xref: /openbmc/linux/kernel/fork.c (revision e1e38ea1)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/sched/autogroup.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/coredump.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/numa_balancing.h>
20 #include <linux/sched/stat.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/task_stack.h>
23 #include <linux/sched/cputime.h>
24 #include <linux/rtmutex.h>
25 #include <linux/init.h>
26 #include <linux/unistd.h>
27 #include <linux/module.h>
28 #include <linux/vmalloc.h>
29 #include <linux/completion.h>
30 #include <linux/personality.h>
31 #include <linux/mempolicy.h>
32 #include <linux/sem.h>
33 #include <linux/file.h>
34 #include <linux/fdtable.h>
35 #include <linux/iocontext.h>
36 #include <linux/key.h>
37 #include <linux/binfmts.h>
38 #include <linux/mman.h>
39 #include <linux/mmu_notifier.h>
40 #include <linux/hmm.h>
41 #include <linux/fs.h>
42 #include <linux/mm.h>
43 #include <linux/vmacache.h>
44 #include <linux/nsproxy.h>
45 #include <linux/capability.h>
46 #include <linux/cpu.h>
47 #include <linux/cgroup.h>
48 #include <linux/security.h>
49 #include <linux/hugetlb.h>
50 #include <linux/seccomp.h>
51 #include <linux/swap.h>
52 #include <linux/syscalls.h>
53 #include <linux/jiffies.h>
54 #include <linux/futex.h>
55 #include <linux/compat.h>
56 #include <linux/kthread.h>
57 #include <linux/task_io_accounting_ops.h>
58 #include <linux/rcupdate.h>
59 #include <linux/ptrace.h>
60 #include <linux/mount.h>
61 #include <linux/audit.h>
62 #include <linux/memcontrol.h>
63 #include <linux/ftrace.h>
64 #include <linux/proc_fs.h>
65 #include <linux/profile.h>
66 #include <linux/rmap.h>
67 #include <linux/ksm.h>
68 #include <linux/acct.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/tsacct_kern.h>
71 #include <linux/cn_proc.h>
72 #include <linux/freezer.h>
73 #include <linux/delayacct.h>
74 #include <linux/taskstats_kern.h>
75 #include <linux/random.h>
76 #include <linux/tty.h>
77 #include <linux/blkdev.h>
78 #include <linux/fs_struct.h>
79 #include <linux/magic.h>
80 #include <linux/sched/mm.h>
81 #include <linux/perf_event.h>
82 #include <linux/posix-timers.h>
83 #include <linux/user-return-notifier.h>
84 #include <linux/oom.h>
85 #include <linux/khugepaged.h>
86 #include <linux/signalfd.h>
87 #include <linux/uprobes.h>
88 #include <linux/aio.h>
89 #include <linux/compiler.h>
90 #include <linux/sysctl.h>
91 #include <linux/kcov.h>
92 #include <linux/livepatch.h>
93 #include <linux/thread_info.h>
94 
95 #include <asm/pgtable.h>
96 #include <asm/pgalloc.h>
97 #include <linux/uaccess.h>
98 #include <asm/mmu_context.h>
99 #include <asm/cacheflush.h>
100 #include <asm/tlbflush.h>
101 
102 #include <trace/events/sched.h>
103 
104 #define CREATE_TRACE_POINTS
105 #include <trace/events/task.h>
106 
107 /*
108  * Minimum number of threads to boot the kernel
109  */
110 #define MIN_THREADS 20
111 
112 /*
113  * Maximum number of threads
114  */
115 #define MAX_THREADS FUTEX_TID_MASK
116 
117 /*
118  * Protected counters by write_lock_irq(&tasklist_lock)
119  */
120 unsigned long total_forks;	/* Handle normal Linux uptimes. */
121 int nr_threads;			/* The idle threads do not count.. */
122 
123 int max_threads;		/* tunable limit on nr_threads */
124 
125 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
126 
127 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
128 
129 #ifdef CONFIG_PROVE_RCU
130 int lockdep_tasklist_lock_is_held(void)
131 {
132 	return lockdep_is_held(&tasklist_lock);
133 }
134 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
135 #endif /* #ifdef CONFIG_PROVE_RCU */
136 
137 int nr_processes(void)
138 {
139 	int cpu;
140 	int total = 0;
141 
142 	for_each_possible_cpu(cpu)
143 		total += per_cpu(process_counts, cpu);
144 
145 	return total;
146 }
147 
148 void __weak arch_release_task_struct(struct task_struct *tsk)
149 {
150 }
151 
152 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
153 static struct kmem_cache *task_struct_cachep;
154 
155 static inline struct task_struct *alloc_task_struct_node(int node)
156 {
157 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
158 }
159 
160 static inline void free_task_struct(struct task_struct *tsk)
161 {
162 	kmem_cache_free(task_struct_cachep, tsk);
163 }
164 #endif
165 
166 void __weak arch_release_thread_stack(unsigned long *stack)
167 {
168 }
169 
170 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
171 
172 /*
173  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
174  * kmemcache based allocator.
175  */
176 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
177 
178 #ifdef CONFIG_VMAP_STACK
179 /*
180  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
181  * flush.  Try to minimize the number of calls by caching stacks.
182  */
183 #define NR_CACHED_STACKS 2
184 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
185 
186 static int free_vm_stack_cache(unsigned int cpu)
187 {
188 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
189 	int i;
190 
191 	for (i = 0; i < NR_CACHED_STACKS; i++) {
192 		struct vm_struct *vm_stack = cached_vm_stacks[i];
193 
194 		if (!vm_stack)
195 			continue;
196 
197 		vfree(vm_stack->addr);
198 		cached_vm_stacks[i] = NULL;
199 	}
200 
201 	return 0;
202 }
203 #endif
204 
205 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
206 {
207 #ifdef CONFIG_VMAP_STACK
208 	void *stack;
209 	int i;
210 
211 	for (i = 0; i < NR_CACHED_STACKS; i++) {
212 		struct vm_struct *s;
213 
214 		s = this_cpu_xchg(cached_stacks[i], NULL);
215 
216 		if (!s)
217 			continue;
218 
219 		/* Clear stale pointers from reused stack. */
220 		memset(s->addr, 0, THREAD_SIZE);
221 
222 		tsk->stack_vm_area = s;
223 		return s->addr;
224 	}
225 
226 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
227 				     VMALLOC_START, VMALLOC_END,
228 				     THREADINFO_GFP,
229 				     PAGE_KERNEL,
230 				     0, node, __builtin_return_address(0));
231 
232 	/*
233 	 * We can't call find_vm_area() in interrupt context, and
234 	 * free_thread_stack() can be called in interrupt context,
235 	 * so cache the vm_struct.
236 	 */
237 	if (stack)
238 		tsk->stack_vm_area = find_vm_area(stack);
239 	return stack;
240 #else
241 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
242 					     THREAD_SIZE_ORDER);
243 
244 	return page ? page_address(page) : NULL;
245 #endif
246 }
247 
248 static inline void free_thread_stack(struct task_struct *tsk)
249 {
250 #ifdef CONFIG_VMAP_STACK
251 	if (task_stack_vm_area(tsk)) {
252 		int i;
253 
254 		for (i = 0; i < NR_CACHED_STACKS; i++) {
255 			if (this_cpu_cmpxchg(cached_stacks[i],
256 					NULL, tsk->stack_vm_area) != NULL)
257 				continue;
258 
259 			return;
260 		}
261 
262 		vfree_atomic(tsk->stack);
263 		return;
264 	}
265 #endif
266 
267 	__free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
268 }
269 # else
270 static struct kmem_cache *thread_stack_cache;
271 
272 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
273 						  int node)
274 {
275 	return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
276 }
277 
278 static void free_thread_stack(struct task_struct *tsk)
279 {
280 	kmem_cache_free(thread_stack_cache, tsk->stack);
281 }
282 
283 void thread_stack_cache_init(void)
284 {
285 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
286 					THREAD_SIZE, THREAD_SIZE, 0, 0,
287 					THREAD_SIZE, NULL);
288 	BUG_ON(thread_stack_cache == NULL);
289 }
290 # endif
291 #endif
292 
293 /* SLAB cache for signal_struct structures (tsk->signal) */
294 static struct kmem_cache *signal_cachep;
295 
296 /* SLAB cache for sighand_struct structures (tsk->sighand) */
297 struct kmem_cache *sighand_cachep;
298 
299 /* SLAB cache for files_struct structures (tsk->files) */
300 struct kmem_cache *files_cachep;
301 
302 /* SLAB cache for fs_struct structures (tsk->fs) */
303 struct kmem_cache *fs_cachep;
304 
305 /* SLAB cache for vm_area_struct structures */
306 static struct kmem_cache *vm_area_cachep;
307 
308 /* SLAB cache for mm_struct structures (tsk->mm) */
309 static struct kmem_cache *mm_cachep;
310 
311 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
312 {
313 	struct vm_area_struct *vma;
314 
315 	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
316 	if (vma)
317 		vma_init(vma, mm);
318 	return vma;
319 }
320 
321 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
322 {
323 	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
324 
325 	if (new) {
326 		*new = *orig;
327 		INIT_LIST_HEAD(&new->anon_vma_chain);
328 	}
329 	return new;
330 }
331 
332 void vm_area_free(struct vm_area_struct *vma)
333 {
334 	kmem_cache_free(vm_area_cachep, vma);
335 }
336 
337 static void account_kernel_stack(struct task_struct *tsk, int account)
338 {
339 	void *stack = task_stack_page(tsk);
340 	struct vm_struct *vm = task_stack_vm_area(tsk);
341 
342 	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
343 
344 	if (vm) {
345 		int i;
346 
347 		BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
348 
349 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
350 			mod_zone_page_state(page_zone(vm->pages[i]),
351 					    NR_KERNEL_STACK_KB,
352 					    PAGE_SIZE / 1024 * account);
353 		}
354 
355 		/* All stack pages belong to the same memcg. */
356 		mod_memcg_page_state(vm->pages[0], MEMCG_KERNEL_STACK_KB,
357 				     account * (THREAD_SIZE / 1024));
358 	} else {
359 		/*
360 		 * All stack pages are in the same zone and belong to the
361 		 * same memcg.
