1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/coredump.h> 20 #include <linux/sched/user.h> 21 #include <linux/sched/numa_balancing.h> 22 #include <linux/sched/stat.h> 23 #include <linux/sched/task.h> 24 #include <linux/sched/task_stack.h> 25 #include <linux/sched/cputime.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/binfmts.h> 41 #include <linux/mman.h> 42 #include <linux/mmu_notifier.h> 43 #include <linux/fs.h> 44 #include <linux/mm.h> 45 #include <linux/vmacache.h> 46 #include <linux/nsproxy.h> 47 #include <linux/capability.h> 48 #include <linux/cpu.h> 49 #include <linux/cgroup.h> 50 #include <linux/security.h> 51 #include <linux/hugetlb.h> 52 #include <linux/seccomp.h> 53 #include <linux/swap.h> 54 #include <linux/syscalls.h> 55 #include <linux/jiffies.h> 56 #include <linux/futex.h> 57 #include <linux/compat.h> 58 #include <linux/kthread.h> 59 #include <linux/task_io_accounting_ops.h> 60 #include <linux/rcupdate.h> 61 #include <linux/ptrace.h> 62 #include <linux/mount.h> 63 #include <linux/audit.h> 64 #include <linux/memcontrol.h> 65 #include <linux/ftrace.h> 66 #include <linux/proc_fs.h> 67 #include <linux/profile.h> 68 #include <linux/rmap.h> 69 #include <linux/ksm.h> 70 #include <linux/acct.h> 71 #include <linux/userfaultfd_k.h> 72 #include <linux/tsacct_kern.h> 73 #include <linux/cn_proc.h> 74 #include <linux/freezer.h> 75 #include <linux/delayacct.h> 76 #include <linux/taskstats_kern.h> 77 #include <linux/random.h> 78 #include <linux/tty.h> 79 #include <linux/blkdev.h> 80 #include <linux/fs_struct.h> 81 #include <linux/magic.h> 82 #include <linux/perf_event.h> 83 #include <linux/posix-timers.h> 84 #include <linux/user-return-notifier.h> 85 #include <linux/oom.h> 86 #include <linux/khugepaged.h> 87 #include <linux/signalfd.h> 88 #include <linux/uprobes.h> 89 #include <linux/aio.h> 90 #include <linux/compiler.h> 91 #include <linux/sysctl.h> 92 #include <linux/kcov.h> 93 #include <linux/livepatch.h> 94 #include <linux/thread_info.h> 95 #include <linux/stackleak.h> 96 #include <linux/kasan.h> 97 #include <linux/scs.h> 98 #include <linux/io_uring.h> 99 #include <linux/bpf.h> 100 101 #include <asm/pgalloc.h> 102 #include <linux/uaccess.h> 103 #include <asm/mmu_context.h> 104 #include <asm/cacheflush.h> 105 #include <asm/tlbflush.h> 106 107 #include <trace/events/sched.h> 108 109 #define CREATE_TRACE_POINTS 110 #include <trace/events/task.h> 111 112 /* 113 * Minimum number of threads to boot the kernel 114 */ 115 #define MIN_THREADS 20 116 117 /* 118 * Maximum number of threads 119 */ 120 #define MAX_THREADS FUTEX_TID_MASK 121 122 /* 123 * Protected counters by write_lock_irq(&tasklist_lock) 124 */ 125 unsigned long total_forks; /* Handle normal Linux uptimes. */ 126 int nr_threads; /* The idle threads do not count.. */ 127 128 static int max_threads; /* tunable limit on nr_threads */ 129 130 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) 131 132 static const char * const resident_page_types[] = { 133 NAMED_ARRAY_INDEX(MM_FILEPAGES), 134 NAMED_ARRAY_INDEX(MM_ANONPAGES), 135 NAMED_ARRAY_INDEX(MM_SWAPENTS), 136 NAMED_ARRAY_INDEX(MM_SHMEMPAGES), 137 }; 138 139 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 140 141 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 142 143 #ifdef CONFIG_PROVE_RCU 144 int lockdep_tasklist_lock_is_held(void) 145 { 146 return lockdep_is_held(&tasklist_lock); 147 } 148 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 149 #endif /* #ifdef CONFIG_PROVE_RCU */ 150 151 int nr_processes(void) 152 { 153 int cpu; 154 int total = 0; 155 156 for_each_possible_cpu(cpu) 157 total += per_cpu(process_counts, cpu); 158 159 return total; 160 } 161 162 void __weak arch_release_task_struct(struct task_struct *tsk) 163 { 164 } 165 166 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 167 static struct kmem_cache *task_struct_cachep; 168 169 static inline struct task_struct *alloc_task_struct_node(int node) 170 { 171 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 172 } 173 174 static inline void free_task_struct(struct task_struct *tsk) 175 { 176 kmem_cache_free(task_struct_cachep, tsk); 177 } 178 #endif 179 180 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR 181 182 /* 183 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 184 * kmemcache based allocator. 185 */ 186 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 187 188 #ifdef CONFIG_VMAP_STACK 189 /* 190 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 191 * flush. Try to minimize the number of calls by caching stacks. 192 */ 193 #define NR_CACHED_STACKS 2 194 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 195 196 static int free_vm_stack_cache(unsigned int cpu) 197 { 198 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 199 int i; 200 201 for (i = 0; i < NR_CACHED_STACKS; i++) { 202 struct vm_struct *vm_stack = cached_vm_stacks[i]; 203 204 if (!vm_stack) 205 continue; 206 207 vfree(vm_stack->addr); 208 cached_vm_stacks[i] = NULL; 209 } 210 211 return 0; 212 } 213 #endif 214 215 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node) 216 { 217 #ifdef CONFIG_VMAP_STACK 218 void *stack; 219 int i; 220 221 for (i = 0; i < NR_CACHED_STACKS; i++) { 222 struct vm_struct *s; 223 224 s = this_cpu_xchg(cached_stacks[i], NULL); 225 226 if (!s) 227 continue; 228 229 /* Mark stack accessible for KASAN. */ 230 kasan_unpoison_range(s->addr, THREAD_SIZE); 231 232 /* Clear stale pointers from reused stack. */ 233 memset(s->addr, 0, THREAD_SIZE); 234 235 tsk->stack_vm_area = s; 236 tsk->stack = s->addr; 237 return s->addr; 238 } 239 240 /* 241 * Allocated stacks are cached and later reused by new threads, 242 * so memcg accounting is performed manually on assigning/releasing 243 * stacks to tasks. Drop __GFP_ACCOUNT. 244 */ 245 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, 246 VMALLOC_START, VMALLOC_END, 247 THREADINFO_GFP & ~__GFP_ACCOUNT, 248 PAGE_KERNEL, 249 0, node, __builtin_return_address(0)); 250 251 /* 252 * We can't call find_vm_area() in interrupt context, and 253 * free_thread_stack() can be called in interrupt context, 254 * so cache the vm_struct. 255 */ 256 if (stack) { 257 tsk->stack_vm_area = find_vm_area(stack); 258 tsk->stack = stack; 259 } 260 return stack; 261 #else 262 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 263 THREAD_SIZE_ORDER); 264 265 if (likely(page)) { 266 tsk->stack = kasan_reset_tag(page_address(page)); 267 return tsk->stack; 268 } 269 return NULL; 270 #endif 271 } 272 273 static inline void free_thread_stack(struct task_struct *tsk) 274 { 275 #ifdef CONFIG_VMAP_STACK 276 struct vm_struct *vm = task_stack_vm_area(tsk); 277 278 if (vm) { 279 int i; 280 281 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 282 memcg_kmem_uncharge_page(vm->pages[i], 0); 283 284 for (i = 0; i < NR_CACHED_STACKS; i++) { 285 if (this_cpu_cmpxchg(cached_stacks[i], 286 NULL, tsk->stack_vm_area) != NULL) 287 continue; 288 289 return; 290 } 291 292 vfree_atomic(tsk->stack); 293 return; 294 } 295 #endif 296 297 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER); 298 } 299 # else 300 static struct kmem_cache *thread_stack_cache; 301 302 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, 303 int node) 304 { 305 unsigned long *stack; 306 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 307 stack = kasan_reset_tag(stack); 308 tsk->stack = stack; 309 return stack; 310 } 311 312 static void free_thread_stack(struct task_struct *tsk) 313 { 314 kmem_cache_free(thread_stack_cache, tsk->stack); 315 } 316 317 void thread_stack_cache_init(void) 318 { 319 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 320 THREAD_SIZE, THREAD_SIZE, 0, 0, 321 THREAD_SIZE, NULL); 322 BUG_ON(thread_stack_cache == NULL); 323 } 324 # endif 325 #endif 326 327 /* SLAB cache for signal_struct structures (tsk->signal) */ 328 static struct kmem_cache *signal_cachep; 329 330 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 331 struct kmem_cache *sighand_cachep; 332 333 /* SLAB cache for files_struct structures (tsk->files) */ 334 struct kmem_cache *files_cachep; 335 336 /* SLAB cache for fs_struct structures (tsk->fs) */ 337 struct kmem_cache *fs_cachep; 338 339 /* SLAB cache for vm_area_struct structures */ 340 static struct kmem_cache *vm_area_cachep; 341 342 /* SLAB cache for mm_struct structures (tsk->mm) */ 343 static struct kmem_cache *mm_cachep; 344 345 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) 346 { 347 struct vm_area_struct *vma; 348 349 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 350 if (vma) 351 vma_init(vma, mm); 352 return vma; 353 } 354 355 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) 356 { 357 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 358 359 if (new) { 360 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags); 361 ASSERT_EXCLUSIVE_WRITER(orig->vm_file); 362 /* 363 * orig->shared.rb may be modified concurrently, but the clone 364 * will be reinitialized. 365 */ 366 *new = data_race(*orig); 367 INIT_LIST_HEAD(&new->anon_vma_chain); 368 new->vm_next = new->vm_prev = NULL; 369 } 370 return new; 371 } 372 373 void vm_area_free(struct vm_area_struct *vma) 374 { 375 kmem_cache_free(vm_area_cachep, vma); 376 } 377 378 static void account_kernel_stack(struct task_struct *tsk, int account) 379 { 380 void *stack = task_stack_page(tsk); 381 struct vm_struct *vm = task_stack_vm_area(tsk); 382 383 if (vm) { 384 int i; 385 386 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 387 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB, 388 account * (PAGE_SIZE / 1024)); 389 } else { 390 /* All stack pages are in the same node. */ 391 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB, 392 account * (THREAD_SIZE / 1024)); 393 } 394 } 395 396 static int memcg_charge_kernel_stack(struct task_struct *tsk) 397 { 398 #ifdef CONFIG_VMAP_STACK 399 struct vm_struct *vm = task_stack_vm_area(tsk); 400 int ret; 401 402 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0); 403 404 if (vm) { 405 int i; 406 407 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 408 409 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 410 /* 411 * If memcg_kmem_charge_page() fails, page's 412 * memory cgroup pointer is NULL, and 413 * memcg_kmem_uncharge_page() in free_thread_stack() 414 * will ignore this page. 415 */ 416 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 417 0); 418 if (ret) 419 return ret; 420 } 421 } 422 #endif 423 return 0; 424 } 425 426 static void release_task_stack(struct task_struct *tsk) 427 { 428 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD)) 429 return; /* Better to leak the stack than to free prematurely */ 430 431 account_kernel_stack(tsk, -1); 432 free_thread_stack(tsk); 433 tsk->stack = NULL; 434 #ifdef CONFIG_VMAP_STACK 435 tsk->stack_vm_area = NULL; 436 #endif 437 } 438 439 #ifdef