xref: /openbmc/linux/kernel/fork.c (revision e23feb16)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/seccomp.h>
38 #include <linux/swap.h>
39 #include <linux/syscalls.h>
40 #include <linux/jiffies.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/kthread.h>
44 #include <linux/task_io_accounting_ops.h>
45 #include <linux/rcupdate.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/audit.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/proc_fs.h>
52 #include <linux/profile.h>
53 #include <linux/rmap.h>
54 #include <linux/ksm.h>
55 #include <linux/acct.h>
56 #include <linux/tsacct_kern.h>
57 #include <linux/cn_proc.h>
58 #include <linux/freezer.h>
59 #include <linux/delayacct.h>
60 #include <linux/taskstats_kern.h>
61 #include <linux/random.h>
62 #include <linux/tty.h>
63 #include <linux/blkdev.h>
64 #include <linux/fs_struct.h>
65 #include <linux/magic.h>
66 #include <linux/perf_event.h>
67 #include <linux/posix-timers.h>
68 #include <linux/user-return-notifier.h>
69 #include <linux/oom.h>
70 #include <linux/khugepaged.h>
71 #include <linux/signalfd.h>
72 #include <linux/uprobes.h>
73 #include <linux/aio.h>
74 
75 #include <asm/pgtable.h>
76 #include <asm/pgalloc.h>
77 #include <asm/uaccess.h>
78 #include <asm/mmu_context.h>
79 #include <asm/cacheflush.h>
80 #include <asm/tlbflush.h>
81 
82 #include <trace/events/sched.h>
83 
84 #define CREATE_TRACE_POINTS
85 #include <trace/events/task.h>
86 
87 /*
88  * Protected counters by write_lock_irq(&tasklist_lock)
89  */
90 unsigned long total_forks;	/* Handle normal Linux uptimes. */
91 int nr_threads;			/* The idle threads do not count.. */
92 
93 int max_threads;		/* tunable limit on nr_threads */
94 
95 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
96 
97 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
98 
99 #ifdef CONFIG_PROVE_RCU
100 int lockdep_tasklist_lock_is_held(void)
101 {
102 	return lockdep_is_held(&tasklist_lock);
103 }
104 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
105 #endif /* #ifdef CONFIG_PROVE_RCU */
106 
107 int nr_processes(void)
108 {
109 	int cpu;
110 	int total = 0;
111 
112 	for_each_possible_cpu(cpu)
113 		total += per_cpu(process_counts, cpu);
114 
115 	return total;
116 }
117 
118 void __weak arch_release_task_struct(struct task_struct *tsk)
119 {
120 }
121 
122 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
123 static struct kmem_cache *task_struct_cachep;
124 
125 static inline struct task_struct *alloc_task_struct_node(int node)
126 {
127 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
128 }
129 
130 static inline void free_task_struct(struct task_struct *tsk)
131 {
132 	kmem_cache_free(task_struct_cachep, tsk);
133 }
134 #endif
135 
136 void __weak arch_release_thread_info(struct thread_info *ti)
137 {
138 }
139 
140 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
141 
142 /*
143  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
144  * kmemcache based allocator.
145  */
146 # if THREAD_SIZE >= PAGE_SIZE
147 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
148 						  int node)
149 {
150 	struct page *page = alloc_pages_node(node, THREADINFO_GFP_ACCOUNTED,
151 					     THREAD_SIZE_ORDER);
152 
153 	return page ? page_address(page) : NULL;
154 }
155 
156 static inline void free_thread_info(struct thread_info *ti)
157 {
158 	free_memcg_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER);
159 }
160 # else
161 static struct kmem_cache *thread_info_cache;
162 
163 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
164 						  int node)
165 {
166 	return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
167 }
168 
169 static void free_thread_info(struct thread_info *ti)
170 {
171 	kmem_cache_free(thread_info_cache, ti);
172 }
173 
174 void thread_info_cache_init(void)
175 {
176 	thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
177 					      THREAD_SIZE, 0, NULL);
178 	BUG_ON(thread_info_cache == NULL);
179 }
180 # endif
181 #endif
182 
183 /* SLAB cache for signal_struct structures (tsk->signal) */
184 static struct kmem_cache *signal_cachep;
185 
186 /* SLAB cache for sighand_struct structures (tsk->sighand) */
187 struct kmem_cache *sighand_cachep;
188 
189 /* SLAB cache for files_struct structures (tsk->files) */
190 struct kmem_cache *files_cachep;
191 
192 /* SLAB cache for fs_struct structures (tsk->fs) */
193 struct kmem_cache *fs_cachep;
194 
195 /* SLAB cache for vm_area_struct structures */
196 struct kmem_cache *vm_area_cachep;
197 
198 /* SLAB cache for mm_struct structures (tsk->mm) */
199 static struct kmem_cache *mm_cachep;
200 
201 static void account_kernel_stack(struct thread_info *ti, int account)
202 {
203 	struct zone *zone = page_zone(virt_to_page(ti));
204 
205 	mod_zone_page_state(zone, NR_KERNEL_STACK, account);
206 }
207 
208 void free_task(struct task_struct *tsk)
209 {
210 	account_kernel_stack(tsk->stack, -1);
211 	arch_release_thread_info(tsk->stack);
212 	free_thread_info(tsk->stack);
213 	rt_mutex_debug_task_free(tsk);
214 	ftrace_graph_exit_task(tsk);
215 	put_seccomp_filter(tsk);
216 	arch_release_task_struct(tsk);
217 	free_task_struct(tsk);
218 }
219 EXPORT_SYMBOL(free_task);
220 
221 static inline void free_signal_struct(struct signal_struct *sig)
222 {
223 	taskstats_tgid_free(sig);
224 	sched_autogroup_exit(sig);
225 	kmem_cache_free(signal_cachep, sig);
226 }
227 
228 static inline void put_signal_struct(struct signal_struct *sig)
229 {
230 	if (atomic_dec_and_test(&sig->sigcnt))
231 		free_signal_struct(sig);
232 }
233 
234 void __put_task_struct(struct task_struct *tsk)
235 {
236 	WARN_ON(!tsk->exit_state);
237 	WARN_ON(atomic_read(&tsk->usage));
238 	WARN_ON(tsk == current);
239 
240 	security_task_free(tsk);
241 	exit_creds(tsk);
242 	delayacct_tsk_free(tsk);
243 	put_signal_struct(tsk->signal);
244 
245 	if (!profile_handoff_task(tsk))
246 		free_task(tsk);
247 }
248 EXPORT_SYMBOL_GPL(__put_task_struct);
249 
250 void __init __weak arch_task_cache_init(void) { }
251 
252 void __init fork_init(unsigned long mempages)
253 {
254 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
255 #ifndef ARCH_MIN_TASKALIGN
256 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
257 #endif
258 	/* create a slab on which task_structs can be allocated */
259 	task_struct_cachep =
260 		kmem_cache_create("task_struct", sizeof(struct task_struct),
261 			ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
262 #endif
263 
264 	/* do the arch specific task caches init */
265 	arch_task_cache_init();
266 
267 	/*
268 	 * The default maximum number of threads is set to a safe
269 	 * value: the thread structures can take up at most half
270 	 * of memory.