362 		 */
363 		struct page *first_page = virt_to_page(stack);
364 
365 		mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
366 				    THREAD_SIZE / 1024 * account);
367 
368 		mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB,
369 				     account * (THREAD_SIZE / 1024));
370 	}
371 }
372 
373 static void release_task_stack(struct task_struct *tsk)
374 {
375 	if (WARN_ON(tsk->state != TASK_DEAD))
376 		return;  /* Better to leak the stack than to free prematurely */
377 
378 	account_kernel_stack(tsk, -1);
379 	arch_release_thread_stack(tsk->stack);
380 	free_thread_stack(tsk);
381 	tsk->stack = NULL;
382 #ifdef CONFIG_VMAP_STACK
383 	tsk->stack_vm_area = NULL;
384 #endif
385 }
386 
387 #ifdef CONFIG_THREAD_INFO_IN_TASK
388 void put_task_stack(struct task_struct *tsk)
389 {
390 	if (atomic_dec_and_test(&tsk->stack_refcount))
391 		release_task_stack(tsk);
392 }
393 #endif
394 
395 void free_task(struct task_struct *tsk)
396 {
397 #ifndef CONFIG_THREAD_INFO_IN_TASK
398 	/*
399 	 * The task is finally done with both the stack and thread_info,
400 	 * so free both.
401 	 */
402 	release_task_stack(tsk);
403 #else
404 	/*
405 	 * If the task had a separate stack allocation, it should be gone
406 	 * by now.
407 	 */
408 	WARN_ON_ONCE(atomic_read(&tsk->stack_refcount) != 0);
409 #endif
410 	rt_mutex_debug_task_free(tsk);
411 	ftrace_graph_exit_task(tsk);
412 	put_seccomp_filter(tsk);
413 	arch_release_task_struct(tsk);
414 	if (tsk->flags & PF_KTHREAD)
415 		free_kthread_struct(tsk);
416 	free_task_struct(tsk);
417 }
418 EXPORT_SYMBOL(free_task);
419 
420 #ifdef CONFIG_MMU
421 static __latent_entropy int dup_mmap(struct mm_struct *mm,
422 					struct mm_struct *oldmm)
423 {
424 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
425 	struct rb_node **rb_link, *rb_parent;
426 	int retval;
427 	unsigned long charge;
428 	LIST_HEAD(uf);
429 
430 	uprobe_start_dup_mmap();
431 	if (down_write_killable(&oldmm->mmap_sem)) {
432 		retval = -EINTR;
433 		goto fail_uprobe_end;
434 	}
435 	flush_cache_dup_mm(oldmm);
436 	uprobe_dup_mmap(oldmm, mm);
437 	/*
438 	 * Not linked in yet - no deadlock potential:
439 	 */
440 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
441 
442 	/* No ordering required: file already has been exposed. */
443 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
444 
445 	mm->total_vm = oldmm->total_vm;
446 	mm->data_vm = oldmm->data_vm;
447 	mm->exec_vm = oldmm->exec_vm;
448 	mm->stack_vm = oldmm->stack_vm;
449 
450 	rb_link = &mm->mm_rb.rb_node;
451 	rb_parent = NULL;
452 	pprev = &mm->mmap;
453 	retval = ksm_fork(mm, oldmm);
454 	if (retval)
455 		goto out;
456 	retval = khugepaged_fork(mm, oldmm);
457 	if (retval)
458 		goto out;
459 
460 	prev = NULL;
461 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
462 		struct file *file;
463 
464 		if (mpnt->vm_flags & VM_DONTCOPY) {
465 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
466 			continue;
467 		}
468 		charge = 0;
469 		/*
470 		 * Don't duplicate many vmas if we've been oom-killed (for
471 		 * example)
472 		 */
473 		if (fatal_signal_pending(current)) {
474 			retval = -EINTR;
475 			goto out;
476 		}
477 		if (mpnt->vm_flags & VM_ACCOUNT) {
478 			unsigned long len = vma_pages(mpnt);
479 
480 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
481 				goto fail_nomem;
482 			charge = len;
483 		}
484 		tmp = vm_area_dup(mpnt);
485 		if (!tmp)
486 			goto fail_nomem;
487 		retval = vma_dup_policy(mpnt, tmp);
488 		if (retval)
489 			goto fail_nomem_policy;
490 		tmp->vm_mm = mm;
491 		retval = dup_userfaultfd(tmp, &uf);
492 		if (retval)
493 			goto fail_nomem_anon_vma_fork;
494 		if (tmp->vm_flags & VM_WIPEONFORK) {
495 			/* VM_WIPEONFORK gets a clean slate in the child. */
496 			tmp->anon_vma = NULL;
497 			if (anon_vma_prepare(tmp))
498 				goto fail_nomem_anon_vma_fork;
499 		} else if (anon_vma_fork(tmp, mpnt))
500 			goto fail_nomem_anon_vma_fork;
501 		tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
502 		tmp->vm_next = tmp->vm_prev = NULL;
503 		file = tmp->vm_file;
504 		if (file) {
505 			struct inode *inode = file_inode(file);
506 			struct address_space *mapping = file->f_mapping;
507 
508 			get_file(file);
509 			if (tmp->vm_flags & VM_DENYWRITE)
510 				atomic_dec(&inode->i_writecount);
511 			i_mmap_lock_write(mapping);
512 			if (tmp->vm_flags & VM_SHARED)
513 				atomic_inc(&mapping->i_mmap_writable);
514 			flush_dcache_mmap_lock(mapping);
515 			/* insert tmp into the share list, just after mpnt */
516 			vma_interval_tree_insert_after(tmp, mpnt,
517 					&mapping->i_mmap);
518 			flush_dcache_mmap_unlock(mapping);
519 			i_mmap_unlock_write(mapping);
520 		}
521 
522 		/*
523 		 * Clear hugetlb-related page reserves for children. This only
524 		 * affects MAP_PRIVATE mappings. Faults generated by the child
525 		 * are not guaranteed to succeed, even if read-only
526 		 */
527 		if (is_vm_hugetlb_page(tmp))
528 			reset_vma_resv_huge_pages(tmp);
529 
530 		/*
531 		 * Link in the new vma and copy the page table entries.
532 		 */
533 		*pprev = tmp;
534 		pprev = &tmp->vm_next;
535 		tmp->vm_prev = prev;
536 		prev = tmp;
537 
538 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
539 		rb_link = &tmp->vm_rb.rb_right;
540 		rb_parent = &tmp->vm_rb;
541 
542 		mm->map_count++;
543 		if (!(tmp->vm_flags & VM_WIPEONFORK))
544 			retval = copy_page_range(mm, oldmm, mpnt);
545 
546 		if (tmp->vm_ops && tmp->vm_ops->open)
547 			tmp->vm_ops->open(tmp);
548 
549 		if (retval)
550 			goto out;
551 	}
552 	/* a new mm has just been created */
553 	arch_dup_mmap(oldmm, mm);
554 	retval = 0;
555 out:
556 	up_write(&mm->mmap_sem);
557 	flush_tlb_mm(oldmm);
558 	up_write(&oldmm->mmap_sem);
559 	dup_userfaultfd_complete(&uf);
560 fail_uprobe_end:
561 	uprobe_end_dup_mmap();
562 	return retval;
563 fail_nomem_anon_vma_fork:
564 	mpol_put(vma_policy(tmp));
565 fail_nomem_policy:
566 	vm_area_free(tmp);
567 fail_nomem:
568 	retval = -ENOMEM;
569 	vm_unacct_memory(charge);
570 	goto out;
571 }
572 
573 static inline int mm_alloc_pgd(struct mm_struct *mm)
574 {
575 	mm->pgd = pgd_alloc(mm);
576 	if (unlikely(!mm->pgd))
577 		return -ENOMEM;
578 	return 0;
579 }
580 
581 static inline void mm_free_pgd(struct mm_struct *mm)
582 {
583 	pgd_free(mm, mm->pgd);
584 }
585 #else
586 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
587 {
588 	down_write(&oldmm->mmap_sem);
589 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
590 	up_write(&oldmm->mmap_sem);
591 	return 0;
592 }
593 #define mm_alloc_pgd(mm)	(0)
594 #define mm_free_pgd(mm)
595 #endif /* CONFIG_MMU */
596 
597 static void check_mm(struct mm_struct *mm)
598 {
599 	int i;
600 
601 	for (i = 0; i < NR_MM_COUNTERS; i++) {
602 		long x = atomic_long_read(&mm->rss_stat.count[i]);
603 
604 		if (unlikely(x))
605 			printk(KERN_ALERT "BUG: Bad rss-counter state "
606 					  "mm:%p idx:%d val:%ld\n", mm, i, x);
607 	}
608 
609 	if (mm_pgtables_bytes(mm))
610 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
611 				mm_pgtables_bytes(mm));
612 
613 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
614 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
615 #endif
616 }
617 
618 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
619 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
620 
621 /*
622  * Called when the last reference to the mm
623  * is dropped: either by a lazy thread or by
624  * mmput. Free the page directory and the mm.
625  */
626 void __mmdrop(struct mm_struct *mm)
627 {
628 	BUG_ON(mm == &init_mm);
629 	WARN_ON_ONCE(mm == current->mm);
630 	WARN_ON_ONCE(mm == current->active_mm);
631 	mm_free_pgd(mm);
632 	destroy_context(mm);
633 	hmm_mm_destroy(mm);
634 	mmu_notifier_mm_destroy(mm);
635 	check_mm(mm);
636 	put_user_ns(mm->user_ns);
637 	free_mm(mm);
638 }
639 EXPORT_SYMBOL_GPL(__mmdrop);
640 
641 static void mmdrop_async_fn(struct work_struct *work)
642 {
643 	struct mm_struct *mm;
644 
645 	mm = container_of(work, struct mm_struct, async_put_work);
646 	__mmdrop(mm);
647 }
648 
649 static void mmdrop_async(struct mm_struct *mm)
650 {
651 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
652 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
653 		schedule_work(&mm->async_put_work);
654 	}
655 }
656 
657 static inline void free_signal_struct(struct signal_struct *sig)
658 {
659 	taskstats_tgid_free(sig);
660 	sched_autogroup_exit(sig);
661 	/*
662 	 * __mmdrop is not safe to call from softirq context on x86 due to
663 	 * pgd_dtor so postpone it to the async context
664 	 */
665 	if (sig->oom_mm)
666 		mmdrop_async(sig->oom_mm);
667 	kmem_cache_free(signal_cachep, sig);
668 }
669 
670 static inline void put_signal_struct(struct signal_struct *sig)
671 {
672 	if (atomic_dec_and_test(&sig->sigcnt))
673 		free_signal_struct(sig);
674 }
675 
676 void __put_task_struct(struct task_struct *tsk)
677 {
678 	WARN_ON(!tsk->exit_state);
679 	WARN_ON(atomic_read(&tsk->usage));
680 	WARN_ON(tsk == current);
681 
682 	cgroup_free(tsk);
683 	task_numa_free(tsk);
684 	security_task_free(tsk);
685 	exit_creds(tsk);
686 	delayacct_tsk_free(tsk);
687 	put_signal_struct(tsk->signal);
688 
689 	if (!profile_handoff_task(tsk))
690 		free_task(tsk);
691 }
692 EXPORT_SYMBOL_GPL(__put_task_struct);
693 
694 void __init __weak arch_task_cache_init(void) { }
695 
696 /*
697  * set_max_threads
698  */
699 static void set_max_threads(unsigned int max_threads_suggested)
700 {
701 	u64 threads;
702 
703 	/*
704 	 * The number of threads shall be limited such that the thread
705 	 * structures may only consume a small part of the available memory.