CONFIG_THREAD_INFO_IN_TASK 440 void put_task_stack(struct task_struct *tsk) 441 { 442 if (refcount_dec_and_test(&tsk->stack_refcount)) 443 release_task_stack(tsk); 444 } 445 #endif 446 447 void free_task(struct task_struct *tsk) 448 { 449 scs_release(tsk); 450 451 #ifndef CONFIG_THREAD_INFO_IN_TASK 452 /* 453 * The task is finally done with both the stack and thread_info, 454 * so free both. 455 */ 456 release_task_stack(tsk); 457 #else 458 /* 459 * If the task had a separate stack allocation, it should be gone 460 * by now. 461 */ 462 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 463 #endif 464 rt_mutex_debug_task_free(tsk); 465 ftrace_graph_exit_task(tsk); 466 arch_release_task_struct(tsk); 467 if (tsk->flags & PF_KTHREAD) 468 free_kthread_struct(tsk); 469 free_task_struct(tsk); 470 } 471 EXPORT_SYMBOL(free_task); 472 473 #ifdef CONFIG_MMU 474 static __latent_entropy int dup_mmap(struct mm_struct *mm, 475 struct mm_struct *oldmm) 476 { 477 struct vm_area_struct *mpnt, *tmp, *prev, **pprev; 478 struct rb_node **rb_link, *rb_parent; 479 int retval; 480 unsigned long charge; 481 LIST_HEAD(uf); 482 483 uprobe_start_dup_mmap(); 484 if (mmap_write_lock_killable(oldmm)) { 485 retval = -EINTR; 486 goto fail_uprobe_end; 487 } 488 flush_cache_dup_mm(oldmm); 489 uprobe_dup_mmap(oldmm, mm); 490 /* 491 * Not linked in yet - no deadlock potential: 492 */ 493 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING); 494 495 /* No ordering required: file already has been exposed. */ 496 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm)); 497 498 mm->total_vm = oldmm->total_vm; 499 mm->data_vm = oldmm->data_vm; 500 mm->exec_vm = oldmm->exec_vm; 501 mm->stack_vm = oldmm->stack_vm; 502 503 rb_link = &mm->mm_rb.rb_node; 504 rb_parent = NULL; 505 pprev = &mm->mmap; 506 retval = ksm_fork(mm, oldmm); 507 if (retval) 508 goto out; 509 retval = khugepaged_fork(mm, oldmm); 510 if (retval) 511 goto out; 512 513 prev = NULL; 514 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { 515 struct file *file; 516 517 if (mpnt->vm_flags & VM_DONTCOPY) { 518 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 519 continue; 520 } 521 charge = 0; 522 /* 523 * Don't duplicate many vmas if we've been oom-killed (for 524 * example) 525 */ 526 if (fatal_signal_pending(current)) { 527 retval = -EINTR; 528 goto out; 529 } 530 if (mpnt->vm_flags & VM_ACCOUNT) { 531 unsigned long len = vma_pages(mpnt); 532 533 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 534 goto fail_nomem; 535 charge = len; 536 } 537 tmp = vm_area_dup(mpnt); 538 if (!tmp) 539 goto fail_nomem; 540 retval = vma_dup_policy(mpnt, tmp); 541 if (retval) 542 goto fail_nomem_policy; 543 tmp->vm_mm = mm; 544 retval = dup_userfaultfd(tmp, &uf); 545 if (retval) 546 goto fail_nomem_anon_vma_fork; 547 if (tmp->vm_flags & VM_WIPEONFORK) { 548 /* 549 * VM_WIPEONFORK gets a clean slate in the child. 550 * Don't prepare anon_vma until fault since we don't 551 * copy page for current vma. 552 */ 553 tmp->anon_vma = NULL; 554 } else if (anon_vma_fork(tmp, mpnt)) 555 goto fail_nomem_anon_vma_fork; 556 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT); 557 file = tmp->vm_file; 558 if (file) { 559 struct inode *inode = file_inode(file); 560 struct address_space *mapping = file->f_mapping; 561 562 get_file(file); 563 if (tmp->vm_flags & VM_DENYWRITE) 564 put_write_access(inode); 565 i_mmap_lock_write(mapping); 566 if (tmp->vm_flags & VM_SHARED) 567 mapping_allow_writable(mapping); 568 flush_dcache_mmap_lock(mapping); 569 /* insert tmp into the share list, just after mpnt */ 570 vma_interval_tree_insert_after(tmp, mpnt, 571 &mapping->i_mmap); 572 flush_dcache_mmap_unlock(mapping); 573 i_mmap_unlock_write(mapping); 574 } 575 576 /* 577 * Clear hugetlb-related page reserves for children. This only 578 * affects MAP_PRIVATE mappings. Faults generated by the child 579 * are not guaranteed to succeed, even if read-only 580 */ 581 if (is_vm_hugetlb_page(tmp)) 582 reset_vma_resv_huge_pages(tmp); 583 584 /* 585 * Link in the new vma and copy the page table entries. 586 */ 587 *pprev = tmp; 588 pprev = &tmp->vm_next; 589 tmp->vm_prev = prev; 590 prev = tmp; 591 592 __vma_link_rb(mm, tmp, rb_link, rb_parent); 593 rb_link = &tmp->vm_rb.rb_right; 594 rb_parent = &tmp->vm_rb; 595 596 mm->map_count++; 597 if (!(tmp->vm_flags & VM_WIPEONFORK)) 598 retval = copy_page_range(tmp, mpnt); 599 600 if (tmp->vm_ops && tmp->vm_ops->open) 601 tmp->vm_ops->open(tmp); 602 603 if (retval) 604 goto out; 605 } 606 /* a new mm has just been created */ 607 retval = arch_dup_mmap(oldmm, mm); 608 out: 609 mmap_write_unlock(mm); 610 flush_tlb_mm(oldmm); 611 mmap_write_unlock(oldmm); 612 dup_userfaultfd_complete(&uf); 613 fail_uprobe_end: 614 uprobe_end_dup_mmap(); 615 return retval; 616 fail_nomem_anon_vma_fork: 617 mpol_put(vma_policy(tmp)); 618 fail_nomem_policy: 619 vm_area_free(tmp); 620 fail_nomem: 621 retval = -ENOMEM; 622 vm_unacct_memory(charge); 623 goto out; 624 } 625 626 static inline int mm_alloc_pgd(struct mm_struct *mm) 627 { 628 mm->pgd = pgd_alloc(mm); 629 if (unlikely(!mm->pgd)) 630 return -ENOMEM; 631 return 0; 632 } 633 634 static inline void mm_free_pgd(struct mm_struct *mm) 635 { 636 pgd_free(mm, mm->pgd); 637 } 638 #else 639 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 640 { 641 mmap_write_lock(oldmm); 642 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm)); 643 mmap_write_unlock(oldmm); 644 return 0; 645 } 646 #define mm_alloc_pgd(mm) (0) 647 #define mm_free_pgd(mm) 648 #endif /* CONFIG_MMU */ 649 650 static void check_mm(struct mm_struct *mm) 651 { 652 int i; 653 654 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, 655 "Please make sure 'struct resident_page_types[]' is updated as well"); 656 657 for (i = 0; i < NR_MM_COUNTERS; i++) { 658 long x = atomic_long_read(&mm->rss_stat.count[i]); 659 660 if (unlikely(x)) 661 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n", 662 mm, resident_page_types[i], x); 663 } 664 665 if (mm_pgtables_bytes(mm)) 666 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 667 mm_pgtables_bytes(mm)); 668 669 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 670 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 671 #endif 672 } 673 674 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 675 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 676 677 /* 678 * Called when the last reference to the mm 679 * is dropped: either by a lazy thread or by 680 * mmput. Free the page directory and the mm. 681 */ 682 void __mmdrop(struct mm_struct *mm) 683 { 684 BUG_ON(mm == &init_mm); 685 WARN_ON_ONCE(mm == current->mm); 686 WARN_ON_ONCE(mm == current->active_mm); 687 mm_free_pgd(mm); 688 destroy_context(mm); 689 mmu_notifier_subscriptions_destroy(mm); 690 check_mm(mm); 691 put_user_ns(mm->user_ns); 692 free_mm(mm); 693 } 694 EXPORT_SYMBOL_GPL(__mmdrop); 695 696 static void mmdrop_async_fn(struct work_struct *work) 697 { 698 struct mm_struct *mm; 699 700 mm = container_of(work, struct mm_struct, async_put_work); 701 __mmdrop(mm); 702 } 703 704 static void mmdrop_async(struct mm_struct *mm) 705 { 706 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 707 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 708 schedule_work(&mm->async_put_work); 709 } 710 } 711 712 static inline void free_signal_struct(struct signal_struct *sig) 713 { 714 taskstats_tgid_free(sig); 715 sched_autogroup_exit(sig); 716 /* 717 * __mmdrop is not safe to call from softirq context on x86 due to 718 * pgd_dtor so postpone it to the async context 719 */ 720 if (sig->oom_mm) 721 mmdrop_async(sig->oom_mm); 722 kmem_cache_free(signal_cachep, sig); 723 } 724 725 static inline void put_signal_struct(struct signal_struct *sig) 726 { 727 if (refcount_dec_and_test(&sig->sigcnt)) 728 free_signal_struct(sig); 729 } 730 731 void __put_task_struct(struct task_struct *tsk) 732 { 733 WARN_ON(!tsk->exit_state); 734 WARN_ON(refcount_read(&tsk->usage)); 735 WARN_ON(tsk == current); 736 737 io_uring_free(tsk); 738 cgroup_free(tsk); 739 task_numa_free(tsk, true); 740 security_task_free(tsk); 741 bpf_task_storage_free(tsk); 742 exit_creds(tsk); 743 delayacct_tsk_free(tsk); 744 put_signal_struct(tsk->signal); 745 sched_core_free(tsk); 746 747 if (!profile_handoff_task(tsk)) 748 free_task(tsk); 749 } 750 EXPORT_SYMBOL_GPL(__put_task_struct); 751 752 void __init __weak arch_task_cache_init(void) { } 753 754 /* 755 * set_max_threads 756 */ 757 static void set_max_threads(unsigned int max_threads_suggested) 758 { 759 u64 threads; 760 unsigned long nr_pages = totalram_pages(); 761 762 /* 763 * The number of threads shall be limited such that the thread 764 * structures may only consume a small part of the available memory. 765 */ 766 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 767 threads = MAX_THREADS; 768 else 769 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 770 (u64) THREAD_SIZE * 8UL); 771 772 if (threads > max_threads_suggested) 773 threads = max_threads_suggested; 774 775 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 776 } 777 778 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 779 /* Initialized by the architecture: */ 780 int arch_task_struct_size __read_mostly; 781 #endif 782 783 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 784 static void task_struct_whitelist(unsigned long *offset, unsigned long *size) 785 { 786 /* Fetch thread_struct whitelist for the architecture. */ 787 arch_thread_struct_whitelist(offset, size); 788 789 /* 790 * Handle zero-sized whitelist or empty thread_struct, otherwise 791 * adjust offset to position of thread_struct in task_struct. 