271 	 */
272 	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
273 
274 	/*
275 	 * we need to allow at least 20 threads to boot a system
276 	 */
277 	if (max_threads < 20)
278 		max_threads = 20;
279 
280 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
281 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
282 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
283 		init_task.signal->rlim[RLIMIT_NPROC];
284 }
285 
286 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
287 					       struct task_struct *src)
288 {
289 	*dst = *src;
290 	return 0;
291 }
292 
293 static struct task_struct *dup_task_struct(struct task_struct *orig)
294 {
295 	struct task_struct *tsk;
296 	struct thread_info *ti;
297 	unsigned long *stackend;
298 	int node = tsk_fork_get_node(orig);
299 	int err;
300 
301 	tsk = alloc_task_struct_node(node);
302 	if (!tsk)
303 		return NULL;
304 
305 	ti = alloc_thread_info_node(tsk, node);
306 	if (!ti)
307 		goto free_tsk;
308 
309 	err = arch_dup_task_struct(tsk, orig);
310 	if (err)
311 		goto free_ti;
312 
313 	tsk->stack = ti;
314 
315 	setup_thread_stack(tsk, orig);
316 	clear_user_return_notifier(tsk);
317 	clear_tsk_need_resched(tsk);
318 	stackend = end_of_stack(tsk);
319 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
320 
321 #ifdef CONFIG_CC_STACKPROTECTOR
322 	tsk->stack_canary = get_random_int();
323 #endif
324 
325 	/*
326 	 * One for us, one for whoever does the "release_task()" (usually
327 	 * parent)
328 	 */
329 	atomic_set(&tsk->usage, 2);
330 #ifdef CONFIG_BLK_DEV_IO_TRACE
331 	tsk->btrace_seq = 0;
332 #endif
333 	tsk->splice_pipe = NULL;
334 	tsk->task_frag.page = NULL;
335 
336 	account_kernel_stack(ti, 1);
337 
338 	return tsk;
339 
340 free_ti:
341 	free_thread_info(ti);
342 free_tsk:
343 	free_task_struct(tsk);
344 	return NULL;
345 }
346 
347 #ifdef CONFIG_MMU
348 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
349 {
350 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
351 	struct rb_node **rb_link, *rb_parent;
352 	int retval;
353 	unsigned long charge;
354 
355 	uprobe_start_dup_mmap();
356 	down_write(&oldmm->mmap_sem);
357 	flush_cache_dup_mm(oldmm);
358 	uprobe_dup_mmap(oldmm, mm);
359 	/*
360 	 * Not linked in yet - no deadlock potential:
361 	 */
362 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
363 
364 	mm->locked_vm = 0;
365 	mm->mmap = NULL;
366 	mm->mmap_cache = NULL;
367 	mm->map_count = 0;
368 	cpumask_clear(mm_cpumask(mm));
369 	mm->mm_rb = RB_ROOT;
370 	rb_link = &mm->mm_rb.rb_node;
371 	rb_parent = NULL;
372 	pprev = &mm->mmap;
373 	retval = ksm_fork(mm, oldmm);
374 	if (retval)
375 		goto out;
376 	retval = khugepaged_fork(mm, oldmm);
377 	if (retval)
378 		goto out;
379 
380 	prev = NULL;
381 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
382 		struct file *file;
383 
384 		if (mpnt->vm_flags & VM_DONTCOPY) {
385 			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
386 							-vma_pages(mpnt));
387 			continue;
388 		}
389 		charge = 0;
390 		if (mpnt->vm_flags & VM_ACCOUNT) {
391 			unsigned long len = vma_pages(mpnt);
392 
393 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
394 				goto fail_nomem;
395 			charge = len;
396 		}
397 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
398 		if (!tmp)
399 			goto fail_nomem;
400 		*tmp = *mpnt;
401 		INIT_LIST_HEAD(&tmp->anon_vma_chain);
402 		retval = vma_dup_policy(mpnt, tmp);
403 		if (retval)
404 			goto fail_nomem_policy;
405 		tmp->vm_mm = mm;
406 		if (anon_vma_fork(tmp, mpnt))
407 			goto fail_nomem_anon_vma_fork;
408 		tmp->vm_flags &= ~VM_LOCKED;
409 		tmp->vm_next = tmp->vm_prev = NULL;
410 		file = tmp->vm_file;
411 		if (file) {
412 			struct inode *inode = file_inode(file);
413 			struct address_space *mapping = file->f_mapping;
414 
415 			get_file(file);
416 			if (tmp->vm_flags & VM_DENYWRITE)
417 				atomic_dec(&inode->i_writecount);
418 			mutex_lock(&mapping->i_mmap_mutex);
419 			if (tmp->vm_flags & VM_SHARED)
420 				mapping->i_mmap_writable++;
421 			flush_dcache_mmap_lock(mapping);
422 			/* insert tmp into the share list, just after mpnt */
423 			if (unlikely(tmp->vm_flags & VM_NONLINEAR))
424 				vma_nonlinear_insert(tmp,
425 						&mapping->i_mmap_nonlinear);
426 			else
427 				vma_interval_tree_insert_after(tmp, mpnt,
428 							&mapping->i_mmap);
429 			flush_dcache_mmap_unlock(mapping);
430 			mutex_unlock(&mapping->i_mmap_mutex);
431 		}
432 
433 		/*
434 		 * Clear hugetlb-related page reserves for children. This only
435 		 * affects MAP_PRIVATE mappings. Faults generated by the child
436 		 * are not guaranteed to succeed, even if read-only
437 		 */
438 		if (is_vm_hugetlb_page(tmp))
439 			reset_vma_resv_huge_pages(tmp);
440 
441 		/*
442 		 * Link in the new vma and copy the page table entries.
443 		 */
444 		*pprev = tmp;
445 		pprev = &tmp->vm_next;
446 		tmp->vm_prev = prev;
447 		prev = tmp;
448 
449 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
450 		rb_link = &tmp->vm_rb.rb_right;
451 		rb_parent = &tmp->vm_rb;
452 
453 		mm->map_count++;
454 		retval = copy_page_range(mm, oldmm, mpnt);
455 
456 		if (tmp->vm_ops && tmp->vm_ops->open)
457 			tmp->vm_ops->open(tmp);
458 
459 		if (retval)
460 			goto out;
461 	}
462 	/* a new mm has just been created */
463 	arch_dup_mmap(oldmm, mm);
464 	retval = 0;
465 out:
466 	up_write(&mm->mmap_sem);
467 	flush_tlb_mm(oldmm);
468 	up_write(&oldmm->mmap_sem);
469 	uprobe_end_dup_mmap();
470 	return retval;
471 fail_nomem_anon_vma_fork:
472 	mpol_put(vma_policy(tmp));
473 fail_nomem_policy:
474 	kmem_cache_free(vm_area_cachep, tmp);
475 fail_nomem:
476 	retval = -ENOMEM;
477 	vm_unacct_memory(charge);
478 	goto out;
479 }
480 
481 static inline int mm_alloc_pgd(struct mm_struct *mm)
482 {
483 	mm->pgd = pgd_alloc(mm);
484 	if (unlikely(!mm->pgd))
485 		return -ENOMEM;
486 	return 0;
487 }
488 
489 static inline void mm_free_pgd(struct mm_struct *mm)
490 {
491 	pgd_free(mm, mm->pgd);
492 }
493 #else
494 #define dup_mmap(mm, oldmm)	(0)
495 #define mm_alloc_pgd(mm)	(0)
496 #define mm_free_pgd(mm)
497 #endif /* CONFIG_MMU */
498 
499 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
500 
501 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
502 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
503 
504 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
505 
506 static int __init coredump_filter_setup(char *s)
507 {
508 	default_dump_filter =
509 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
510 		MMF_DUMP_FILTER_MASK;
511 	return 1;
512 }
513 
514 __setup("coredump_filter=", coredump_filter_setup);
515 
516 #include <linux/init_task.h>
517 
518 static void mm_init_aio(struct mm_struct *mm)
519 {
520 #ifdef CONFIG_AIO
521 	spin_lock_init(&mm->ioctx_lock);
522 	mm->ioctx_table = NULL;
523 #endif
524 }
525 
526 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
527 {
528 	atomic_set(&mm->mm_users, 1);
529 	atomic_set(&mm->mm_count, 1);
530 	init_rwsem(&mm->mmap_sem);
531 	INIT_LIST_HEAD(&mm->mmlist);
532 	mm->flags = (current->mm) ?