706 	 */
707 	if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
708 		threads = MAX_THREADS;
709 	else
710 		threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
711 				    (u64) THREAD_SIZE * 8UL);
712 
713 	if (threads > max_threads_suggested)
714 		threads = max_threads_suggested;
715 
716 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
717 }
718 
719 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
720 /* Initialized by the architecture: */
721 int arch_task_struct_size __read_mostly;
722 #endif
723 
724 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
725 {
726 	/* Fetch thread_struct whitelist for the architecture. */
727 	arch_thread_struct_whitelist(offset, size);
728 
729 	/*
730 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
731 	 * adjust offset to position of thread_struct in task_struct.
732 	 */
733 	if (unlikely(*size == 0))
734 		*offset = 0;
735 	else
736 		*offset += offsetof(struct task_struct, thread);
737 }
738 
739 void __init fork_init(void)
740 {
741 	int i;
742 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
743 #ifndef ARCH_MIN_TASKALIGN
744 #define ARCH_MIN_TASKALIGN	0
745 #endif
746 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
747 	unsigned long useroffset, usersize;
748 
749 	/* create a slab on which task_structs can be allocated */
750 	task_struct_whitelist(&useroffset, &usersize);
751 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
752 			arch_task_struct_size, align,
753 			SLAB_PANIC|SLAB_ACCOUNT,
754 			useroffset, usersize, NULL);
755 #endif
756 
757 	/* do the arch specific task caches init */
758 	arch_task_cache_init();
759 
760 	set_max_threads(MAX_THREADS);
761 
762 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
763 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
764 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
765 		init_task.signal->rlim[RLIMIT_NPROC];
766 
767 	for (i = 0; i < UCOUNT_COUNTS; i++) {
768 		init_user_ns.ucount_max[i] = max_threads/2;
769 	}
770 
771 #ifdef CONFIG_VMAP_STACK
772 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
773 			  NULL, free_vm_stack_cache);
774 #endif
775 
776 	lockdep_init_task(&init_task);
777 }
778 
779 int __weak arch_dup_task_struct(struct task_struct *dst,
780 					       struct task_struct *src)
781 {
782 	*dst = *src;
783 	return 0;
784 }
785 
786 void set_task_stack_end_magic(struct task_struct *tsk)
787 {
788 	unsigned long *stackend;
789 
790 	stackend = end_of_stack(tsk);
791 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
792 }
793 
794 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
795 {
796 	struct task_struct *tsk;
797 	unsigned long *stack;
798 	struct vm_struct *stack_vm_area;
799 	int err;
800 
801 	if (node == NUMA_NO_NODE)
802 		node = tsk_fork_get_node(orig);
803 	tsk = alloc_task_struct_node(node);
804 	if (!tsk)
805 		return NULL;
806 
807 	stack = alloc_thread_stack_node(tsk, node);
808 	if (!stack)
809 		goto free_tsk;
810 
811 	stack_vm_area = task_stack_vm_area(tsk);
812 
813 	err = arch_dup_task_struct(tsk, orig);
814 
815 	/*
816 	 * arch_dup_task_struct() clobbers the stack-related fields.  Make
817 	 * sure they're properly initialized before using any stack-related
818 	 * functions again.
819 	 */
820 	tsk->stack = stack;
821 #ifdef CONFIG_VMAP_STACK
822 	tsk->stack_vm_area = stack_vm_area;
823 #endif
824 #ifdef CONFIG_THREAD_INFO_IN_TASK
825 	atomic_set(&tsk->stack_refcount, 1);
826 #endif
827 
828 	if (err)
829 		goto free_stack;
830 
831 #ifdef CONFIG_SECCOMP
832 	/*
833 	 * We must handle setting up seccomp filters once we're under
834 	 * the sighand lock in case orig has changed between now and
835 	 * then. Until then, filter must be NULL to avoid messing up
836 	 * the usage counts on the error path calling free_task.
837 	 */
838 	tsk->seccomp.filter = NULL;
839 #endif
840 
841 	setup_thread_stack(tsk, orig);
842 	clear_user_return_notifier(tsk);
843 	clear_tsk_need_resched(tsk);
844 	set_task_stack_end_magic(tsk);
845 
846 #ifdef CONFIG_STACKPROTECTOR
847 	tsk->stack_canary = get_random_canary();
848 #endif
849 
850 	/*
851 	 * One for us, one for whoever does the "release_task()" (usually
852 	 * parent)
853 	 */
854 	atomic_set(&tsk->usage, 2);
855 #ifdef CONFIG_BLK_DEV_IO_TRACE
856 	tsk->btrace_seq = 0;
857 #endif
858 	tsk->splice_pipe = NULL;
859 	tsk->task_frag.page = NULL;
860 	tsk->wake_q.next = NULL;
861 
862 	account_kernel_stack(tsk, 1);
863 
864 	kcov_task_init(tsk);
865 
866 #ifdef CONFIG_FAULT_INJECTION
867 	tsk->fail_nth = 0;
868 #endif
869 
870 #ifdef CONFIG_BLK_CGROUP
871 	tsk->throttle_queue = NULL;
872 	tsk->use_memdelay = 0;
873 #endif
874 
875 #ifdef CONFIG_MEMCG
876 	tsk->active_memcg = NULL;
877 #endif
878 	return tsk;
879 
880 free_stack:
881 	free_thread_stack(tsk);
882 free_tsk:
883 	free_task_struct(tsk);
884 	return NULL;
885 }
886 
887 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
888 
889 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
890 
891 static int __init coredump_filter_setup(char *s)
892 {
893 	default_dump_filter =
894 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
895 		MMF_DUMP_FILTER_MASK;
896 	return 1;
897 }
898 
899 __setup("coredump_filter=", coredump_filter_setup);
900 
901 #include <linux/init_task.h>
902 
903 static void mm_init_aio(struct mm_struct *mm)
904 {
905 #ifdef CONFIG_AIO
906 	spin_lock_init(&mm->ioctx_lock);
907 	mm->ioctx_table = NULL;
908 #endif
909 }
910 
911 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
912 {
913 #ifdef CONFIG_MEMCG
914 	mm->owner = p;
915 #endif
916 }
917 
918 static void mm_init_uprobes_state(struct mm_struct *mm)
919 {
920 #ifdef CONFIG_UPROBES
921 	mm->uprobes_state.xol_area = NULL;
922 #endif
923 }
924 
925 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
926 	struct user_namespace *user_ns)
927 {
928 	mm->mmap = NULL;
929 	mm->mm_rb = RB_ROOT;
930 	mm->vmacache_seqnum = 0;
931 	atomic_set(&mm->mm_users, 1);
932 	atomic_set(&mm->mm_count, 1);
933 	init_rwsem(&mm->mmap_sem);
934 	INIT_LIST_HEAD(&mm->mmlist);
935 	mm->core_state = NULL;
936 	mm_pgtables_bytes_init(mm);
937 	mm->map_count = 0;
938 	mm->locked_vm = 0;
939 	mm->pinned_vm = 0;
940 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
941 	spin_lock_init(&mm->page_table_lock);
942 	spin_lock_init(&mm->arg_lock);
943 	mm_init_cpumask(mm);
944 	mm_init_aio(mm);
945 	mm_init_owner(mm, p);
946 	RCU_INIT_POINTER(mm->exe_file, NULL);
947 	mmu_notifier_mm_init(mm);
948 	hmm_mm_init(mm);
949 	init_tlb_flush_pending(mm);
950 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
951 	mm->pmd_huge_pte = NULL;
952 #endif
953 	mm_init_uprobes_state(mm);
954 
955 	if (current->mm) {
956 		mm->flags = current->mm->flags & MMF_INIT_MASK;
957 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
958 	} else {
959 		mm->flags = default_dump_filter;
960 		mm->def_flags = 0;
961 	}
962 
963 	if (mm_alloc_pgd(mm))
964 		goto fail_nopgd;
965 
966 	if (init_new_context(p, mm))
967 		goto fail_nocontext;
968 
969 	mm->user_ns = get_user_ns(user_ns);
970 	return mm;
971 
972 fail_nocontext:
973 	mm_free_pgd(mm);
974 fail_nopgd:
975 	free_mm(mm);
976 	return NULL;
977 }
978 
979 /*
980  * Allocate and initialize an mm_struct.
981  */
982 struct mm_struct *mm_alloc(void)
983 {
984 	struct mm_struct *mm;
985 
986 	mm = allocate_mm();
987 	if (!mm)
988 		return NULL;
989 
990 	memset(mm, 0, sizeof(*mm));
991 	return mm_init(mm, current, current_user_ns());
992 }
993 
994 static inline void __mmput(struct mm_struct *mm)
995 {
996 	VM_BUG_ON(atomic_read(&mm->mm_users));
997 
998 	uprobe_clear_state(mm);
999 	exit_aio(mm);
1000 	ksm_exit(mm);
1001 	khugepaged_exit(mm); /* must run before exit_mmap */
1002 	exit_mmap(mm);
1003 	mm_put_huge_zero_page(mm);
1004 	set_mm_exe_file(mm, NULL);
1005 	if (!list_empty(&mm->mmlist)) {
1006 		spin_lock(&mmlist_lock);
1007 		list_del(&mm->mmlist);
1008 		spin_unlock(&mmlist_lock);
1009 	}
1010 	if (mm->binfmt)
1011 		module_put(mm->binfmt->module);
1012 	mmdrop(mm);
1013 }
1014 
1015 /*
1016  * Decrement the use count and release all resources for an mm.
