldmm->mmap_base; 330 mm->cached_hole_size = ~0UL; 331 mm->map_count = 0; 332 cpumask_clear(mm_cpumask(mm)); 333 mm->mm_rb = RB_ROOT; 334 rb_link = &mm->mm_rb.rb_node; 335 rb_parent = NULL; 336 pprev = &mm->mmap; 337 retval = ksm_fork(mm, oldmm); 338 if (retval) 339 goto out; 340 retval = khugepaged_fork(mm, oldmm); 341 if (retval) 342 goto out; 343 344 prev = NULL; 345 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { 346 struct file *file; 347 348 if (mpnt->vm_flags & VM_DONTCOPY) { 349 long pages = vma_pages(mpnt); 350 mm->total_vm -= pages; 351 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file, 352 -pages); 353 continue; 354 } 355 charge = 0; 356 if (mpnt->vm_flags & VM_ACCOUNT) { 357 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT; 358 if (security_vm_enough_memory(len)) 359 goto fail_nomem; 360 charge = len; 361 } 362 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 363 if (!tmp) 364 goto fail_nomem; 365 *tmp = *mpnt; 366 INIT_LIST_HEAD(&tmp->anon_vma_chain); 367 pol = mpol_dup(vma_policy(mpnt)); 368 retval = PTR_ERR(pol); 369 if (IS_ERR(pol)) 370 goto fail_nomem_policy; 371 vma_set_policy(tmp, pol); 372 tmp->vm_mm = mm; 373 if (anon_vma_fork(tmp, mpnt)) 374 goto fail_nomem_anon_vma_fork; 375 tmp->vm_flags &= ~VM_LOCKED; 376 tmp->vm_next = tmp->vm_prev = NULL; 377 file = tmp->vm_file; 378 if (file) { 379 struct inode *inode = file->f_path.dentry->d_inode; 380 struct address_space *mapping = file->f_mapping; 381 382 get_file(file); 383 if (tmp->vm_flags & VM_DENYWRITE) 384 atomic_dec(&inode->i_writecount); 385 mutex_lock(&mapping->i_mmap_mutex); 386 if (tmp->vm_flags & VM_SHARED) 387 mapping->i_mmap_writable++; 388 flush_dcache_mmap_lock(mapping); 389 /* insert tmp into the share list, just after mpnt */ 390 vma_prio_tree_add(tmp, mpnt); 391 flush_dcache_mmap_unlock(mapping); 392 mutex_unlock(&mapping->i_mmap_mutex); 393 } 394 395 /* 396 * Clear hugetlb-related page reserves for children. This only 397 * affects MAP_PRIVATE mappings. Faults generated by the child 398 * are not guaranteed to succeed, even if read-only 399 */ 400 if (is_vm_hugetlb_page(tmp)) 401 reset_vma_resv_huge_pages(tmp); 402 403 /* 404 * Link in the new vma and copy the page table entries. 405 */ 406 *pprev = tmp; 407 pprev = &tmp->vm_next; 408 tmp->vm_prev = prev; 409 prev = tmp; 410 411 __vma_link_rb(mm, tmp, rb_link, rb_parent); 412 rb_link = &tmp->vm_rb.rb_right; 413 rb_parent = &tmp->vm_rb; 414 415 mm->map_count++; 416 retval = copy_page_range(mm, oldmm, mpnt); 417 418 if (tmp->vm_ops && tmp->vm_ops->open) 419 tmp->vm_ops->open(tmp); 420 421 if (retval) 422 goto out; 423 } 424 /* a new mm has just been created */ 425 arch_dup_mmap(oldmm, mm); 426 retval = 0; 427 out: 428 up_write(&mm->mmap_sem); 429 flush_tlb_mm(oldmm); 430 up_write(&oldmm->mmap_sem); 431 return retval; 432 fail_nomem_anon_vma_fork: 433 mpol_put(pol); 434 fail_nomem_policy: 435 kmem_cache_free(vm_area_cachep, tmp); 436 fail_nomem: 437 retval = -ENOMEM; 438 vm_unacct_memory(charge); 439 goto out; 440 } 441 442 static inline int mm_alloc_pgd(struct mm_struct * mm) 443 { 444 mm->pgd = pgd_alloc(mm); 445 if (unlikely(!mm->pgd)) 446 return -ENOMEM; 447 return 0; 448 } 449 450 static inline void mm_free_pgd(struct mm_struct * mm) 451 { 452 pgd_free(mm, mm->pgd); 453 } 454 #else 455 #define dup_mmap(mm, oldmm) (0) 456 #define mm_alloc_pgd(mm) (0) 457 #define mm_free_pgd(mm) 458 #endif /* CONFIG_MMU */ 459 460 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 461 462 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 463 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 464 465 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 466 467 static int __init coredump_filter_setup(char *s) 468 { 469 default_dump_filter = 470 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 471 MMF_DUMP_FILTER_MASK; 472 return 1; 473 } 474 475 __setup("coredump_filter=", coredump_filter_setup); 476 477 #include <linux/init_task.h> 478 479 static void mm_init_aio(struct mm_struct *mm) 480 { 481 #ifdef CONFIG_AIO 482 spin_lock_init(&mm->ioctx_lock); 483 INIT_HLIST_HEAD(&mm->ioctx_list); 484 #endif 485 } 486 487 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p) 488 { 489 atomic_set(&mm->mm_users, 1); 490 atomic_set(&mm->mm_count, 1); 491 init_rwsem(&mm->mmap_sem); 492 INIT_LIST_HEAD(&mm->mmlist); 493 mm->flags = (current->mm) ? 494 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter; 495 mm->core_state = NULL; 496 mm->nr_ptes = 0; 497 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 498 spin_lock_init(&mm->page_table_lock); 499 mm->free_area_cache = TASK_UNMAPPED_BASE; 500 mm->cached_hole_size = ~0UL; 501 mm_init_aio(mm); 502 mm_init_owner(mm, p); 503 atomic_set(&mm->oom_disable_count, 0); 504 505 if (likely(!mm_alloc_pgd(mm))) { 506 mm->def_flags = 0; 507 mmu_notifier_mm_init(mm); 508 return mm; 509 } 510 511 free_mm(mm); 512 return NULL; 513 } 514 515 /* 516 * Allocate and initialize an mm_struct. 