1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/coredump.h> 20 #include <linux/sched/user.h> 21 #include <linux/sched/numa_balancing.h> 22 #include <linux/sched/stat.h> 23 #include <linux/sched/task.h> 24 #include <linux/sched/task_stack.h> 25 #include <linux/sched/cputime.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/binfmts.h> 41 #include <linux/mman.h> 42 #include <linux/mmu_notifier.h> 43 #include <linux/fs.h> 44 #include <linux/mm.h> 45 #include <linux/vmacache.h> 46 #include <linux/nsproxy.h> 47 #include <linux/capability.h> 48 #include <linux/cpu.h> 49 #include <linux/cgroup.h> 50 #include <linux/security.h> 51 #include <linux/hugetlb.h> 52 #include <linux/seccomp.h> 53 #include <linux/swap.h> 54 #include <linux/syscalls.h> 55 #include <linux/jiffies.h> 56 #include <linux/futex.h> 57 #include <linux/compat.h> 58 #include <linux/kthread.h> 59 #include <linux/task_io_accounting_ops.h> 60 #include <linux/rcupdate.h> 61 #include <linux/ptrace.h> 62 #include <linux/mount.h> 63 #include <linux/audit.h> 64 #include <linux/memcontrol.h> 65 #include <linux/ftrace.h> 66 #include <linux/proc_fs.h> 67 #include <linux/profile.h> 68 #include <linux/rmap.h> 69 #include <linux/ksm.h> 70 #include <linux/acct.h> 71 #include <linux/userfaultfd_k.h> 72 #include <linux/tsacct_kern.h> 73 #include <linux/cn_proc.h> 74 #include <linux/freezer.h> 75 #include <linux/delayacct.h> 76 #include <linux/taskstats_kern.h> 77 #include <linux/random.h> 78 #include <linux/tty.h> 79 #include <linux/blkdev.h> 80 #include <linux/fs_struct.h> 81 #include <linux/magic.h> 82 #include <linux/perf_event.h> 83 #include <linux/posix-timers.h> 84 #include <linux/user-return-notifier.h> 85 #include <linux/oom.h> 86 #include <linux/khugepaged.h> 87 #include <linux/signalfd.h> 88 #include <linux/uprobes.h> 89 #include <linux/aio.h> 90 #include <linux/compiler.h> 91 #include <linux/sysctl.h> 92 #include <linux/kcov.h> 93 #include <linux/livepatch.h> 94 #include <linux/thread_info.h> 95 #include <linux/stackleak.h> 96 #include <linux/kasan.h> 97 #include <linux/scs.h> 98 #include <linux/io_uring.h> 99 100 #include <asm/pgalloc.h> 101 #include <linux/uaccess.h> 102 #include <asm/mmu_context.h> 103 #include <asm/cacheflush.h> 104 #include <asm/tlbflush.h> 105 106 #include <trace/events/sched.h> 107 108 #define CREATE_TRACE_POINTS 109 #include <trace/events/task.h> 110 111 /* 112 * Minimum number of threads to boot the kernel 113 */ 114 #define MIN_THREADS 20 115 116 /* 117 * Maximum number of threads 118 */ 119 #define MAX_THREADS FUTEX_TID_MASK 120 121 /* 122 * Protected counters by write_lock_irq(&tasklist_lock) 123 */ 124 unsigned long total_forks; /* Handle normal Linux uptimes. */ 125 int nr_threads; /* The idle threads do not count.. */ 126 127 static int max_threads; /* tunable limit on nr_threads */ 128 129 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) 130 131 static const char * const resident_page_types[] = { 132 NAMED_ARRAY_INDEX(MM_FILEPAGES), 133 NAMED_ARRAY_INDEX(MM_ANONPAGES), 134 NAMED_ARRAY_INDEX(MM_SWAPENTS), 135 NAMED_ARRAY_INDEX(MM_SHMEMPAGES), 136 }; 137 138 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 139 140 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 141 142 #ifdef CONFIG_PROVE_RCU 143 int lockdep_tasklist_lock_is_held(void) 144 { 145 return lockdep_is_held(&tasklist_lock); 146 } 147 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 148 #endif /* #ifdef CONFIG_PROVE_RCU */ 149 150 int nr_processes(void) 151 { 152 int cpu; 153 int total = 0; 154 155 for_each_possible_cpu(cpu) 156 total += per_cpu(process_counts, cpu); 157 158 return total; 159 } 160 161 void __weak arch_release_task_struct(struct task_struct *tsk) 162 { 163 } 164 165 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 166 static struct kmem_cache *task_struct_cachep; 167 168 static inline struct task_struct *alloc_task_struct_node(int node) 169 { 170 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 171 } 172 173 static inline void free_task_struct(struct task_struct *tsk) 174 { 175 kmem_cache_free(task_struct_cachep, tsk); 176 } 177 #endif 178 179 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR 180 181 /* 182 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 183 * kmemcache based allocator. 184 */ 185 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 186 187 #ifdef CONFIG_VMAP_STACK 188 /* 189 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 190 * flush. Try to minimize the number of calls by caching stacks. 191 */ 192 #define NR_CACHED_STACKS 2 193 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 194 195 static int free_vm_stack_cache(unsigned int cpu) 196 { 197 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 198 int i; 199 200 for (i = 0; i < NR_CACHED_STACKS; i++) { 201 struct vm_struct *vm_stack = cached_vm_stacks[i]; 202 203 if (!vm_stack) 204 continue; 205 206 vfree(vm_stack->addr); 207 cached_vm_stacks[i] = NULL; 208 } 209 210 return 0; 211 } 212 #endif 213 214 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node) 215 { 216 #ifdef CONFIG_VMAP_STACK 217 void *stack; 218 int i; 219 220 for (i = 0; i < NR_CACHED_STACKS; i++) { 221 struct vm_struct *s; 222 223 s = this_cpu_xchg(cached_stacks[i], NULL); 224 225 if (!s) 226 continue; 227 228 /* Mark stack accessible for KASAN. */ 229 kasan_unpoison_range(s->addr, THREAD_SIZE); 230 231 /* Clear stale pointers from reused stack. */ 232 memset(s->addr, 0, THREAD_SIZE); 233 234 tsk->stack_vm_area = s; 235 tsk->stack = s->addr; 236 return s->addr; 237 } 238 239 /* 240 * Allocated stacks are cached and later reused by new threads, 241 * so memcg accounting is performed manually on assigning/releasing 242 * stacks to tasks. Drop __GFP_ACCOUNT. 243 */ 244 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, 245 VMALLOC_START, VMALLOC_END, 246 THREADINFO_GFP & ~__GFP_ACCOUNT, 247 PAGE_KERNEL, 248 0, node, __builtin_return_address(0)); 249 250 /* 251 * We can't call find_vm_area() in interrupt context, and 252 * free_thread_stack() can be called in interrupt context, 253 * so cache the vm_struct. 254 */ 255 if (stack) { 256 tsk->stack_vm_area = find_vm_area(stack); 257 tsk->stack = stack; 258 } 259 return stack; 260 #else 261 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 262 THREAD_SIZE_ORDER); 263 264 if (likely(page)) { 265 tsk->stack = kasan_reset_tag(page_address(page)); 266 return tsk->stack; 267 } 268 return NULL; 269 #endif 270 } 271 272 static inline void free_thread_stack(struct task_struct *tsk) 273 { 274 #ifdef CONFIG_VMAP_STACK 275 struct vm_struct *vm = task_stack_vm_area(tsk); 276 277 if (vm) { 278 int i; 279 280 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 281 memcg_kmem_uncharge_page(vm->pages[i], 0); 282 283 for (i = 0; i < NR_CACHED_STACKS; i++) { 284 if (this_cpu_cmpxchg(cached_stacks[i], 285 NULL, tsk->stack_vm_area) != NULL) 286 continue; 287 288 return; 289 } 290 291 vfree_atomic(tsk->stack); 292 return; 293 } 294 #endif 295 296 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER); 297 } 298 # else 299 static struct kmem_cache *thread_stack_cache; 300 301 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, 302 int node) 303 { 304 unsigned long *stack; 305 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 306 stack = kasan_reset_tag(stack); 307 tsk->stack = stack; 308 return stack; 309 } 310 311 static void free_thread_stack(struct task_struct *tsk) 312 { 313 kmem_cache_free(thread_stack_cache, tsk->stack); 314 } 315 316 void thread_stack_cache_init(void) 317 { 318 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 319 THREAD_SIZE, THREAD_SIZE, 0, 0, 320 THREAD_SIZE, NULL); 321 BUG_ON(thread_stack_cache == NULL); 322 } 323 # endif 324 #endif 325 326 /* SLAB cache for signal_struct structures (tsk->signal) */ 327 static struct kmem_cache *signal_cachep; 328 329 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 330 struct kmem_cache *sighand_cachep; 331 332 /* SLAB cache for files_struct structures (tsk->files) */ 333 struct kmem_cache *files_cachep; 334 335 /* SLAB cache for fs_struct structures (tsk->fs) */ 336 struct kmem_cache *fs_cachep; 337 338 /* SLAB cache for vm_area_struct structures */ 339 static struct kmem_cache *vm_area_cachep; 340 341 /* SLAB cache for mm_struct structures (tsk->mm) */ 342 static struct kmem_cache *mm_cachep; 343 344 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) 345 { 346 struct vm_area_struct *vma; 347 348 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 349 if (vma) 350 vma_init(vma, mm); 351 return vma; 352 } 353 354 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) 355 { 356 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 357 358 if (new) { 359 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags); 360 ASSERT_EXCLUSIVE_WRITER(orig->vm_file); 361 /* 362 * orig->shared.rb may be modified concurrently, but the clone 363 * will be reinitialized. 