792 */ 793 if (unlikely(*size == 0)) 794 *offset = 0; 795 else 796 *offset += offsetof(struct task_struct, thread); 797 } 798 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */ 799 800 void __init fork_init(void) 801 { 802 int i; 803 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 804 #ifndef ARCH_MIN_TASKALIGN 805 #define ARCH_MIN_TASKALIGN 0 806 #endif 807 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 808 unsigned long useroffset, usersize; 809 810 /* create a slab on which task_structs can be allocated */ 811 task_struct_whitelist(&useroffset, &usersize); 812 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 813 arch_task_struct_size, align, 814 SLAB_PANIC|SLAB_ACCOUNT, 815 useroffset, usersize, NULL); 816 #endif 817 818 /* do the arch specific task caches init */ 819 arch_task_cache_init(); 820 821 set_max_threads(MAX_THREADS); 822 823 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 824 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 825 init_task.signal->rlim[RLIMIT_SIGPENDING] = 826 init_task.signal->rlim[RLIMIT_NPROC]; 827 828 for (i = 0; i < MAX_PER_NAMESPACE_UCOUNTS; i++) 829 init_user_ns.ucount_max[i] = max_threads/2; 830 831 set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, task_rlimit(&init_task, RLIMIT_NPROC)); 832 set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, task_rlimit(&init_task, RLIMIT_MSGQUEUE)); 833 set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, task_rlimit(&init_task, RLIMIT_SIGPENDING)); 834 set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, task_rlimit(&init_task, RLIMIT_MEMLOCK)); 835 836 #ifdef CONFIG_VMAP_STACK 837 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 838 NULL, free_vm_stack_cache); 839 #endif 840 841 scs_init(); 842 843 lockdep_init_task(&init_task); 844 uprobes_init(); 845 } 846 847 int __weak arch_dup_task_struct(struct task_struct *dst, 848 struct task_struct *src) 849 { 850 *dst = *src; 851 return 0; 852 } 853 854 void set_task_stack_end_magic(struct task_struct *tsk) 855 { 856 unsigned long *stackend; 857 858 stackend = end_of_stack(tsk); 859 *stackend = STACK_END_MAGIC; /* for overflow detection */ 860 } 861 862 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 863 { 864 struct task_struct *tsk; 865 unsigned long *stack; 866 struct vm_struct *stack_vm_area __maybe_unused; 867 int err; 868 869 if (node == NUMA_NO_NODE) 870 node = tsk_fork_get_node(orig); 871 tsk = alloc_task_struct_node(node); 872 if (!tsk) 873 return NULL; 874 875 stack = alloc_thread_stack_node(tsk, node); 876 if (!stack) 877 goto free_tsk; 878 879 if (memcg_charge_kernel_stack(tsk)) 880 goto free_stack; 881 882 stack_vm_area = task_stack_vm_area(tsk); 883 884 err = arch_dup_task_struct(tsk, orig); 885 886 /* 887 * arch_dup_task_struct() clobbers the stack-related fields. Make 888 * sure they're properly initialized before using any stack-related 889 * functions again. 890 */ 891 tsk->stack = stack; 892 #ifdef CONFIG_VMAP_STACK 893 tsk->stack_vm_area = stack_vm_area; 894 #endif 895 #ifdef CONFIG_THREAD_INFO_IN_TASK 896 refcount_set(&tsk->stack_refcount, 1); 897 #endif 898 899 if (err) 900 goto free_stack; 901 902 err = scs_prepare(tsk, node); 903 if (err) 904 goto free_stack; 905 906 #ifdef CONFIG_SECCOMP 907 /* 908 * We must handle setting up seccomp filters once we're under 909 * the sighand lock in case orig has changed between now and 910 * then. Until then, filter must be NULL to avoid messing up 911 * the usage counts on the error path calling free_task. 912 */ 913 tsk->seccomp.filter = NULL; 914 #endif 915 916 setup_thread_stack(tsk, orig); 917 clear_user_return_notifier(tsk); 918 clear_tsk_need_resched(tsk); 919 set_task_stack_end_magic(tsk); 920 clear_syscall_work_syscall_user_dispatch(tsk); 921 922 #ifdef CONFIG_STACKPROTECTOR 923 tsk->stack_canary = get_random_canary(); 924 #endif 925 if (orig->cpus_ptr == &orig->cpus_mask) 926 tsk->cpus_ptr = &tsk->cpus_mask; 927 928 /* 929 * One for the user space visible state that goes away when reaped. 930 * One for the scheduler. 931 */ 932 refcount_set(&tsk->rcu_users, 2); 933 /* One for the rcu users */ 934 refcount_set(&tsk->usage, 1); 935 #ifdef CONFIG_BLK_DEV_IO_TRACE 936 tsk->btrace_seq = 0; 937 #endif 938 tsk->splice_pipe = NULL; 939 tsk->task_frag.page = NULL; 940 tsk->wake_q.next = NULL; 941 tsk->pf_io_worker = NULL; 942 943 account_kernel_stack(tsk, 1); 944 945 kcov_task_init(tsk); 946 kmap_local_fork(tsk); 947 948 #ifdef CONFIG_FAULT_INJECTION 949 tsk->fail_nth = 0; 950 #endif 951 952 #ifdef CONFIG_BLK_CGROUP 953 tsk->throttle_queue = NULL; 954 tsk->use_memdelay = 0; 955 #endif 956 957 #ifdef CONFIG_MEMCG 958 tsk->active_memcg = NULL; 959 #endif 960 return tsk; 961 962 free_stack: 963 free_thread_stack(tsk); 964 free_tsk: 965 free_task_struct(tsk); 966 return NULL; 967 } 968 969 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 970 971 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 972 973 static int __init coredump_filter_setup(char *s) 974 { 975 default_dump_filter = 976 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 977 MMF_DUMP_FILTER_MASK; 978 return 1; 979 } 980 981 __setup("coredump_filter=", coredump_filter_setup); 982 983 #include <linux/init_task.h> 984 985 static void mm_init_aio(struct mm_struct *mm) 986 { 987 #ifdef CONFIG_AIO 988 spin_lock_init(&mm->ioctx_lock); 989 mm->ioctx_table = NULL; 990 #endif 991 } 992 993 static __always_inline void mm_clear_owner(struct mm_struct *mm, 994 struct task_struct *p) 995 { 996 #ifdef CONFIG_MEMCG 997 if (mm->owner == p) 998 WRITE_ONCE(mm->owner, NULL); 999 #endif 1000 } 1001 1002 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 1003 { 1004 #ifdef CONFIG_MEMCG 1005 mm->owner = p; 1006 #endif 1007 } 1008 1009 static void mm_init_pasid(struct mm_struct *mm) 1010 { 1011 #ifdef CONFIG_IOMMU_SUPPORT 1012 mm->pasid = INIT_PASID; 1013 #endif 1014 } 1015 1016 static void mm_init_uprobes_state(struct mm_struct *mm) 1017 { 1018 #ifdef CONFIG_UPROBES 1019 mm->uprobes_state.xol_area = NULL; 1020 #endif 1021 } 1022 1023 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 1024 struct user_namespace *user_ns) 1025 { 1026 mm->mmap = NULL; 1027 mm->mm_rb = RB_ROOT; 1028 mm->vmacache_seqnum = 0; 1029 atomic_set(&mm->mm_users, 1); 1030 atomic_set(&mm->mm_count, 1); 1031 seqcount_init(&mm->write_protect_seq); 1032 mmap_init_lock(mm); 1033 INIT_LIST_HEAD(&mm->mmlist); 1034 mm->core_state = NULL; 1035 mm_pgtables_bytes_init(mm); 1036 mm->map_count = 0; 1037 mm->locked_vm = 0; 1038 atomic64_set(&mm->pinned_vm, 0); 1039 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1040 spin_lock_init(&mm->page_table_lock); 1041 spin_lock_init(&mm->arg_lock); 1042 mm_init_cpumask(mm); 1043 mm_init_aio(mm); 1044 mm_init_owner(mm, p); 1045 mm_init_pasid(mm); 1046 RCU_INIT_POINTER(mm->exe_file, NULL); 1047 mmu_notifier_subscriptions_init(mm); 1048 init_tlb_flush_pending(mm); 1049 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 1050 mm->pmd_huge_pte = NULL; 1051 #endif 1052 mm_init_uprobes_state(mm); 1053 1054 if (current->mm) { 1055 mm->flags = current->mm->flags & MMF_INIT_MASK; 1056 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1057 } else { 1058 mm->flags = default_dump_filter; 1059 mm->def_flags = 0; 1060 } 1061 1062 if (mm_alloc_pgd(mm)) 1063 goto fail_nopgd; 1064 1065 if (init_new_context(p, mm)) 1066 goto fail_nocontext; 1067 1068 mm->user_ns = get_user_ns(user_ns); 1069 return mm; 1070 1071 fail_nocontext: 1072 mm_free_pgd(mm); 1073 fail_nopgd: 1074 free_mm(mm); 1075 return NULL; 1076 } 1077 1078 /* 1079 * Allocate and initialize an mm_struct. 1080 */ 1081 struct mm_struct *mm_alloc(void) 1082 { 1083 struct mm_struct *mm; 1084 1085 mm = allocate_mm(); 1086 if (!mm) 1087 return NULL; 1088 1089 memset(mm, 0, sizeof(*mm)); 1090 return mm_init(mm, current, current_user_ns()); 1091 } 1092 1093 static inline void __mmput(struct mm_struct *mm) 1094 { 1095 VM_BUG_ON(atomic_read(&mm->mm_users)); 1096 1097 uprobe_clear_state(mm); 1098 exit_aio(mm); 1099 ksm_exit(mm); 1100 khugepaged_exit(mm); /* must run before exit_mmap */ 1101 exit_mmap(mm); 1102 mm_put_huge_zero_page(mm); 1103 set_mm_exe_file(mm, NULL); 1104 if (!list_empty(&mm->mmlist)) { 1105 spin_lock(&mmlist_lock); 1106 list_del(&mm->mmlist); 1107 spin_unlock(&mmlist_lock); 1108 } 1109 if (mm->binfmt) 1110 module_put(mm->binfmt->module); 1111 mmdrop(mm); 1112 } 1113 1114 /* 1115 * Decrement the use count and release all resources for an mm. 1116 */ 1117 void mmput(struct mm_struct *mm) 1118 { 1119 might_sleep(); 1120 1121 if (atomic_dec_and_test(&mm->mm_users)) 1122 __mmput(mm); 1123 } 1124 EXPORT_SYMBOL_GPL(mmput); 1125 1126 #ifdef CONFIG_MMU 1127 static void mmput_async_fn(struct work_struct *work) 1128 { 1129 struct mm_struct *mm = container_of(work, struct mm_struct, 1130 async_put_work); 1131 1132 __mmput(mm); 1133 } 1134 1135 void mmput_async(struct mm_struct *mm) 1136 { 1137 if (atomic_dec_and_test(&mm->mm_users)) { 1138 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1139 schedule_work(&mm->async_put_work); 1140 } 1141 } 1142 #endif 1143 1144 /** 1145 * set_mm_exe_file - change a reference to the mm's executable file 1146 * 1147 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1148 * 1149 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1150 * invocations: in mmput() nobody alive left, in execve task is single 1151 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the 1152 * mm->exe_file, but does so without using set_mm_exe_file() in order 1153 * to avoid the need for any locks. 1154 */ 1155 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1156 { 1157 struct file *old_exe_file; 1158 1159 /* 1160 * It is safe to dereference the exe_file without RCU as 1161 * this function is only called if nobody else can access 1162 * this mm -- see comment above for justification. 1163 */ 1164 old_exe_file = rcu_dereference_raw(mm->exe_file); 1165 1166 if (new_exe_file) 1167 get_file(new_exe_file); 1168 rcu_assign_pointer(mm->exe_file, new_exe_file); 1169 if (old_exe_file) 1170 fput(old_exe_file); 1171 } 1172 1173 /** 1174 * get_mm_exe_file - acquire a reference to the mm's executable file 1175 * 1176 * Returns %NULL if mm has no associated executable file. 1177 * User must release file via fput(). 1178 */ 1179 struct file *get_mm_exe_file(struct mm_struct *mm) 1180 { 1181 struct file *exe_file; 1182 1183 rcu_read_lock(); 1184 exe_file = rcu_dereference(mm->exe_file); 1185 if (exe_file && !get_file_rcu(exe_file)) 1186 exe_file = NULL; 1187 rcu_read_unlock(); 1188 return exe_file; 1189 } 1190 EXPORT_SYMBOL(get_mm_exe_file); 1191 1192 /** 1193 * get_task_exe_file - acquire a reference to the task's executable file 1194 * 1195 * Returns %NULL if task's mm (if any) has no associated executable file or 1196 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1197 * User must release file via fput(). 1198 */ 1199 struct file *get_task_exe_file(struct task_struct *task) 1200 { 1201 struct file *exe_file = NULL; 1202 struct mm_struct *mm; 1203 1204 task_lock(task); 1205 mm = task->mm; 1206 if (mm) { 1207 if (!(task->flags & PF_KTHREAD)) 1208 exe_file = get_mm_exe_file(mm); 1209 } 1210 task_unlock(task); 1211 return exe_file; 1212 } 1213 EXPORT_SYMBOL(get_task_exe_file); 1214 1215 /** 1216 * get_task_mm - acquire a reference to the task's mm 1217 * 1218 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1219 * this kernel workthread has transiently adopted a user mm with use_mm, 1220 * to do its AIO) is not set and if so returns a reference to it, after 1221 * bumping up the use count. User must release the mm via mmput() 1222 * after use. Typically used by /proc and ptrace. 