517 */ 518 struct mm_struct * mm_alloc(void) 519 { 520 struct mm_struct * mm; 521 522 mm = allocate_mm(); 523 if (!mm) 524 return NULL; 525 526 memset(mm, 0, sizeof(*mm)); 527 mm_init_cpumask(mm); 528 return mm_init(mm, current); 529 } 530 531 /* 532 * Called when the last reference to the mm 533 * is dropped: either by a lazy thread or by 534 * mmput. Free the page directory and the mm. 535 */ 536 void __mmdrop(struct mm_struct *mm) 537 { 538 BUG_ON(mm == &init_mm); 539 mm_free_pgd(mm); 540 destroy_context(mm); 541 mmu_notifier_mm_destroy(mm); 542 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 543 VM_BUG_ON(mm->pmd_huge_pte); 544 #endif 545 free_mm(mm); 546 } 547 EXPORT_SYMBOL_GPL(__mmdrop); 548 549 /* 550 * Decrement the use count and release all resources for an mm. 551 */ 552 void mmput(struct mm_struct *mm) 553 { 554 might_sleep(); 555 556 if (atomic_dec_and_test(&mm->mm_users)) { 557 exit_aio(mm); 558 ksm_exit(mm); 559 khugepaged_exit(mm); /* must run before exit_mmap */ 560 exit_mmap(mm); 561 set_mm_exe_file(mm, NULL); 562 if (!list_empty(&mm->mmlist)) { 563 spin_lock(&mmlist_lock); 564 list_del(&mm->mmlist); 565 spin_unlock(&mmlist_lock); 566 } 567 put_swap_token(mm); 568 if (mm->binfmt) 569 module_put(mm->binfmt->module); 570 mmdrop(mm); 571 } 572 } 573 EXPORT_SYMBOL_GPL(mmput); 574 575 /* 576 * We added or removed a vma mapping the executable. The vmas are only mapped 577 * during exec and are not mapped with the mmap system call. 578 * Callers must hold down_write() on the mm's mmap_sem for these 579 */ 580 void added_exe_file_vma(struct mm_struct *mm) 581 { 582 mm->num_exe_file_vmas++; 583 } 584 585 void removed_exe_file_vma(struct mm_struct *mm) 586 { 587 mm->num_exe_file_vmas--; 588 if ((mm->num_exe_file_vmas == 0) && mm->exe_file){ 589 fput(mm->exe_file); 590 mm->exe_file = NULL; 591 } 592 593 } 594 595 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 596 { 597 if (new_exe_file) 598 get_file(new_exe_file); 599 if (mm->exe_file) 600 fput(mm->exe_file); 601 mm->exe_file = new_exe_file; 602 mm->num_exe_file_vmas = 0; 603 } 604 605 struct file *get_mm_exe_file(struct mm_struct *mm) 606 { 607 struct file *exe_file; 608 609 /* We need mmap_sem to protect against races with removal of 610 * VM_EXECUTABLE vmas */ 611 down_read(&mm->mmap_sem); 612 exe_file = mm->exe_file; 613 if (exe_file) 614 get_file(exe_file); 615 up_read(&mm->mmap_sem); 616 return exe_file; 617 } 618 619 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm) 620 { 621 /* It's safe to write the exe_file pointer without exe_file_lock because 622 * this is called during fork when the task is not yet in /proc */ 623 newmm->exe_file = get_mm_exe_file(oldmm); 624 } 625 626 /** 627 * get_task_mm - acquire a reference to the task's mm 628 * 629 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 630 * this kernel workthread has transiently adopted a user mm with use_mm, 631 * to do its AIO) is not set and if so returns a reference to it, after 632 * bumping up the use count. User must release the mm via mmput() 633 * after use. Typically used by /proc and ptrace. 634 */ 635 struct mm_struct *get_task_mm(struct task_struct *task) 636 { 637 struct mm_struct *mm; 638 639 task_lock(task); 640 mm = task->mm; 641 if (mm) { 642 if (task->flags & PF_KTHREAD) 643 mm = NULL; 644 else 645 atomic_inc(&mm->mm_users); 646 } 647 task_unlock(task); 648 return mm; 649 } 650 EXPORT_SYMBOL_GPL(get_task_mm); 651 652 /* Please note the differences between mmput and mm_release. 653 * mmput is called whenever we stop holding onto a mm_struct, 654 * error success whatever. 655 * 656 * mm_release is called after a mm_struct has been removed 657 * from the current process. 658 * 659 * This difference is important for error handling, when we 660 * only half set up a mm_struct for a new process and need to restore 661 * the old one. Because we mmput the new mm_struct before 662 * restoring the old one. . . 663 * Eric Biederman 10 January 1998 664 */ 665 void mm_release(struct task_struct *tsk, struct mm_struct *mm) 666 { 667 struct completion *vfork_done = tsk->vfork_done; 668 669 /* Get rid of any futexes when releasing the mm */ 670 #ifdef CONFIG_FUTEX 671 if (unlikely(tsk->robust_list)) { 672 exit_robust_list(tsk); 673 tsk->robust_list = NULL; 674 } 675 #ifdef CONFIG_COMPAT 676 if (unlikely(tsk->compat_robust_list)) { 677 compat_exit_robust_list(tsk); 678 tsk->compat_robust_list = NULL; 679 } 680 #endif 681 if (unlikely(!list_empty(&tsk->pi_state_list))) 682 exit_pi_state_list(tsk); 683 #endif 684 685 /* Get rid of any cached register state */ 686 deactivate_mm(tsk, mm); 687 688 /* notify parent sleeping on vfork() */ 689 if (vfork_done) { 690 tsk->vfork_done = NULL; 691 complete(vfork_done); 692 } 693 694 /* 695 * If we're exiting normally, clear a user-space tid field if 696 * requested. We leave this alone when dying by signal, to leave 697 * the value intact in a core dump, and to save the unnecessary 698 * trouble otherwise. Userland only wants this done for a sys_exit. 699 */ 700 if (tsk->clear_child_tid) { 701 if (!