364 */ 365 *new = data_race(*orig); 366 INIT_LIST_HEAD(&new->anon_vma_chain); 367 new->vm_next = new->vm_prev = NULL; 368 } 369 return new; 370 } 371 372 void vm_area_free(struct vm_area_struct *vma) 373 { 374 kmem_cache_free(vm_area_cachep, vma); 375 } 376 377 static void account_kernel_stack(struct task_struct *tsk, int account) 378 { 379 void *stack = task_stack_page(tsk); 380 struct vm_struct *vm = task_stack_vm_area(tsk); 381 382 383 /* All stack pages are in the same node. */ 384 if (vm) 385 mod_lruvec_page_state(vm->pages[0], NR_KERNEL_STACK_KB, 386 account * (THREAD_SIZE / 1024)); 387 else 388 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB, 389 account * (THREAD_SIZE / 1024)); 390 } 391 392 static int memcg_charge_kernel_stack(struct task_struct *tsk) 393 { 394 #ifdef CONFIG_VMAP_STACK 395 struct vm_struct *vm = task_stack_vm_area(tsk); 396 int ret; 397 398 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0); 399 400 if (vm) { 401 int i; 402 403 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 404 405 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 406 /* 407 * If memcg_kmem_charge_page() fails, page's 408 * memory cgroup pointer is NULL, and 409 * memcg_kmem_uncharge_page() in free_thread_stack() 410 * will ignore this page. 411 */ 412 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 413 0); 414 if (ret) 415 return ret; 416 } 417 } 418 #endif 419 return 0; 420 } 421 422 static void release_task_stack(struct task_struct *tsk) 423 { 424 if (WARN_ON(tsk->state != TASK_DEAD)) 425 return; /* Better to leak the stack than to free prematurely */ 426 427 account_kernel_stack(tsk, -1); 428 free_thread_stack(tsk); 429 tsk->stack = NULL; 430 #ifdef CONFIG_VMAP_STACK 431 tsk->stack_vm_area = NULL; 432 #endif 433 } 434 435 #ifdef CONFIG_THREAD_INFO_IN_TASK 436 void put_task_stack(struct task_struct *tsk) 437 { 438 if (refcount_dec_and_test(&tsk->stack_refcount)) 439 release_task_stack(tsk); 440 } 441 #endif 442 443 void free_task(struct task_struct *tsk) 444 { 445 scs_release(tsk); 446 447 #ifndef CONFIG_THREAD_INFO_IN_TASK 448 /* 449 * The task is finally done with both the stack and thread_info, 450 * so free both. 451 */ 452 release_task_stack(tsk); 453 #else 454 /* 455 * If the task had a separate stack allocation, it should be gone 456 * by now. 457 */ 458 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 459 #endif 460 rt_mutex_debug_task_free(tsk); 461 ftrace_graph_exit_task(tsk); 462 arch_release_task_struct(tsk); 463 if (tsk->flags & PF_KTHREAD) 464 free_kthread_struct(tsk); 465 free_task_struct(tsk); 466 } 467 EXPORT_SYMBOL(free_task); 468 469 #ifdef CONFIG_MMU 470 static __latent_entropy int dup_mmap(struct mm_struct *mm, 471 struct mm_struct *oldmm) 472 { 473 struct vm_area_struct *mpnt, *tmp, *prev, **pprev; 474 struct rb_node **rb_link, *rb_parent; 475 int retval; 476 unsigned long charge; 477 LIST_HEAD(uf); 478 479 uprobe_start_dup_mmap(); 480 if (mmap_write_lock_killable(oldmm)) { 481 retval = -EINTR; 482 goto fail_uprobe_end; 483 } 484 flush_cache_dup_mm(oldmm); 485 uprobe_dup_mmap(oldmm, mm); 486 /* 487 * Not linked in yet - no deadlock potential: 488 */ 489 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING); 490 491 /* No ordering required: file already has been exposed. */ 492 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm)); 493 494 mm->total_vm = oldmm->total_vm; 495 mm->data_vm = oldmm->data_vm; 496 mm->exec_vm = oldmm->exec_vm; 497 mm->stack_vm = oldmm->stack_vm; 498 499 rb_link = &mm->mm_rb.rb_node; 500 rb_parent = NULL; 501 pprev = &mm->mmap; 502 retval = ksm_fork(mm, oldmm); 503 if (retval) 504 goto out; 505 retval = khugepaged_fork(mm, oldmm); 506 if (retval) 507 goto out; 508 509 prev = NULL; 510 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { 511 struct file *file; 512 513 if (mpnt->vm_flags & VM_DONTCOPY) { 514 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 515 continue; 516 } 517 charge = 0; 518 /* 519 * Don't duplicate many vmas if we've been oom-killed (for 520 * example) 521 */ 522 if (fatal_signal_pending(current)) { 523 retval = -EINTR; 524 goto out; 525 } 526 if (mpnt->vm_flags & VM_ACCOUNT) { 527 unsigned long len = vma_pages(mpnt); 528 529 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 530 goto fail_nomem; 531 charge = len; 532 } 533 tmp = vm_area_dup(mpnt); 534 if (!tmp) 535 goto fail_nomem; 536 retval = vma_dup_policy(mpnt, tmp); 537 if (retval) 538 goto fail_nomem_policy; 539 tmp->vm_mm = mm; 540 retval = dup_userfaultfd(tmp, &uf); 541 if (retval) 542 goto fail_nomem_anon_vma_fork; 543 if (tmp->vm_flags & VM_WIPEONFORK) { 544 /* 545 * VM_WIPEONFORK gets a clean slate in the child. 546 * Don't prepare anon_vma until fault since we don't 547 * copy page for current vma. 548 */ 549 tmp->anon_vma = NULL; 550 } else if (anon_vma_fork(tmp, mpnt)) 551 goto fail_nomem_anon_vma_fork; 552 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT); 553 file = tmp->vm_file; 554 if (file) { 555 struct inode *inode = file_inode(file); 556 struct address_space *mapping = file->f_mapping; 557 558 get_file(file); 559 if (tmp->vm_flags & VM_DENYWRITE) 560 put_write_access(inode); 561 i_mmap_lock_write(mapping); 562 if (tmp->vm_flags & VM_SHARED) 563 mapping_allow_writable(mapping); 564 flush_dcache_mmap_lock(mapping); 565 /* insert tmp into the share list, just after mpnt */ 566 vma_interval_tree_insert_after(tmp, mpnt, 567 &mapping->i_mmap); 568 flush_dcache_mmap_unlock(mapping); 569 i_mmap_unlock_write(mapping); 570 } 571 572 /* 573 * Clear hugetlb-related page reserves for children. This only 574 * affects MAP_PRIVATE mappings. Faults generated by the child 575 * are not guaranteed to succeed, even if read-only 576 */ 577 if (is_vm_hugetlb_page(tmp)) 578 reset_vma_resv_huge_pages(tmp); 579 580 /* 581 * Link in the new vma and copy the page table entries. 582 */ 583 *pprev = tmp; 584 pprev = &tmp->vm_next; 585 tmp->vm_prev = prev; 586 prev = tmp; 587 588 __vma_link_rb(mm, tmp, rb_link, rb_parent); 589 rb_link = &tmp->vm_rb.rb_right; 590 rb_parent = &tmp->vm_rb; 591 592 mm->map_count++; 593 if (!