533 		(current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
534 	mm->core_state = NULL;
535 	mm->nr_ptes = 0;
536 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
537 	spin_lock_init(&mm->page_table_lock);
538 	mm_init_aio(mm);
539 	mm_init_owner(mm, p);
540 
541 	if (likely(!mm_alloc_pgd(mm))) {
542 		mm->def_flags = 0;
543 		mmu_notifier_mm_init(mm);
544 		return mm;
545 	}
546 
547 	free_mm(mm);
548 	return NULL;
549 }
550 
551 static void check_mm(struct mm_struct *mm)
552 {
553 	int i;
554 
555 	for (i = 0; i < NR_MM_COUNTERS; i++) {
556 		long x = atomic_long_read(&mm->rss_stat.count[i]);
557 
558 		if (unlikely(x))
559 			printk(KERN_ALERT "BUG: Bad rss-counter state "
560 					  "mm:%p idx:%d val:%ld\n", mm, i, x);
561 	}
562 
563 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
564 	VM_BUG_ON(mm->pmd_huge_pte);
565 #endif
566 }
567 
568 /*
569  * Allocate and initialize an mm_struct.
570  */
571 struct mm_struct *mm_alloc(void)
572 {
573 	struct mm_struct *mm;
574 
575 	mm = allocate_mm();
576 	if (!mm)
577 		return NULL;
578 
579 	memset(mm, 0, sizeof(*mm));
580 	mm_init_cpumask(mm);
581 	return mm_init(mm, current);
582 }
583 
584 /*
585  * Called when the last reference to the mm
586  * is dropped: either by a lazy thread or by
587  * mmput. Free the page directory and the mm.
588  */
589 void __mmdrop(struct mm_struct *mm)
590 {
591 	BUG_ON(mm == &init_mm);
592 	mm_free_pgd(mm);
593 	destroy_context(mm);
594 	mmu_notifier_mm_destroy(mm);
595 	check_mm(mm);
596 	free_mm(mm);
597 }
598 EXPORT_SYMBOL_GPL(__mmdrop);
599 
600 /*
601  * Decrement the use count and release all resources for an mm.
602  */
603 void mmput(struct mm_struct *mm)
604 {
605 	might_sleep();
606 
607 	if (atomic_dec_and_test(&mm->mm_users)) {
608 		uprobe_clear_state(mm);
609 		exit_aio(mm);
610 		ksm_exit(mm);
611 		khugepaged_exit(mm); /* must run before exit_mmap */
612 		exit_mmap(mm);
613 		set_mm_exe_file(mm, NULL);
614 		if (!list_empty(&mm->mmlist)) {
615 			spin_lock(&mmlist_lock);
616 			list_del(&mm->mmlist);
617 			spin_unlock(&mmlist_lock);
618 		}
619 		if (mm->binfmt)
620 			module_put(mm->binfmt->module);
621 		mmdrop(mm);
622 	}
623 }
624 EXPORT_SYMBOL_GPL(mmput);
625 
626 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
627 {
628 	if (new_exe_file)
629 		get_file(new_exe_file);
630 	if (mm->exe_file)
631 		fput(mm->exe_file);
632 	mm->exe_file = new_exe_file;
633 }
634 
635 struct file *get_mm_exe_file(struct mm_struct *mm)
636 {
637 	struct file *exe_file;
638 
639 	/* We need mmap_sem to protect against races with removal of exe_file */
640 	down_read(&mm->mmap_sem);
641 	exe_file = mm->exe_file;
642 	if (exe_file)
643 		get_file(exe_file);
644 	up_read(&mm->mmap_sem);
645 	return exe_file;
646 }
647 
648 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
649 {
650 	/* It's safe to write the exe_file pointer without exe_file_lock because
651 	 * this is called during fork when the task is not yet in /proc */
652 	newmm->exe_file = get_mm_exe_file(oldmm);
653 }
654 
655 /**
656  * get_task_mm - acquire a reference to the task's mm
657  *
658  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
659  * this kernel workthread has transiently adopted a user mm with use_mm,
660  * to do its AIO) is not set and if so returns a reference to it, after
661  * bumping up the use count.  User must release the mm via mmput()
662  * after use.  Typically used by /proc and ptrace.
663  */
664 struct mm_struct *get_task_mm(struct task_struct *task)
665 {
666 	struct mm_struct *mm;
667 
668 	task_lock(task);
669 	mm = task->mm;
670 	if (mm) {
671 		if (task->flags & PF_KTHREAD)
672 			mm = NULL;
673 		else
674 			atomic_inc(&mm->mm_users);
675 	}
676 	task_unlock(task);
677 	return mm;
678 }
679 EXPORT_SYMBOL_GPL(get_task_mm);
680 
681 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
682 {
683 	struct mm_struct *mm;
684 	int err;
685 
686 	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
687 	if (err)
688 		return ERR_PTR(err);
689 
690 	mm = get_task_mm(task);
691 	if (mm && mm != current->mm &&
692 			!ptrace_may_access(task, mode)) {
693 		mmput(mm);
694 		mm = ERR_PTR(-EACCES);
695 	}
696 	mutex_unlock(&task->signal->cred_guard_mutex);
697 
698 	return mm;
699 }
700 
701 static void complete_vfork_done(struct task_struct *tsk)
702 {
703 	struct completion *vfork;
704 
705 	task_lock(tsk);
706 	vfork = tsk->vfork_done;
707 	if (likely(vfork)) {
708 		tsk->vfork_done = NULL;
709 		complete(vfork);
710 	}
711 	task_unlock(tsk);
712 }
713 
714 static int wait_for_vfork_done(struct task_struct *child,
715 				struct completion *vfork)
716 {
717 	int killed;
718 
719 	freezer_do_not_count();
720 	killed = wait_for_completion_killable(vfork);
721 	freezer_count();
722 
723 	if (killed) {
724 		task_lock(child);
725 		child->vfork_done = NULL;
726 		task_unlock(child);
727 	}
728 
729 	put_task_struct(child);
730 	return killed;
731 }
732 
733 /* Please note the differences between mmput and mm_release.
734  * mmput is called whenever we stop holding onto a mm_struct,
735  * error success whatever.
736  *
737  * mm_release is called after a mm_struct has been removed
738  * from the current process.
739  *
740  * This difference is important for error handling, when we
741  * only half set up a mm_struct for a new process and need to restore
742  * the old one.  Because we mmput the new mm_struct before
743  * restoring the old one. . .
744  * Eric Biederman 10 January 1998
745  */
746 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
747 {
748 	/* Get rid of any futexes when releasing the mm */
749 #ifdef CONFIG_FUTEX
750 	if (unlikely(tsk->robust_list)) {
751 		exit_robust_list(tsk);
752 		tsk->robust_list = NULL;
753 	}
754 #ifdef CONFIG_COMPAT
755 	if (unlikely(tsk->compat_robust_list)) {
756 		compat_exit_robust_list(tsk);
757 		tsk->compat_robust_list = NULL;
758 	}
759 #endif
760 	if (unlikely(!list_empty(&tsk->pi_state_list)))
761 		exit_pi_state_list(tsk);
762 #endif
763 
764 	uprobe_free_utask(tsk);
765 
766 	/* Get rid of any cached register state */
767 	deactivate_mm(tsk, mm);
768 
769 	/*
770 	 * If we're exiting normally, clear a user-space tid field if
771 	 * requested.  We leave this alone when dying by signal, to leave
772 	 * the value intact in a core dump, and to save the unnecessary
773 	 * trouble, say, a killed vfork parent shouldn't touch this mm.
774 	 * Userland only wants this done for a sys_exit.