1223 */ 1224 struct mm_struct *get_task_mm(struct task_struct *task) 1225 { 1226 struct mm_struct *mm; 1227 1228 task_lock(task); 1229 mm = task->mm; 1230 if (mm) { 1231 if (task->flags & PF_KTHREAD) 1232 mm = NULL; 1233 else 1234 mmget(mm); 1235 } 1236 task_unlock(task); 1237 return mm; 1238 } 1239 EXPORT_SYMBOL_GPL(get_task_mm); 1240 1241 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1242 { 1243 struct mm_struct *mm; 1244 int err; 1245 1246 err = down_read_killable(&task->signal->exec_update_lock); 1247 if (err) 1248 return ERR_PTR(err); 1249 1250 mm = get_task_mm(task); 1251 if (mm && mm != current->mm && 1252 !ptrace_may_access(task, mode)) { 1253 mmput(mm); 1254 mm = ERR_PTR(-EACCES); 1255 } 1256 up_read(&task->signal->exec_update_lock); 1257 1258 return mm; 1259 } 1260 1261 static void complete_vfork_done(struct task_struct *tsk) 1262 { 1263 struct completion *vfork; 1264 1265 task_lock(tsk); 1266 vfork = tsk->vfork_done; 1267 if (likely(vfork)) { 1268 tsk->vfork_done = NULL; 1269 complete(vfork); 1270 } 1271 task_unlock(tsk); 1272 } 1273 1274 static int wait_for_vfork_done(struct task_struct *child, 1275 struct completion *vfork) 1276 { 1277 int killed; 1278 1279 freezer_do_not_count(); 1280 cgroup_enter_frozen(); 1281 killed = wait_for_completion_killable(vfork); 1282 cgroup_leave_frozen(false); 1283 freezer_count(); 1284 1285 if (killed) { 1286 task_lock(child); 1287 child->vfork_done = NULL; 1288 task_unlock(child); 1289 } 1290 1291 put_task_struct(child); 1292 return killed; 1293 } 1294 1295 /* Please note the differences between mmput and mm_release. 1296 * mmput is called whenever we stop holding onto a mm_struct, 1297 * error success whatever. 1298 * 1299 * mm_release is called after a mm_struct has been removed 1300 * from the current process. 1301 * 1302 * This difference is important for error handling, when we 1303 * only half set up a mm_struct for a new process and need to restore 1304 * the old one. Because we mmput the new mm_struct before 1305 * restoring the old one. . . 1306 * Eric Biederman 10 January 1998 1307 */ 1308 static void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1309 { 1310 uprobe_free_utask(tsk); 1311 1312 /* Get rid of any cached register state */ 1313 deactivate_mm(tsk, mm); 1314 1315 /* 1316 * Signal userspace if we're not exiting with a core dump 1317 * because we want to leave the value intact for debugging 1318 * purposes. 1319 */ 1320 if (tsk->clear_child_tid) { 1321 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) && 1322 atomic_read(&mm->mm_users) > 1) { 1323 /* 1324 * We don't check the error code - if userspace has 1325 * not set up a proper pointer then tough luck. 1326 */ 1327 put_user(0, tsk->clear_child_tid); 1328 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1329 1, NULL, NULL, 0, 0); 1330 } 1331 tsk->clear_child_tid = NULL; 1332 } 1333 1334 /* 1335 * All done, finally we can wake up parent and return this mm to him. 1336 * Also kthread_stop() uses this completion for synchronization. 1337 */ 1338 if (tsk->vfork_done) 1339 complete_vfork_done(tsk); 1340 } 1341 1342 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1343 { 1344 futex_exit_release(tsk); 1345 mm_release(tsk, mm); 1346 } 1347 1348 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1349 { 1350 futex_exec_release(tsk); 1351 mm_release(tsk, mm); 1352 } 1353 1354 /** 1355 * dup_mm() - duplicates an existing mm structure 1356 * @tsk: the task_struct with which the new mm will be associated. 1357 * @oldmm: the mm to duplicate. 1358 * 1359 * Allocates a new mm structure and duplicates the provided @oldmm structure 1360 * content into it. 1361 * 1362 * Return: the duplicated mm or NULL on failure. 1363 */ 1364 static struct mm_struct *dup_mm(struct task_struct *tsk, 1365 struct mm_struct *oldmm) 1366 { 1367 struct mm_struct *mm; 1368 int err; 1369 1370 mm = allocate_mm(); 1371 if (!mm) 1372 goto fail_nomem; 1373 1374 memcpy(mm, oldmm, sizeof(*mm)); 1375 1376 if (!mm_init(mm, tsk, mm->user_ns)) 1377 goto fail_nomem; 1378 1379 err = dup_mmap(mm, oldmm); 1380 if (err) 1381 goto free_pt; 1382 1383 mm->hiwater_rss = get_mm_rss(mm); 1384 mm->hiwater_vm = mm->total_vm; 1385 1386 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1387 goto free_pt; 1388 1389 return mm; 1390 1391 free_pt: 1392 /* don't put binfmt in mmput, we haven't got module yet */ 1393 mm->binfmt = NULL; 1394 mm_init_owner(mm, NULL); 1395 mmput(mm); 1396 1397 fail_nomem: 1398 return NULL; 1399 } 1400 1401 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1402 { 1403 struct mm_struct *mm, *oldmm; 1404 1405 tsk->min_flt = tsk->maj_flt = 0; 1406 tsk->nvcsw = tsk->nivcsw = 0; 1407 #ifdef CONFIG_DETECT_HUNG_TASK 1408 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1409 tsk->last_switch_time = 0; 1410 #endif 1411 1412 tsk->mm = NULL; 1413 tsk->active_mm = NULL; 1414 1415 /* 1416 * Are we cloning a kernel thread? 1417 * 1418 * We need to steal a active VM for that.. 1419 */ 1420 oldmm = current->mm; 1421 if (!oldmm) 1422 return 0; 1423 1424 /* initialize the new vmacache entries */ 1425 vmacache_flush(tsk); 1426 1427 if (clone_flags & CLONE_VM) { 1428 mmget(oldmm); 1429 mm = oldmm; 1430 } else { 1431 mm = dup_mm(tsk, current->mm); 1432 if (!mm) 1433 return -ENOMEM; 1434 } 1435 1436 tsk->mm = mm; 1437 tsk->active_mm = mm; 1438 return 0; 1439 } 1440 1441 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1442 { 1443 struct fs_struct *fs = current->fs; 1444 if (clone_flags & CLONE_FS) { 1445 /* tsk->fs is already what we want */ 1446 spin_lock(&fs->lock); 1447 if (fs->in_exec) { 1448 spin_unlock(&fs->lock); 1449 return -EAGAIN; 1450 } 1451 fs->users++; 1452 spin_unlock(&fs->lock); 1453 return 0; 1454 } 1455 tsk->fs = copy_fs_struct(fs); 1456 if (!tsk->fs) 1457 return -ENOMEM; 1458 return 0; 1459 } 1460 1461 static int copy_files(unsigned long clone_flags, struct task_struct *tsk) 1462 { 1463 struct files_struct *oldf, *newf; 1464 int error = 0; 1465 1466 /* 1467 * A background process may not have any files ... 1468 */ 1469 oldf = current->files; 1470 if (!oldf) 1471 goto out; 1472 1473 if (clone_flags & CLONE_FILES) { 1474 atomic_inc(&oldf->count); 1475 goto out; 1476 } 1477 1478 newf = dup_fd(oldf, NR_OPEN_MAX, &error); 1479 if (!newf) 1480 goto out; 1481 1482 tsk->files = newf; 1483 error = 0; 1484 out: 1485 return error; 1486 } 1487 1488 static int copy_io(unsigned long clone_flags, struct task_struct *tsk) 1489 { 1490 #ifdef CONFIG_BLOCK 1491 struct io_context *ioc = current->io_context; 1492 struct io_context *new_ioc; 1493 1494 if (!ioc) 1495 return 0; 1496 /* 1497 * Share io context with parent, if CLONE_IO is set 1498 */ 1499 if (clone_flags & CLONE_IO) { 1500 ioc_task_link(ioc); 1501 tsk->io_context = ioc; 1502 } else if (ioprio_valid(ioc->ioprio)) { 1503 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE); 1504 if (unlikely(!new_ioc)) 1505 return -ENOMEM; 1506 1507 new_ioc->ioprio = ioc->ioprio; 1508 put_io_context(new_ioc); 1509 } 1510 #endif 1511 return 0; 1512 } 1513 1514 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1515 { 1516 struct sighand_struct *sig; 1517 1518 if (clone_flags & CLONE_SIGHAND) { 1519 refcount_inc(¤t->sighand->count); 1520 return 0; 1521 } 1522 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1523 RCU_INIT_POINTER(tsk->sighand, sig); 1524 if (!sig) 1525 return -ENOMEM; 1526 1527 refcount_set(&sig->count, 1); 1528 spin_lock_irq(¤t->sighand->siglock); 1529 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1530 spin_unlock_irq(¤t->sighand->siglock); 1531 1532 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */ 1533 if (clone_flags & CLONE_CLEAR_SIGHAND) 1534 flush_signal_handlers(tsk, 0); 1535 1536 return 0; 1537 } 1538 1539 void __cleanup_sighand(struct sighand_struct *sighand) 1540 { 1541 if (refcount_dec_and_test(&sighand->count)) { 1542 signalfd_cleanup(sighand); 1543 /* 1544 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1545 * without an RCU grace period, see __lock_task_sighand(). 1546 */ 1547 kmem_cache_free(sighand_cachep, sighand); 1548 } 1549 } 1550 1551 /* 1552 * Initialize POSIX timer handling for a thread group. 1553 */ 1554 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1555 { 1556 struct posix_cputimers *pct = &sig->posix_cputimers; 1557 unsigned long cpu_limit; 1558 1559 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1560 posix_cputimers_group_init(pct, cpu_limit); 1561 } 1562 1563 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1564 { 1565 struct signal_struct *sig; 1566 1567 if (clone_flags & CLONE_THREAD) 1568 return 0; 1569 1570 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1571 tsk->signal = sig; 1572 if (!sig) 1573 return -ENOMEM; 1574 1575 sig->nr_threads = 1; 1576 atomic_set(&sig->live, 1); 1577 refcount_set(&sig->sigcnt, 1); 1578 1579 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1580 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1581 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1582 1583 init_waitqueue_head(&sig->wait_chldexit); 1584 sig->curr_target = tsk; 1585 init_sigpending(&sig->shared_pending); 1586 INIT_HLIST_HEAD(&sig->multiprocess); 1587 seqlock_init(&sig->stats_lock); 1588 prev_cputime_init(&sig->prev_cputime); 1589 1590 #ifdef CONFIG_POSIX_TIMERS 1591 INIT_LIST_HEAD(&sig->posix_timers); 1592 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1593 sig->real_timer.function = it_real_fn; 1594 #endif 1595 1596 task_lock(current->group_leader); 1597 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1598 task_unlock(current->group_leader); 1599 1600 posix_cpu_timers_init_group(sig); 1601 1602 tty_audit_fork(sig); 1603 sched_autogroup_fork(sig); 1604 1605 sig->oom_score_adj = current->signal->oom_score_adj; 1606 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1607 1608 mutex_init(&sig->cred_guard_mutex); 1609 init_rwsem(&sig->exec_update_lock); 1610 1611 return 0; 1612 } 1613 1614 static void copy_seccomp(struct task_struct *p) 1615 { 1616 #ifdef CONFIG_SECCOMP 1617 /* 1618 * Must be called with sighand->lock held, which is common to 1619 * all threads in the group. Holding cred_guard_mutex is not 1620 * needed because this new task is not yet running and cannot 1621 * be racing exec. 1622 */ 1623 assert_spin_locked(¤t->sighand->siglock); 1624 1625 /* Ref-count the new filter user, and assign it. */ 1626 get_seccomp_filter(current); 1627 p->seccomp = current->seccomp; 1628 1629 /* 1630 * Explicitly enable no_new_privs here in case it got set 1631 * between the task_struct being duplicated and holding the 1632 * sighand lock. The seccomp state and nnp must be in sync. 1633 */ 1634 if (task_no_new_privs(current)) 1635 task_set_no_new_privs(p); 1636 1637 /* 1638 * If the parent gained a seccomp mode after copying thread 1639 * flags and between before we held the sighand lock, we have 1640 * to manually enable the seccomp thread flag here. 1641 */ 1642 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1643 set_task_syscall_work(p, SECCOMP); 1644 #endif 1645 } 1646 1647 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1648 { 1649 current->clear_child_tid = tidptr; 1650 1651 return task_pid_vnr(current); 1652 } 1653 1654 static