(tsk->flags & PF_SIGNALED) && 702 atomic_read(&mm->mm_users) > 1) { 703 /* 704 * We don't check the error code - if userspace has 705 * not set up a proper pointer then tough luck. 706 */ 707 put_user(0, tsk->clear_child_tid); 708 sys_futex(tsk->clear_child_tid, FUTEX_WAKE, 709 1, NULL, NULL, 0); 710 } 711 tsk->clear_child_tid = NULL; 712 } 713 } 714 715 /* 716 * Allocate a new mm structure and copy contents from the 717 * mm structure of the passed in task structure. 718 */ 719 struct mm_struct *dup_mm(struct task_struct *tsk) 720 { 721 struct mm_struct *mm, *oldmm = current->mm; 722 int err; 723 724 if (!oldmm) 725 return NULL; 726 727 mm = allocate_mm(); 728 if (!mm) 729 goto fail_nomem; 730 731 memcpy(mm, oldmm, sizeof(*mm)); 732 mm_init_cpumask(mm); 733 734 /* Initializing for Swap token stuff */ 735 mm->token_priority = 0; 736 mm->last_interval = 0; 737 738 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 739 mm->pmd_huge_pte = NULL; 740 #endif 741 742 if (!mm_init(mm, tsk)) 743 goto fail_nomem; 744 745 if (init_new_context(tsk, mm)) 746 goto fail_nocontext; 747 748 dup_mm_exe_file(oldmm, mm); 749 750 err = dup_mmap(mm, oldmm); 751 if (err) 752 goto free_pt; 753 754 mm->hiwater_rss = get_mm_rss(mm); 755 mm->hiwater_vm = mm->total_vm; 756 757 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 758 goto free_pt; 759 760 return mm; 761 762 free_pt: 763 /* don't put binfmt in mmput, we haven't got module yet */ 764 mm->binfmt = NULL; 765 mmput(mm); 766 767 fail_nomem: 768 return NULL; 769 770 fail_nocontext: 771 /* 772 * If init_new_context() failed, we cannot use mmput() to free the mm 773 * because it calls destroy_context() 774 */ 775 mm_free_pgd(mm); 776 free_mm(mm); 777 return NULL; 778 } 779 780 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk) 781 { 782 struct mm_struct * mm, *oldmm; 783 int retval; 784 785 tsk->min_flt = tsk->maj_flt = 0; 786 tsk->nvcsw = tsk->nivcsw = 0; 787 #ifdef CONFIG_DETECT_HUNG_TASK 788 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 789 #endif 790 791 tsk->mm = NULL; 792 tsk->active_mm = NULL; 793 794 /* 795 * Are we cloning a kernel thread? 796 * 797 * We need to steal a active VM for that.. 798 */ 799 oldmm = current->mm; 800 if (!oldmm) 801 return 0; 802 803 if (clone_flags & CLONE_VM) { 804 atomic_inc(&oldmm->mm_users); 805 mm = oldmm; 806 goto good_mm; 807 } 808 809 retval = -ENOMEM; 810 mm = dup_mm(tsk); 811 if (!mm) 812 goto fail_nomem; 813 814 good_mm: 815 /* Initializing for Swap token stuff */ 816 mm->token_priority = 0; 817 mm->last_interval = 0; 818 if (tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) 819 atomic_inc(&mm->oom_disable_count); 820 821 tsk->mm = mm; 822 tsk->active_mm = mm; 823 return 0; 824 825 fail_nomem: 826 return retval; 827 } 828 829 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 830 { 831 struct fs_struct *fs = current->fs; 832 if (clone_flags & CLONE_FS) { 833 /* tsk->fs is already what we want */ 834 spin_lock(&fs->lock); 835 if (fs->in_exec) { 836 spin_unlock(&fs->lock); 837 return -EAGAIN; 838 } 839 fs->users++; 840 spin_unlock(&fs->lock); 841 return 0; 842 } 843 tsk->fs = copy_fs_struct(fs); 844 if (!tsk->fs) 845 return -ENOMEM; 846 return 0; 847 } 848 849 static int copy_files(unsigned long clone_flags, struct task_struct * tsk) 850 { 851 struct files_struct *oldf, *newf; 852 int error = 0; 853 854 /* 855 * A background process may not have any files ... 856 */ 857 oldf = current->files; 858 if (!oldf) 859 goto out; 860 861 if (clone_flags & CLONE_FILES) { 862 atomic_inc(&oldf->count); 863 goto out; 864 } 865 866 newf = dup_fd(oldf, &error); 867 if (!newf) 868 goto out; 869 870 tsk->files = newf; 871 error = 0; 872 out: 873 return error; 874 } 875 876 static int copy_io(unsigned long clone_flags, struct task_struct *tsk) 877 { 878 #ifdef CONFIG_BLOCK 879 struct io_context *ioc = current->io_context; 880 881 if (!ioc) 882 return 0; 883 /* 884 * Share io context with parent, if CLONE_IO is set 885 */ 886 if (clone_flags & CLONE_IO) { 887 tsk->io_context = ioc_task_link(ioc); 888 if (unlikely(!tsk->io_context)) 889 return -ENOMEM; 890 } else if (ioprio_valid(ioc->ioprio)) { 891 tsk->io_context = alloc_io_context(GFP_KERNEL, -1); 892 if (unlikely(!tsk->io_context)) 893 return -ENOMEM; 894 895 tsk->io_context->ioprio = ioc->ioprio; 896 } 897 #endif 898 return 0; 899 } 900 901 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 902 { 903 struct sighand_struct *sig; 904 905 if (clone_flags & CLONE_SIGHAND) { 906 atomic_inc(¤t->sighand->count); 907 return 0; 908 } 909 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 910 rcu_assign_pointer(tsk->sighand, sig); 911 if (!sig) 912 return -ENOMEM; 913 atomic_set(&sig->count, 1); 914 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 915 return 0; 916 } 917 918 void __cleanup_sighand(struct sighand_struct *sighand) 919 { 920 if (atomic_dec_and_test(&sighand->count)) 921 kmem_cache_free(sighand_cachep, sighand); 922 } 923 924 925 /* 926 * Initialize POSIX timer handling for a thread group. 