(tmp->vm_flags & VM_WIPEONFORK)) 594 retval = copy_page_range(tmp, mpnt); 595 596 if (tmp->vm_ops && tmp->vm_ops->open) 597 tmp->vm_ops->open(tmp); 598 599 if (retval) 600 goto out; 601 } 602 /* a new mm has just been created */ 603 retval = arch_dup_mmap(oldmm, mm); 604 out: 605 mmap_write_unlock(mm); 606 flush_tlb_mm(oldmm); 607 mmap_write_unlock(oldmm); 608 dup_userfaultfd_complete(&uf); 609 fail_uprobe_end: 610 uprobe_end_dup_mmap(); 611 return retval; 612 fail_nomem_anon_vma_fork: 613 mpol_put(vma_policy(tmp)); 614 fail_nomem_policy: 615 vm_area_free(tmp); 616 fail_nomem: 617 retval = -ENOMEM; 618 vm_unacct_memory(charge); 619 goto out; 620 } 621 622 static inline int mm_alloc_pgd(struct mm_struct *mm) 623 { 624 mm->pgd = pgd_alloc(mm); 625 if (unlikely(!mm->pgd)) 626 return -ENOMEM; 627 return 0; 628 } 629 630 static inline void mm_free_pgd(struct mm_struct *mm) 631 { 632 pgd_free(mm, mm->pgd); 633 } 634 #else 635 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 636 { 637 mmap_write_lock(oldmm); 638 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm)); 639 mmap_write_unlock(oldmm); 640 return 0; 641 } 642 #define mm_alloc_pgd(mm) (0) 643 #define mm_free_pgd(mm) 644 #endif /* CONFIG_MMU */ 645 646 static void check_mm(struct mm_struct *mm) 647 { 648 int i; 649 650 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, 651 "Please make sure 'struct resident_page_types[]' is updated as well"); 652 653 for (i = 0; i < NR_MM_COUNTERS; i++) { 654 long x = atomic_long_read(&mm->rss_stat.count[i]); 655 656 if (unlikely(x)) 657 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n", 658 mm, resident_page_types[i], x); 659 } 660 661 if (mm_pgtables_bytes(mm)) 662 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 663 mm_pgtables_bytes(mm)); 664 665 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 666 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 667 #endif 668 } 669 670 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 671 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 672 673 /* 674 * Called when the last reference to the mm 675 * is dropped: either by a lazy thread or by 676 * mmput. Free the page directory and the mm. 677 */ 678 void __mmdrop(struct mm_struct *mm) 679 { 680 BUG_ON(mm == &init_mm); 681 WARN_ON_ONCE(mm == current->mm); 682 WARN_ON_ONCE(mm == current->active_mm); 683 mm_free_pgd(mm); 684 destroy_context(mm); 685 mmu_notifier_subscriptions_destroy(mm); 686 check_mm(mm); 687 put_user_ns(mm->user_ns); 688 free_mm(mm); 689 } 690 EXPORT_SYMBOL_GPL(__mmdrop); 691 692 static void mmdrop_async_fn(struct work_struct *work) 693 { 694 struct mm_struct *mm; 695 696 mm = container_of(work, struct mm_struct, async_put_work); 697 __mmdrop(mm); 698 } 699 700 static void mmdrop_async(struct mm_struct *mm) 701 { 702 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 703 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 704 schedule_work(&mm->async_put_work); 705 } 706 } 707 708 static inline void free_signal_struct(struct signal_struct *sig) 709 { 710 taskstats_tgid_free(sig); 711 sched_autogroup_exit(sig); 712 /* 713 * __mmdrop is not safe to call from softirq context on x86 due to 714 * pgd_dtor so postpone it to the async context 715 */ 716 if (sig->oom_mm) 717 mmdrop_async(sig->oom_mm); 718 kmem_cache_free(signal_cachep, sig); 719 } 720 721 static inline void put_signal_struct(struct signal_struct *sig) 722 { 723 if (refcount_dec_and_test(&sig->sigcnt)) 724 free_signal_struct(sig); 725 } 726 727 void __put_task_struct(struct task_struct *tsk) 728 { 729 WARN_ON(!tsk->exit_state); 730 WARN_ON(refcount_read(&tsk->usage)); 731 WARN_ON(tsk == current); 732 733 io_uring_free(tsk); 734 cgroup_free(tsk); 735 task_numa_free(tsk, true); 736 security_task_free(tsk); 737 exit_creds(tsk); 738 delayacct_tsk_free(tsk); 739 put_signal_struct(tsk->signal); 740 741 if (!profile_handoff_task(tsk)) 742 free_task(tsk); 743 } 744 EXPORT_SYMBOL_GPL(__put_task_struct); 745 746 void __init __weak arch_task_cache_init(void) { } 747 748 /* 749 * set_max_threads 750 */ 751 static void set_max_threads(unsigned int max_threads_suggested) 752 { 753 u64 threads; 754 unsigned long nr_pages = totalram_pages(); 755 756 /* 757 * The number of threads shall be limited such that the thread 758 * structures may only consume a small part of the available memory. 759 */ 760 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 761 threads = MAX_THREADS; 762 else 763 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 764 (u64) THREAD_SIZE * 8UL); 765 766 if (threads > max_threads_suggested) 767 threads = max_threads_suggested; 768 769 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 770 } 771 772 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 773 /* Initialized by the architecture: */ 774 int arch_task_struct_size __read_mostly; 775 #endif 776 777 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 778 static void task_struct_whitelist(unsigned long *offset, unsigned long *size) 779 { 780 /* Fetch thread_struct whitelist for the architecture. */ 781 arch_thread_struct_whitelist(offset, size); 782 783 /* 784 * Handle zero-sized whitelist or empty thread_struct, otherwise 785 * adjust offset to position of thread_struct in task_struct. 786 */ 787 if (unlikely(*size == 0)) 788 *offset = 0; 789 else 790 *offset += offsetof(struct task_struct, thread); 791 } 792 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */ 793 794 void __init fork_init(void) 795 { 796 int i; 797 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 798 #ifndef ARCH_MIN_TASKALIGN 799 #define ARCH_MIN_TASKALIGN 0 800 #endif 801 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 802 unsigned long useroffset, usersize; 803 804 /* create a slab on which task_structs can be allocated */ 805 task_struct_whitelist(&useroffset, &usersize); 806 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 807 arch_task_struct_size, align, 808 SLAB_PANIC|SLAB_ACCOUNT, 809 useroffset, usersize, NULL); 810 #endif 811 812 /* do the arch specific task caches init */ 813 arch_task_cache_init(); 814 815 set_max_threads(MAX_THREADS); 816 817 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 818 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 819 init_task.signal->rlim[RLIMIT_SIGPENDING] = 820 init_task.signal->rlim[RLIMIT_NPROC]; 821 822 for (i = 0; i < UCOUNT_COUNTS; i++) { 823 init_user_ns.ucount_max[i] = max_threads/2; 824 } 825 826 #ifdef CONFIG_VMAP_STACK 827 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 828 NULL, free_vm_stack_cache); 829 #endif 830 831 scs_init(); 832 833 lockdep_init_task(&init_task); 834 uprobes_init(); 835 } 836 837 int __weak arch_dup_task_struct(struct task_struct *dst, 838 struct task_struct *src) 839 { 840 *dst = *src; 841 return 0; 842 } 843 844 void set_task_stack_end_magic(struct task_struct *tsk) 845 { 846 unsigned long *stackend; 847 848 stackend = end_of_stack(tsk); 849 *stackend = STACK_END_MAGIC; /* for overflow detection */ 850 } 851 852 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 853 { 854 struct task_struct *tsk; 855 unsigned long *stack; 856 struct vm_struct *stack_vm_area __maybe_unused; 857 int err; 858 859 if (node == NUMA_NO_NODE) 860 node = tsk_fork_get_node(orig); 861 tsk = alloc_task_struct_node(node); 862 if (!tsk) 863 return NULL; 864 865 stack = alloc_thread_stack_node(tsk, node); 866 if (!stack) 867 goto free_tsk; 868 869 if (memcg_charge_kernel_stack(tsk)) 870 goto free_stack; 871 872 stack_vm_area = task_stack_vm_area(tsk); 873 874 err = arch_dup_task_struct(tsk, orig); 875 876 /* 877 * arch_dup_task_struct() clobbers the stack-related fields. Make 878 * sure they're properly initialized before using any stack-related 879 * functions again. 880 */ 881 tsk->stack = stack; 882 #ifdef CONFIG_VMAP_STACK 883 tsk->stack_vm_area = stack_vm_area; 884 #endif 885 #ifdef CONFIG_THREAD_INFO_IN_TASK 886 refcount_set(&tsk->stack_refcount, 1); 887 #endif 888 889 if (err) 890 goto free_stack; 891 892 err = scs_prepare(tsk, node); 893 if (err) 894 goto free_stack; 895 896 #ifdef CONFIG_SECCOMP 897 /* 898 * We must handle setting up seccomp filters once we're under 899 * the sighand lock in case orig has changed between now and 900 * then. Until then, filter must be NULL to avoid messing up 901 * the usage counts on the error path calling free_task. 902 */ 903 tsk->seccomp.filter = NULL; 904 #endif 905 906 setup_thread_stack(tsk, orig); 907 clear_user_return_notifier(tsk); 908 clear_tsk_need_resched(tsk); 909 set_task_stack_end_magic(tsk); 910 clear_syscall_work_syscall_user_dispatch(tsk); 911 912 #ifdef CONFIG_STACKPROTECTOR 913 tsk->stack_canary = get_random_canary(); 914 #endif 915 if (orig->cpus_ptr == &orig->cpus_mask) 916 tsk->cpus_ptr = &tsk->cpus_mask; 917 918 /* 919 * One for the user space visible state that goes away when reaped. 920 * One for the scheduler. 