775 	 */
776 	if (tsk->clear_child_tid) {
777 		if (!(tsk->flags & PF_SIGNALED) &&
778 		    atomic_read(&mm->mm_users) > 1) {
779 			/*
780 			 * We don't check the error code - if userspace has
781 			 * not set up a proper pointer then tough luck.
782 			 */
783 			put_user(0, tsk->clear_child_tid);
784 			sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
785 					1, NULL, NULL, 0);
786 		}
787 		tsk->clear_child_tid = NULL;
788 	}
789 
790 	/*
791 	 * All done, finally we can wake up parent and return this mm to him.
792 	 * Also kthread_stop() uses this completion for synchronization.
793 	 */
794 	if (tsk->vfork_done)
795 		complete_vfork_done(tsk);
796 }
797 
798 /*
799  * Allocate a new mm structure and copy contents from the
800  * mm structure of the passed in task structure.
801  */
802 struct mm_struct *dup_mm(struct task_struct *tsk)
803 {
804 	struct mm_struct *mm, *oldmm = current->mm;
805 	int err;
806 
807 	if (!oldmm)
808 		return NULL;
809 
810 	mm = allocate_mm();
811 	if (!mm)
812 		goto fail_nomem;
813 
814 	memcpy(mm, oldmm, sizeof(*mm));
815 	mm_init_cpumask(mm);
816 
817 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
818 	mm->pmd_huge_pte = NULL;
819 #endif
820 #ifdef CONFIG_NUMA_BALANCING
821 	mm->first_nid = NUMA_PTE_SCAN_INIT;
822 #endif
823 	if (!mm_init(mm, tsk))
824 		goto fail_nomem;
825 
826 	if (init_new_context(tsk, mm))
827 		goto fail_nocontext;
828 
829 	dup_mm_exe_file(oldmm, mm);
830 
831 	err = dup_mmap(mm, oldmm);
832 	if (err)
833 		goto free_pt;
834 
835 	mm->hiwater_rss = get_mm_rss(mm);
836 	mm->hiwater_vm = mm->total_vm;
837 
838 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
839 		goto free_pt;
840 
841 	return mm;
842 
843 free_pt:
844 	/* don't put binfmt in mmput, we haven't got module yet */
845 	mm->binfmt = NULL;
846 	mmput(mm);
847 
848 fail_nomem:
849 	return NULL;
850 
851 fail_nocontext:
852 	/*
853 	 * If init_new_context() failed, we cannot use mmput() to free the mm
854 	 * because it calls destroy_context()
855 	 */
856 	mm_free_pgd(mm);
857 	free_mm(mm);
858 	return NULL;
859 }
860 
861 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
862 {
863 	struct mm_struct *mm, *oldmm;
864 	int retval;
865 
866 	tsk->min_flt = tsk->maj_flt = 0;
867 	tsk->nvcsw = tsk->nivcsw = 0;
868 #ifdef CONFIG_DETECT_HUNG_TASK
869 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
870 #endif
871 
872 	tsk->mm = NULL;
873 	tsk->active_mm = NULL;
874 
875 	/*
876 	 * Are we cloning a kernel thread?
877 	 *
878 	 * We need to steal a active VM for that..
879 	 */
880 	oldmm = current->mm;
881 	if (!oldmm)
882 		return 0;
883 
884 	if (clone_flags & CLONE_VM) {
885 		atomic_inc(&oldmm->mm_users);
886 		mm = oldmm;
887 		goto good_mm;
888 	}
889 
890 	retval = -ENOMEM;
891 	mm = dup_mm(tsk);
892 	if (!mm)
893 		goto fail_nomem;
894 
895 good_mm:
896 	tsk->mm = mm;
897 	tsk->active_mm = mm;
898 	return 0;
899 
900 fail_nomem:
901 	return retval;
902 }
903 
904 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
905 {
906 	struct fs_struct *fs = current->fs;
907 	if (clone_flags & CLONE_FS) {
908 		/* tsk->fs is already what we want */
909 		spin_lock(&fs->lock);
910 		if (fs->in_exec) {
911 			spin_unlock(&fs->lock);
912 			return -EAGAIN;
913 		}
914 		fs->users++;
915 		spin_unlock(&fs->lock);
916 		return 0;
917 	}
918 	tsk->fs = copy_fs_struct(fs);
919 	if (!tsk->fs)
920 		return -ENOMEM;
921 	return 0;
922 }
923 
924 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
925 {
926 	struct files_struct *oldf, *newf;
927 	int error = 0;
928 
929 	/*
930 	 * A background process may not have any files ...
931 	 */
932 	oldf = current->files;
933 	if (!oldf)
934 		goto out;
935 
936 	if (clone_flags & CLONE_FILES) {
937 		atomic_inc(&oldf->count);
938 		goto out;
939 	}
940 
941 	newf = dup_fd(oldf, &error);
942 	if (!newf)
943 		goto out;
944 
945 	tsk->files = newf;
946 	error = 0;
947 out:
948 	return error;
949 }
950 
951 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
952 {
953 #ifdef CONFIG_BLOCK
954 	struct io_context *ioc = current->io_context;
955 	struct io_context *new_ioc;
956 
957 	if (!ioc)
958 		return 0;
959 	/*
960 	 * Share io context with parent, if CLONE_IO is set
961 	 */
962 	if (clone_flags & CLONE_IO) {
963 		ioc_task_link(ioc);
964 		tsk->io_context = ioc;
965 	} else if (ioprio_valid(ioc->ioprio)) {
966 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
967 		if (unlikely(!new_ioc))
968 			return -ENOMEM;
969 
970 		new_ioc->ioprio = ioc->ioprio;
971 		put_io_context(new_ioc);
972 	}
973 #endif
974 	return 0;
975 }
976 
977 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
978 {
979 	struct sighand_struct *sig;
980 
981 	if (clone_flags & CLONE_SIGHAND) {
982 		atomic_inc(&current->sighand->count);
983 		return 0;
984 	}
985 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
986 	rcu_assign_pointer(tsk->sighand, sig);
987 	if (!sig)
988 		return -ENOMEM;
989 	atomic_set(&sig->count, 1);
990 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
991 	return 0;
992 }
993 
994 void __cleanup_sighand(struct sighand_struct *sighand)
995 {
996 	if (atomic_dec_and_test(&sighand->count)) {
997 		signalfd_cleanup(sighand);
998 		kmem_cache_free(sighand_cachep, sighand);
999 	}
1000 }
1001 
1002 
1003 /*
1004  * Initialize POSIX timer handling for a thread group.