void rt_mutex_init_task(struct task_struct *p) 1655 { 1656 raw_spin_lock_init(&p->pi_lock); 1657 #ifdef CONFIG_RT_MUTEXES 1658 p->pi_waiters = RB_ROOT_CACHED; 1659 p->pi_top_task = NULL; 1660 p->pi_blocked_on = NULL; 1661 #endif 1662 } 1663 1664 static inline void init_task_pid_links(struct task_struct *task) 1665 { 1666 enum pid_type type; 1667 1668 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) 1669 INIT_HLIST_NODE(&task->pid_links[type]); 1670 } 1671 1672 static inline void 1673 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1674 { 1675 if (type == PIDTYPE_PID) 1676 task->thread_pid = pid; 1677 else 1678 task->signal->pids[type] = pid; 1679 } 1680 1681 static inline void rcu_copy_process(struct task_struct *p) 1682 { 1683 #ifdef CONFIG_PREEMPT_RCU 1684 p->rcu_read_lock_nesting = 0; 1685 p->rcu_read_unlock_special.s = 0; 1686 p->rcu_blocked_node = NULL; 1687 INIT_LIST_HEAD(&p->rcu_node_entry); 1688 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1689 #ifdef CONFIG_TASKS_RCU 1690 p->rcu_tasks_holdout = false; 1691 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1692 p->rcu_tasks_idle_cpu = -1; 1693 #endif /* #ifdef CONFIG_TASKS_RCU */ 1694 #ifdef CONFIG_TASKS_TRACE_RCU 1695 p->trc_reader_nesting = 0; 1696 p->trc_reader_special.s = 0; 1697 INIT_LIST_HEAD(&p->trc_holdout_list); 1698 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1699 } 1700 1701 struct pid *pidfd_pid(const struct file *file) 1702 { 1703 if (file->f_op == &pidfd_fops) 1704 return file->private_data; 1705 1706 return ERR_PTR(-EBADF); 1707 } 1708 1709 static int pidfd_release(struct inode *inode, struct file *file) 1710 { 1711 struct pid *pid = file->private_data; 1712 1713 file->private_data = NULL; 1714 put_pid(pid); 1715 return 0; 1716 } 1717 1718 #ifdef CONFIG_PROC_FS 1719 /** 1720 * pidfd_show_fdinfo - print information about a pidfd 1721 * @m: proc fdinfo file 1722 * @f: file referencing a pidfd 1723 * 1724 * Pid: 1725 * This function will print the pid that a given pidfd refers to in the 1726 * pid namespace of the procfs instance. 1727 * If the pid namespace of the process is not a descendant of the pid 1728 * namespace of the procfs instance 0 will be shown as its pid. This is 1729 * similar to calling getppid() on a process whose parent is outside of 1730 * its pid namespace. 1731 * 1732 * NSpid: 1733 * If pid namespaces are supported then this function will also print 1734 * the pid of a given pidfd refers to for all descendant pid namespaces 1735 * starting from the current pid namespace of the instance, i.e. the 1736 * Pid field and the first entry in the NSpid field will be identical. 1737 * If the pid namespace of the process is not a descendant of the pid 1738 * namespace of the procfs instance 0 will be shown as its first NSpid 1739 * entry and no others will be shown. 1740 * Note that this differs from the Pid and NSpid fields in 1741 * /proc/<pid>/status where Pid and NSpid are always shown relative to 1742 * the pid namespace of the procfs instance. The difference becomes 1743 * obvious when sending around a pidfd between pid namespaces from a 1744 * different branch of the tree, i.e. where no ancestral relation is 1745 * present between the pid namespaces: 1746 * - create two new pid namespaces ns1 and ns2 in the initial pid 1747 * namespace (also take care to create new mount namespaces in the 1748 * new pid namespace and mount procfs) 1749 * - create a process with a pidfd in ns1 1750 * - send pidfd from ns1 to ns2 1751 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid 1752 * have exactly one entry, which is 0 1753 */ 1754 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f) 1755 { 1756 struct pid *pid = f->private_data; 1757 struct pid_namespace *ns; 1758 pid_t nr = -1; 1759 1760 if (likely(pid_has_task(pid, PIDTYPE_PID))) { 1761 ns = proc_pid_ns(file_inode(m->file)->i_sb); 1762 nr = pid_nr_ns(pid, ns); 1763 } 1764 1765 seq_put_decimal_ll(m, "Pid:\t", nr); 1766 1767 #ifdef CONFIG_PID_NS 1768 seq_put_decimal_ll(m, "\nNSpid:\t", nr); 1769 if (nr > 0) { 1770 int i; 1771 1772 /* If nr is non-zero it means that 'pid' is valid and that 1773 * ns, i.e. the pid namespace associated with the procfs 1774 * instance, is in the pid namespace hierarchy of pid. 1775 * Start at one below the already printed level. 1776 */ 1777 for (i = ns->level + 1; i <= pid->level; i++) 1778 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr); 1779 } 1780 #endif 1781 seq_putc(m, '\n'); 1782 } 1783 #endif 1784 1785 /* 1786 * Poll support for process exit notification. 1787 */ 1788 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts) 1789 { 1790 struct pid *pid = file->private_data; 1791 __poll_t poll_flags = 0; 1792 1793 poll_wait(file, &pid->wait_pidfd, pts); 1794 1795 /* 1796 * Inform pollers only when the whole thread group exits. 1797 * If the thread group leader exits before all other threads in the 1798 * group, then poll(2) should block, similar to the wait(2) family. 1799 */ 1800 if (thread_group_exited(pid)) 1801 poll_flags = EPOLLIN | EPOLLRDNORM; 1802 1803 return poll_flags; 1804 } 1805 1806 const struct file_operations pidfd_fops = { 1807 .release = pidfd_release, 1808 .poll = pidfd_poll, 1809 #ifdef CONFIG_PROC_FS 1810 .show_fdinfo = pidfd_show_fdinfo, 1811 #endif 1812 }; 1813 1814 static void __delayed_free_task(struct rcu_head *rhp) 1815 { 1816 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 1817 1818 free_task(tsk); 1819 } 1820 1821 static __always_inline void delayed_free_task(struct task_struct *tsk) 1822 { 1823 if (IS_ENABLED(CONFIG_MEMCG)) 1824 call_rcu(&tsk->rcu, __delayed_free_task); 1825 else 1826 free_task(tsk); 1827 } 1828 1829 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk) 1830 { 1831 /* Skip if kernel thread */ 1832 if (!tsk->mm) 1833 return; 1834 1835 /* Skip if spawning a thread or using vfork */ 1836 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM) 1837 return; 1838 1839 /* We need to synchronize with __set_oom_adj */ 1840 mutex_lock(&oom_adj_mutex); 1841 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags); 1842 /* Update the values in case they were changed after copy_signal */ 1843 tsk->signal->oom_score_adj = current->signal->oom_score_adj; 1844 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min; 1845 mutex_unlock(&oom_adj_mutex); 1846 } 1847 1848 /* 1849 * This creates a new process as a copy of the old one, 1850 * but does not actually start it yet. 1851 * 1852 * It copies the registers, and all the appropriate 1853 * parts of the process environment (as per the clone 1854 * flags). The actual kick-off is left to the caller. 1855 */ 1856 static __latent_entropy struct task_struct *copy_process( 1857 struct pid *pid, 1858 int trace, 1859 int node, 1860 struct kernel_clone_args *args) 1861 { 1862 int pidfd = -1, retval; 1863 struct task_struct *p; 1864 struct multiprocess_signals delayed; 1865 struct file *pidfile = NULL; 1866 u64 clone_flags = args->flags; 1867 struct nsproxy *nsp = current->nsproxy; 1868 1869 /* 1870 * Don't allow sharing the root directory with processes in a different 1871 * namespace 1872 */ 1873 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 1874 return ERR_PTR(-EINVAL); 1875 1876 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 1877 return ERR_PTR(-EINVAL); 1878 1879 /* 1880 * Thread groups must share signals as well, and detached threads 1881 * can only be started up within the thread group. 1882 */ 1883 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 1884 return ERR_PTR(-EINVAL); 1885 1886 /* 1887 * Shared signal handlers imply shared VM. By way of the above, 1888 * thread groups also imply shared VM. Blocking this case allows 1889 * for various simplifications in other code. 1890 */ 1891 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 1892 return ERR_PTR(-EINVAL); 1893 1894 /* 1895 * Siblings of global init remain as zombies on exit since they are 1896 * not reaped by their parent (swapper). To solve this and to avoid 1897 * multi-rooted process trees, prevent global and container-inits 1898 * from creating siblings. 1899 */ 1900 if ((clone_flags & CLONE_PARENT) && 1901 current->signal->flags & SIGNAL_UNKILLABLE) 1902 return ERR_PTR(-EINVAL); 1903 1904 /* 1905 * If the new process will be in a different pid or user namespace 1906 * do not allow it to share a thread group with the forking task. 1907 */ 1908 if (clone_flags & CLONE_THREAD) { 1909 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 1910 (task_active_pid_ns(current) != nsp->pid_ns_for_children)) 1911 return ERR_PTR(-EINVAL); 1912 } 1913 1914 /* 1915 * If the new process will be in a different time namespace 1916 * do not allow it to share VM or a thread group with the forking task. 1917 */ 1918 if (clone_flags & (CLONE_THREAD | CLONE_VM)) { 1919 if (nsp->time_ns != nsp->time_ns_for_children) 1920 return ERR_PTR(-EINVAL); 1921 } 1922 1923 if (clone_flags & CLONE_PIDFD) { 1924 /* 1925 * - CLONE_DETACHED is blocked so that we can potentially 1926 * reuse it later for CLONE_PIDFD. 1927 * - CLONE_THREAD is blocked until someone really needs it. 1928 */ 1929 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD)) 1930 return ERR_PTR(-EINVAL); 1931 } 1932 1933 /* 1934 * Force any signals received before this point to be delivered 1935 * before the fork happens. Collect up signals sent to multiple 1936 * processes that happen during the fork and delay them so that 1937 * they appear to happen after the fork. 1938 */ 1939 sigemptyset(&delayed.signal); 1940 INIT_HLIST_NODE(&delayed.node); 1941 1942 spin_lock_irq(¤t->sighand->siglock); 1943 if (!(clone_flags & CLONE_THREAD)) 1944 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 1945 recalc_sigpending(); 1946 spin_unlock_irq(¤t->sighand->siglock); 1947 retval = -ERESTARTNOINTR; 1948 if (task_sigpending(current)) 1949 goto fork_out; 1950 1951 retval = -ENOMEM; 1952 p = dup_task_struct(current, node); 1953 if (!p) 1954 goto fork_out; 1955 if (args->io_thread) { 1956 /* 1957 * Mark us an IO worker, and block any signal that isn't 1958 * fatal or STOP 1959 */ 1960 p->flags |= PF_IO_WORKER; 1961 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP)); 1962 } 1963 1964 /* 1965 * This _must_ happen before we call free_task(), i.e. before we jump 1966 * to any of the bad_fork_* labels. This is to avoid freeing 1967 * p->set_child_tid which is (ab)used as a kthread's data pointer for 1968 * kernel threads (PF_KTHREAD). 1969 */ 1970 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; 1971 /* 1972 * Clear TID on mm_release()? 