921 */ 922 refcount_set(&tsk->rcu_users, 2); 923 /* One for the rcu users */ 924 refcount_set(&tsk->usage, 1); 925 #ifdef CONFIG_BLK_DEV_IO_TRACE 926 tsk->btrace_seq = 0; 927 #endif 928 tsk->splice_pipe = NULL; 929 tsk->task_frag.page = NULL; 930 tsk->wake_q.next = NULL; 931 932 account_kernel_stack(tsk, 1); 933 934 kcov_task_init(tsk); 935 kmap_local_fork(tsk); 936 937 #ifdef CONFIG_FAULT_INJECTION 938 tsk->fail_nth = 0; 939 #endif 940 941 #ifdef CONFIG_BLK_CGROUP 942 tsk->throttle_queue = NULL; 943 tsk->use_memdelay = 0; 944 #endif 945 946 #ifdef CONFIG_MEMCG 947 tsk->active_memcg = NULL; 948 #endif 949 return tsk; 950 951 free_stack: 952 free_thread_stack(tsk); 953 free_tsk: 954 free_task_struct(tsk); 955 return NULL; 956 } 957 958 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 959 960 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 961 962 static int __init coredump_filter_setup(char *s) 963 { 964 default_dump_filter = 965 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 966 MMF_DUMP_FILTER_MASK; 967 return 1; 968 } 969 970 __setup("coredump_filter=", coredump_filter_setup); 971 972 #include <linux/init_task.h> 973 974 static void mm_init_aio(struct mm_struct *mm) 975 { 976 #ifdef CONFIG_AIO 977 spin_lock_init(&mm->ioctx_lock); 978 mm->ioctx_table = NULL; 979 #endif 980 } 981 982 static __always_inline void mm_clear_owner(struct mm_struct *mm, 983 struct task_struct *p) 984 { 985 #ifdef CONFIG_MEMCG 986 if (mm->owner == p) 987 WRITE_ONCE(mm->owner, NULL); 988 #endif 989 } 990 991 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 992 { 993 #ifdef CONFIG_MEMCG 994 mm->owner = p; 995 #endif 996 } 997 998 static void mm_init_uprobes_state(struct mm_struct *mm) 999 { 1000 #ifdef CONFIG_UPROBES 1001 mm->uprobes_state.xol_area = NULL; 1002 #endif 1003 } 1004 1005 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 1006 struct user_namespace *user_ns) 1007 { 1008 mm->mmap = NULL; 1009 mm->mm_rb = RB_ROOT; 1010 mm->vmacache_seqnum = 0; 1011 atomic_set(&mm->mm_users, 1); 1012 atomic_set(&mm->mm_count, 1); 1013 seqcount_init(&mm->write_protect_seq); 1014 mmap_init_lock(mm); 1015 INIT_LIST_HEAD(&mm->mmlist); 1016 mm->core_state = NULL; 1017 mm_pgtables_bytes_init(mm); 1018 mm->map_count = 0; 1019 mm->locked_vm = 0; 1020 atomic_set(&mm->has_pinned, 0); 1021 atomic64_set(&mm->pinned_vm, 0); 1022 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1023 spin_lock_init(&mm->page_table_lock); 1024 spin_lock_init(&mm->arg_lock); 1025 mm_init_cpumask(mm); 1026 mm_init_aio(mm); 1027 mm_init_owner(mm, p); 1028 RCU_INIT_POINTER(mm->exe_file, NULL); 1029 mmu_notifier_subscriptions_init(mm); 1030 init_tlb_flush_pending(mm); 1031 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 1032 mm->pmd_huge_pte = NULL; 1033 #endif 1034 mm_init_uprobes_state(mm); 1035 1036 if (current->mm) { 1037 mm->flags = current->mm->flags & MMF_INIT_MASK; 1038 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1039 } else { 1040 mm->flags = default_dump_filter; 1041 mm->def_flags = 0; 1042 } 1043 1044 if (mm_alloc_pgd(mm)) 1045 goto fail_nopgd; 1046 1047 if (init_new_context(p, mm)) 1048 goto fail_nocontext; 1049 1050 mm->user_ns = get_user_ns(user_ns); 1051 return mm; 1052 1053 fail_nocontext: 1054 mm_free_pgd(mm); 1055 fail_nopgd: 1056 free_mm(mm); 1057 return NULL; 1058 } 1059 1060 /* 1061 * Allocate and initialize an mm_struct. 1062 */ 1063 struct mm_struct *mm_alloc(void) 1064 { 1065 struct mm_struct *mm; 1066 1067 mm = allocate_mm(); 1068 if (!mm) 1069 return NULL; 1070 1071 memset(mm, 0, sizeof(*mm)); 1072 return mm_init(mm, current, current_user_ns()); 1073 } 1074 1075 static inline void __mmput(struct mm_struct *mm) 1076 { 1077 VM_BUG_ON(atomic_read(&mm->mm_users)); 1078 1079 uprobe_clear_state(mm); 1080 exit_aio(mm); 1081 ksm_exit(mm); 1082 khugepaged_exit(mm); /* must run before exit_mmap */ 1083 exit_mmap(mm); 1084 mm_put_huge_zero_page(mm); 1085 set_mm_exe_file(mm, NULL); 1086 if (!list_empty(&mm->mmlist)) { 1087 spin_lock(&mmlist_lock); 1088 list_del(&mm->mmlist); 1089 spin_unlock(&mmlist_lock); 1090 } 1091 if (mm->binfmt) 1092 module_put(mm->binfmt->module); 1093 mmdrop(mm); 1094 } 1095 1096 /* 1097 * Decrement the use count and release all resources for an mm. 1098 */ 1099 void mmput(struct mm_struct *mm) 1100 { 1101 might_sleep(); 1102 1103 if (atomic_dec_and_test(&mm->mm_users)) 1104 __mmput(mm); 1105 } 1106 EXPORT_SYMBOL_GPL(mmput); 1107 1108 #ifdef CONFIG_MMU 1109 static void mmput_async_fn(struct work_struct *work) 1110 { 1111 struct mm_struct *mm = container_of(work, struct mm_struct, 1112 async_put_work); 1113 1114 __mmput(mm); 1115 } 1116 1117 void mmput_async(struct mm_struct *mm) 1118 { 1119 if (atomic_dec_and_test(&mm->mm_users)) { 1120 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1121 schedule_work(&mm->async_put_work); 1122 } 1123 } 1124 #endif 1125 1126 /** 1127 * set_mm_exe_file - change a reference to the mm's executable file 1128 * 1129 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1130 * 1131 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1132 * invocations: in mmput() nobody alive left, in execve task is single 1133 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the 1134 * mm->exe_file, but does so without using set_mm_exe_file() in order 1135 * to do avoid the need for any locks. 1136 */ 1137 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1138 { 1139 struct file *old_exe_file; 1140 1141 /* 1142 * It is safe to dereference the exe_file without RCU as 1143 * this function is only called if nobody else can access 1144 * this mm -- see comment above for justification. 1145 */ 1146 old_exe_file = rcu_dereference_raw(mm->exe_file); 1147 1148 if (new_exe_file) 1149 get_file(new_exe_file); 1150 rcu_assign_pointer(mm->exe_file, new_exe_file); 1151 if (old_exe_file) 1152 fput(old_exe_file); 1153 } 1154 1155 /** 1156 * get_mm_exe_file - acquire a reference to the mm's executable file 1157 * 1158 * Returns %NULL if mm has no associated executable file. 1159 * User must release file via fput(). 1160 */ 1161 struct file *get_mm_exe_file(struct mm_struct *mm) 1162 { 1163 struct file *exe_file; 1164 1165 rcu_read_lock(); 1166 exe_file = rcu_dereference(mm->exe_file); 1167 if (exe_file && !get_file_rcu(exe_file)) 1168 exe_file = NULL; 1169 rcu_read_unlock(); 1170 return exe_file; 1171 } 1172 EXPORT_SYMBOL(get_mm_exe_file); 1173 1174 /** 1175 * get_task_exe_file - acquire a reference to the task's executable file 1176 * 1177 * Returns %NULL if task's mm (if any) has no associated executable file or 1178 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1179 * User must release file via fput(). 1180 */ 1181 struct file *get_task_exe_file(struct task_struct *task) 1182 { 1183 struct file *exe_file = NULL; 1184 struct mm_struct *mm; 1185 1186 task_lock(task); 1187 mm = task->mm; 1188 if (mm) { 1189 if (!(task->flags & PF_KTHREAD)) 1190 exe_file = get_mm_exe_file(mm); 1191 } 1192 task_unlock(task); 1193 return exe_file; 1194 } 1195 EXPORT_SYMBOL(get_task_exe_file); 1196 1197 /** 1198 * get_task_mm - acquire a reference to the task's mm 1199 * 1200 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1201 * this kernel workthread has transiently adopted a user mm with use_mm, 1202 * to do its AIO) is not set and if so returns a reference to it, after 1203 * bumping up the use count. User must release the mm via mmput() 1204 * after use. Typically used by /proc and ptrace. 