927 */ 928 static void posix_cpu_timers_init_group(struct signal_struct *sig) 929 { 930 unsigned long cpu_limit; 931 932 /* Thread group counters. */ 933 thread_group_cputime_init(sig); 934 935 cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 936 if (cpu_limit != RLIM_INFINITY) { 937 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit); 938 sig->cputimer.running = 1; 939 } 940 941 /* The timer lists. */ 942 INIT_LIST_HEAD(&sig->cpu_timers[0]); 943 INIT_LIST_HEAD(&sig->cpu_timers[1]); 944 INIT_LIST_HEAD(&sig->cpu_timers[2]); 945 } 946 947 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 948 { 949 struct signal_struct *sig; 950 951 if (clone_flags & CLONE_THREAD) 952 return 0; 953 954 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 955 tsk->signal = sig; 956 if (!sig) 957 return -ENOMEM; 958 959 sig->nr_threads = 1; 960 atomic_set(&sig->live, 1); 961 atomic_set(&sig->sigcnt, 1); 962 init_waitqueue_head(&sig->wait_chldexit); 963 if (clone_flags & CLONE_NEWPID) 964 sig->flags |= SIGNAL_UNKILLABLE; 965 sig->curr_target = tsk; 966 init_sigpending(&sig->shared_pending); 967 INIT_LIST_HEAD(&sig->posix_timers); 968 969 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 970 sig->real_timer.function = it_real_fn; 971 972 task_lock(current->group_leader); 973 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 974 task_unlock(current->group_leader); 975 976 posix_cpu_timers_init_group(sig); 977 978 tty_audit_fork(sig); 979 sched_autogroup_fork(sig); 980 981 #ifdef CONFIG_CGROUPS 982 init_rwsem(&sig->threadgroup_fork_lock); 983 #endif 984 985 sig->oom_adj = current->signal->oom_adj; 986 sig->oom_score_adj = current->signal->oom_score_adj; 987 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 988 989 mutex_init(&sig->cred_guard_mutex); 990 991 return 0; 992 } 993 994 static void copy_flags(unsigned long clone_flags, struct task_struct *p) 995 { 996 unsigned long new_flags = p->flags; 997 998 new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER); 999 new_flags |= PF_FORKNOEXEC; 1000 new_flags |= PF_STARTING; 1001 p->flags = new_flags; 1002 clear_freeze_flag(p); 1003 } 1004 1005 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1006 { 1007 current->clear_child_tid = tidptr; 1008 1009 return task_pid_vnr(current); 1010 } 1011 1012 static void rt_mutex_init_task(struct task_struct *p) 1013 { 1014 raw_spin_lock_init(&p->pi_lock); 1015 #ifdef CONFIG_RT_MUTEXES 1016 plist_head_init_raw(&p->pi_waiters, &p->pi_lock); 1017 p->pi_blocked_on = NULL; 1018 #endif 1019 } 1020 1021 #ifdef CONFIG_MM_OWNER 1022 void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 1023 { 1024 mm->owner = p; 1025 } 1026 #endif /* CONFIG_MM_OWNER */ 1027 1028 /* 1029 * Initialize POSIX timer handling for a single task. 1030 */ 1031 static void posix_cpu_timers_init(struct task_struct *tsk) 1032 { 1033 tsk->cputime_expires.prof_exp = cputime_zero; 1034 tsk->cputime_expires.virt_exp = cputime_zero; 1035 tsk->cputime_expires.sched_exp = 0; 1036 INIT_LIST_HEAD(&tsk->cpu_timers[0]); 1037 INIT_LIST_HEAD(&tsk->cpu_timers[1]); 1038 INIT_LIST_HEAD(&tsk->cpu_timers[2]); 1039 } 1040 1041 /* 1042 * This creates a new process as a copy of the old one, 1043 * but does not actually start it yet. 1044 * 1045 * It copies the registers, and all the appropriate 1046 * parts of the process environment (as per the clone 1047 * flags). The actual kick-off is left to the caller. 1048 */ 1049 static struct task_struct *copy_process(unsigned long clone_flags, 1050 unsigned long stack_start, 1051 struct pt_regs *regs, 1052 unsigned long stack_size, 1053 int __user *child_tidptr, 1054 struct pid *pid, 1055 int trace) 1056 { 1057 int retval; 1058 struct task_struct *p; 1059 int cgroup_callbacks_done = 0; 1060 1061 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 1062 return ERR_PTR(-EINVAL); 1063 1064 /* 1065 * Thread groups must share signals as well, and detached threads 1066 * can only be started up within the thread group. 1067 */ 1068 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 1069 return ERR_PTR(-EINVAL); 1070 1071 /* 1072 * Shared signal handlers imply shared VM. By way of the above, 1073 * thread groups also imply shared VM. Blocking this case allows 1074 * for various simplifications in other code. 1075 */ 1076 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 1077 return ERR_PTR(-EINVAL); 1078 1079 /* 1080 * Siblings of global init remain as zombies on exit since they are 1081 * not reaped by their parent (swapper). To solve this and to avoid 1082 * multi-rooted process trees, prevent global and container-inits 1083 * from creating siblings. 