1973 */ 1974 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; 1975 1976 ftrace_graph_init_task(p); 1977 1978 rt_mutex_init_task(p); 1979 1980 lockdep_assert_irqs_enabled(); 1981 #ifdef CONFIG_PROVE_LOCKING 1982 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 1983 #endif 1984 retval = -EAGAIN; 1985 if (is_ucounts_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 1986 if (p->real_cred->user != INIT_USER && 1987 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 1988 goto bad_fork_free; 1989 } 1990 current->flags &= ~PF_NPROC_EXCEEDED; 1991 1992 retval = copy_creds(p, clone_flags); 1993 if (retval < 0) 1994 goto bad_fork_free; 1995 1996 /* 1997 * If multiple threads are within copy_process(), then this check 1998 * triggers too late. This doesn't hurt, the check is only there 1999 * to stop root fork bombs. 2000 */ 2001 retval = -EAGAIN; 2002 if (data_race(nr_threads >= max_threads)) 2003 goto bad_fork_cleanup_count; 2004 2005 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 2006 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY); 2007 p->flags |= PF_FORKNOEXEC; 2008 INIT_LIST_HEAD(&p->children); 2009 INIT_LIST_HEAD(&p->sibling); 2010 rcu_copy_process(p); 2011 p->vfork_done = NULL; 2012 spin_lock_init(&p->alloc_lock); 2013 2014 init_sigpending(&p->pending); 2015 2016 p->utime = p->stime = p->gtime = 0; 2017 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 2018 p->utimescaled = p->stimescaled = 0; 2019 #endif 2020 prev_cputime_init(&p->prev_cputime); 2021 2022 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2023 seqcount_init(&p->vtime.seqcount); 2024 p->vtime.starttime = 0; 2025 p->vtime.state = VTIME_INACTIVE; 2026 #endif 2027 2028 #ifdef CONFIG_IO_URING 2029 p->io_uring = NULL; 2030 #endif 2031 2032 #if defined(SPLIT_RSS_COUNTING) 2033 memset(&p->rss_stat, 0, sizeof(p->rss_stat)); 2034 #endif 2035 2036 p->default_timer_slack_ns = current->timer_slack_ns; 2037 2038 #ifdef CONFIG_PSI 2039 p->psi_flags = 0; 2040 #endif 2041 2042 task_io_accounting_init(&p->ioac); 2043 acct_clear_integrals(p); 2044 2045 posix_cputimers_init(&p->posix_cputimers); 2046 2047 p->io_context = NULL; 2048 audit_set_context(p, NULL); 2049 cgroup_fork(p); 2050 #ifdef CONFIG_NUMA 2051 p->mempolicy = mpol_dup(p->mempolicy); 2052 if (IS_ERR(p->mempolicy)) { 2053 retval = PTR_ERR(p->mempolicy); 2054 p->mempolicy = NULL; 2055 goto bad_fork_cleanup_threadgroup_lock; 2056 } 2057 #endif 2058 #ifdef CONFIG_CPUSETS 2059 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 2060 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 2061 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock); 2062 #endif 2063 #ifdef CONFIG_TRACE_IRQFLAGS 2064 memset(&p->irqtrace, 0, sizeof(p->irqtrace)); 2065 p->irqtrace.hardirq_disable_ip = _THIS_IP_; 2066 p->irqtrace.softirq_enable_ip = _THIS_IP_; 2067 p->softirqs_enabled = 1; 2068 p->softirq_context = 0; 2069 #endif 2070 2071 p->pagefault_disabled = 0; 2072 2073 #ifdef CONFIG_LOCKDEP 2074 lockdep_init_task(p); 2075 #endif 2076 2077 #ifdef CONFIG_DEBUG_MUTEXES 2078 p->blocked_on = NULL; /* not blocked yet */ 2079 #endif 2080 #ifdef CONFIG_BCACHE 2081 p->sequential_io = 0; 2082 p->sequential_io_avg = 0; 2083 #endif 2084 #ifdef CONFIG_BPF_SYSCALL 2085 RCU_INIT_POINTER(p->bpf_storage, NULL); 2086 #endif 2087 2088 /* Perform scheduler related setup. Assign this task to a CPU. */ 2089 retval = sched_fork(clone_flags, p); 2090 if (retval) 2091 goto bad_fork_cleanup_policy; 2092 2093 retval = perf_event_init_task(p, clone_flags); 2094 if (retval) 2095 goto bad_fork_cleanup_policy; 2096 retval = audit_alloc(p); 2097 if (retval) 2098 goto bad_fork_cleanup_perf; 2099 /* copy all the process information */ 2100 shm_init_task(p); 2101 retval = security_task_alloc(p, clone_flags); 2102 if (retval) 2103 goto bad_fork_cleanup_audit; 2104 retval = copy_semundo(clone_flags, p); 2105 if (retval) 2106 goto bad_fork_cleanup_security; 2107 retval = copy_files(clone_flags, p); 2108 if (retval) 2109 goto bad_fork_cleanup_semundo; 2110 retval = copy_fs(clone_flags, p); 2111 if (retval) 2112 goto bad_fork_cleanup_files; 2113 retval = copy_sighand(clone_flags, p); 2114 if (retval) 2115 goto bad_fork_cleanup_fs; 2116 retval = copy_signal(clone_flags, p); 2117 if (retval) 2118 goto bad_fork_cleanup_sighand; 2119 retval = copy_mm(clone_flags, p); 2120 if (retval) 2121 goto bad_fork_cleanup_signal; 2122 retval = copy_namespaces(clone_flags, p); 2123 if (retval) 2124 goto bad_fork_cleanup_mm; 2125 retval = copy_io(clone_flags, p); 2126 if (retval) 2127 goto bad_fork_cleanup_namespaces; 2128 retval = copy_thread(clone_flags, args->stack, args->stack_size, p, args->tls); 2129 if (retval) 2130 goto bad_fork_cleanup_io; 2131 2132 stackleak_task_init(p); 2133 2134 if (pid != &init_struct_pid) { 2135 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid, 2136 args->set_tid_size); 2137 if (IS_ERR(pid)) { 2138 retval = PTR_ERR(pid); 2139 goto bad_fork_cleanup_thread; 2140 } 2141 } 2142 2143 /* 2144 * This has to happen after we've potentially unshared the file 2145 * descriptor table (so that the pidfd doesn't leak into the child 2146 * if the fd table isn't shared). 2147 */ 2148 if (clone_flags & CLONE_PIDFD) { 2149 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 2150 if (retval < 0) 2151 goto bad_fork_free_pid; 2152 2153 pidfd = retval; 2154 2155 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid, 2156 O_RDWR | O_CLOEXEC); 2157 if (IS_ERR(pidfile)) { 2158 put_unused_fd(pidfd); 2159 retval = PTR_ERR(pidfile); 2160 goto bad_fork_free_pid; 2161 } 2162 get_pid(pid); /* held by pidfile now */ 2163 2164 retval = put_user(pidfd, args->pidfd); 2165 if (retval) 2166 goto bad_fork_put_pidfd; 2167 } 2168 2169 #ifdef CONFIG_BLOCK 2170 p->plug = NULL; 2171 #endif 2172 futex_init_task(p); 2173 2174 /* 2175 * sigaltstack should be cleared when sharing the same VM 2176 */ 2177 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2178 sas_ss_reset(p); 2179 2180 /* 2181 * Syscall tracing and stepping should be turned off in the 2182 * child regardless of CLONE_PTRACE. 2183 */ 2184 user_disable_single_step(p); 2185 clear_task_syscall_work(p, SYSCALL_TRACE); 2186 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU) 2187 clear_task_syscall_work(p, SYSCALL_EMU); 2188 #endif 2189 clear_tsk_latency_tracing(p); 2190 2191 /* ok, now we should be set up.. */ 2192 p->pid = pid_nr(pid); 2193 if (clone_flags & CLONE_THREAD) { 2194 p->group_leader = current->group_leader; 2195 p->tgid = current->tgid; 2196 } else { 2197 p->group_leader = p; 2198 p->tgid = p->pid; 2199 } 2200 2201 p->nr_dirtied = 0; 2202 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2203 p->dirty_paused_when = 0; 2204 2205 p->pdeath_signal = 0; 2206 INIT_LIST_HEAD(&p->thread_group); 2207 p->task_works = NULL; 2208 2209 #ifdef CONFIG_KRETPROBES 2210 p->kretprobe_instances.first = NULL; 2211 #endif 2212 2213 /* 2214 * Ensure that the cgroup subsystem policies allow the new process to be 2215 * forked. It should be noted that the new process's css_set can be changed 2216 * between here and cgroup_post_fork() if an organisation operation is in 2217 * progress. 2218 */ 2219 retval = cgroup_can_fork(p, args); 2220 if (retval) 2221 goto bad_fork_put_pidfd; 2222 2223 /* 2224 * From this point on we must avoid any synchronous user-space 2225 * communication until we take the tasklist-lock. In particular, we do 2226 * not want user-space to be able to predict the process start-time by 2227 * stalling fork(2) after we recorded the start_time but before it is 2228 * visible to the system. 2229 */ 2230 2231 p->start_time = ktime_get_ns(); 2232 p->start_boottime = ktime_get_boottime_ns(); 2233 2234 /* 2235 * Make it visible to the rest of the system, but dont wake it up yet. 2236 * Need tasklist lock for parent etc handling! 2237 */ 2238 write_lock_irq(&tasklist_lock); 2239 2240 /* CLONE_PARENT re-uses the old parent */ 2241 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2242 p->real_parent = current->real_parent; 2243 p->parent_exec_id = current->parent_exec_id; 2244 if (clone_flags & CLONE_THREAD) 2245 p->exit_signal = -1; 2246 else 2247 p->exit_signal = current->group_leader->exit_signal; 2248 } else { 2249 p->real_parent = current; 2250 p->parent_exec_id = current->self_exec_id; 2251 p->exit_signal = args->exit_signal; 2252 } 2253 2254 klp_copy_process(p); 2255 2256 sched_core_fork(p); 2257 2258 spin_lock(¤t->sighand->siglock); 2259 2260 /* 2261 * Copy seccomp details explicitly here, in case they were changed 2262 * before holding sighand lock. 2263 */ 2264 copy_seccomp(p); 2265 2266 rseq_fork(p, clone_flags); 2267 2268 /* Don't start children in a dying pid namespace */ 2269 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2270 retval = -ENOMEM; 2271 goto bad_fork_cancel_cgroup; 2272 } 2273 2274 /* Let kill terminate clone/fork in the middle */ 2275 if (fatal_signal_pending(current)) { 2276 retval = -EINTR; 2277 goto bad_fork_cancel_cgroup; 2278 } 2279 2280 /* past the last point of failure */ 2281 if (pidfile) 2282 fd_install(pidfd, pidfile); 2283 2284 init_task_pid_links(p); 2285 if (likely(p->pid)) { 2286 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2287 2288 init_task_pid(p, PIDTYPE_PID, pid); 2289 if (thread_group_leader(p)) { 2290 init_task_pid(p, PIDTYPE_TGID, pid); 2291 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2292 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2293 2294 if (is_child_reaper(pid)) { 2295 ns_of_pid(pid)->child_reaper = p; 2296 p->signal->flags |= SIGNAL_UNKILLABLE; 2297 } 2298 p->signal->shared_pending.signal = delayed.signal; 2299 p->signal->tty = tty_kref_get(current->signal->tty); 2300 /* 2301 * Inherit has_child_subreaper flag under the same 2302 * tasklist_lock with adding child to the process tree 2303 * for propagate_has_child_subreaper optimization. 2304 */ 2305 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2306 p->real_parent->signal->is_child_subreaper; 2307 list_add_tail(&p->sibling, &p->real_parent->children); 2308 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2309 attach_pid(p, PIDTYPE_TGID); 2310 attach_pid(p, PIDTYPE_PGID); 2311 attach_pid(p, PIDTYPE_SID); 2312 __this_cpu_inc(process_counts); 2313 } else { 2314 current->signal->nr_threads++; 2315 atomic_inc(¤t->signal->live); 2316 refcount_inc(¤t->signal->sigcnt); 2317 task_join_group_stop(p); 2318 list_add_tail_rcu(&p->thread_group, 2319 &p->group_leader->thread_group); 2320 list_add_tail_rcu(&p->thread_node, 2321 &p->signal->thread_head); 2322 } 2323 attach_pid(p, PIDTYPE_PID); 2324 nr_threads++; 2325 } 2326 total_forks++; 2327 hlist_del_init(&delayed.node); 2328 spin_unlock(¤t->sighand->siglock); 2329 syscall_tracepoint_update(p); 2330 write_unlock_irq(&tasklist_lock); 2331 2332 proc_fork_connector(p); 2333 sched_post_fork(p); 2334 cgroup_post_fork(p, args); 2335 perf_event_fork(p); 2336 2337 trace_task_newtask(p, clone_flags); 2338 uprobe_copy_process(p, clone_flags); 2339 2340 copy_oom_score_adj(clone_flags, p); 2341 2342 return p; 2343 2344 bad_fork_cancel_cgroup: 2345 sched_core_free(p); 2346 spin_unlock(¤t->sighand->siglock); 2347 write_unlock_irq(&tasklist_lock); 2348 cgroup_cancel_fork(p, args); 2349 bad_fork_put_pidfd: 2350 if (clone_flags & CLONE_PIDFD) { 2351 fput(pidfile); 2352 put_unused_fd(pidfd); 2353 } 2354 bad_fork_free_pid: 2355 if (pid != &init_struct_pid) 2356 free_pid(pid); 2357 bad_fork_cleanup_thread: 2358 exit_thread(p); 2359 bad_fork_cleanup_io: 2360 if (p->io_context) 2361 exit_io_context(p); 2362 bad_fork_cleanup_namespaces: 2363 exit_task_namespaces(p); 2364 bad_fork_cleanup_mm: 2365 if (p->mm) { 2366 mm_clear_owner(p->mm, p); 2367 mmput(p->mm); 2368 } 2369 bad_fork_cleanup_signal: 2370 if (!