1205 */ 1206 struct mm_struct *get_task_mm(struct task_struct *task) 1207 { 1208 struct mm_struct *mm; 1209 1210 task_lock(task); 1211 mm = task->mm; 1212 if (mm) { 1213 if (task->flags & PF_KTHREAD) 1214 mm = NULL; 1215 else 1216 mmget(mm); 1217 } 1218 task_unlock(task); 1219 return mm; 1220 } 1221 EXPORT_SYMBOL_GPL(get_task_mm); 1222 1223 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1224 { 1225 struct mm_struct *mm; 1226 int err; 1227 1228 err = down_read_killable(&task->signal->exec_update_lock); 1229 if (err) 1230 return ERR_PTR(err); 1231 1232 mm = get_task_mm(task); 1233 if (mm && mm != current->mm && 1234 !ptrace_may_access(task, mode)) { 1235 mmput(mm); 1236 mm = ERR_PTR(-EACCES); 1237 } 1238 up_read(&task->signal->exec_update_lock); 1239 1240 return mm; 1241 } 1242 1243 static void complete_vfork_done(struct task_struct *tsk) 1244 { 1245 struct completion *vfork; 1246 1247 task_lock(tsk); 1248 vfork = tsk->vfork_done; 1249 if (likely(vfork)) { 1250 tsk->vfork_done = NULL; 1251 complete(vfork); 1252 } 1253 task_unlock(tsk); 1254 } 1255 1256 static int wait_for_vfork_done(struct task_struct *child, 1257 struct completion *vfork) 1258 { 1259 int killed; 1260 1261 freezer_do_not_count(); 1262 cgroup_enter_frozen(); 1263 killed = wait_for_completion_killable(vfork); 1264 cgroup_leave_frozen(false); 1265 freezer_count(); 1266 1267 if (killed) { 1268 task_lock(child); 1269 child->vfork_done = NULL; 1270 task_unlock(child); 1271 } 1272 1273 put_task_struct(child); 1274 return killed; 1275 } 1276 1277 /* Please note the differences between mmput and mm_release. 1278 * mmput is called whenever we stop holding onto a mm_struct, 1279 * error success whatever. 1280 * 1281 * mm_release is called after a mm_struct has been removed 1282 * from the current process. 1283 * 1284 * This difference is important for error handling, when we 1285 * only half set up a mm_struct for a new process and need to restore 1286 * the old one. Because we mmput the new mm_struct before 1287 * restoring the old one. . . 1288 * Eric Biederman 10 January 1998 1289 */ 1290 static void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1291 { 1292 uprobe_free_utask(tsk); 1293 1294 /* Get rid of any cached register state */ 1295 deactivate_mm(tsk, mm); 1296 1297 /* 1298 * Signal userspace if we're not exiting with a core dump 1299 * because we want to leave the value intact for debugging 1300 * purposes. 1301 */ 1302 if (tsk->clear_child_tid) { 1303 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) && 1304 atomic_read(&mm->mm_users) > 1) { 1305 /* 1306 * We don't check the error code - if userspace has 1307 * not set up a proper pointer then tough luck. 1308 */ 1309 put_user(0, tsk->clear_child_tid); 1310 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1311 1, NULL, NULL, 0, 0); 1312 } 1313 tsk->clear_child_tid = NULL; 1314 } 1315 1316 /* 1317 * All done, finally we can wake up parent and return this mm to him. 1318 * Also kthread_stop() uses this completion for synchronization. 1319 */ 1320 if (tsk->vfork_done) 1321 complete_vfork_done(tsk); 1322 } 1323 1324 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1325 { 1326 futex_exit_release(tsk); 1327 mm_release(tsk, mm); 1328 } 1329 1330 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1331 { 1332 futex_exec_release(tsk); 1333 mm_release(tsk, mm); 1334 } 1335 1336 /** 1337 * dup_mm() - duplicates an existing mm structure 1338 * @tsk: the task_struct with which the new mm will be associated. 1339 * @oldmm: the mm to duplicate. 1340 * 1341 * Allocates a new mm structure and duplicates the provided @oldmm structure 1342 * content into it. 1343 * 1344 * Return: the duplicated mm or NULL on failure. 1345 */ 1346 static struct mm_struct *dup_mm(struct task_struct *tsk, 1347 struct mm_struct *oldmm) 1348 { 1349 struct mm_struct *mm; 1350 int err; 1351 1352 mm = allocate_mm(); 1353 if (!mm) 1354 goto fail_nomem; 1355 1356 memcpy(mm, oldmm, sizeof(*mm)); 1357 1358 if (!mm_init(mm, tsk, mm->user_ns)) 1359 goto fail_nomem; 1360 1361 err = dup_mmap(mm, oldmm); 1362 if (err) 1363 goto free_pt; 1364 1365 mm->hiwater_rss = get_mm_rss(mm); 1366 mm->hiwater_vm = mm->total_vm; 1367 1368 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1369 goto free_pt; 1370 1371 return mm; 1372 1373 free_pt: 1374 /* don't put binfmt in mmput, we haven't got module yet */ 1375 mm->binfmt = NULL; 1376 mm_init_owner(mm, NULL); 1377 mmput(mm); 1378 1379 fail_nomem: 1380 return NULL; 1381 } 1382 1383 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1384 { 1385 struct mm_struct *mm, *oldmm; 1386 int retval; 1387 1388 tsk->min_flt = tsk->maj_flt = 0; 1389 tsk->nvcsw = tsk->nivcsw = 0; 1390 #ifdef CONFIG_DETECT_HUNG_TASK 1391 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1392 tsk->last_switch_time = 0; 1393 #endif 1394 1395 tsk->mm = NULL; 1396 tsk->active_mm = NULL; 1397 1398 /* 1399 * Are we cloning a kernel thread? 1400 * 1401 * We need to steal a active VM for that.. 1402 */ 1403 oldmm = current->mm; 1404 if (!oldmm) 1405 return 0; 1406 1407 /* initialize the new vmacache entries */ 1408 vmacache_flush(tsk); 1409 1410 if (clone_flags & CLONE_VM) { 1411 mmget(oldmm); 1412 mm = oldmm; 1413 goto good_mm; 1414 } 1415 1416 retval = -ENOMEM; 1417 mm = dup_mm(tsk, current->mm); 1418 if (!mm) 1419 goto fail_nomem; 1420 1421 good_mm: 1422 tsk->mm = mm; 1423 tsk->active_mm = mm; 1424 return 0; 1425 1426 fail_nomem: 1427 return retval; 1428 } 1429 1430 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1431 { 1432 struct fs_struct *fs = current->fs; 1433 if (clone_flags & CLONE_FS) { 1434 /* tsk->fs is already what we want */ 1435 spin_lock(&fs->lock); 1436 if (fs->in_exec) { 1437 spin_unlock(&fs->lock); 1438 return -EAGAIN; 1439 } 1440 fs->users++; 1441 spin_unlock(&fs->lock); 1442 return 0; 1443 } 1444 tsk->fs = copy_fs_struct(fs); 1445 if (!tsk->fs) 1446 return -ENOMEM; 1447 return 0; 1448 } 1449 1450 static int copy_files(unsigned long clone_flags, struct task_struct *tsk) 1451 { 1452 struct files_struct *oldf, *newf; 1453 int error = 0; 1454 1455 /* 1456 * A background process may not have any files ... 1457 */ 1458 oldf = current->files; 1459 if (!oldf) 1460 goto out; 1461 1462 if (clone_flags & CLONE_FILES) { 1463 atomic_inc(&oldf->count); 1464 goto out; 1465 } 1466 1467 newf = dup_fd(oldf, NR_OPEN_MAX, &error); 1468 if (!newf) 1469 goto out; 1470 1471 tsk->files = newf; 1472 error = 0; 1473 out: 1474 return error; 1475 } 1476 1477 static int copy_io(unsigned long clone_flags, struct task_struct *tsk) 1478 { 1479 #ifdef CONFIG_BLOCK 1480 struct io_context *ioc = current->io_context; 1481 struct io_context *new_ioc; 1482 1483 if (!ioc) 1484 return 0; 1485 /* 1486 * Share io context with parent, if CLONE_IO is set 1487 */ 1488 if (clone_flags & CLONE_IO) { 1489 ioc_task_link(ioc); 1490 tsk->io_context = ioc; 1491 } else if (ioprio_valid(ioc->ioprio)) { 1492 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE); 1493 if (unlikely(!new_ioc)) 1494 return -ENOMEM; 1495 1496 new_ioc->ioprio = ioc->ioprio; 1497 put_io_context(new_ioc); 1498 } 1499 #endif 1500 return 0; 1501 } 1502 1503 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1504 { 1505 struct sighand_struct *sig; 1506 1507 if (clone_flags & CLONE_SIGHAND) { 1508 refcount_inc(¤t->sighand->count); 1509 return 0; 1510 } 1511 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1512 RCU_INIT_POINTER(tsk->sighand, sig); 1513 if (!sig) 1514 return -ENOMEM; 1515 1516 refcount_set(&sig->count, 1); 1517 spin_lock_irq(¤t->sighand->siglock); 1518 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1519 spin_unlock_irq(¤t->sighand->siglock); 1520 1521 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */ 1522 if (clone_flags & CLONE_CLEAR_SIGHAND) 1523 flush_signal_handlers(tsk, 0); 1524 1525 return 0; 1526 } 1527 1528 void __cleanup_sighand(struct sighand_struct *sighand) 1529 { 1530 if (refcount_dec_and_test(&sighand->count)) { 1531 signalfd_cleanup(sighand); 1532 /* 1533 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1534 * without an RCU grace period, see __lock_task_sighand(). 1535 */ 1536 kmem_cache_free(sighand_cachep, sighand); 1537 } 1538 } 1539 1540 /* 1541 * Initialize POSIX timer handling for a thread group. 