1084 */ 1085 if ((clone_flags & CLONE_PARENT) && 1086 current->signal->flags & SIGNAL_UNKILLABLE) 1087 return ERR_PTR(-EINVAL); 1088 1089 retval = security_task_create(clone_flags); 1090 if (retval) 1091 goto fork_out; 1092 1093 retval = -ENOMEM; 1094 p = dup_task_struct(current); 1095 if (!p) 1096 goto fork_out; 1097 1098 ftrace_graph_init_task(p); 1099 1100 rt_mutex_init_task(p); 1101 1102 #ifdef CONFIG_PROVE_LOCKING 1103 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled); 1104 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 1105 #endif 1106 retval = -EAGAIN; 1107 if (atomic_read(&p->real_cred->user->processes) >= 1108 task_rlimit(p, RLIMIT_NPROC)) { 1109 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) && 1110 p->real_cred->user != INIT_USER) 1111 goto bad_fork_free; 1112 } 1113 1114 retval = copy_creds(p, clone_flags); 1115 if (retval < 0) 1116 goto bad_fork_free; 1117 1118 /* 1119 * If multiple threads are within copy_process(), then this check 1120 * triggers too late. This doesn't hurt, the check is only there 1121 * to stop root fork bombs. 1122 */ 1123 retval = -EAGAIN; 1124 if (nr_threads >= max_threads) 1125 goto bad_fork_cleanup_count; 1126 1127 if (!try_module_get(task_thread_info(p)->exec_domain->module)) 1128 goto bad_fork_cleanup_count; 1129 1130 p->did_exec = 0; 1131 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 1132 copy_flags(clone_flags, p); 1133 INIT_LIST_HEAD(&p->children); 1134 INIT_LIST_HEAD(&p->sibling); 1135 rcu_copy_process(p); 1136 p->vfork_done = NULL; 1137 spin_lock_init(&p->alloc_lock); 1138 1139 init_sigpending(&p->pending); 1140 1141 p->utime = cputime_zero; 1142 p->stime = cputime_zero; 1143 p->gtime = cputime_zero; 1144 p->utimescaled = cputime_zero; 1145 p->stimescaled = cputime_zero; 1146 #ifndef CONFIG_VIRT_CPU_ACCOUNTING 1147 p->prev_utime = cputime_zero; 1148 p->prev_stime = cputime_zero; 1149 #endif 1150 #if defined(SPLIT_RSS_COUNTING) 1151 memset(&p->rss_stat, 0, sizeof(p->rss_stat)); 1152 #endif 1153 1154 p->default_timer_slack_ns = current->timer_slack_ns; 1155 1156 task_io_accounting_init(&p->ioac); 1157 acct_clear_integrals(p); 1158 1159 posix_cpu_timers_init(p); 1160 1161 do_posix_clock_monotonic_gettime(&p->start_time); 1162 p->real_start_time = p->start_time; 1163 monotonic_to_bootbased(&p->real_start_time); 1164 p->io_context = NULL; 1165 p->audit_context = NULL; 1166 if (clone_flags & CLONE_THREAD) 1167 threadgroup_fork_read_lock(current); 1168 cgroup_fork(p); 1169 #ifdef CONFIG_NUMA 1170 p->mempolicy = mpol_dup(p->mempolicy); 1171 if (IS_ERR(p->mempolicy)) { 1172 retval = PTR_ERR(p->mempolicy); 1173 p->mempolicy = NULL; 1174 goto bad_fork_cleanup_cgroup; 1175 } 1176 mpol_fix_fork_child_flag(p); 1177 #endif 1178 #ifdef CONFIG_TRACE_IRQFLAGS 1179 p->irq_events = 0; 1180 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 1181 p->hardirqs_enabled = 1; 1182 #else 1183 p->hardirqs_enabled = 0; 1184 #endif 1185 p->hardirq_enable_ip = 0; 1186 p->hardirq_enable_event = 0; 1187 p->hardirq_disable_ip = _THIS_IP_; 1188 p->hardirq_disable_event = 0; 1189 p->softirqs_enabled = 1; 1190 p->softirq_enable_ip = _THIS_IP_; 1191 p->softirq_enable_event = 0; 1192 p->softirq_disable_ip = 0; 1193 p->softirq_disable_event = 0; 1194 p->hardirq_context = 0; 1195 p->softirq_context = 0; 1196 #endif 1197 #ifdef CONFIG_LOCKDEP 1198 p->lockdep_depth = 0; /* no locks held yet */ 1199 p->curr_chain_key = 0; 1200 p->lockdep_recursion = 0; 1201 #endif 1202 1203 #ifdef CONFIG_DEBUG_MUTEXES 1204 p->blocked_on = NULL; /* not blocked yet */ 1205 #endif 1206 #ifdef CONFIG_CGROUP_MEM_RES_CTLR 1207 p->memcg_batch.do_batch = 0; 1208 p->memcg_batch.memcg = NULL; 1209 #endif 1210 1211 /* Perform scheduler related setup. Assign this task to a CPU. */ 1212 sched_fork(p); 1213 1214 retval = perf_event_init_task(p); 1215 if (retval) 1216 goto bad_fork_cleanup_policy; 1217 1218 if ((retval = audit_alloc(p))) 1219 goto bad_fork_cleanup_policy; 1220 /* copy all the process information */ 1221 if ((retval = copy_semundo(clone_flags, p))) 1222 goto bad_fork_cleanup_audit; 1223 if ((retval = copy_files(clone_flags, p))) 1224 goto bad_fork_cleanup_semundo; 1225 if ((retval = copy_fs(clone_flags, p))) 1226 goto bad_fork_cleanup_files; 1227 if ((retval = copy_sighand(clone_flags, p))) 1228 goto bad_fork_cleanup_fs; 1229 if ((retval = copy_signal(clone_flags, p))) 1230 goto bad_fork_cleanup_sighand; 1231 if ((retval = copy_mm(clone_flags, p))) 1232 goto bad_fork_cleanup_signal; 1233 if ((retval = copy_namespaces(clone_flags, p))) 1234 goto bad_fork_cleanup_mm; 1235 if ((retval = copy_io(clone_flags, p))) 1236 goto bad_fork_cleanup_namespaces; 1237 retval = copy_thread(clone_flags, stack_start, stack_size, p, regs); 1238 if (retval) 1239 goto bad_fork_cleanup_io; 1240 1241 if (pid != &init_struct_pid) { 1242 retval = -ENOMEM; 1243 pid = alloc_pid(p->nsproxy->pid_ns); 1244 if (!pid) 1245 goto bad_fork_cleanup_io; 1246 } 1247 1248 p->pid = pid_nr(pid); 1249 p->tgid = p->pid; 1250 if (clone_flags & CLONE_THREAD) 1251 p->tgid = current->tgid; 1252 1253 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL; 1254 /* 1255 * Clear TID on mm_release()? 