1017  */
1018 void mmput(struct mm_struct *mm)
1019 {
1020 	might_sleep();
1021 
1022 	if (atomic_dec_and_test(&mm->mm_users))
1023 		__mmput(mm);
1024 }
1025 EXPORT_SYMBOL_GPL(mmput);
1026 
1027 #ifdef CONFIG_MMU
1028 static void mmput_async_fn(struct work_struct *work)
1029 {
1030 	struct mm_struct *mm = container_of(work, struct mm_struct,
1031 					    async_put_work);
1032 
1033 	__mmput(mm);
1034 }
1035 
1036 void mmput_async(struct mm_struct *mm)
1037 {
1038 	if (atomic_dec_and_test(&mm->mm_users)) {
1039 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1040 		schedule_work(&mm->async_put_work);
1041 	}
1042 }
1043 #endif
1044 
1045 /**
1046  * set_mm_exe_file - change a reference to the mm's executable file
1047  *
1048  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1049  *
1050  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1051  * invocations: in mmput() nobody alive left, in execve task is single
1052  * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1053  * mm->exe_file, but does so without using set_mm_exe_file() in order
1054  * to do avoid the need for any locks.
1055  */
1056 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1057 {
1058 	struct file *old_exe_file;
1059 
1060 	/*
1061 	 * It is safe to dereference the exe_file without RCU as
1062 	 * this function is only called if nobody else can access
1063 	 * this mm -- see comment above for justification.
1064 	 */
1065 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1066 
1067 	if (new_exe_file)
1068 		get_file(new_exe_file);
1069 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1070 	if (old_exe_file)
1071 		fput(old_exe_file);
1072 }
1073 
1074 /**
1075  * get_mm_exe_file - acquire a reference to the mm's executable file
1076  *
1077  * Returns %NULL if mm has no associated executable file.
1078  * User must release file via fput().
1079  */
1080 struct file *get_mm_exe_file(struct mm_struct *mm)
1081 {
1082 	struct file *exe_file;
1083 
1084 	rcu_read_lock();
1085 	exe_file = rcu_dereference(mm->exe_file);
1086 	if (exe_file && !get_file_rcu(exe_file))
1087 		exe_file = NULL;
1088 	rcu_read_unlock();
1089 	return exe_file;
1090 }
1091 EXPORT_SYMBOL(get_mm_exe_file);
1092 
1093 /**
1094  * get_task_exe_file - acquire a reference to the task's executable file
1095  *
1096  * Returns %NULL if task's mm (if any) has no associated executable file or
1097  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1098  * User must release file via fput().
1099  */
1100 struct file *get_task_exe_file(struct task_struct *task)
1101 {
1102 	struct file *exe_file = NULL;
1103 	struct mm_struct *mm;
1104 
1105 	task_lock(task);
1106 	mm = task->mm;
1107 	if (mm) {
1108 		if (!(task->flags & PF_KTHREAD))
1109 			exe_file = get_mm_exe_file(mm);
1110 	}
1111 	task_unlock(task);
1112 	return exe_file;
1113 }
1114 EXPORT_SYMBOL(get_task_exe_file);
1115 
1116 /**
1117  * get_task_mm - acquire a reference to the task's mm
1118  *
1119  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1120  * this kernel workthread has transiently adopted a user mm with use_mm,
1121  * to do its AIO) is not set and if so returns a reference to it, after
1122  * bumping up the use count.  User must release the mm via mmput()
1123  * after use.  Typically used by /proc and ptrace.
1124  */
1125 struct mm_struct *get_task_mm(struct task_struct *task)
1126 {
1127 	struct mm_struct *mm;
1128 
1129 	task_lock(task);
1130 	mm = task->mm;
1131 	if (mm) {
1132 		if (task->flags & PF_KTHREAD)
1133 			mm = NULL;
1134 		else
1135 			mmget(mm);
1136 	}
1137 	task_unlock(task);
1138 	return mm;
1139 }
1140 EXPORT_SYMBOL_GPL(get_task_mm);
1141 
1142 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1143 {
1144 	struct mm_struct *mm;
1145 	int err;
1146 
1147 	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
1148 	if (err)
1149 		return ERR_PTR(err);
1150 
1151 	mm = get_task_mm(task);
1152 	if (mm && mm != current->mm &&
1153 			!ptrace_may_access(task, mode)) {
1154 		mmput(mm);
1155 		mm = ERR_PTR(-EACCES);
1156 	}
1157 	mutex_unlock(&task->signal->cred_guard_mutex);
1158 
1159 	return mm;
1160 }
1161 
1162 static void complete_vfork_done(struct task_struct *tsk)
1163 {
1164 	struct completion *vfork;
1165 
1166 	task_lock(tsk);
1167 	vfork = tsk->vfork_done;
1168 	if (likely(vfork)) {
1169 		tsk->vfork_done = NULL;
1170 		complete(vfork);
1171 	}
1172 	task_unlock(tsk);
1173 }
1174 
1175 static int wait_for_vfork_done(struct task_struct *child,
1176 				struct completion *vfork)
1177 {
1178 	int killed;
1179 
1180 	freezer_do_not_count();
1181 	killed = wait_for_completion_killable(vfork);
1182 	freezer_count();
1183 
1184 	if (killed) {
1185 		task_lock(child);
1186 		child->vfork_done = NULL;
1187 		task_unlock(child);
1188 	}
1189 
1190 	put_task_struct(child);
1191 	return killed;
1192 }
1193 
1194 /* Please note the differences between mmput and mm_release.
1195  * mmput is called whenever we stop holding onto a mm_struct,
1196  * error success whatever.
1197  *
1198  * mm_release is called after a mm_struct has been removed
1199  * from the current process.
1200  *
1201  * This difference is important for error handling, when we
1202  * only half set up a mm_struct for a new process and need to restore
1203  * the old one.  Because we mmput the new mm_struct before
1204  * restoring the old one. . .
1205  * Eric Biederman 10 January 1998
1206  */
1207 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1208 {
1209 	/* Get rid of any futexes when releasing the mm */
1210 #ifdef CONFIG_FUTEX
1211 	if (unlikely(tsk->robust_list)) {
1212 		exit_robust_list(tsk);
1213 		tsk->robust_list = NULL;
1214 	}
1215 #ifdef CONFIG_COMPAT
1216 	if (unlikely(tsk->compat_robust_list)) {
1217 		compat_exit_robust_list(tsk);
1218 		tsk->compat_robust_list = NULL;
1219 	}
1220 #endif
1221 	if (unlikely(!list_empty(&tsk->pi_state_list)))
1222 		exit_pi_state_list(tsk);
1223 #endif
1224 
1225 	uprobe_free_utask(tsk);
1226 
1227 	/* Get rid of any cached register state */
1228 	deactivate_mm(tsk, mm);
1229 
1230 	/*
1231 	 * Signal userspace if we're not exiting with a core dump
1232 	 * because we want to leave the value intact for debugging
1233 	 * purposes.
1234 	 */
1235 	if (tsk->clear_child_tid) {
1236 		if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1237 		    atomic_read(&mm->mm_users) > 1) {
1238 			/*
1239 			 * We don't check the error code - if userspace has
1240 			 * not set up a proper pointer then tough luck.
1241 			 */
1242 			put_user(0, tsk->clear_child_tid);
1243 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1244 					1, NULL, NULL, 0, 0);
1245 		}
1246 		tsk->clear_child_tid = NULL;
1247 	}
1248 
1249 	/*
1250 	 * All done, finally we can wake up parent and return this mm to him.
1251 	 * Also kthread_stop() uses this completion for synchronization.
1252 	 */
1253 	if (tsk->vfork_done)
1254 		complete_vfork_done(tsk);
1255 }
1256 
1257 /*
1258  * Allocate a new mm structure and copy contents from the
1259  * mm structure of the passed in task structure.
1260  */
1261 static struct mm_struct *dup_mm(struct task_struct *tsk)
1262 {
1263 	struct mm_struct *mm, *oldmm = current->mm;
1264 	int err;
1265 
1266 	mm = allocate_mm();
1267 	if (!mm)
1268 		goto fail_nomem;
1269 
1270 	memcpy(mm, oldmm, sizeof(*mm));
1271 
1272 	if (!mm_init(mm, tsk, mm->user_ns))
1273 		goto fail_nomem;
1274 
1275 	err = dup_mmap(mm, oldmm);
1276 	if (err)
1277 		goto free_pt;
1278 
1279 	mm->hiwater_rss = get_mm_rss(mm);
1280 	mm->hiwater_vm = mm->total_vm;
1281 
1282 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1283 		goto free_pt;
1284 
1285 	return mm;
1286 
1287 free_pt:
1288 	/* don't put binfmt in mmput, we haven't got module yet */
1289 	mm->binfmt = NULL;
1290 	mmput(mm);
1291 
1292 fail_nomem:
1293 	return NULL;
1294 }
1295 
1296 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1297 {
1298 	struct mm_struct *mm, *oldmm;
1299 	int retval;
1300 
1301 	tsk->min_flt = tsk->maj_flt = 0;
1302 	tsk->nvcsw = tsk->nivcsw = 0;
1303 #ifdef CONFIG_DETECT_HUNG_TASK
1304 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1305 	tsk->last_switch_time = 0;
1306 #endif
1307 
1308 	tsk->mm = NULL;
1309 	tsk->active_mm = NULL;
1310 
1311 	/*
1312 	 * Are we cloning a kernel thread?
1313 	 *
1314 	 * We need to steal a active VM for that..
1315 	 */
1316 	oldmm = current->mm;
1317 	if (!oldmm)
1318 		return 0;
1319 
1320 	/* initialize the new vmacache entries */
1321 	vmacache_flush(tsk);
1322 
1323 	if (clone_flags & CLONE_VM) {
1324 		mmget(oldmm);
1325 		mm = oldmm;
1326 		goto good_mm;
1327 	}
1328 
1329 	retval = -ENOMEM;
1330 	mm = dup_mm(tsk);
1331 	if (!mm)
1332 		goto fail_nomem;
1333 
1334 good_mm:
1335 	tsk->mm = mm;
1336 	tsk->active_mm = mm;
1337 	return 0;
1338 
1339 fail_nomem:
1340 	return retval;
1341 }
1342 
1343 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1344 {
1345 	struct fs_struct *fs = current->fs;
1346 	if (clone_flags & CLONE_FS) {
1347 		/* tsk->fs is already what we want */
1348 		spin_lock(&fs->lock);
1349 		if (fs->in_exec) {
1350 			spin_unlock(&fs->lock);
1351 			return -EAGAIN;
1352 		}
1353 		fs->users++;
1354 		spin_unlock(&fs->lock);
1355 		return 0;
1356 	}
1357 	tsk->fs = copy_fs_struct(fs);
1358 	if (!tsk->fs)
1359 		return -ENOMEM;
1360 	return 0;
1361 }
1362 
1363 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1364 {
1365 	struct files_struct *oldf, *newf;
1366 	int error = 0;
1367 
1368 	/*
1369 	 * A background process may not have any files ...