(clone_flags & CLONE_THREAD)) 2371 free_signal_struct(p->signal); 2372 bad_fork_cleanup_sighand: 2373 __cleanup_sighand(p->sighand); 2374 bad_fork_cleanup_fs: 2375 exit_fs(p); /* blocking */ 2376 bad_fork_cleanup_files: 2377 exit_files(p); /* blocking */ 2378 bad_fork_cleanup_semundo: 2379 exit_sem(p); 2380 bad_fork_cleanup_security: 2381 security_task_free(p); 2382 bad_fork_cleanup_audit: 2383 audit_free(p); 2384 bad_fork_cleanup_perf: 2385 perf_event_free_task(p); 2386 bad_fork_cleanup_policy: 2387 lockdep_free_task(p); 2388 #ifdef CONFIG_NUMA 2389 mpol_put(p->mempolicy); 2390 bad_fork_cleanup_threadgroup_lock: 2391 #endif 2392 delayacct_tsk_free(p); 2393 bad_fork_cleanup_count: 2394 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 2395 exit_creds(p); 2396 bad_fork_free: 2397 WRITE_ONCE(p->__state, TASK_DEAD); 2398 put_task_stack(p); 2399 delayed_free_task(p); 2400 fork_out: 2401 spin_lock_irq(¤t->sighand->siglock); 2402 hlist_del_init(&delayed.node); 2403 spin_unlock_irq(¤t->sighand->siglock); 2404 return ERR_PTR(retval); 2405 } 2406 2407 static inline void init_idle_pids(struct task_struct *idle) 2408 { 2409 enum pid_type type; 2410 2411 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2412 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2413 init_task_pid(idle, type, &init_struct_pid); 2414 } 2415 } 2416 2417 struct task_struct * __init fork_idle(int cpu) 2418 { 2419 struct task_struct *task; 2420 struct kernel_clone_args args = { 2421 .flags = CLONE_VM, 2422 }; 2423 2424 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); 2425 if (!IS_ERR(task)) { 2426 init_idle_pids(task); 2427 init_idle(task, cpu); 2428 } 2429 2430 return task; 2431 } 2432 2433 struct mm_struct *copy_init_mm(void) 2434 { 2435 return dup_mm(NULL, &init_mm); 2436 } 2437 2438 /* 2439 * This is like kernel_clone(), but shaved down and tailored to just 2440 * creating io_uring workers. It returns a created task, or an error pointer. 2441 * The returned task is inactive, and the caller must fire it up through 2442 * wake_up_new_task(p). All signals are blocked in the created task. 2443 */ 2444 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node) 2445 { 2446 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD| 2447 CLONE_IO; 2448 struct kernel_clone_args args = { 2449 .flags = ((lower_32_bits(flags) | CLONE_VM | 2450 CLONE_UNTRACED) & ~CSIGNAL), 2451 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2452 .stack = (unsigned long)fn, 2453 .stack_size = (unsigned long)arg, 2454 .io_thread = 1, 2455 }; 2456 2457 return copy_process(NULL, 0, node, &args); 2458 } 2459 2460 /* 2461 * Ok, this is the main fork-routine. 2462 * 2463 * It copies the process, and if successful kick-starts 2464 * it and waits for it to finish using the VM if required. 2465 * 2466 * args->exit_signal is expected to be checked for sanity by the caller. 2467 */ 2468 pid_t kernel_clone(struct kernel_clone_args *args) 2469 { 2470 u64 clone_flags = args->flags; 2471 struct completion vfork; 2472 struct pid *pid; 2473 struct task_struct *p; 2474 int trace = 0; 2475 pid_t nr; 2476 2477 /* 2478 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument 2479 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are 2480 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate 2481 * field in struct clone_args and it still doesn't make sense to have 2482 * them both point at the same memory location. Performing this check 2483 * here has the advantage that we don't need to have a separate helper 2484 * to check for legacy clone(). 2485 */ 2486 if ((args->flags & CLONE_PIDFD) && 2487 (args->flags & CLONE_PARENT_SETTID) && 2488 (args->pidfd == args->parent_tid)) 2489 return -EINVAL; 2490 2491 /* 2492 * Determine whether and which event to report to ptracer. When 2493 * called from kernel_thread or CLONE_UNTRACED is explicitly 2494 * requested, no event is reported; otherwise, report if the event 2495 * for the type of forking is enabled. 2496 */ 2497 if (!(clone_flags & CLONE_UNTRACED)) { 2498 if (clone_flags & CLONE_VFORK) 2499 trace = PTRACE_EVENT_VFORK; 2500 else if (args->exit_signal != SIGCHLD) 2501 trace = PTRACE_EVENT_CLONE; 2502 else 2503 trace = PTRACE_EVENT_FORK; 2504 2505 if (likely(!ptrace_event_enabled(current, trace))) 2506 trace = 0; 2507 } 2508 2509 p = copy_process(NULL, trace, NUMA_NO_NODE, args); 2510 add_latent_entropy(); 2511 2512 if (IS_ERR(p)) 2513 return PTR_ERR(p); 2514 2515 /* 2516 * Do this prior waking up the new thread - the thread pointer 2517 * might get invalid after that point, if the thread exits quickly. 2518 */ 2519 trace_sched_process_fork(current, p); 2520 2521 pid = get_task_pid(p, PIDTYPE_PID); 2522 nr = pid_vnr(pid); 2523 2524 if (clone_flags & CLONE_PARENT_SETTID) 2525 put_user(nr, args->parent_tid); 2526 2527 if (clone_flags & CLONE_VFORK) { 2528 p->vfork_done = &vfork; 2529 init_completion(&vfork); 2530 get_task_struct(p); 2531 } 2532 2533 wake_up_new_task(p); 2534 2535 /* forking complete and child started to run, tell ptracer */ 2536 if (unlikely(trace)) 2537 ptrace_event_pid(trace, pid); 2538 2539 if (clone_flags & CLONE_VFORK) { 2540 if (!wait_for_vfork_done(p, &vfork)) 2541 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2542 } 2543 2544 put_pid(pid); 2545 return nr; 2546 } 2547 2548 /* 2549 * Create a kernel thread. 2550 */ 2551 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) 2552 { 2553 struct kernel_clone_args args = { 2554 .flags = ((lower_32_bits(flags) | CLONE_VM | 2555 CLONE_UNTRACED) & ~CSIGNAL), 2556 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2557 .stack = (unsigned long)fn, 2558 .stack_size = (unsigned long)arg, 2559 }; 2560 2561 return kernel_clone(&args); 2562 } 2563 2564 #ifdef __ARCH_WANT_SYS_FORK 2565 SYSCALL_DEFINE0(fork) 2566 { 2567 #ifdef CONFIG_MMU 2568 struct kernel_clone_args args = { 2569 .exit_signal = SIGCHLD, 2570 }; 2571 2572 return kernel_clone(&args); 2573 #else 2574 /* can not support in nommu mode */ 2575 return -EINVAL; 2576 #endif 2577 } 2578 #endif 2579 2580 #ifdef __ARCH_WANT_SYS_VFORK 2581 SYSCALL_DEFINE0(vfork) 2582 { 2583 struct kernel_clone_args args = { 2584 .flags = CLONE_VFORK | CLONE_VM, 2585 .exit_signal = SIGCHLD, 2586 }; 2587 2588 return kernel_clone(&args); 2589 } 2590 #endif 2591 2592 #ifdef __ARCH_WANT_SYS_CLONE 2593 #ifdef CONFIG_CLONE_BACKWARDS 2594 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2595 int __user *, parent_tidptr, 2596 unsigned long, tls, 2597 int __user *, child_tidptr) 2598 #elif defined(CONFIG_CLONE_BACKWARDS2) 2599 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 2600 int __user *, parent_tidptr, 2601 int __user *, child_tidptr, 2602 unsigned long, tls) 2603 #elif defined(CONFIG_CLONE_BACKWARDS3) 2604 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 2605 int, stack_size, 2606 int __user *, parent_tidptr, 2607 int __user *, child_tidptr, 2608 unsigned long, tls) 2609 #else 2610 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2611 int __user *, parent_tidptr, 2612 int __user *, child_tidptr, 2613 unsigned long, tls) 2614 #endif 2615 { 2616 struct kernel_clone_args args = { 2617 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), 2618 .pidfd = parent_tidptr, 2619 .child_tid = child_tidptr, 2620 .parent_tid = parent_tidptr, 2621 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), 2622 .stack = newsp, 2623 .tls = tls, 2624 }; 2625 2626 return kernel_clone(&args); 2627 } 2628 #endif 2629 2630 #ifdef __ARCH_WANT_SYS_CLONE3 2631 2632 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs, 2633 struct clone_args __user *uargs, 2634 size_t usize) 2635 { 2636 int err; 2637 struct clone_args args; 2638 pid_t *kset_tid = kargs->set_tid; 2639 2640 BUILD_BUG_ON(offsetofend(struct clone_args, tls) != 2641 CLONE_ARGS_SIZE_VER0); 2642 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) != 2643 CLONE_ARGS_SIZE_VER1); 2644 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) != 2645 CLONE_ARGS_SIZE_VER2); 2646 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2); 2647 2648 if (unlikely(usize > PAGE_SIZE)) 2649 return -E2BIG; 2650 if (unlikely(usize < CLONE_ARGS_SIZE_VER0)) 2651 return -EINVAL; 2652 2653 err = copy_struct_from_user(&args, sizeof(args), uargs, usize); 2654 if (err) 2655 return err; 2656 2657 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL)) 2658 return -EINVAL; 2659 2660 if (unlikely(!args.set_tid && args.set_tid_size > 0)) 2661 return -EINVAL; 2662 2663 if (unlikely(args.set_tid && args.set_tid_size == 0)) 2664 return -EINVAL; 2665 2666 /* 2667 * Verify that higher 32bits of exit_signal are unset and that 2668 * it is a valid signal 2669 */ 2670 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || 2671 !valid_signal(args.exit_signal))) 2672 return -EINVAL; 2673 2674 if ((args.flags & CLONE_INTO_CGROUP) && 2675 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2)) 2676 return -EINVAL; 2677 2678 *kargs = (struct kernel_clone_args){ 2679 .flags = args.flags, 2680 .pidfd = u64_to_user_ptr(args.pidfd), 2681 .child_tid = u64_to_user_ptr(args.child_tid), 2682 .parent_tid = u64_to_user_ptr(args.parent_tid), 2683 .exit_signal = args.exit_signal, 2684 .stack = args.stack, 2685 .stack_size = args.stack_size, 2686 .tls = args.tls, 2687 .set_tid_size = args.set_tid_size, 2688 .cgroup = args.cgroup, 2689 }; 2690 2691 if (args.set_tid && 2692 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid), 2693 (kargs->set_tid_size * sizeof(pid_t)))) 2694 return -EFAULT; 2695 2696 kargs->set_tid = kset_tid; 2697 2698 return 0; 2699 } 2700 2701 /** 2702 * clone3_stack_valid - check and prepare stack 2703 * @kargs: kernel clone args 2704 * 2705 * Verify that the stack arguments userspace gave us are sane. 2706 * In addition, set the stack direction for userspace since it's easy for us to 2707 * determine. 