1542 */ 1543 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1544 { 1545 struct posix_cputimers *pct = &sig->posix_cputimers; 1546 unsigned long cpu_limit; 1547 1548 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1549 posix_cputimers_group_init(pct, cpu_limit); 1550 } 1551 1552 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1553 { 1554 struct signal_struct *sig; 1555 1556 if (clone_flags & CLONE_THREAD) 1557 return 0; 1558 1559 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1560 tsk->signal = sig; 1561 if (!sig) 1562 return -ENOMEM; 1563 1564 sig->nr_threads = 1; 1565 atomic_set(&sig->live, 1); 1566 refcount_set(&sig->sigcnt, 1); 1567 1568 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1569 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1570 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1571 1572 init_waitqueue_head(&sig->wait_chldexit); 1573 sig->curr_target = tsk; 1574 init_sigpending(&sig->shared_pending); 1575 INIT_HLIST_HEAD(&sig->multiprocess); 1576 seqlock_init(&sig->stats_lock); 1577 prev_cputime_init(&sig->prev_cputime); 1578 1579 #ifdef CONFIG_POSIX_TIMERS 1580 INIT_LIST_HEAD(&sig->posix_timers); 1581 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1582 sig->real_timer.function = it_real_fn; 1583 #endif 1584 1585 task_lock(current->group_leader); 1586 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1587 task_unlock(current->group_leader); 1588 1589 posix_cpu_timers_init_group(sig); 1590 1591 tty_audit_fork(sig); 1592 sched_autogroup_fork(sig); 1593 1594 sig->oom_score_adj = current->signal->oom_score_adj; 1595 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1596 1597 mutex_init(&sig->cred_guard_mutex); 1598 init_rwsem(&sig->exec_update_lock); 1599 1600 return 0; 1601 } 1602 1603 static void copy_seccomp(struct task_struct *p) 1604 { 1605 #ifdef CONFIG_SECCOMP 1606 /* 1607 * Must be called with sighand->lock held, which is common to 1608 * all threads in the group. Holding cred_guard_mutex is not 1609 * needed because this new task is not yet running and cannot 1610 * be racing exec. 1611 */ 1612 assert_spin_locked(¤t->sighand->siglock); 1613 1614 /* Ref-count the new filter user, and assign it. */ 1615 get_seccomp_filter(current); 1616 p->seccomp = current->seccomp; 1617 1618 /* 1619 * Explicitly enable no_new_privs here in case it got set 1620 * between the task_struct being duplicated and holding the 1621 * sighand lock. The seccomp state and nnp must be in sync. 1622 */ 1623 if (task_no_new_privs(current)) 1624 task_set_no_new_privs(p); 1625 1626 /* 1627 * If the parent gained a seccomp mode after copying thread 1628 * flags and between before we held the sighand lock, we have 1629 * to manually enable the seccomp thread flag here. 1630 */ 1631 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1632 set_task_syscall_work(p, SECCOMP); 1633 #endif 1634 } 1635 1636 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1637 { 1638 current->clear_child_tid = tidptr; 1639 1640 return task_pid_vnr(current); 1641 } 1642 1643 static void rt_mutex_init_task(struct task_struct *p) 1644 { 1645 raw_spin_lock_init(&p->pi_lock); 1646 #ifdef CONFIG_RT_MUTEXES 1647 p->pi_waiters = RB_ROOT_CACHED; 1648 p->pi_top_task = NULL; 1649 p->pi_blocked_on = NULL; 1650 #endif 1651 } 1652 1653 static inline void init_task_pid_links(struct task_struct *task) 1654 { 1655 enum pid_type type; 1656 1657 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 1658 INIT_HLIST_NODE(&task->pid_links[type]); 1659 } 1660 } 1661 1662 static inline void 1663 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1664 { 1665 if (type == PIDTYPE_PID) 1666 task->thread_pid = pid; 1667 else 1668 task->signal->pids[type] = pid; 1669 } 1670 1671 static inline void rcu_copy_process(struct task_struct *p) 1672 { 1673 #ifdef CONFIG_PREEMPT_RCU 1674 p->rcu_read_lock_nesting = 0; 1675 p->rcu_read_unlock_special.s = 0; 1676 p->rcu_blocked_node = NULL; 1677 INIT_LIST_HEAD(&p->rcu_node_entry); 1678 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1679 #ifdef CONFIG_TASKS_RCU 1680 p->rcu_tasks_holdout = false; 1681 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1682 p->rcu_tasks_idle_cpu = -1; 1683 #endif /* #ifdef CONFIG_TASKS_RCU */ 1684 #ifdef CONFIG_TASKS_TRACE_RCU 1685 p->trc_reader_nesting = 0; 1686 p->trc_reader_special.s = 0; 1687 INIT_LIST_HEAD(&p->trc_holdout_list); 1688 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1689 } 1690 1691 struct pid *pidfd_pid(const struct file *file) 1692 { 1693 if (file->f_op == &pidfd_fops) 1694 return file->private_data; 1695 1696 return ERR_PTR(-EBADF); 1697 } 1698 1699 static int pidfd_release(struct inode *inode, struct file *file) 1700 { 1701 struct pid *pid = file->private_data; 1702 1703 file->private_data = NULL; 1704 put_pid(pid); 1705 return 0; 1706 } 1707 1708 #ifdef CONFIG_PROC_FS 1709 /** 1710 * pidfd_show_fdinfo - print information about a pidfd 1711 * @m: proc fdinfo file 1712 * @f: file referencing a pidfd 1713 * 1714 * Pid: 1715 * This function will print the pid that a given pidfd refers to in the 1716 * pid namespace of the procfs instance. 1717 * If the pid namespace of the process is not a descendant of the pid 1718 * namespace of the procfs instance 0 will be shown as its pid. This is 1719 * similar to calling getppid() on a process whose parent is outside of 1720 * its pid namespace. 1721 * 1722 * NSpid: 1723 * If pid namespaces are supported then this function will also print 1724 * the pid of a given pidfd refers to for all descendant pid namespaces 1725 * starting from the current pid namespace of the instance, i.e. the 1726 * Pid field and the first entry in the NSpid field will be identical. 1727 * If the pid namespace of the process is not a descendant of the pid 1728 * namespace of the procfs instance 0 will be shown as its first NSpid 1729 * entry and no others will be shown. 1730 * Note that this differs from the Pid and NSpid fields in 1731 * /proc/<pid>/status where Pid and NSpid are always shown relative to 1732 * the pid namespace of the procfs instance. The difference becomes 1733 * obvious when sending around a pidfd between pid namespaces from a 1734 * different branch of the tree, i.e. where no ancestoral relation is 1735 * present between the pid namespaces: 1736 * - create two new pid namespaces ns1 and ns2 in the initial pid 1737 * namespace (also take care to create new mount namespaces in the 1738 * new pid namespace and mount procfs) 1739 * - create a process with a pidfd in ns1 1740 * - send pidfd from ns1 to ns2 1741 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid 1742 * have exactly one entry, which is 0 1743 */ 1744 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f) 1745 { 1746 struct pid *pid = f->private_data; 1747 struct pid_namespace *ns; 1748 pid_t nr = -1; 1749 1750 if (likely(pid_has_task(pid, PIDTYPE_PID))) { 1751 ns = proc_pid_ns(file_inode(m->file)->i_sb); 1752 nr = pid_nr_ns(pid, ns); 1753 } 1754 1755 seq_put_decimal_ll(m, "Pid:\t", nr); 1756 1757 #ifdef CONFIG_PID_NS 1758 seq_put_decimal_ll(m, "\nNSpid:\t", nr); 1759 if (nr > 0) { 1760 int i; 1761 1762 /* If nr is non-zero it means that 'pid' is valid and that 1763 * ns, i.e. the pid namespace associated with the procfs 1764 * instance, is in the pid namespace hierarchy of pid. 1765 * Start at one below the already printed level. 1766 */ 1767 for (i = ns->level + 1; i <= pid->level; i++) 1768 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr); 1769 } 1770 #endif 1771 seq_putc(m, '\n'); 1772 } 1773 #endif 1774 1775 /* 1776 * Poll support for process exit notification. 1777 */ 1778 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts) 1779 { 1780 struct pid *pid = file->private_data; 1781 __poll_t poll_flags = 0; 1782 1783 poll_wait(file, &pid->wait_pidfd, pts); 1784 1785 /* 1786 * Inform pollers only when the whole thread group exits. 1787 * If the thread group leader exits before all other threads in the 1788 * group, then poll(2) should block, similar to the wait(2) family. 