1370 	 */
1371 	oldf = current->files;
1372 	if (!oldf)
1373 		goto out;
1374 
1375 	if (clone_flags & CLONE_FILES) {
1376 		atomic_inc(&oldf->count);
1377 		goto out;
1378 	}
1379 
1380 	newf = dup_fd(oldf, &error);
1381 	if (!newf)
1382 		goto out;
1383 
1384 	tsk->files = newf;
1385 	error = 0;
1386 out:
1387 	return error;
1388 }
1389 
1390 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1391 {
1392 #ifdef CONFIG_BLOCK
1393 	struct io_context *ioc = current->io_context;
1394 	struct io_context *new_ioc;
1395 
1396 	if (!ioc)
1397 		return 0;
1398 	/*
1399 	 * Share io context with parent, if CLONE_IO is set
1400 	 */
1401 	if (clone_flags & CLONE_IO) {
1402 		ioc_task_link(ioc);
1403 		tsk->io_context = ioc;
1404 	} else if (ioprio_valid(ioc->ioprio)) {
1405 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1406 		if (unlikely(!new_ioc))
1407 			return -ENOMEM;
1408 
1409 		new_ioc->ioprio = ioc->ioprio;
1410 		put_io_context(new_ioc);
1411 	}
1412 #endif
1413 	return 0;
1414 }
1415 
1416 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1417 {
1418 	struct sighand_struct *sig;
1419 
1420 	if (clone_flags & CLONE_SIGHAND) {
1421 		atomic_inc(&current->sighand->count);
1422 		return 0;
1423 	}
1424 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1425 	rcu_assign_pointer(tsk->sighand, sig);
1426 	if (!sig)
1427 		return -ENOMEM;
1428 
1429 	atomic_set(&sig->count, 1);
1430 	spin_lock_irq(&current->sighand->siglock);
1431 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1432 	spin_unlock_irq(&current->sighand->siglock);
1433 	return 0;
1434 }
1435 
1436 void __cleanup_sighand(struct sighand_struct *sighand)
1437 {
1438 	if (atomic_dec_and_test(&sighand->count)) {
1439 		signalfd_cleanup(sighand);
1440 		/*
1441 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1442 		 * without an RCU grace period, see __lock_task_sighand().
1443 		 */
1444 		kmem_cache_free(sighand_cachep, sighand);
1445 	}
1446 }
1447 
1448 #ifdef CONFIG_POSIX_TIMERS
1449 /*
1450  * Initialize POSIX timer handling for a thread group.
1451  */
1452 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1453 {
1454 	unsigned long cpu_limit;
1455 
1456 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1457 	if (cpu_limit != RLIM_INFINITY) {
1458 		sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC;
1459 		sig->cputimer.running = true;
1460 	}
1461 
1462 	/* The timer lists. */
1463 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
1464 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
1465 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
1466 }
1467 #else
1468 static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { }
1469 #endif
1470 
1471 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1472 {
1473 	struct signal_struct *sig;
1474 
1475 	if (clone_flags & CLONE_THREAD)
1476 		return 0;
1477 
1478 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1479 	tsk->signal = sig;
1480 	if (!sig)
1481 		return -ENOMEM;
1482 
1483 	sig->nr_threads = 1;
1484 	atomic_set(&sig->live, 1);
1485 	atomic_set(&sig->sigcnt, 1);
1486 
1487 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1488 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1489 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1490 
1491 	init_waitqueue_head(&sig->wait_chldexit);
1492 	sig->curr_target = tsk;
1493 	init_sigpending(&sig->shared_pending);
1494 	INIT_HLIST_HEAD(&sig->multiprocess);
1495 	seqlock_init(&sig->stats_lock);
1496 	prev_cputime_init(&sig->prev_cputime);
1497 
1498 #ifdef CONFIG_POSIX_TIMERS
1499 	INIT_LIST_HEAD(&sig->posix_timers);
1500 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1501 	sig->real_timer.function = it_real_fn;
1502 #endif
1503 
1504 	task_lock(current->group_leader);
1505 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1506 	task_unlock(current->group_leader);
1507 
1508 	posix_cpu_timers_init_group(sig);
1509 
1510 	tty_audit_fork(sig);
1511 	sched_autogroup_fork(sig);
1512 
1513 	sig->oom_score_adj = current->signal->oom_score_adj;
1514 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1515 
1516 	mutex_init(&sig->cred_guard_mutex);
1517 
1518 	return 0;
1519 }
1520 
1521 static void copy_seccomp(struct task_struct *p)
1522 {
1523 #ifdef CONFIG_SECCOMP
1524 	/*
1525 	 * Must be called with sighand->lock held, which is common to
1526 	 * all threads in the group. Holding cred_guard_mutex is not
1527 	 * needed because this new task is not yet running and cannot
1528 	 * be racing exec.
1529 	 */
1530 	assert_spin_locked(&current->sighand->siglock);
1531 
1532 	/* Ref-count the new filter user, and assign it. */
1533 	get_seccomp_filter(current);
1534 	p->seccomp = current->seccomp;
1535 
1536 	/*
1537 	 * Explicitly enable no_new_privs here in case it got set
1538 	 * between the task_struct being duplicated and holding the
1539 	 * sighand lock. The seccomp state and nnp must be in sync.
1540 	 */
1541 	if (task_no_new_privs(current))
1542 		task_set_no_new_privs(p);
1543 
1544 	/*
1545 	 * If the parent gained a seccomp mode after copying thread
1546 	 * flags and between before we held the sighand lock, we have
1547 	 * to manually enable the seccomp thread flag here.
1548 	 */
1549 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1550 		set_tsk_thread_flag(p, TIF_SECCOMP);
1551 #endif
1552 }
1553 
1554 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1555 {
1556 	current->clear_child_tid = tidptr;
1557 
1558 	return task_pid_vnr(current);
1559 }
1560 
1561 static void rt_mutex_init_task(struct task_struct *p)
1562 {
1563 	raw_spin_lock_init(&p->pi_lock);
1564 #ifdef CONFIG_RT_MUTEXES
1565 	p->pi_waiters = RB_ROOT_CACHED;
1566 	p->pi_top_task = NULL;
1567 	p->pi_blocked_on = NULL;
1568 #endif
1569 }
1570 
1571 #ifdef CONFIG_POSIX_TIMERS
1572 /*
1573  * Initialize POSIX timer handling for a single task.
1574  */
1575 static void posix_cpu_timers_init(struct task_struct *tsk)
1576 {
1577 	tsk->cputime_expires.prof_exp = 0;
1578 	tsk->cputime_expires.virt_exp = 0;
1579 	tsk->cputime_expires.sched_exp = 0;
1580 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1581 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1582 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1583 }
1584 #else
1585 static inline void posix_cpu_timers_init(struct task_struct *tsk) { }
1586 #endif
1587 
1588 static inline void init_task_pid_links(struct task_struct *task)
1589 {
1590 	enum pid_type type;
1591 
1592 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1593 		INIT_HLIST_NODE(&task->pid_links[type]);
1594 	}
1595 }
1596 
1597 static inline void
1598 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1599 {
1600 	if (type == PIDTYPE_PID)
1601 		task->thread_pid = pid;
1602 	else
1603 		task->signal->pids[type] = pid;
1604 }
1605 
1606 static inline void rcu_copy_process(struct task_struct *p)
1607 {
1608 #ifdef CONFIG_PREEMPT_RCU
1609 	p->rcu_read_lock_nesting = 0;
1610 	p->rcu_read_unlock_special.s = 0;
1611 	p->rcu_blocked_node = NULL;
1612 	INIT_LIST_HEAD(&p->rcu_node_entry);
1613 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1614 #ifdef CONFIG_TASKS_RCU
1615 	p->rcu_tasks_holdout = false;
1616 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1617 	p->rcu_tasks_idle_cpu = -1;
1618 #endif /* #ifdef CONFIG_TASKS_RCU */
1619 }
1620 
1621 /*
1622  * This creates a new process as a copy of the old one,
1623  * but does not actually start it yet.
1624  *
1625  * It copies the registers, and all the appropriate
1626  * parts of the process environment (as per the clone
1627  * flags). The actual kick-off is left to the caller.
1628  */
1629 static __latent_entropy struct task_struct *copy_process(
1630 					unsigned long clone_flags,
1631 					unsigned long stack_start,
1632 					unsigned long stack_size,
1633 					int __user *child_tidptr,
1634 					struct pid *pid,
1635 					int trace,
1636 					unsigned long tls,
1637 					int node)
1638 {
1639 	int retval;
1640 	struct task_struct *p;
1641 	struct multiprocess_signals delayed;
1642 
1643 	/*
1644 	 * Don't allow sharing the root directory with processes in a different
1645 	 * namespace
1646 	 */
1647 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1648 		return ERR_PTR(-EINVAL);
1649 
1650 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1651 		return ERR_PTR(-EINVAL);
1652 
1653 	/*
1654 	 * Thread groups must share signals as well, and detached threads
1655 	 * can only be started up within the thread group.
1656 	 */
1657 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1658 		return ERR_PTR(-EINVAL);
1659 
1660 	/*
1661 	 * Shared signal handlers imply shared VM. By way of the above,
1662 	 * thread groups also imply shared VM. Blocking this case allows
1663 	 * for various simplifications in other code.
1664 	 */
1665 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1666 		return ERR_PTR(-EINVAL);
1667 
1668 	/*
1669 	 * Siblings of global init remain as zombies on exit since they are
1670 	 * not reaped by their parent (swapper). To solve this and to avoid
1671 	 * multi-rooted process trees, prevent global and container-inits
1672 	 * from creating siblings.
1673 	 */
1674 	if ((clone_flags & CLONE_PARENT) &&
1675 				current->signal->flags & SIGNAL_UNKILLABLE)
1676 		return ERR_PTR(-EINVAL);
1677 
1678 	/*
1679 	 * If the new process will be in a different pid or user namespace
1680 	 * do not allow it to share a thread group with the forking task.
1681 	 */
1682 	if (clone_flags & CLONE_THREAD) {
1683 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1684 		    (task_active_pid_ns(current) !=
1685 				current->nsproxy->pid_ns_for_children))
1686 			return ERR_PTR(-EINVAL);
1687 	}
1688 
1689 	/*
1690 	 * Force any signals received before this point to be delivered
1691 	 * before the fork happens.  Collect up signals sent to multiple
1692 	 * processes that happen during the fork and delay them so that
1693 	 * they appear to happen after the fork.