1256 */ 1257 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL; 1258 #ifdef CONFIG_BLOCK 1259 p->plug = NULL; 1260 #endif 1261 #ifdef CONFIG_FUTEX 1262 p->robust_list = NULL; 1263 #ifdef CONFIG_COMPAT 1264 p->compat_robust_list = NULL; 1265 #endif 1266 INIT_LIST_HEAD(&p->pi_state_list); 1267 p->pi_state_cache = NULL; 1268 #endif 1269 /* 1270 * sigaltstack should be cleared when sharing the same VM 1271 */ 1272 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 1273 p->sas_ss_sp = p->sas_ss_size = 0; 1274 1275 /* 1276 * Syscall tracing and stepping should be turned off in the 1277 * child regardless of CLONE_PTRACE. 1278 */ 1279 user_disable_single_step(p); 1280 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE); 1281 #ifdef TIF_SYSCALL_EMU 1282 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU); 1283 #endif 1284 clear_all_latency_tracing(p); 1285 1286 /* ok, now we should be set up.. */ 1287 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL); 1288 p->pdeath_signal = 0; 1289 p->exit_state = 0; 1290 1291 /* 1292 * Ok, make it visible to the rest of the system. 1293 * We dont wake it up yet. 1294 */ 1295 p->group_leader = p; 1296 INIT_LIST_HEAD(&p->thread_group); 1297 1298 /* Now that the task is set up, run cgroup callbacks if 1299 * necessary. We need to run them before the task is visible 1300 * on the tasklist. */ 1301 cgroup_fork_callbacks(p); 1302 cgroup_callbacks_done = 1; 1303 1304 /* Need tasklist lock for parent etc handling! */ 1305 write_lock_irq(&tasklist_lock); 1306 1307 /* CLONE_PARENT re-uses the old parent */ 1308 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 1309 p->real_parent = current->real_parent; 1310 p->parent_exec_id = current->parent_exec_id; 1311 } else { 1312 p->real_parent = current; 1313 p->parent_exec_id = current->self_exec_id; 1314 } 1315 1316 spin_lock(¤t->sighand->siglock); 1317 1318 /* 1319 * Process group and session signals need to be delivered to just the 1320 * parent before the fork or both the parent and the child after the 1321 * fork. Restart if a signal comes in before we add the new process to 1322 * it's process group. 1323 * A fatal signal pending means that current will exit, so the new 1324 * thread can't slip out of an OOM kill (or normal SIGKILL). 1325 */ 1326 recalc_sigpending(); 1327 if (signal_pending(current)) { 1328 spin_unlock(¤t->sighand->siglock); 1329 write_unlock_irq(&tasklist_lock); 1330 retval = -ERESTARTNOINTR; 1331 goto bad_fork_free_pid; 1332 } 1333 1334 if (clone_flags & CLONE_THREAD) { 1335 current->signal->nr_threads++; 1336 atomic_inc(¤t->signal->live); 1337 atomic_inc(¤t->signal->sigcnt); 1338 p->group_leader = current->group_leader; 1339 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group); 1340 } 1341 1342 if (likely(p->pid)) { 1343 tracehook_finish_clone(p, clone_flags, trace); 1344 1345 if (thread_group_leader(p)) { 1346 if (is_child_reaper(pid)) 1347 p->nsproxy->pid_ns->child_reaper = p; 1348 1349 p->signal->leader_pid = pid; 1350 p->signal->tty = tty_kref_get(current->signal->tty); 1351 attach_pid(p, PIDTYPE_PGID, task_pgrp(current)); 1352 attach_pid(p, PIDTYPE_SID, task_session(current)); 1353 list_add_tail(&p->sibling, &p->real_parent->children); 1354 list_add_tail_rcu(&p->tasks, &init_task.tasks); 1355 __this_cpu_inc(process_counts); 1356 } 1357 attach_pid(p, PIDTYPE_PID, pid); 1358 nr_threads++; 1359 } 1360 1361 total_forks++; 1362 spin_unlock(¤t->sighand->siglock); 1363 write_unlock_irq(&tasklist_lock); 1364 proc_fork_connector(p); 1365 cgroup_post_fork(p); 1366 if (clone_flags & CLONE_THREAD) 1367 threadgroup_fork_read_unlock(current); 1368 perf_event_fork(p); 1369 return p; 1370 1371 bad_fork_free_pid: 1372 if (pid != &init_struct_pid) 1373 free_pid(pid); 1374 bad_fork_cleanup_io: 1375 if (p->io_context) 1376 exit_io_context(p); 1377 bad_fork_cleanup_namespaces: 1378 exit_task_namespaces(p); 1379 bad_fork_cleanup_mm: 1380 if (p->mm) { 1381 task_lock(p); 1382 if (p->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) 1383 atomic_dec(&p->mm->oom_disable_count); 1384 task_unlock(p); 1385 mmput(p->mm); 1386 } 1387 bad_fork_cleanup_signal: 1388 if (!