2708 */ 2709 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs) 2710 { 2711 if (kargs->stack == 0) { 2712 if (kargs->stack_size > 0) 2713 return false; 2714 } else { 2715 if (kargs->stack_size == 0) 2716 return false; 2717 2718 if (!access_ok((void __user *)kargs->stack, kargs->stack_size)) 2719 return false; 2720 2721 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64) 2722 kargs->stack += kargs->stack_size; 2723 #endif 2724 } 2725 2726 return true; 2727 } 2728 2729 static bool clone3_args_valid(struct kernel_clone_args *kargs) 2730 { 2731 /* Verify that no unknown flags are passed along. */ 2732 if (kargs->flags & 2733 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP)) 2734 return false; 2735 2736 /* 2737 * - make the CLONE_DETACHED bit reusable for clone3 2738 * - make the CSIGNAL bits reusable for clone3 2739 */ 2740 if (kargs->flags & (CLONE_DETACHED | CSIGNAL)) 2741 return false; 2742 2743 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) == 2744 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) 2745 return false; 2746 2747 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && 2748 kargs->exit_signal) 2749 return false; 2750 2751 if (!clone3_stack_valid(kargs)) 2752 return false; 2753 2754 return true; 2755 } 2756 2757 /** 2758 * clone3 - create a new process with specific properties 2759 * @uargs: argument structure 2760 * @size: size of @uargs 2761 * 2762 * clone3() is the extensible successor to clone()/clone2(). 2763 * It takes a struct as argument that is versioned by its size. 2764 * 2765 * Return: On success, a positive PID for the child process. 2766 * On error, a negative errno number. 2767 */ 2768 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) 2769 { 2770 int err; 2771 2772 struct kernel_clone_args kargs; 2773 pid_t set_tid[MAX_PID_NS_LEVEL]; 2774 2775 kargs.set_tid = set_tid; 2776 2777 err = copy_clone_args_from_user(&kargs, uargs, size); 2778 if (err) 2779 return err; 2780 2781 if (!clone3_args_valid(&kargs)) 2782 return -EINVAL; 2783 2784 return kernel_clone(&kargs); 2785 } 2786 #endif 2787 2788 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 2789 { 2790 struct task_struct *leader, *parent, *child; 2791 int res; 2792 2793 read_lock(&tasklist_lock); 2794 leader = top = top->group_leader; 2795 down: 2796 for_each_thread(leader, parent) { 2797 list_for_each_entry(child, &parent->children, sibling) { 2798 res = visitor(child, data); 2799 if (res) { 2800 if (res < 0) 2801 goto out; 2802 leader = child; 2803 goto down; 2804 } 2805 up: 2806 ; 2807 } 2808 } 2809 2810 if (leader != top) { 2811 child = leader; 2812 parent = child->real_parent; 2813 leader = parent->group_leader; 2814 goto up; 2815 } 2816 out: 2817 read_unlock(&tasklist_lock); 2818 } 2819 2820 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 2821 #define ARCH_MIN_MMSTRUCT_ALIGN 0 2822 #endif 2823 2824 static void sighand_ctor(void *data) 2825 { 2826 struct sighand_struct *sighand = data; 2827 2828 spin_lock_init(&sighand->siglock); 2829 init_waitqueue_head(&sighand->signalfd_wqh); 2830 } 2831 2832 void __init proc_caches_init(void) 2833 { 2834 unsigned int mm_size; 2835 2836 sighand_cachep = kmem_cache_create("sighand_cache", 2837 sizeof(struct sighand_struct), 0, 2838 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 2839 SLAB_ACCOUNT, sighand_ctor); 2840 signal_cachep = kmem_cache_create("signal_cache", 2841 sizeof(struct signal_struct), 0, 2842 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2843 NULL); 2844 files_cachep = kmem_cache_create("files_cache", 2845 sizeof(struct files_struct), 0, 2846 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2847 NULL); 2848 fs_cachep = kmem_cache_create("fs_cache", 2849 sizeof(struct fs_struct), 0, 2850 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2851 NULL); 2852 2853 /* 2854 * The mm_cpumask is located at the end of mm_struct, and is 2855 * dynamically sized based on the maximum CPU number this system 2856 * can have, taking hotplug into account (nr_cpu_ids). 2857 */ 2858 mm_size = sizeof(struct mm_struct) + cpumask_size(); 2859 2860 mm_cachep = kmem_cache_create_usercopy("mm_struct", 2861 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 2862 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2863 offsetof(struct mm_struct, saved_auxv), 2864 sizeof_field(struct mm_struct, saved_auxv), 2865 NULL); 2866 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT); 2867 mmap_init(); 2868 nsproxy_cache_init(); 2869 } 2870 2871 /* 2872 * Check constraints on flags passed to the unshare system call. 2873 */ 2874 static int check_unshare_flags(unsigned long unshare_flags) 2875 { 2876 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 2877 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 2878 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 2879 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP| 2880 CLONE_NEWTIME)) 2881 return -EINVAL; 2882 /* 2883 * Not implemented, but pretend it works if there is nothing 2884 * to unshare. Note that unsharing the address space or the 2885 * signal handlers also need to unshare the signal queues (aka 2886 * CLONE_THREAD). 2887 */ 2888 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 2889 if (!thread_group_empty(current)) 2890 return -EINVAL; 2891 } 2892 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 2893 if (refcount_read(¤t->sighand->count) > 1) 2894 return -EINVAL; 2895 } 2896 if (unshare_flags & CLONE_VM) { 2897 if (!current_is_single_threaded()) 2898 return -EINVAL; 2899 } 2900 2901 return 0; 2902 } 2903 2904 /* 2905 * Unshare the filesystem structure if it is being shared 2906 */ 2907 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 2908 { 2909 struct fs_struct *fs = current->fs; 2910 2911 if (!(unshare_flags & CLONE_FS) || !fs) 2912 return 0; 2913 2914 /* don't need lock here; in the worst case we'll do useless copy */ 2915 if (fs->users == 1) 2916 return 0; 2917 2918 *new_fsp = copy_fs_struct(fs); 2919 if (!*new_fsp) 2920 return -ENOMEM; 2921 2922 return 0; 2923 } 2924 2925 /* 2926 * Unshare file descriptor table if it is being shared 2927 */ 2928 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds, 2929 struct files_struct **new_fdp) 2930 { 2931 struct files_struct *fd = current->files; 2932 int error = 0; 2933 2934 if ((unshare_flags & CLONE_FILES) && 2935 (fd && atomic_read(&fd->count) > 1)) { 2936 *new_fdp = dup_fd(fd, max_fds, &error); 2937 if (!*new_fdp) 2938 return error; 2939 } 2940 2941 return 0; 2942 } 2943 2944 /* 2945 * unshare allows a process to 'unshare' part of the process 2946 * context which was originally shared using clone. copy_* 2947 * functions used by kernel_clone() cannot be used here directly 2948 * because they modify an inactive task_struct that is being 2949 * constructed. Here we are modifying the current, active, 2950 * task_struct. 2951 */ 2952 int ksys_unshare(unsigned long unshare_flags) 2953 { 2954 struct fs_struct *fs, *new_fs = NULL; 2955 struct files_struct *fd, *new_fd = NULL; 2956 struct cred *new_cred = NULL; 2957 struct nsproxy *new_nsproxy = NULL; 2958 int do_sysvsem = 0; 2959 int err; 2960 2961 /* 2962 * If unsharing a user namespace must also unshare the thread group 2963 * and unshare the filesystem root and working directories. 2964 */ 2965 if (unshare_flags & CLONE_NEWUSER) 2966 unshare_flags |= CLONE_THREAD | CLONE_FS; 2967 /* 2968 * If unsharing vm, must also unshare signal handlers. 2969 */ 2970 if (unshare_flags & CLONE_VM) 2971 unshare_flags |= CLONE_SIGHAND; 2972 /* 2973 * If unsharing a signal handlers, must also unshare the signal queues. 2974 */ 2975 if (unshare_flags & CLONE_SIGHAND) 2976 unshare_flags |= CLONE_THREAD; 2977 /* 2978 * If unsharing namespace, must also unshare filesystem information. 2979 */ 2980 if (unshare_flags & CLONE_NEWNS) 2981 unshare_flags |= CLONE_FS; 2982 2983 err = check_unshare_flags(unshare_flags); 2984 if (err) 2985 goto bad_unshare_out; 2986 /* 2987 * CLONE_NEWIPC must also detach from the undolist: after switching 2988 * to a new ipc namespace, the semaphore arrays from the old 2989 * namespace are unreachable. 2990 */ 2991 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 2992 do_sysvsem = 1; 2993 err = unshare_fs(unshare_flags, &new_fs); 2994 if (err) 2995 goto bad_unshare_out; 2996 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd); 2997 if (err) 2998 goto bad_unshare_cleanup_fs; 2999 err = unshare_userns(unshare_flags, &new_cred); 3000 if (err) 3001 goto bad_unshare_cleanup_fd; 3002 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 3003 new_cred, new_fs); 3004 if (err) 3005 goto bad_unshare_cleanup_cred; 3006 3007 if (new_cred) { 3008 err = set_cred_ucounts(new_cred); 3009 if (err) 3010 goto bad_unshare_cleanup_cred; 3011 } 3012 3013 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 3014 if (do_sysvsem) { 3015 /* 3016 * CLONE_SYSVSEM is equivalent to sys_exit(). 3017 */ 3018 exit_sem(current); 3019 } 3020 if (unshare_flags & CLONE_NEWIPC) { 3021 /* Orphan segments in old ns (see sem above). */ 3022 exit_shm(current); 3023 shm_init_task(current); 3024 } 3025 3026 if (new_nsproxy) 3027 switch_task_namespaces(current, new_nsproxy); 3028 3029 task_lock(current); 3030 3031 if (new_fs) { 3032 fs = current->fs; 3033 spin_lock(&fs->lock); 3034 current->fs = new_fs; 3035 if (--fs->users) 3036 new_fs = NULL; 3037 else 3038 new_fs = fs; 3039 spin_unlock(&fs->lock); 3040 } 3041 3042 if (new_fd) { 3043 fd = current->files; 3044 current->files = new_fd; 3045 new_fd = fd; 3046 } 3047 3048 task_unlock(current); 3049 3050 if (new_cred) { 3051 /* Install the new user namespace */ 3052 commit_creds(new_cred); 3053 new_cred = NULL; 3054 } 3055 } 3056 3057 perf_event_namespaces(current); 3058 3059 bad_unshare_cleanup_cred: 3060 if (new_cred) 3061 put_cred(new_cred); 3062 bad_unshare_cleanup_fd: 3063 if (new_fd) 3064 put_files_struct(new_fd); 3065 3066 bad_unshare_cleanup_fs: 3067 if (new_fs) 3068 free_fs_struct(new_fs); 3069 3070 bad_unshare_out: 3071 return err; 3072 } 3073 3074 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 3075 { 3076 return ksys_unshare(unshare_flags); 3077 } 3078 3079 /* 3080 * Helper to unshare the files of the current task. 3081 * We don't want to expose copy_files internals to 3082 * the exec layer of the kernel. 3083 */ 3084 3085 int unshare_files(void) 3086 { 3087 struct task_struct *task = current; 3088 struct files_struct *old, *copy = NULL; 3089 int error; 3090 3091 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, ©); 3092 if (error || !copy) 3093 return error; 3094 3095 old = task->files; 3096 task_lock(task); 3097 task->files = copy; 3098 task_unlock(task); 3099 put_files_struct(old); 3100 return 0; 3101 } 3102 3103 int sysctl_max_threads(struct ctl_table *table, int write, 3104 void *buffer, size_t *lenp, loff_t *ppos) 3105 { 3106 struct ctl_table t; 3107 int ret; 3108 int threads = max_threads; 3109 int min = 1; 3110 int max = MAX_THREADS; 3111 3112 t = *table; 3113 t.data = &threads; 3114 t.extra1 = &min; 3115 t.extra2 = &max; 3116 3117 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3118 if (ret || !write) 3119 return ret; 3120 3121 max_threads = threads; 3122 3123 return 0; 3124 } 3125