1005  */
1006 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1007 {
1008 	unsigned long cpu_limit;
1009 
1010 	/* Thread group counters. */
1011 	thread_group_cputime_init(sig);
1012 
1013 	cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1014 	if (cpu_limit != RLIM_INFINITY) {
1015 		sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1016 		sig->cputimer.running = 1;
1017 	}
1018 
1019 	/* The timer lists. */
1020 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
1021 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
1022 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
1023 }
1024 
1025 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1026 {
1027 	struct signal_struct *sig;
1028 
1029 	if (clone_flags & CLONE_THREAD)
1030 		return 0;
1031 
1032 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1033 	tsk->signal = sig;
1034 	if (!sig)
1035 		return -ENOMEM;
1036 
1037 	sig->nr_threads = 1;
1038 	atomic_set(&sig->live, 1);
1039 	atomic_set(&sig->sigcnt, 1);
1040 	init_waitqueue_head(&sig->wait_chldexit);
1041 	sig->curr_target = tsk;
1042 	init_sigpending(&sig->shared_pending);
1043 	INIT_LIST_HEAD(&sig->posix_timers);
1044 
1045 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1046 	sig->real_timer.function = it_real_fn;
1047 
1048 	task_lock(current->group_leader);
1049 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1050 	task_unlock(current->group_leader);
1051 
1052 	posix_cpu_timers_init_group(sig);
1053 
1054 	tty_audit_fork(sig);
1055 	sched_autogroup_fork(sig);
1056 
1057 #ifdef CONFIG_CGROUPS
1058 	init_rwsem(&sig->group_rwsem);
1059 #endif
1060 
1061 	sig->oom_score_adj = current->signal->oom_score_adj;
1062 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1063 
1064 	sig->has_child_subreaper = current->signal->has_child_subreaper ||
1065 				   current->signal->is_child_subreaper;
1066 
1067 	mutex_init(&sig->cred_guard_mutex);
1068 
1069 	return 0;
1070 }
1071 
1072 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
1073 {
1074 	unsigned long new_flags = p->flags;
1075 
1076 	new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1077 	new_flags |= PF_FORKNOEXEC;
1078 	p->flags = new_flags;
1079 }
1080 
1081 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1082 {
1083 	current->clear_child_tid = tidptr;
1084 
1085 	return task_pid_vnr(current);
1086 }
1087 
1088 static void rt_mutex_init_task(struct task_struct *p)
1089 {
1090 	raw_spin_lock_init(&p->pi_lock);
1091 #ifdef CONFIG_RT_MUTEXES
1092 	plist_head_init(&p->pi_waiters);
1093 	p->pi_blocked_on = NULL;
1094 #endif
1095 }
1096 
1097 #ifdef CONFIG_MM_OWNER
1098 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1099 {
1100 	mm->owner = p;
1101 }
1102 #endif /* CONFIG_MM_OWNER */
1103 
1104 /*
1105  * Initialize POSIX timer handling for a single task.
1106  */
1107 static void posix_cpu_timers_init(struct task_struct *tsk)
1108 {
1109 	tsk->cputime_expires.prof_exp = 0;
1110 	tsk->cputime_expires.virt_exp = 0;
1111 	tsk->cputime_expires.sched_exp = 0;
1112 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1113 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1114 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1115 }
1116 
1117 static inline void
1118 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1119 {
1120 	 task->pids[type].pid = pid;
1121 }
1122 
1123 /*
1124  * This creates a new process as a copy of the old one,
1125  * but does not actually start it yet.
1126  *
1127  * It copies the registers, and all the appropriate
1128  * parts of the process environment (as per the clone
1129  * flags). The actual kick-off is left to the caller.
1130  */
1131 static struct task_struct *copy_process(unsigned long clone_flags,
1132 					unsigned long stack_start,
1133 					unsigned long stack_size,
1134 					int __user *child_tidptr,
1135 					struct pid *pid,
1136 					int trace)
1137 {
1138 	int retval;
1139 	struct task_struct *p;
1140 
1141 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1142 		return ERR_PTR(-EINVAL);
1143 
1144 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1145 		return ERR_PTR(-EINVAL);
1146 
1147 	/*
1148 	 * Thread groups must share signals as well, and detached threads
1149 	 * can only be started up within the thread group.
1150 	 */
1151 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1152 		return ERR_PTR(-EINVAL);
1153 
1154 	/*
1155 	 * Shared signal handlers imply shared VM. By way of the above,
1156 	 * thread groups also imply shared VM. Blocking this case allows
1157 	 * for various simplifications in other code.
1158 	 */
1159 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1160 		return ERR_PTR(-EINVAL);
1161 
1162 	/*
1163 	 * Siblings of global init remain as zombies on exit since they are
1164 	 * not reaped by their parent (swapper). To solve this and to avoid
1165 	 * multi-rooted process trees, prevent global and container-inits
1166 	 * from creating siblings.
1167 	 */
1168 	if ((clone_flags & CLONE_PARENT) &&
1169 				current->signal->flags & SIGNAL_UNKILLABLE)
1170 		return ERR_PTR(-EINVAL);
1171 
1172 	/*
1173 	 * If the new process will be in a different pid or user namespace
1174 	 * do not allow it to share a thread group or signal handlers or
1175 	 * parent with the forking task.
1176 	 */
1177 	if (clone_flags & (CLONE_SIGHAND | CLONE_PARENT)) {
1178 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1179 		    (task_active_pid_ns(current) !=
1180 				current->nsproxy->pid_ns_for_children))
1181 			return ERR_PTR(-EINVAL);
1182 	}
1183 
1184 	retval = security_task_create(clone_flags);
1185 	if (retval)
1186 		goto fork_out;
1187 
1188 	retval = -ENOMEM;
1189 	p = dup_task_struct(current);
1190 	if (!p)
1191 		goto fork_out;
1192 
1193 	ftrace_graph_init_task(p);
1194 	get_seccomp_filter(p);
1195 
1196 	rt_mutex_init_task(p);
1197 
1198 #ifdef CONFIG_PROVE_LOCKING
1199 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1200 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1201 #endif
1202 	retval = -EAGAIN;
1203 	if (atomic_read(&p->real_cred->user->processes) >=
1204 			task_rlimit(p, RLIMIT_NPROC)) {
1205 		if (p->real_cred->user != INIT_USER &&
1206 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1207 			goto bad_fork_free;
1208 	}
1209 	current->flags &= ~PF_NPROC_EXCEEDED;
1210 
1211 	retval = copy_creds(p, clone_flags);
1212 	if (retval < 0)
1213 		goto bad_fork_free;
1214 
1215 	/*
1216 	 * If multiple threads are within copy_process(), then this check
1217 	 * triggers too late. This doesn't hurt, the check is only there
1218 	 * to stop root fork bombs.