(clone_flags & CLONE_THREAD)) 1389 free_signal_struct(p->signal); 1390 bad_fork_cleanup_sighand: 1391 __cleanup_sighand(p->sighand); 1392 bad_fork_cleanup_fs: 1393 exit_fs(p); /* blocking */ 1394 bad_fork_cleanup_files: 1395 exit_files(p); /* blocking */ 1396 bad_fork_cleanup_semundo: 1397 exit_sem(p); 1398 bad_fork_cleanup_audit: 1399 audit_free(p); 1400 bad_fork_cleanup_policy: 1401 perf_event_free_task(p); 1402 #ifdef CONFIG_NUMA 1403 mpol_put(p->mempolicy); 1404 bad_fork_cleanup_cgroup: 1405 #endif 1406 if (clone_flags & CLONE_THREAD) 1407 threadgroup_fork_read_unlock(current); 1408 cgroup_exit(p, cgroup_callbacks_done); 1409 delayacct_tsk_free(p); 1410 module_put(task_thread_info(p)->exec_domain->module); 1411 bad_fork_cleanup_count: 1412 atomic_dec(&p->cred->user->processes); 1413 exit_creds(p); 1414 bad_fork_free: 1415 free_task(p); 1416 fork_out: 1417 return ERR_PTR(retval); 1418 } 1419 1420 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs) 1421 { 1422 memset(regs, 0, sizeof(struct pt_regs)); 1423 return regs; 1424 } 1425 1426 static inline void init_idle_pids(struct pid_link *links) 1427 { 1428 enum pid_type type; 1429 1430 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 1431 INIT_HLIST_NODE(&links[type].node); /* not really needed */ 1432 links[type].pid = &init_struct_pid; 1433 } 1434 } 1435 1436 struct task_struct * __cpuinit fork_idle(int cpu) 1437 { 1438 struct task_struct *task; 1439 struct pt_regs regs; 1440 1441 task = copy_process(CLONE_VM, 0, idle_regs(®s), 0, NULL, 1442 &init_struct_pid, 0); 1443 if (!IS_ERR(task)) { 1444 init_idle_pids(task->pids); 1445 init_idle(task, cpu); 1446 } 1447 1448 return task; 1449 } 1450 1451 /* 1452 * Ok, this is the main fork-routine. 1453 * 1454 * It copies the process, and if successful kick-starts 1455 * it and waits for it to finish using the VM if required. 1456 */ 1457 long do_fork(unsigned long clone_flags, 1458 unsigned long stack_start, 1459 struct pt_regs *regs, 1460 unsigned long stack_size, 1461 int __user *parent_tidptr, 1462 int __user *child_tidptr) 1463 { 1464 struct task_struct *p; 1465 int trace = 0; 1466 long nr; 1467 1468 /* 1469 * Do some preliminary argument and permissions checking before we 1470 * actually start allocating stuff 1471 */ 1472 if (clone_flags & CLONE_NEWUSER) { 1473 if (clone_flags & CLONE_THREAD) 1474 return -EINVAL; 1475 /* hopefully this check will go away when userns support is 1476 * complete 1477 */ 1478 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) || 1479 !capable(CAP_SETGID)) 1480 return -EPERM; 1481 } 1482 1483 /* 1484 * When called from kernel_thread, don't do user tracing stuff. 1485 */ 1486 if (likely(user_mode(regs))) 1487 trace = tracehook_prepare_clone(clone_flags); 1488 1489 p = copy_process(clone_flags, stack_start, regs, stack_size, 1490 child_tidptr, NULL, trace); 1491 /* 1492 * Do this prior waking up the new thread - the thread pointer 1493 * might get invalid after that point, if the thread exits quickly. 1494 */ 1495 if (!IS_ERR(p)) { 1496 struct completion vfork; 1497 1498 trace_sched_process_fork(current, p); 1499 1500 nr = task_pid_vnr(p); 1501 1502 if (clone_flags & CLONE_PARENT_SETTID) 1503 put_user(nr, parent_tidptr); 1504 1505 if (clone_flags & CLONE_VFORK) { 1506 p->vfork_done = &vfork; 1507 init_completion(&vfork); 1508 } 1509 1510 audit_finish_fork(p); 1511 tracehook_report_clone(regs, clone_flags, nr, p); 1512 1513 /* 1514 * We set PF_STARTING at creation in case tracing wants to 1515 * use this to distinguish a fully live task from one that 1516 * hasn't gotten to tracehook_report_clone() yet. Now we 1517 * clear it and set the child going. 1518 */ 1519 p->flags &= ~PF_STARTING; 1520 1521 wake_up_new_task(p); 1522 1523 tracehook_report_clone_complete(trace, regs, 1524 clone_flags, nr, p); 1525 1526 if (clone_flags & CLONE_VFORK) { 1527 freezer_do_not_count(); 1528 wait_for_completion(&vfork); 1529 freezer_count(); 1530 tracehook_report_vfork_done(p, nr); 1531 } 1532 } else { 1533 nr = PTR_ERR(p); 1534 } 1535 return nr; 1536 } 1537 1538 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 1539 #define ARCH_MIN_MMSTRUCT_ALIGN 0 1540 #endif 1541 1542 static void sighand_ctor(void *data) 1543 { 1544 struct sighand_struct *sighand = data; 1545 1546 spin_lock_init(&sighand->siglock); 1547 init_waitqueue_head(&sighand->signalfd_wqh); 1548 } 1549 1550 void __init proc_caches_init(void) 1551 { 1552 sighand_cachep = kmem_cache_create("sighand_cache", 1553 sizeof(struct sighand_struct), 0, 1554 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU| 1555 SLAB_NOTRACK, sighand_ctor); 1556 signal_cachep = kmem_cache_create("signal_cache", 1557 sizeof(struct signal_struct), 0, 1558 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL); 1559 files_cachep = kmem_cache_create("files_cache", 1560 sizeof(struct files_struct), 0, 1561 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL); 1562 fs_cachep = kmem_cache_create("fs_cache", 1563 sizeof(struct fs_struct), 0, 1564 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL); 1565 /* 1566 * FIXME! The "sizeof(struct mm_struct)" currently includes the 1567 * whole struct cpumask for the OFFSTACK case. We could change 1568 * this to *only* allocate as much of it as required by the 1569 * maximum number of CPU's we can ever have. The cpumask_allocation 1570 * is at the end of the structure, exactly for that reason. 