1694 	 */
1695 	sigemptyset(&delayed.signal);
1696 	INIT_HLIST_NODE(&delayed.node);
1697 
1698 	spin_lock_irq(&current->sighand->siglock);
1699 	if (!(clone_flags & CLONE_THREAD))
1700 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
1701 	recalc_sigpending();
1702 	spin_unlock_irq(&current->sighand->siglock);
1703 	retval = -ERESTARTNOINTR;
1704 	if (signal_pending(current))
1705 		goto fork_out;
1706 
1707 	retval = -ENOMEM;
1708 	p = dup_task_struct(current, node);
1709 	if (!p)
1710 		goto fork_out;
1711 
1712 	/*
1713 	 * This _must_ happen before we call free_task(), i.e. before we jump
1714 	 * to any of the bad_fork_* labels. This is to avoid freeing
1715 	 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1716 	 * kernel threads (PF_KTHREAD).
1717 	 */
1718 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1719 	/*
1720 	 * Clear TID on mm_release()?
1721 	 */
1722 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1723 
1724 	ftrace_graph_init_task(p);
1725 
1726 	rt_mutex_init_task(p);
1727 
1728 #ifdef CONFIG_PROVE_LOCKING
1729 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1730 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1731 #endif
1732 	retval = -EAGAIN;
1733 	if (atomic_read(&p->real_cred->user->processes) >=
1734 			task_rlimit(p, RLIMIT_NPROC)) {
1735 		if (p->real_cred->user != INIT_USER &&
1736 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1737 			goto bad_fork_free;
1738 	}
1739 	current->flags &= ~PF_NPROC_EXCEEDED;
1740 
1741 	retval = copy_creds(p, clone_flags);
1742 	if (retval < 0)
1743 		goto bad_fork_free;
1744 
1745 	/*
1746 	 * If multiple threads are within copy_process(), then this check
1747 	 * triggers too late. This doesn't hurt, the check is only there
1748 	 * to stop root fork bombs.
1749 	 */
1750 	retval = -EAGAIN;
1751 	if (nr_threads >= max_threads)
1752 		goto bad_fork_cleanup_count;
1753 
1754 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1755 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1756 	p->flags |= PF_FORKNOEXEC;
1757 	INIT_LIST_HEAD(&p->children);
1758 	INIT_LIST_HEAD(&p->sibling);
1759 	rcu_copy_process(p);
1760 	p->vfork_done = NULL;
1761 	spin_lock_init(&p->alloc_lock);
1762 
1763 	init_sigpending(&p->pending);
1764 
1765 	p->utime = p->stime = p->gtime = 0;
1766 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1767 	p->utimescaled = p->stimescaled = 0;
1768 #endif
1769 	prev_cputime_init(&p->prev_cputime);
1770 
1771 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1772 	seqcount_init(&p->vtime.seqcount);
1773 	p->vtime.starttime = 0;
1774 	p->vtime.state = VTIME_INACTIVE;
1775 #endif
1776 
1777 #if defined(SPLIT_RSS_COUNTING)
1778 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1779 #endif
1780 
1781 	p->default_timer_slack_ns = current->timer_slack_ns;
1782 
1783 	task_io_accounting_init(&p->ioac);
1784 	acct_clear_integrals(p);
1785 
1786 	posix_cpu_timers_init(p);
1787 
1788 	p->start_time = ktime_get_ns();
1789 	p->real_start_time = ktime_get_boot_ns();
1790 	p->io_context = NULL;
1791 	audit_set_context(p, NULL);
1792 	cgroup_fork(p);
1793 #ifdef CONFIG_NUMA
1794 	p->mempolicy = mpol_dup(p->mempolicy);
1795 	if (IS_ERR(p->mempolicy)) {
1796 		retval = PTR_ERR(p->mempolicy);
1797 		p->mempolicy = NULL;
1798 		goto bad_fork_cleanup_threadgroup_lock;
1799 	}
1800 #endif
1801 #ifdef CONFIG_CPUSETS
1802 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1803 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1804 	seqcount_init(&p->mems_allowed_seq);
1805 #endif
1806 #ifdef CONFIG_TRACE_IRQFLAGS
1807 	p->irq_events = 0;
1808 	p->hardirqs_enabled = 0;
1809 	p->hardirq_enable_ip = 0;
1810 	p->hardirq_enable_event = 0;
1811 	p->hardirq_disable_ip = _THIS_IP_;
1812 	p->hardirq_disable_event = 0;
1813 	p->softirqs_enabled = 1;
1814 	p->softirq_enable_ip = _THIS_IP_;
1815 	p->softirq_enable_event = 0;
1816 	p->softirq_disable_ip = 0;
1817 	p->softirq_disable_event = 0;
1818 	p->hardirq_context = 0;
1819 	p->softirq_context = 0;
1820 #endif
1821 
1822 	p->pagefault_disabled = 0;
1823 
1824 #ifdef CONFIG_LOCKDEP
1825 	p->lockdep_depth = 0; /* no locks held yet */
1826 	p->curr_chain_key = 0;
1827 	p->lockdep_recursion = 0;
1828 	lockdep_init_task(p);
1829 #endif
1830 
1831 #ifdef CONFIG_DEBUG_MUTEXES
1832 	p->blocked_on = NULL; /* not blocked yet */
1833 #endif
1834 #ifdef CONFIG_BCACHE
1835 	p->sequential_io	= 0;
1836 	p->sequential_io_avg	= 0;
1837 #endif
1838 
1839 	/* Perform scheduler related setup. Assign this task to a CPU. */
1840 	retval = sched_fork(clone_flags, p);
1841 	if (retval)
1842 		goto bad_fork_cleanup_policy;
1843 
1844 	retval = perf_event_init_task(p);
1845 	if (retval)
1846 		goto bad_fork_cleanup_policy;
1847 	retval = audit_alloc(p);
1848 	if (retval)
1849 		goto bad_fork_cleanup_perf;
1850 	/* copy all the process information */
1851 	shm_init_task(p);
1852 	retval = security_task_alloc(p, clone_flags);
1853 	if (retval)
1854 		goto bad_fork_cleanup_audit;
1855 	retval = copy_semundo(clone_flags, p);
1856 	if (retval)
1857 		goto bad_fork_cleanup_security;
1858 	retval = copy_files(clone_flags, p);
1859 	if (retval)
1860 		goto bad_fork_cleanup_semundo;
1861 	retval = copy_fs(clone_flags, p);
1862 	if (retval)
1863 		goto bad_fork_cleanup_files;
1864 	retval = copy_sighand(clone_flags, p);
1865 	if (retval)
1866 		goto bad_fork_cleanup_fs;
1867 	retval = copy_signal(clone_flags, p);
1868 	if (retval)
1869 		goto bad_fork_cleanup_sighand;
1870 	retval = copy_mm(clone_flags, p);
1871 	if (retval)
1872 		goto bad_fork_cleanup_signal;
1873 	retval = copy_namespaces(clone_flags, p);
1874 	if (retval)
1875 		goto bad_fork_cleanup_mm;
1876 	retval = copy_io(clone_flags, p);
1877 	if (retval)
1878 		goto bad_fork_cleanup_namespaces;
1879 	retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1880 	if (retval)
1881 		goto bad_fork_cleanup_io;
1882 
1883 	if (pid != &init_struct_pid) {
1884 		pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1885 		if (IS_ERR(pid)) {
1886 			retval = PTR_ERR(pid);
1887 			goto bad_fork_cleanup_thread;
1888 		}
1889 	}
1890 
1891 #ifdef CONFIG_BLOCK
1892 	p->plug = NULL;
1893 #endif
1894 #ifdef CONFIG_FUTEX
1895 	p->robust_list = NULL;
1896 #ifdef CONFIG_COMPAT
1897 	p->compat_robust_list = NULL;
1898 #endif
1899 	INIT_LIST_HEAD(&p->pi_state_list);
1900 	p->pi_state_cache = NULL;
1901 #endif
1902 	/*
1903 	 * sigaltstack should be cleared when sharing the same VM
1904 	 */
1905 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1906 		sas_ss_reset(p);
1907 
1908 	/*
1909 	 * Syscall tracing and stepping should be turned off in the
1910 	 * child regardless of CLONE_PTRACE.
1911 	 */
1912 	user_disable_single_step(p);
1913 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1914 #ifdef TIF_SYSCALL_EMU
1915 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1916 #endif
1917 	clear_all_latency_tracing(p);
1918 
1919 	/* ok, now we should be set up.. */
1920 	p->pid = pid_nr(pid);
1921 	if (clone_flags & CLONE_THREAD) {
1922 		p->exit_signal = -1;
1923 		p->group_leader = current->group_leader;
1924 		p->tgid = current->tgid;
1925 	} else {
1926 		if (clone_flags & CLONE_PARENT)
1927 			p->exit_signal = current->group_leader->exit_signal;
1928 		else
1929 			p->exit_signal = (clone_flags & CSIGNAL);
1930 		p->group_leader = p;
1931 		p->tgid = p->pid;
1932 	}
1933 
1934 	p->nr_dirtied = 0;
1935 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1936 	p->dirty_paused_when = 0;
1937 
1938 	p->pdeath_signal = 0;
1939 	INIT_LIST_HEAD(&p->thread_group);
1940 	p->task_works = NULL;
1941 
1942 	cgroup_threadgroup_change_begin(current);
1943 	/*
1944 	 * Ensure that the cgroup subsystem policies allow the new process to be
1945 	 * forked. It should be noted the the new process's css_set can be changed
1946 	 * between here and cgroup_post_fork() if an organisation operation is in
1947 	 * progress.
1948 	 */
1949 	retval = cgroup_can_fork(p);
1950 	if (retval)
1951 		goto bad_fork_free_pid;
1952 
1953 	/*
1954 	 * Make it visible to the rest of the system, but dont wake it up yet.
1955 	 * Need tasklist lock for parent etc handling!
1956 	 */
1957 	write_lock_irq(&tasklist_lock);
1958 
1959 	/* CLONE_PARENT re-uses the old parent */
1960 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1961 		p->real_parent = current->real_parent;
1962 		p->parent_exec_id = current->parent_exec_id;
1963 	} else {
1964 		p->real_parent = current;
1965 		p->parent_exec_id = current->self_exec_id;
1966 	}
1967 
1968 	klp_copy_process(p);
1969 
1970 	spin_lock(&current->sighand->siglock);
1971 
1972 	/*
1973 	 * Copy seccomp details explicitly here, in case they were changed
1974 	 * before holding sighand lock.