1219 	 */
1220 	retval = -EAGAIN;
1221 	if (nr_threads >= max_threads)
1222 		goto bad_fork_cleanup_count;
1223 
1224 	if (!try_module_get(task_thread_info(p)->exec_domain->module))
1225 		goto bad_fork_cleanup_count;
1226 
1227 	p->did_exec = 0;
1228 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1229 	copy_flags(clone_flags, p);
1230 	INIT_LIST_HEAD(&p->children);
1231 	INIT_LIST_HEAD(&p->sibling);
1232 	rcu_copy_process(p);
1233 	p->vfork_done = NULL;
1234 	spin_lock_init(&p->alloc_lock);
1235 
1236 	init_sigpending(&p->pending);
1237 
1238 	p->utime = p->stime = p->gtime = 0;
1239 	p->utimescaled = p->stimescaled = 0;
1240 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1241 	p->prev_cputime.utime = p->prev_cputime.stime = 0;
1242 #endif
1243 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1244 	seqlock_init(&p->vtime_seqlock);
1245 	p->vtime_snap = 0;
1246 	p->vtime_snap_whence = VTIME_SLEEPING;
1247 #endif
1248 
1249 #if defined(SPLIT_RSS_COUNTING)
1250 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1251 #endif
1252 
1253 	p->default_timer_slack_ns = current->timer_slack_ns;
1254 
1255 	task_io_accounting_init(&p->ioac);
1256 	acct_clear_integrals(p);
1257 
1258 	posix_cpu_timers_init(p);
1259 
1260 	do_posix_clock_monotonic_gettime(&p->start_time);
1261 	p->real_start_time = p->start_time;
1262 	monotonic_to_bootbased(&p->real_start_time);
1263 	p->io_context = NULL;
1264 	p->audit_context = NULL;
1265 	if (clone_flags & CLONE_THREAD)
1266 		threadgroup_change_begin(current);
1267 	cgroup_fork(p);
1268 #ifdef CONFIG_NUMA
1269 	p->mempolicy = mpol_dup(p->mempolicy);
1270 	if (IS_ERR(p->mempolicy)) {
1271 		retval = PTR_ERR(p->mempolicy);
1272 		p->mempolicy = NULL;
1273 		goto bad_fork_cleanup_cgroup;
1274 	}
1275 	mpol_fix_fork_child_flag(p);
1276 #endif
1277 #ifdef CONFIG_CPUSETS
1278 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1279 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1280 	seqcount_init(&p->mems_allowed_seq);
1281 #endif
1282 #ifdef CONFIG_TRACE_IRQFLAGS
1283 	p->irq_events = 0;
1284 	p->hardirqs_enabled = 0;
1285 	p->hardirq_enable_ip = 0;
1286 	p->hardirq_enable_event = 0;
1287 	p->hardirq_disable_ip = _THIS_IP_;
1288 	p->hardirq_disable_event = 0;
1289 	p->softirqs_enabled = 1;
1290 	p->softirq_enable_ip = _THIS_IP_;
1291 	p->softirq_enable_event = 0;
1292 	p->softirq_disable_ip = 0;
1293 	p->softirq_disable_event = 0;
1294 	p->hardirq_context = 0;
1295 	p->softirq_context = 0;
1296 #endif
1297 #ifdef CONFIG_LOCKDEP
1298 	p->lockdep_depth = 0; /* no locks held yet */
1299 	p->curr_chain_key = 0;
1300 	p->lockdep_recursion = 0;
1301 #endif
1302 
1303 #ifdef CONFIG_DEBUG_MUTEXES
1304 	p->blocked_on = NULL; /* not blocked yet */
1305 #endif
1306 #ifdef CONFIG_MEMCG
1307 	p->memcg_batch.do_batch = 0;
1308 	p->memcg_batch.memcg = NULL;
1309 #endif
1310 #ifdef CONFIG_BCACHE
1311 	p->sequential_io	= 0;
1312 	p->sequential_io_avg	= 0;
1313 #endif
1314 
1315 	/* Perform scheduler related setup. Assign this task to a CPU. */
1316 	sched_fork(p);
1317 
1318 	retval = perf_event_init_task(p);
1319 	if (retval)
1320 		goto bad_fork_cleanup_policy;
1321 	retval = audit_alloc(p);
1322 	if (retval)
1323 		goto bad_fork_cleanup_policy;
1324 	/* copy all the process information */
1325 	retval = copy_semundo(clone_flags, p);
1326 	if (retval)
1327 		goto bad_fork_cleanup_audit;
1328 	retval = copy_files(clone_flags, p);
1329 	if (retval)
1330 		goto bad_fork_cleanup_semundo;
1331 	retval = copy_fs(clone_flags, p);
1332 	if (retval)
1333 		goto bad_fork_cleanup_files;
1334 	retval = copy_sighand(clone_flags, p);
1335 	if (retval)
1336 		goto bad_fork_cleanup_fs;
1337 	retval = copy_signal(clone_flags, p);
1338 	if (retval)
1339 		goto bad_fork_cleanup_sighand;
1340 	retval = copy_mm(clone_flags, p);
1341 	if (retval)
1342 		goto bad_fork_cleanup_signal;
1343 	retval = copy_namespaces(clone_flags, p);
1344 	if (retval)
1345 		goto bad_fork_cleanup_mm;
1346 	retval = copy_io(clone_flags, p);
1347 	if (retval)
1348 		goto bad_fork_cleanup_namespaces;
1349 	retval = copy_thread(clone_flags, stack_start, stack_size, p);
1350 	if (retval)
1351 		goto bad_fork_cleanup_io;
1352 
1353 	if (pid != &init_struct_pid) {
1354 		retval = -ENOMEM;
1355 		pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1356 		if (!pid)
1357 			goto bad_fork_cleanup_io;
1358 	}
1359 
1360 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1361 	/*
1362 	 * Clear TID on mm_release()?
1363 	 */
1364 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1365 #ifdef CONFIG_BLOCK
1366 	p->plug = NULL;
1367 #endif
1368 #ifdef CONFIG_FUTEX
1369 	p->robust_list = NULL;
1370 #ifdef CONFIG_COMPAT
1371 	p->compat_robust_list = NULL;
1372 #endif
1373 	INIT_LIST_HEAD(&p->pi_state_list);
1374 	p->pi_state_cache = NULL;
1375 #endif
1376 	uprobe_copy_process(p);
1377 	/*
1378 	 * sigaltstack should be cleared when sharing the same VM
1379 	 */
1380 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1381 		p->sas_ss_sp = p->sas_ss_size = 0;
1382 
1383 	/*
1384 	 * Syscall tracing and stepping should be turned off in the
1385 	 * child regardless of CLONE_PTRACE.
1386 	 */
1387 	user_disable_single_step(p);
1388 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1389 #ifdef TIF_SYSCALL_EMU
1390 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1391 #endif
1392 	clear_all_latency_tracing(p);
1393 
1394 	/* ok, now we should be set up.. */
1395 	p->pid = pid_nr(pid);
1396 	if (clone_flags & CLONE_THREAD) {
1397 		p->exit_signal = -1;
1398 		p->group_leader = current->group_leader;
1399 		p->tgid = current->tgid;
1400 	} else {
1401 		if (clone_flags & CLONE_PARENT)
1402 			p->exit_signal = current->group_leader->exit_signal;
1403 		else
1404 			p->exit_signal = (clone_flags & CSIGNAL);
1405 		p->group_leader = p;
1406 		p->tgid = p->pid;
1407 	}
1408 
1409 	p->pdeath_signal = 0;
1410 	p->exit_state = 0;
1411 
1412 	p->nr_dirtied = 0;
1413 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1414 	p->dirty_paused_when = 0;
1415 
1416 	INIT_LIST_HEAD(&p->thread_group);
1417 	p->task_works = NULL;
1418 
1419 	/*
1420 	 * Make it visible to the rest of the system, but dont wake it up yet.
1421 	 * Need tasklist lock for parent etc handling!
1422 	 */
1423 	write_lock_irq(&tasklist_lock);
1424 
1425 	/* CLONE_PARENT re-uses the old parent */
1426 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1427 		p->real_parent = current->real_parent;
1428 		p->parent_exec_id = current->parent_exec_id;
1429 	} else {
1430 		p->real_parent = current;
1431 		p->parent_exec_id = current->self_exec_id;
1432 	}
1433 
1434 	spin_lock(&current->sighand->siglock);
1435 
1436 	/*
1437 	 * Process group and session signals need to be delivered to just the
1438 	 * parent before the fork or both the parent and the child after the
1439 	 * fork. Restart if a signal comes in before we add the new process to
1440 	 * it's process group.