1571 */ 1572 mm_cachep = kmem_cache_create("mm_struct", 1573 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN, 1574 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL); 1575 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC); 1576 mmap_init(); 1577 } 1578 1579 /* 1580 * Check constraints on flags passed to the unshare system call. 1581 */ 1582 static int check_unshare_flags(unsigned long unshare_flags) 1583 { 1584 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 1585 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 1586 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET)) 1587 return -EINVAL; 1588 /* 1589 * Not implemented, but pretend it works if there is nothing to 1590 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND 1591 * needs to unshare vm. 1592 */ 1593 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 1594 /* FIXME: get_task_mm() increments ->mm_users */ 1595 if (atomic_read(¤t->mm->mm_users) > 1) 1596 return -EINVAL; 1597 } 1598 1599 return 0; 1600 } 1601 1602 /* 1603 * Unshare the filesystem structure if it is being shared 1604 */ 1605 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 1606 { 1607 struct fs_struct *fs = current->fs; 1608 1609 if (!(unshare_flags & CLONE_FS) || !fs) 1610 return 0; 1611 1612 /* don't need lock here; in the worst case we'll do useless copy */ 1613 if (fs->users == 1) 1614 return 0; 1615 1616 *new_fsp = copy_fs_struct(fs); 1617 if (!*new_fsp) 1618 return -ENOMEM; 1619 1620 return 0; 1621 } 1622 1623 /* 1624 * Unshare file descriptor table if it is being shared 1625 */ 1626 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp) 1627 { 1628 struct files_struct *fd = current->files; 1629 int error = 0; 1630 1631 if ((unshare_flags & CLONE_FILES) && 1632 (fd && atomic_read(&fd->count) > 1)) { 1633 *new_fdp = dup_fd(fd, &error); 1634 if (!*new_fdp) 1635 return error; 1636 } 1637 1638 return 0; 1639 } 1640 1641 /* 1642 * unshare allows a process to 'unshare' part of the process 1643 * context which was originally shared using clone. copy_* 1644 * functions used by do_fork() cannot be used here directly 1645 * because they modify an inactive task_struct that is being 1646 * constructed. Here we are modifying the current, active, 1647 * task_struct. 1648 */ 1649 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 1650 { 1651 struct fs_struct *fs, *new_fs = NULL; 1652 struct files_struct *fd, *new_fd = NULL; 1653 struct nsproxy *new_nsproxy = NULL; 1654 int do_sysvsem = 0; 1655 int err; 1656 1657 err = check_unshare_flags(unshare_flags); 1658 if (err) 1659 goto bad_unshare_out; 1660 1661 /* 1662 * If unsharing namespace, must also unshare filesystem information. 1663 */ 1664 if (unshare_flags & CLONE_NEWNS) 1665 unshare_flags |= CLONE_FS; 1666 /* 1667 * CLONE_NEWIPC must also detach from the undolist: after switching 1668 * to a new ipc namespace, the semaphore arrays from the old 1669 * namespace are unreachable. 1670 */ 1671 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 1672 do_sysvsem = 1; 1673 if ((err = unshare_fs(unshare_flags, &new_fs))) 1674 goto bad_unshare_out; 1675 if ((err = unshare_fd(unshare_flags, &new_fd))) 1676 goto bad_unshare_cleanup_fs; 1677 if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 1678 new_fs))) 1679 goto bad_unshare_cleanup_fd; 1680 1681 if (new_fs || new_fd || do_sysvsem || new_nsproxy) { 1682 if (do_sysvsem) { 1683 /* 1684 * CLONE_SYSVSEM is equivalent to sys_exit(). 1685 */ 1686 exit_sem(current); 1687 } 1688 1689 if (new_nsproxy) { 1690 switch_task_namespaces(current, new_nsproxy); 1691 new_nsproxy = NULL; 1692 } 1693 1694 task_lock(current); 1695 1696 if (new_fs) { 1697 fs = current->fs; 1698 spin_lock(&fs->lock); 1699 current->fs = new_fs; 1700 if (--fs->users) 1701 new_fs = NULL; 1702 else 1703 new_fs = fs; 1704 spin_unlock(&fs->lock); 1705 } 1706 1707 if (new_fd) { 1708 fd = current->files; 1709 current->files = new_fd; 1710 new_fd = fd; 1711 } 1712 1713 task_unlock(current); 1714 } 1715 1716 if (new_nsproxy) 1717 put_nsproxy(new_nsproxy); 1718 1719 bad_unshare_cleanup_fd: 1720 if (new_fd) 1721 put_files_struct(new_fd); 1722 1723 bad_unshare_cleanup_fs: 1724 if (new_fs) 1725 free_fs_struct(new_fs); 1726 1727 bad_unshare_out: 1728 return err; 1729 } 1730 1731 /* 1732 * Helper to unshare the files of the current task. 1733 * We don't want to expose copy_files internals to 1734 * the exec layer of the kernel. 1735 */ 1736 1737 int unshare_files(struct files_struct **displaced) 1738 { 1739 struct task_struct *task = current; 1740 struct files_struct *copy = NULL; 1741 int error; 1742 1743 error = unshare_fd(CLONE_FILES, ©); 1744 if (error || !copy) { 1745 *displaced = NULL; 1746 return error; 1747 } 1748 *displaced = task->files; 1749 task_lock(task); 1750 task->files = copy; 1751 task_unlock(task); 1752 return 0; 1753 } 1754