1975 	 */
1976 	copy_seccomp(p);
1977 
1978 	rseq_fork(p, clone_flags);
1979 
1980 	/* Don't start children in a dying pid namespace */
1981 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
1982 		retval = -ENOMEM;
1983 		goto bad_fork_cancel_cgroup;
1984 	}
1985 
1986 	/* Let kill terminate clone/fork in the middle */
1987 	if (fatal_signal_pending(current)) {
1988 		retval = -EINTR;
1989 		goto bad_fork_cancel_cgroup;
1990 	}
1991 
1992 
1993 	init_task_pid_links(p);
1994 	if (likely(p->pid)) {
1995 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1996 
1997 		init_task_pid(p, PIDTYPE_PID, pid);
1998 		if (thread_group_leader(p)) {
1999 			init_task_pid(p, PIDTYPE_TGID, pid);
2000 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2001 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2002 
2003 			if (is_child_reaper(pid)) {
2004 				ns_of_pid(pid)->child_reaper = p;
2005 				p->signal->flags |= SIGNAL_UNKILLABLE;
2006 			}
2007 			p->signal->shared_pending.signal = delayed.signal;
2008 			p->signal->tty = tty_kref_get(current->signal->tty);
2009 			/*
2010 			 * Inherit has_child_subreaper flag under the same
2011 			 * tasklist_lock with adding child to the process tree
2012 			 * for propagate_has_child_subreaper optimization.
2013 			 */
2014 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2015 							 p->real_parent->signal->is_child_subreaper;
2016 			list_add_tail(&p->sibling, &p->real_parent->children);
2017 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2018 			attach_pid(p, PIDTYPE_TGID);
2019 			attach_pid(p, PIDTYPE_PGID);
2020 			attach_pid(p, PIDTYPE_SID);
2021 			__this_cpu_inc(process_counts);
2022 		} else {
2023 			current->signal->nr_threads++;
2024 			atomic_inc(&current->signal->live);
2025 			atomic_inc(&current->signal->sigcnt);
2026 			task_join_group_stop(p);
2027 			list_add_tail_rcu(&p->thread_group,
2028 					  &p->group_leader->thread_group);
2029 			list_add_tail_rcu(&p->thread_node,
2030 					  &p->signal->thread_head);
2031 		}
2032 		attach_pid(p, PIDTYPE_PID);
2033 		nr_threads++;
2034 	}
2035 	total_forks++;
2036 	hlist_del_init(&delayed.node);
2037 	spin_unlock(&current->sighand->siglock);
2038 	syscall_tracepoint_update(p);
2039 	write_unlock_irq(&tasklist_lock);
2040 
2041 	proc_fork_connector(p);
2042 	cgroup_post_fork(p);
2043 	cgroup_threadgroup_change_end(current);
2044 	perf_event_fork(p);
2045 
2046 	trace_task_newtask(p, clone_flags);
2047 	uprobe_copy_process(p, clone_flags);
2048 
2049 	return p;
2050 
2051 bad_fork_cancel_cgroup:
2052 	spin_unlock(&current->sighand->siglock);
2053 	write_unlock_irq(&tasklist_lock);
2054 	cgroup_cancel_fork(p);
2055 bad_fork_free_pid:
2056 	cgroup_threadgroup_change_end(current);
2057 	if (pid != &init_struct_pid)
2058 		free_pid(pid);
2059 bad_fork_cleanup_thread:
2060 	exit_thread(p);
2061 bad_fork_cleanup_io:
2062 	if (p->io_context)
2063 		exit_io_context(p);
2064 bad_fork_cleanup_namespaces:
2065 	exit_task_namespaces(p);
2066 bad_fork_cleanup_mm:
2067 	if (p->mm)
2068 		mmput(p->mm);
2069 bad_fork_cleanup_signal:
2070 	if (!(clone_flags & CLONE_THREAD))
2071 		free_signal_struct(p->signal);
2072 bad_fork_cleanup_sighand:
2073 	__cleanup_sighand(p->sighand);
2074 bad_fork_cleanup_fs:
2075 	exit_fs(p); /* blocking */
2076 bad_fork_cleanup_files:
2077 	exit_files(p); /* blocking */
2078 bad_fork_cleanup_semundo:
2079 	exit_sem(p);
2080 bad_fork_cleanup_security:
2081 	security_task_free(p);
2082 bad_fork_cleanup_audit:
2083 	audit_free(p);
2084 bad_fork_cleanup_perf:
2085 	perf_event_free_task(p);
2086 bad_fork_cleanup_policy:
2087 	lockdep_free_task(p);
2088 #ifdef CONFIG_NUMA
2089 	mpol_put(p->mempolicy);
2090 bad_fork_cleanup_threadgroup_lock:
2091 #endif
2092 	delayacct_tsk_free(p);
2093 bad_fork_cleanup_count:
2094 	atomic_dec(&p->cred->user->processes);
2095 	exit_creds(p);
2096 bad_fork_free:
2097 	p->state = TASK_DEAD;
2098 	put_task_stack(p);
2099 	free_task(p);
2100 fork_out:
2101 	spin_lock_irq(&current->sighand->siglock);
2102 	hlist_del_init(&delayed.node);
2103 	spin_unlock_irq(&current->sighand->siglock);
2104 	return ERR_PTR(retval);
2105 }
2106 
2107 static inline void init_idle_pids(struct task_struct *idle)
2108 {
2109 	enum pid_type type;
2110 
2111 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2112 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2113 		init_task_pid(idle, type, &init_struct_pid);
2114 	}
2115 }
2116 
2117 struct task_struct *fork_idle(int cpu)
2118 {
2119 	struct task_struct *task;
2120 	task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
2121 			    cpu_to_node(cpu));
2122 	if (!IS_ERR(task)) {
2123 		init_idle_pids(task);
2124 		init_idle(task, cpu);
2125 	}
2126 
2127 	return task;
2128 }
2129 
2130 /*
2131  *  Ok, this is the main fork-routine.
2132  *
2133  * It copies the process, and if successful kick-starts
2134  * it and waits for it to finish using the VM if required.
2135  */
2136 long _do_fork(unsigned long clone_flags,
2137 	      unsigned long stack_start,
2138 	      unsigned long stack_size,
2139 	      int __user *parent_tidptr,
2140 	      int __user *child_tidptr,
2141 	      unsigned long tls)
2142 {
2143 	struct completion vfork;
2144 	struct pid *pid;
2145 	struct task_struct *p;
2146 	int trace = 0;
2147 	long nr;
2148 
2149 	/*
2150 	 * Determine whether and which event to report to ptracer.  When
2151 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2152 	 * requested, no event is reported; otherwise, report if the event
2153 	 * for the type of forking is enabled.
2154 	 */
2155 	if (!(clone_flags & CLONE_UNTRACED)) {
2156 		if (clone_flags & CLONE_VFORK)
2157 			trace = PTRACE_EVENT_VFORK;
2158 		else if ((clone_flags & CSIGNAL) != SIGCHLD)
2159 			trace = PTRACE_EVENT_CLONE;
2160 		else
2161 			trace = PTRACE_EVENT_FORK;
2162 
2163 		if (likely(!ptrace_event_enabled(current, trace)))
2164 			trace = 0;
2165 	}
2166 
2167 	p = copy_process(clone_flags, stack_start, stack_size,
2168 			 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
2169 	add_latent_entropy();
2170 
2171 	if (IS_ERR(p))
2172 		return PTR_ERR(p);
2173 
2174 	/*
2175 	 * Do this prior waking up the new thread - the thread pointer
2176 	 * might get invalid after that point, if the thread exits quickly.
2177 	 */
2178 	trace_sched_process_fork(current, p);
2179 
2180 	pid = get_task_pid(p, PIDTYPE_PID);
2181 	nr = pid_vnr(pid);
2182 
2183 	if (clone_flags & CLONE_PARENT_SETTID)
2184 		put_user(nr, parent_tidptr);
2185 
2186 	if (clone_flags & CLONE_VFORK) {
2187 		p->vfork_done = &vfork;
2188 		init_completion(&vfork);
2189 		get_task_struct(p);
2190 	}
2191 
2192 	wake_up_new_task(p);
2193 
2194 	/* forking complete and child started to run, tell ptracer */
2195 	if (unlikely(trace))
2196 		ptrace_event_pid(trace, pid);
2197 
2198 	if (clone_flags & CLONE_VFORK) {
2199 		if (!wait_for_vfork_done(p, &vfork))
2200 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2201 	}
2202 
2203 	put_pid(pid);
2204 	return nr;
2205 }
2206 
2207 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2208 /* For compatibility with architectures that call do_fork directly rather than
2209  * using the syscall entry points below. */
2210 long do_fork(unsigned long clone_flags,
2211 	      unsigned long stack_start,
2212 	      unsigned long stack_size,
2213 	      int __user *parent_tidptr,
2214 	      int __user *child_tidptr)
2215 {
2216 	return _do_fork(clone_flags, stack_start, stack_size,
2217 			parent_tidptr, child_tidptr, 0);
2218 }
2219 #endif
2220 
2221 /*
2222  * Create a kernel thread.