1441 	 * A fatal signal pending means that current will exit, so the new
1442 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1443 	*/
1444 	recalc_sigpending();
1445 	if (signal_pending(current)) {
1446 		spin_unlock(&current->sighand->siglock);
1447 		write_unlock_irq(&tasklist_lock);
1448 		retval = -ERESTARTNOINTR;
1449 		goto bad_fork_free_pid;
1450 	}
1451 
1452 	if (likely(p->pid)) {
1453 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1454 
1455 		init_task_pid(p, PIDTYPE_PID, pid);
1456 		if (thread_group_leader(p)) {
1457 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1458 			init_task_pid(p, PIDTYPE_SID, task_session(current));
1459 
1460 			if (is_child_reaper(pid)) {
1461 				ns_of_pid(pid)->child_reaper = p;
1462 				p->signal->flags |= SIGNAL_UNKILLABLE;
1463 			}
1464 
1465 			p->signal->leader_pid = pid;
1466 			p->signal->tty = tty_kref_get(current->signal->tty);
1467 			list_add_tail(&p->sibling, &p->real_parent->children);
1468 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1469 			attach_pid(p, PIDTYPE_PGID);
1470 			attach_pid(p, PIDTYPE_SID);
1471 			__this_cpu_inc(process_counts);
1472 		} else {
1473 			current->signal->nr_threads++;
1474 			atomic_inc(&current->signal->live);
1475 			atomic_inc(&current->signal->sigcnt);
1476 			list_add_tail_rcu(&p->thread_group,
1477 					  &p->group_leader->thread_group);
1478 		}
1479 		attach_pid(p, PIDTYPE_PID);
1480 		nr_threads++;
1481 	}
1482 
1483 	total_forks++;
1484 	spin_unlock(&current->sighand->siglock);
1485 	write_unlock_irq(&tasklist_lock);
1486 	proc_fork_connector(p);
1487 	cgroup_post_fork(p);
1488 	if (clone_flags & CLONE_THREAD)
1489 		threadgroup_change_end(current);
1490 	perf_event_fork(p);
1491 
1492 	trace_task_newtask(p, clone_flags);
1493 
1494 	return p;
1495 
1496 bad_fork_free_pid:
1497 	if (pid != &init_struct_pid)
1498 		free_pid(pid);
1499 bad_fork_cleanup_io:
1500 	if (p->io_context)
1501 		exit_io_context(p);
1502 bad_fork_cleanup_namespaces:
1503 	exit_task_namespaces(p);
1504 bad_fork_cleanup_mm:
1505 	if (p->mm)
1506 		mmput(p->mm);
1507 bad_fork_cleanup_signal:
1508 	if (!(clone_flags & CLONE_THREAD))
1509 		free_signal_struct(p->signal);
1510 bad_fork_cleanup_sighand:
1511 	__cleanup_sighand(p->sighand);
1512 bad_fork_cleanup_fs:
1513 	exit_fs(p); /* blocking */
1514 bad_fork_cleanup_files:
1515 	exit_files(p); /* blocking */
1516 bad_fork_cleanup_semundo:
1517 	exit_sem(p);
1518 bad_fork_cleanup_audit:
1519 	audit_free(p);
1520 bad_fork_cleanup_policy:
1521 	perf_event_free_task(p);
1522 #ifdef CONFIG_NUMA
1523 	mpol_put(p->mempolicy);
1524 bad_fork_cleanup_cgroup:
1525 #endif
1526 	if (clone_flags & CLONE_THREAD)
1527 		threadgroup_change_end(current);
1528 	cgroup_exit(p, 0);
1529 	delayacct_tsk_free(p);
1530 	module_put(task_thread_info(p)->exec_domain->module);
1531 bad_fork_cleanup_count:
1532 	atomic_dec(&p->cred->user->processes);
1533 	exit_creds(p);
1534 bad_fork_free:
1535 	free_task(p);
1536 fork_out:
1537 	return ERR_PTR(retval);
1538 }
1539 
1540 static inline void init_idle_pids(struct pid_link *links)
1541 {
1542 	enum pid_type type;
1543 
1544 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1545 		INIT_HLIST_NODE(&links[type].node); /* not really needed */
1546 		links[type].pid = &init_struct_pid;
1547 	}
1548 }
1549 
1550 struct task_struct *fork_idle(int cpu)
1551 {
1552 	struct task_struct *task;
1553 	task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0);
1554 	if (!IS_ERR(task)) {
1555 		init_idle_pids(task->pids);
1556 		init_idle(task, cpu);
1557 	}
1558 
1559 	return task;
1560 }
1561 
1562 /*
1563  *  Ok, this is the main fork-routine.
1564  *
1565  * It copies the process, and if successful kick-starts
1566  * it and waits for it to finish using the VM if required.
1567  */
1568 long do_fork(unsigned long clone_flags,
1569 	      unsigned long stack_start,
1570 	      unsigned long stack_size,
1571 	      int __user *parent_tidptr,
1572 	      int __user *child_tidptr)
1573 {
1574 	struct task_struct *p;
1575 	int trace = 0;
1576 	long nr;
1577 
1578 	/*
1579 	 * Determine whether and which event to report to ptracer.  When
1580 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
1581 	 * requested, no event is reported; otherwise, report if the event
1582 	 * for the type of forking is enabled.
1583 	 */
1584 	if (!(clone_flags & CLONE_UNTRACED)) {
1585 		if (clone_flags & CLONE_VFORK)
1586 			trace = PTRACE_EVENT_VFORK;
1587 		else if ((clone_flags & CSIGNAL) != SIGCHLD)
1588 			trace = PTRACE_EVENT_CLONE;
1589 		else
1590 			trace = PTRACE_EVENT_FORK;
1591 
1592 		if (likely(!ptrace_event_enabled(current, trace)))
1593 			trace = 0;
1594 	}
1595 
1596 	p = copy_process(clone_flags, stack_start, stack_size,
1597 			 child_tidptr, NULL, trace);
1598 	/*
1599 	 * Do this prior waking up the new thread - the thread pointer
1600 	 * might get invalid after that point, if the thread exits quickly.
1601 	 */
1602 	if (!IS_ERR(p)) {
1603 		struct completion vfork;
1604 
1605 		trace_sched_process_fork(current, p);
1606 
1607 		nr = task_pid_vnr(p);
1608 
1609 		if (clone_flags & CLONE_PARENT_SETTID)
1610 			put_user(nr, parent_tidptr);
1611 
1612 		if (clone_flags & CLONE_VFORK) {
1613 			p->vfork_done = &vfork;
1614 			init_completion(&vfork);
1615 			get_task_struct(p);
1616 		}
1617 
1618 		wake_up_new_task(p);
1619 
1620 		/* forking complete and child started to run, tell ptracer */
1621 		if (unlikely(trace))
1622 			ptrace_event(trace, nr);
1623 
1624 		if (clone_flags & CLONE_VFORK) {
1625 			if (!wait_for_vfork_done(p, &vfork))
1626 				ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
1627 		}
1628 	} else {
1629 		nr = PTR_ERR(p);
1630 	}
1631 	return nr;
1632 }
1633 
1634 /*
1635  * Create a kernel thread.
1636  */
1637 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1638 {
1639 	return do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1640 		(unsigned long)arg, NULL, NULL);
1641 }
1642 
1643 #ifdef __ARCH_WANT_SYS_FORK
1644 SYSCALL_DEFINE0(fork)
1645 {
1646 #ifdef CONFIG_MMU
1647 	return do_fork(SIGCHLD, 0, 0, NULL, NULL);
1648 #else
1649 	/* can not support in nommu mode */
1650 	return(-EINVAL);
1651 #endif
1652 }
1653 #endif
1654 
1655 #ifdef __ARCH_WANT_SYS_VFORK
1656 SYSCALL_DEFINE0(vfork)
1657 {
1658 	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
1659 			0, NULL, NULL);
1660 }
1661 #endif
1662 
1663 #ifdef __ARCH_WANT_SYS_CLONE
1664 #ifdef CONFIG_CLONE_BACKWARDS
1665 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1666 		 int __user *, parent_tidptr,
1667 		 int, tls_val,
1668 		 int __user *, child_tidptr)
1669 #elif defined(CONFIG_CLONE_BACKWARDS2)
1670 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1671 		 int __user *, parent_tidptr,
1672 		 int __user *, child_tidptr,
1673 		 int, tls_val)
1674 #elif defined(CONFIG_CLONE_BACKWARDS3)
1675 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
1676 		int, stack_size,
1677 		int __user *, parent_tidptr,
1678 		int __user *, child_tidptr,
1679 		int, tls_val)
1680 #else
1681 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1682 		 int __user *, parent_tidptr,
1683 		 int __user *, child_tidptr,
1684 		 int, tls_val)
1685 #endif
1686 {
1687 	return do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr);
1688 }
1689 #endif
1690 
1691 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1692 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1693 #endif
1694 
1695 static void sighand_ctor(void *data)
1696 {
1697 	struct sighand_struct *sighand = data;
1698 
1699 	spin_lock_init(&sighand->siglock);
1700 	init_waitqueue_head(&sighand->signalfd_wqh);
1701 }
1702 
1703 void __init proc_caches_init(void)
1704 {
1705 	sighand_cachep = kmem_cache_create("sighand_cache",
1706 			sizeof(struct sighand_struct), 0,
1707 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1708 			SLAB_NOTRACK, sighand_ctor);
1709 	signal_cachep = kmem_cache_create("signal_cache",
1710 			sizeof(struct signal_struct), 0,
1711 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1712 	files_cachep = kmem_cache_create("files_cache",
1713 			sizeof(struct files_struct), 0,
1714 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1715 	fs_cachep = kmem_cache_create("fs_cache",
1716 			sizeof(struct fs_struct), 0,
1717 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1718 	/*
1719 	 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1720 	 * whole struct cpumask for the OFFSTACK case. We could change
1721 	 * this to *only* allocate as much of it as required by the
1722 	 * maximum number of CPU's we can ever have.  The cpumask_allocation
1723 	 * is at the end of the structure, exactly for that reason.