2223  */
2224 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2225 {
2226 	return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
2227 		(unsigned long)arg, NULL, NULL, 0);
2228 }
2229 
2230 #ifdef __ARCH_WANT_SYS_FORK
2231 SYSCALL_DEFINE0(fork)
2232 {
2233 #ifdef CONFIG_MMU
2234 	return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
2235 #else
2236 	/* can not support in nommu mode */
2237 	return -EINVAL;
2238 #endif
2239 }
2240 #endif
2241 
2242 #ifdef __ARCH_WANT_SYS_VFORK
2243 SYSCALL_DEFINE0(vfork)
2244 {
2245 	return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
2246 			0, NULL, NULL, 0);
2247 }
2248 #endif
2249 
2250 #ifdef __ARCH_WANT_SYS_CLONE
2251 #ifdef CONFIG_CLONE_BACKWARDS
2252 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2253 		 int __user *, parent_tidptr,
2254 		 unsigned long, tls,
2255 		 int __user *, child_tidptr)
2256 #elif defined(CONFIG_CLONE_BACKWARDS2)
2257 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2258 		 int __user *, parent_tidptr,
2259 		 int __user *, child_tidptr,
2260 		 unsigned long, tls)
2261 #elif defined(CONFIG_CLONE_BACKWARDS3)
2262 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2263 		int, stack_size,
2264 		int __user *, parent_tidptr,
2265 		int __user *, child_tidptr,
2266 		unsigned long, tls)
2267 #else
2268 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2269 		 int __user *, parent_tidptr,
2270 		 int __user *, child_tidptr,
2271 		 unsigned long, tls)
2272 #endif
2273 {
2274 	return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
2275 }
2276 #endif
2277 
2278 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2279 {
2280 	struct task_struct *leader, *parent, *child;
2281 	int res;
2282 
2283 	read_lock(&tasklist_lock);
2284 	leader = top = top->group_leader;
2285 down:
2286 	for_each_thread(leader, parent) {
2287 		list_for_each_entry(child, &parent->children, sibling) {
2288 			res = visitor(child, data);
2289 			if (res) {
2290 				if (res < 0)
2291 					goto out;
2292 				leader = child;
2293 				goto down;
2294 			}
2295 up:
2296 			;
2297 		}
2298 	}
2299 
2300 	if (leader != top) {
2301 		child = leader;
2302 		parent = child->real_parent;
2303 		leader = parent->group_leader;
2304 		goto up;
2305 	}
2306 out:
2307 	read_unlock(&tasklist_lock);
2308 }
2309 
2310 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2311 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2312 #endif
2313 
2314 static void sighand_ctor(void *data)
2315 {
2316 	struct sighand_struct *sighand = data;
2317 
2318 	spin_lock_init(&sighand->siglock);
2319 	init_waitqueue_head(&sighand->signalfd_wqh);
2320 }
2321 
2322 void __init proc_caches_init(void)
2323 {
2324 	unsigned int mm_size;
2325 
2326 	sighand_cachep = kmem_cache_create("sighand_cache",
2327 			sizeof(struct sighand_struct), 0,
2328 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2329 			SLAB_ACCOUNT, sighand_ctor);
2330 	signal_cachep = kmem_cache_create("signal_cache",
2331 			sizeof(struct signal_struct), 0,
2332 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2333 			NULL);
2334 	files_cachep = kmem_cache_create("files_cache",
2335 			sizeof(struct files_struct), 0,
2336 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2337 			NULL);
2338 	fs_cachep = kmem_cache_create("fs_cache",
2339 			sizeof(struct fs_struct), 0,
2340 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2341 			NULL);
2342 
2343 	/*
2344 	 * The mm_cpumask is located at the end of mm_struct, and is
2345 	 * dynamically sized based on the maximum CPU number this system
2346 	 * can have, taking hotplug into account (nr_cpu_ids).
2347 	 */
2348 	mm_size = sizeof(struct mm_struct) + cpumask_size();
2349 
2350 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
2351 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2352 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2353 			offsetof(struct mm_struct, saved_auxv),
2354 			sizeof_field(struct mm_struct, saved_auxv),
2355 			NULL);
2356 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2357 	mmap_init();
2358 	nsproxy_cache_init();
2359 }
2360 
2361 /*
2362  * Check constraints on flags passed to the unshare system call.
2363  */
2364 static int check_unshare_flags(unsigned long unshare_flags)
2365 {
2366 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2367 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2368 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2369 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2370 		return -EINVAL;
2371 	/*
2372 	 * Not implemented, but pretend it works if there is nothing
2373 	 * to unshare.  Note that unsharing the address space or the
2374 	 * signal handlers also need to unshare the signal queues (aka
2375 	 * CLONE_THREAD).
2376 	 */
2377 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2378 		if (!thread_group_empty(current))
2379 			return -EINVAL;
2380 	}
2381 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2382 		if (atomic_read(&current->sighand->count) > 1)
2383 			return -EINVAL;
2384 	}
2385 	if (unshare_flags & CLONE_VM) {
2386 		if (!current_is_single_threaded())
2387 			return -EINVAL;
2388 	}
2389 
2390 	return 0;
2391 }
2392 
2393 /*
2394  * Unshare the filesystem structure if it is being shared
2395  */
2396 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2397 {
2398 	struct fs_struct *fs = current->fs;
2399 
2400 	if (!(unshare_flags & CLONE_FS) || !fs)
2401 		return 0;
2402 
2403 	/* don't need lock here; in the worst case we'll do useless copy */
2404 	if (fs->users == 1)
2405 		return 0;
2406 
2407 	*new_fsp = copy_fs_struct(fs);
2408 	if (!*new_fsp)
2409 		return -ENOMEM;
2410 
2411 	return 0;
2412 }
2413 
2414 /*
2415  * Unshare file descriptor table if it is being shared
2416  */
2417 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2418 {
2419 	struct files_struct *fd = current->files;
2420 	int error = 0;
2421 
2422 	if ((unshare_flags & CLONE_FILES) &&
2423 	    (fd && atomic_read(&fd->count) > 1)) {
2424 		*new_fdp = dup_fd(fd, &error);
2425 		if (!*new_fdp)
2426 			return error;
2427 	}
2428 
2429 	return 0;
2430 }
2431 
2432 /*
2433  * unshare allows a process to 'unshare' part of the process
2434  * context which was originally shared using clone.  copy_*
2435  * functions used by do_fork() cannot be used here directly
2436  * because they modify an inactive task_struct that is being
2437  * constructed. Here we are modifying the current, active,
2438  * task_struct.
2439  */
2440 int ksys_unshare(unsigned long unshare_flags)
2441 {
2442 	struct fs_struct *fs, *new_fs = NULL;
2443 	struct files_struct *fd, *new_fd = NULL;
2444 	struct cred *new_cred = NULL;
2445 	struct nsproxy *new_nsproxy = NULL;
2446 	int do_sysvsem = 0;
2447 	int err;
2448 
2449 	/*
2450 	 * If unsharing a user namespace must also unshare the thread group
2451 	 * and unshare the filesystem root and working directories.
2452 	 */
2453 	if (unshare_flags & CLONE_NEWUSER)
2454 		unshare_flags |= CLONE_THREAD | CLONE_FS;
2455 	/*
2456 	 * If unsharing vm, must also unshare signal handlers.
2457 	 */
2458 	if (unshare_flags & CLONE_VM)
2459 		unshare_flags |= CLONE_SIGHAND;
2460 	/*
2461 	 * If unsharing a signal handlers, must also unshare the signal queues.
2462 	 */
2463 	if (unshare_flags & CLONE_SIGHAND)
2464 		unshare_flags |= CLONE_THREAD;
2465 	/*
2466 	 * If unsharing namespace, must also unshare filesystem information.
2467 	 */
2468 	if (unshare_flags & CLONE_NEWNS)
2469 		unshare_flags |= CLONE_FS;
2470 
2471 	err = check_unshare_flags(unshare_flags);
2472 	if (err)
2473 		goto bad_unshare_out;
2474 	/*
2475 	 * CLONE_NEWIPC must also detach from the undolist: after switching
2476 	 * to a new ipc namespace, the semaphore arrays from the old
2477 	 * namespace are unreachable.
2478 	 */
2479 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2480 		do_sysvsem = 1;
2481 	err = unshare_fs(unshare_flags, &new_fs);
2482 	if (err)
2483 		goto bad_unshare_out;
2484 	err = unshare_fd(unshare_flags, &new_fd);
2485 	if (err)
2486 		goto bad_unshare_cleanup_fs;
2487 	err = unshare_userns(unshare_flags, &new_cred);
2488 	if (err)
2489 		goto bad_unshare_cleanup_fd;
2490 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2491 					 new_cred, new_fs);
2492 	if (err)
2493 		goto bad_unshare_cleanup_cred;
2494 
2495 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2496 		if (do_sysvsem) {
2497 			/*
2498 			 * CLONE_SYSVSEM is equivalent to sys_exit().
2499 			 */
2500 			exit_sem(current);
2501 		}
2502 		if (unshare_flags & CLONE_NEWIPC) {
2503 			/* Orphan segments in old ns (see sem above). */
2504 			exit_shm(current);
2505 			shm_init_task(current);
2506 		}
2507 
2508 		if (new_nsproxy)
2509 			switch_task_namespaces(current, new_nsproxy);
2510 
2511 		task_lock(current);
2512 
2513 		if (new_fs) {
2514 			fs = current->fs;
2515 			spin_lock(&fs->lock);
2516 			current->fs = new_fs;
2517 			if (--fs->users)
2518 				new_fs = NULL;
2519 			else
2520 				new_fs = fs;
2521 			spin_unlock(&fs->lock);
2522 		}
2523 
2524 		if (new_fd) {
2525 			fd = current->files;
2526 			current->files = new_fd;
2527 			new_fd = fd;
2528 		}
2529 
2530 		task_unlock(current);
2531 
2532 		if (new_cred) {
2533 			/* Install the new user namespace */
2534 			commit_creds(new_cred);
2535 			new_cred = NULL;
2536 		}
2537 	}
2538 
2539 	perf_event_namespaces(current);
2540 
2541 bad_unshare_cleanup_cred:
2542 	if (new_cred)
2543 		put_cred(new_cred);
2544 bad_unshare_cleanup_fd:
2545 	if (new_fd)
2546 		put_files_struct(new_fd);
2547 
2548 bad_unshare_cleanup_fs:
2549 	if (new_fs)
2550 		free_fs_struct(new_fs);
2551 
2552 bad_unshare_out:
2553 	return err;
2554 }
2555 
2556 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2557 {
2558 	return ksys_unshare(unshare_flags);
2559 }
2560 
2561 /*
2562  *	Helper to unshare the files of the current task.
2563  *	We don't want to expose copy_files internals to
2564  *	the exec layer of the kernel.
2565  */
2566 
2567 int unshare_files(struct files_struct **displaced)
2568 {
2569 	struct task_struct *task = current;
2570 	struct files_struct *copy = NULL;
2571 	int error;
2572 
2573 	error = unshare_fd(CLONE_FILES, &copy);
2574 	if (error || !copy) {
2575 		*displaced = NULL;
2576 		return error;
2577 	}
2578 	*displaced = task->files;
2579 	task_lock(task);
2580 	task->files = copy;
2581 	task_unlock(task);
2582 	return 0;
2583 }
2584 
2585 int sysctl_max_threads(struct ctl_table *table, int write,
2586 		       void __user *buffer, size_t *lenp, loff_t *ppos)
2587 {
2588 	struct ctl_table t;
2589 	int ret;
2590 	int threads = max_threads;
2591 	int min = MIN_THREADS;
2592 	int max = MAX_THREADS;
2593 
2594 	t = *table;
2595 	t.data = &threads;
2596 	t.extra1 = &min;
2597 	t.extra2 = &max;
2598 
2599 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2600 	if (ret || !write)
2601 		return ret;
2602 
2603 	set_max_threads(threads);
2604 
2605 	return 0;
2606 }
2607