1724 	 */
1725 	mm_cachep = kmem_cache_create("mm_struct",
1726 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1727 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1728 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1729 	mmap_init();
1730 	nsproxy_cache_init();
1731 }
1732 
1733 /*
1734  * Check constraints on flags passed to the unshare system call.
1735  */
1736 static int check_unshare_flags(unsigned long unshare_flags)
1737 {
1738 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1739 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1740 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
1741 				CLONE_NEWUSER|CLONE_NEWPID))
1742 		return -EINVAL;
1743 	/*
1744 	 * Not implemented, but pretend it works if there is nothing to
1745 	 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1746 	 * needs to unshare vm.
1747 	 */
1748 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1749 		/* FIXME: get_task_mm() increments ->mm_users */
1750 		if (atomic_read(&current->mm->mm_users) > 1)
1751 			return -EINVAL;
1752 	}
1753 
1754 	return 0;
1755 }
1756 
1757 /*
1758  * Unshare the filesystem structure if it is being shared
1759  */
1760 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1761 {
1762 	struct fs_struct *fs = current->fs;
1763 
1764 	if (!(unshare_flags & CLONE_FS) || !fs)
1765 		return 0;
1766 
1767 	/* don't need lock here; in the worst case we'll do useless copy */
1768 	if (fs->users == 1)
1769 		return 0;
1770 
1771 	*new_fsp = copy_fs_struct(fs);
1772 	if (!*new_fsp)
1773 		return -ENOMEM;
1774 
1775 	return 0;
1776 }
1777 
1778 /*
1779  * Unshare file descriptor table if it is being shared
1780  */
1781 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1782 {
1783 	struct files_struct *fd = current->files;
1784 	int error = 0;
1785 
1786 	if ((unshare_flags & CLONE_FILES) &&
1787 	    (fd && atomic_read(&fd->count) > 1)) {
1788 		*new_fdp = dup_fd(fd, &error);
1789 		if (!*new_fdp)
1790 			return error;
1791 	}
1792 
1793 	return 0;
1794 }
1795 
1796 /*
1797  * unshare allows a process to 'unshare' part of the process
1798  * context which was originally shared using clone.  copy_*
1799  * functions used by do_fork() cannot be used here directly
1800  * because they modify an inactive task_struct that is being
1801  * constructed. Here we are modifying the current, active,
1802  * task_struct.
1803  */
1804 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1805 {
1806 	struct fs_struct *fs, *new_fs = NULL;
1807 	struct files_struct *fd, *new_fd = NULL;
1808 	struct cred *new_cred = NULL;
1809 	struct nsproxy *new_nsproxy = NULL;
1810 	int do_sysvsem = 0;
1811 	int err;
1812 
1813 	/*
1814 	 * If unsharing a user namespace must also unshare the thread.
1815 	 */
1816 	if (unshare_flags & CLONE_NEWUSER)
1817 		unshare_flags |= CLONE_THREAD | CLONE_FS;
1818 	/*
1819 	 * If unsharing a thread from a thread group, must also unshare vm.
1820 	 */
1821 	if (unshare_flags & CLONE_THREAD)
1822 		unshare_flags |= CLONE_VM;
1823 	/*
1824 	 * If unsharing vm, must also unshare signal handlers.
1825 	 */
1826 	if (unshare_flags & CLONE_VM)
1827 		unshare_flags |= CLONE_SIGHAND;
1828 	/*
1829 	 * If unsharing namespace, must also unshare filesystem information.
1830 	 */
1831 	if (unshare_flags & CLONE_NEWNS)
1832 		unshare_flags |= CLONE_FS;
1833 
1834 	err = check_unshare_flags(unshare_flags);
1835 	if (err)
1836 		goto bad_unshare_out;
1837 	/*
1838 	 * CLONE_NEWIPC must also detach from the undolist: after switching
1839 	 * to a new ipc namespace, the semaphore arrays from the old
1840 	 * namespace are unreachable.
1841 	 */
1842 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1843 		do_sysvsem = 1;
1844 	err = unshare_fs(unshare_flags, &new_fs);
1845 	if (err)
1846 		goto bad_unshare_out;
1847 	err = unshare_fd(unshare_flags, &new_fd);
1848 	if (err)
1849 		goto bad_unshare_cleanup_fs;
1850 	err = unshare_userns(unshare_flags, &new_cred);
1851 	if (err)
1852 		goto bad_unshare_cleanup_fd;
1853 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1854 					 new_cred, new_fs);
1855 	if (err)
1856 		goto bad_unshare_cleanup_cred;
1857 
1858 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
1859 		if (do_sysvsem) {
1860 			/*
1861 			 * CLONE_SYSVSEM is equivalent to sys_exit().
1862 			 */
1863 			exit_sem(current);
1864 		}
1865 
1866 		if (new_nsproxy)
1867 			switch_task_namespaces(current, new_nsproxy);
1868 
1869 		task_lock(current);
1870 
1871 		if (new_fs) {
1872 			fs = current->fs;
1873 			spin_lock(&fs->lock);
1874 			current->fs = new_fs;
1875 			if (--fs->users)
1876 				new_fs = NULL;
1877 			else
1878 				new_fs = fs;
1879 			spin_unlock(&fs->lock);
1880 		}
1881 
1882 		if (new_fd) {
1883 			fd = current->files;
1884 			current->files = new_fd;
1885 			new_fd = fd;
1886 		}
1887 
1888 		task_unlock(current);
1889 
1890 		if (new_cred) {
1891 			/* Install the new user namespace */
1892 			commit_creds(new_cred);
1893 			new_cred = NULL;
1894 		}
1895 	}
1896 
1897 bad_unshare_cleanup_cred:
1898 	if (new_cred)
1899 		put_cred(new_cred);
1900 bad_unshare_cleanup_fd:
1901 	if (new_fd)
1902 		put_files_struct(new_fd);
1903 
1904 bad_unshare_cleanup_fs:
1905 	if (new_fs)
1906 		free_fs_struct(new_fs);
1907 
1908 bad_unshare_out:
1909 	return err;
1910 }
1911 
1912 /*
1913  *	Helper to unshare the files of the current task.
1914  *	We don't want to expose copy_files internals to
1915  *	the exec layer of the kernel.
1916  */
1917 
1918 int unshare_files(struct files_struct **displaced)
1919 {
1920 	struct task_struct *task = current;
1921 	struct files_struct *copy = NULL;
1922 	int error;
1923 
1924 	error = unshare_fd(CLONE_FILES, &copy);
1925 	if (error || !copy) {
1926 		*displaced = NULL;
1927 		return error;
1928 	}
1929 	*displaced = task->files;
1930 	task_lock(task);
1931 	task->files = copy;
1932 	task_unlock(task);
1933 	return 0;
1934 }
1935