1789 */ 1790 if (thread_group_exited(pid)) 1791 poll_flags = EPOLLIN | EPOLLRDNORM; 1792 1793 return poll_flags; 1794 } 1795 1796 const struct file_operations pidfd_fops = { 1797 .release = pidfd_release, 1798 .poll = pidfd_poll, 1799 #ifdef CONFIG_PROC_FS 1800 .show_fdinfo = pidfd_show_fdinfo, 1801 #endif 1802 }; 1803 1804 static void __delayed_free_task(struct rcu_head *rhp) 1805 { 1806 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 1807 1808 free_task(tsk); 1809 } 1810 1811 static __always_inline void delayed_free_task(struct task_struct *tsk) 1812 { 1813 if (IS_ENABLED(CONFIG_MEMCG)) 1814 call_rcu(&tsk->rcu, __delayed_free_task); 1815 else 1816 free_task(tsk); 1817 } 1818 1819 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk) 1820 { 1821 /* Skip if kernel thread */ 1822 if (!tsk->mm) 1823 return; 1824 1825 /* Skip if spawning a thread or using vfork */ 1826 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM) 1827 return; 1828 1829 /* We need to synchronize with __set_oom_adj */ 1830 mutex_lock(&oom_adj_mutex); 1831 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags); 1832 /* Update the values in case they were changed after copy_signal */ 1833 tsk->signal->oom_score_adj = current->signal->oom_score_adj; 1834 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min; 1835 mutex_unlock(&oom_adj_mutex); 1836 } 1837 1838 /* 1839 * This creates a new process as a copy of the old one, 1840 * but does not actually start it yet. 1841 * 1842 * It copies the registers, and all the appropriate 1843 * parts of the process environment (as per the clone 1844 * flags). The actual kick-off is left to the caller. 1845 */ 1846 static __latent_entropy struct task_struct *copy_process( 1847 struct pid *pid, 1848 int trace, 1849 int node, 1850 struct kernel_clone_args *args) 1851 { 1852 int pidfd = -1, retval; 1853 struct task_struct *p; 1854 struct multiprocess_signals delayed; 1855 struct file *pidfile = NULL; 1856 u64 clone_flags = args->flags; 1857 struct nsproxy *nsp = current->nsproxy; 1858 1859 /* 1860 * Don't allow sharing the root directory with processes in a different 1861 * namespace 1862 */ 1863 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 1864 return ERR_PTR(-EINVAL); 1865 1866 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 1867 return ERR_PTR(-EINVAL); 1868 1869 /* 1870 * Thread groups must share signals as well, and detached threads 1871 * can only be started up within the thread group. 1872 */ 1873 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 1874 return ERR_PTR(-EINVAL); 1875 1876 /* 1877 * Shared signal handlers imply shared VM. By way of the above, 1878 * thread groups also imply shared VM. Blocking this case allows 1879 * for various simplifications in other code. 1880 */ 1881 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 1882 return ERR_PTR(-EINVAL); 1883 1884 /* 1885 * Siblings of global init remain as zombies on exit since they are 1886 * not reaped by their parent (swapper). To solve this and to avoid 1887 * multi-rooted process trees, prevent global and container-inits 1888 * from creating siblings. 1889 */ 1890 if ((clone_flags & CLONE_PARENT) && 1891 current->signal->flags & SIGNAL_UNKILLABLE) 1892 return ERR_PTR(-EINVAL); 1893 1894 /* 1895 * If the new process will be in a different pid or user namespace 1896 * do not allow it to share a thread group with the forking task. 1897 */ 1898 if (clone_flags & CLONE_THREAD) { 1899 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 1900 (task_active_pid_ns(current) != nsp->pid_ns_for_children)) 1901 return ERR_PTR(-EINVAL); 1902 } 1903 1904 /* 1905 * If the new process will be in a different time namespace 1906 * do not allow it to share VM or a thread group with the forking task. 1907 */ 1908 if (clone_flags & (CLONE_THREAD | CLONE_VM)) { 1909 if (nsp->time_ns != nsp->time_ns_for_children) 1910 return ERR_PTR(-EINVAL); 1911 } 1912 1913 if (clone_flags & CLONE_PIDFD) { 1914 /* 1915 * - CLONE_DETACHED is blocked so that we can potentially 1916 * reuse it later for CLONE_PIDFD. 1917 * - CLONE_THREAD is blocked until someone really needs it. 1918 */ 1919 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD)) 1920 return ERR_PTR(-EINVAL); 1921 } 1922 1923 /* 1924 * Force any signals received before this point to be delivered 1925 * before the fork happens. Collect up signals sent to multiple 1926 * processes that happen during the fork and delay them so that 1927 * they appear to happen after the fork. 1928 */ 1929 sigemptyset(&delayed.signal); 1930 INIT_HLIST_NODE(&delayed.node); 1931 1932 spin_lock_irq(¤t->sighand->siglock); 1933 if (!(clone_flags & CLONE_THREAD)) 1934 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 1935 recalc_sigpending(); 1936 spin_unlock_irq(¤t->sighand->siglock); 1937 retval = -ERESTARTNOINTR; 1938 if (signal_pending(current)) 1939 goto fork_out; 1940 1941 retval = -ENOMEM; 1942 p = dup_task_struct(current, node); 1943 if (!p) 1944 goto fork_out; 1945 1946 /* 1947 * This _must_ happen before we call free_task(), i.e. before we jump 1948 * to any of the bad_fork_* labels. This is to avoid freeing 1949 * p->set_child_tid which is (ab)used as a kthread's data pointer for 1950 * kernel threads (PF_KTHREAD). 1951 */ 1952 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; 1953 /* 1954 * Clear TID on mm_release()? 1955 */ 1956 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; 1957 1958 ftrace_graph_init_task(p); 1959 1960 rt_mutex_init_task(p); 1961 1962 lockdep_assert_irqs_enabled(); 1963 #ifdef CONFIG_PROVE_LOCKING 1964 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 1965 #endif 1966 retval = -EAGAIN; 1967 if (atomic_read(&p->real_cred->user->processes) >= 1968 task_rlimit(p, RLIMIT_NPROC)) { 1969 if (p->real_cred->user != INIT_USER && 1970 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 1971 goto bad_fork_free; 1972 } 1973 current->flags &= ~PF_NPROC_EXCEEDED; 1974 1975 retval = copy_creds(p, clone_flags); 1976 if (retval < 0) 1977 goto bad_fork_free; 1978 1979 /* 1980 * If multiple threads are within copy_process(), then this check 1981 * triggers too late. This doesn't hurt, the check is only there 1982 * to stop root fork bombs. 1983 */ 1984 retval = -EAGAIN; 1985 if (data_race(nr_threads >= max_threads)) 1986 goto bad_fork_cleanup_count; 1987 1988 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 1989 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE); 1990 p->flags |= PF_FORKNOEXEC; 1991 INIT_LIST_HEAD(&p->children); 1992 INIT_LIST_HEAD(&p->sibling); 1993 rcu_copy_process(p); 1994 p->vfork_done = NULL; 1995 spin_lock_init(&p->alloc_lock); 1996 1997 init_sigpending(&p->pending); 1998 1999 p->utime = p->stime = p->gtime = 0; 2000 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 2001 p->utimescaled = p->stimescaled = 0; 2002 #endif 2003 prev_cputime_init(&p->prev_cputime); 2004 2005 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2006 seqcount_init(&p->vtime.seqcount); 2007 p->vtime.starttime = 0; 2008 p->vtime.state = VTIME_INACTIVE; 2009 #endif 2010 2011 #ifdef CONFIG_IO_URING 2012 p->io_uring = NULL; 2013 #endif 2014 2015 #if defined(SPLIT_RSS_COUNTING) 2016 memset(&p->rss_stat, 0, sizeof(p->rss_stat)); 2017 #endif 2018 2019 p->default_timer_slack_ns = current->timer_slack_ns; 2020 2021 #ifdef CONFIG_PSI 2022 p->psi_flags = 0; 2023 #endif 2024 2025 task_io_accounting_init(&p->ioac); 2026 acct_clear_integrals(p); 2027 2028 posix_cputimers_init(&p->posix_cputimers); 2029 2030 p->io_context = NULL; 2031 audit_set_context(p, NULL); 2032 cgroup_fork(p); 2033 #ifdef CONFIG_NUMA 2034 p->mempolicy = mpol_dup(p->mempolicy); 2035 if (IS_ERR(p->mempolicy)) { 2036 retval = PTR_ERR(p->mempolicy); 2037 p->mempolicy = NULL; 2038 goto bad_fork_cleanup_threadgroup_lock; 2039 } 2040 #endif 2041 #ifdef CONFIG_CPUSETS 2042 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 2043 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 2044 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock); 2045 #endif 2046 #ifdef CONFIG_TRACE_IRQFLAGS 2047 memset(&p->irqtrace, 0, sizeof(p->irqtrace)); 2048 p->irqtrace.hardirq_disable_ip = _THIS_IP_; 2049 p->irqtrace.softirq_enable_ip = _THIS_IP_; 2050 p->softirqs_enabled = 1; 2051 p->softirq_context = 0; 2052 #endif 2053 2054 p->pagefault_disabled = 0; 2055 2056 #ifdef CONFIG_LOCKDEP 2057 lockdep_init_task(p); 2058 #endif 2059 2060 #ifdef CONFIG_DEBUG_MUTEXES 2061 p->blocked_on = NULL; /* not blocked yet */ 2062 #endif 2063 #ifdef CONFIG_BCACHE 2064 p->sequential_io = 0; 2065 p->sequential_io_avg = 0; 2066 #endif 2067 2068 /* Perform scheduler related setup. Assign this task to a CPU. */ 2069 retval = sched_fork(clone_flags, p); 2070 if (retval) 2071 goto bad_fork_cleanup_policy; 2072 2073 retval = perf_event_init_task(p); 2074 if (retval) 2075 goto bad_fork_cleanup_policy; 2076 retval = audit_alloc(p); 2077 if (retval) 2078 goto bad_fork_cleanup_perf; 2079 /* copy all the process information */ 2080 shm_init_task(p); 2081 retval = security_task_alloc(p, clone_flags); 2082 if (retval) 2083 goto bad_fork_cleanup_audit; 2084 retval = copy_semundo(clone_flags, p); 2085 if (retval) 2086 goto bad_fork_cleanup_security; 2087 retval = copy_files(clone_flags, p); 2088 if (retval) 2089 goto bad_fork_cleanup_semundo; 2090 retval = copy_fs(clone_flags, p); 2091 if (retval) 2092 goto bad_fork_cleanup_files; 2093 retval = copy_sighand(clone_flags, p); 2094 if (retval) 2095 goto bad_fork_cleanup_fs; 2096 retval = copy_signal(clone_flags, p); 2097 if (retval) 2098 goto bad_fork_cleanup_sighand; 2099 retval = copy_mm(clone_flags, p); 2100 if (retval) 2101 goto bad_fork_cleanup_signal; 2102 retval = copy_namespaces(clone_flags, p); 2103 if (retval) 2104 goto bad_fork_cleanup_mm; 2105 retval = copy_io(clone_flags, p); 2106 if (retval) 2107 goto bad_fork_cleanup_namespaces; 2108 retval = copy_thread(clone_flags, args->stack, args->stack_size, p, args->tls); 2109 if (retval) 2110 goto bad_fork_cleanup_io; 2111 2112 stackleak_task_init(p); 2113 2114 if (pid != &init_struct_pid) { 2115 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid, 2116 args->set_tid_size); 2117 if (IS_ERR(pid)) { 2118 retval = PTR_ERR(pid); 2119 goto bad_fork_cleanup_thread; 2120 } 2121 } 2122 2123 /* 2124 * This has to happen after we've potentially unshared the file 2125 * descriptor table (so that the pidfd doesn't leak into the child 2126 * if the fd table isn't shared). 2127 */ 2128 if (clone_flags & CLONE_PIDFD) { 2129 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 2130 if (retval < 0) 2131 goto bad_fork_free_pid; 2132 2133 pidfd = retval; 2134 2135 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid, 2136 O_RDWR | O_CLOEXEC); 2137 if (IS_ERR(pidfile)) { 2138 put_unused_fd(pidfd); 2139 retval = PTR_ERR(pidfile); 2140 goto bad_fork_free_pid; 2141 } 2142 get_pid(pid); /* held by pidfile now */ 2143 2144 retval = put_user(pidfd, args->pidfd); 2145 if (retval) 2146 goto bad_fork_put_pidfd; 2147 } 2148 2149 #ifdef CONFIG_BLOCK 2150 p->plug = NULL; 2151 #endif 2152 futex_init_task(p); 2153 2154 /* 2155 * sigaltstack should be cleared when sharing the same VM 2156 */ 2157 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2158 sas_ss_reset(p); 2159 2160 /* 2161 * Syscall tracing and stepping should be turned off in the 2162 * child regardless of CLONE_PTRACE. 2163 */ 2164 user_disable_single_step(p); 2165 clear_task_syscall_work(p, SYSCALL_TRACE); 2166 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU) 2167 clear_task_syscall_work(p, SYSCALL_EMU); 2168 #endif 2169 clear_tsk_latency_tracing(p); 2170 2171 /* ok, now we should be set up.. */ 2172 p->pid = pid_nr(pid); 2173 if (clone_flags & CLONE_THREAD) { 2174 p->group_leader = current->group_leader; 2175 p->tgid = current->tgid; 2176 } else { 2177 p->group_leader = p; 2178 p->tgid = p->pid; 2179 } 2180 2181 p->nr_dirtied = 0; 2182 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2183 p->dirty_paused_when = 0; 2184 2185 p->pdeath_signal = 0; 2186 INIT_LIST_HEAD(&p->thread_group); 2187 p->task_works = NULL; 2188 2189 #ifdef CONFIG_KRETPROBES 2190 p->kretprobe_instances.first = NULL; 2191 #endif 2192 2193 /* 2194 * Ensure that the cgroup subsystem policies allow the new process to be 2195 * forked. It should be noted that the new process's css_set can be changed 2196 * between here and cgroup_post_fork() if an organisation operation is in 2197 * progress. 2198 */ 2199 retval = cgroup_can_fork(p, args); 2200 if (retval) 2201 goto bad_fork_put_pidfd; 2202 2203 /* 2204 * From this point on we must avoid any synchronous user-space 2205 * communication until we take the tasklist-lock. In particular, we do 2206 * not want user-space to be able to predict the process start-time by 2207 * stalling fork(2) after we recorded the start_time but before it is 2208 * visible to the system. 2209 */ 2210 2211 p->start_time = ktime_get_ns(); 2212 p->start_boottime = ktime_get_boottime_ns(); 2213 2214 /* 2215 * Make it visible to the rest of the system, but dont wake it up yet. 2216 * Need tasklist lock for parent etc handling! 2217 */ 2218 write_lock_irq(&tasklist_lock); 2219 2220 /* CLONE_PARENT re-uses the old parent */ 2221 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2222 p->real_parent = current->real_parent; 2223 p->parent_exec_id = current->parent_exec_id; 2224 if (clone_flags & CLONE_THREAD) 2225 p->exit_signal = -1; 2226 else 2227 p->exit_signal = current->group_leader->exit_signal; 2228 } else { 2229 p->real_parent = current; 2230 p->parent_exec_id = current->self_exec_id; 2231 p->exit_signal = args->exit_signal; 2232 } 2233 2234 klp_copy_process(p); 2235 2236 spin_lock(¤t->sighand->siglock); 2237 2238 /* 2239 * Copy seccomp details explicitly here, in case they were changed 2240 * before holding sighand lock. 2241 */ 2242 copy_seccomp(p); 2243 2244 rseq_fork(p, clone_flags); 2245 2246 /* Don't start children in a dying pid namespace */ 2247 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2248 retval = -ENOMEM; 2249 goto bad_fork_cancel_cgroup; 2250 } 2251 2252 /* Let kill terminate clone/fork in the middle */ 2253 if (fatal_signal_pending(current)) { 2254 retval = -EINTR; 2255 goto bad_fork_cancel_cgroup; 2256 } 2257 2258 /* past the last point of failure */ 2259 if (pidfile) 2260 fd_install(pidfd, pidfile); 2261 2262 init_task_pid_links(p); 2263 if (likely(p->pid)) { 2264 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2265 2266 init_task_pid(p, PIDTYPE_PID, pid); 2267 if (thread_group_leader(p)) { 2268 init_task_pid(p, PIDTYPE_TGID, pid); 2269 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2270 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2271 2272 if (is_child_reaper(pid)) { 2273 ns_of_pid(pid)->child_reaper = p; 2274 p->signal->flags |= SIGNAL_UNKILLABLE; 2275 } 2276 p->signal->shared_pending.signal = delayed.signal; 2277 p->signal->tty = tty_kref_get(current->signal->tty); 2278 /* 2279 * Inherit has_child_subreaper flag under the same 2280 * tasklist_lock with adding child to the process tree 2281 * for propagate_has_child_subreaper optimization. 2282 */ 2283 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2284 p->real_parent->signal->is_child_subreaper; 2285 list_add_tail(&p->sibling, &p->real_parent->children); 2286 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2287 attach_pid(p, PIDTYPE_TGID); 2288 attach_pid(p, PIDTYPE_PGID); 2289 attach_pid(p, PIDTYPE_SID); 2290 __this_cpu_inc(process_counts); 2291 } else { 2292 current->signal->nr_threads++; 2293 atomic_inc(¤t->signal->live); 2294 refcount_inc(¤t->signal->sigcnt); 2295 task_join_group_stop(p); 2296 list_add_tail_rcu(&p->thread_group, 2297 &p->group_leader->thread_group); 2298 list_add_tail_rcu(&p->thread_node, 2299 &p->signal->thread_head); 2300 } 2301 attach_pid(p, PIDTYPE_PID); 2302 nr_threads++; 2303 } 2304 total_forks++; 2305 hlist_del_init(&delayed.node); 2306 spin_unlock(¤t->sighand->siglock); 2307 syscall_tracepoint_update(p); 2308 write_unlock_irq(&tasklist_lock); 2309 2310 proc_fork_connector(p); 2311 sched_post_fork(p); 2312 cgroup_post_fork(p, args); 2313 perf_event_fork(p); 2314 2315 trace_task_newtask(p, clone_flags); 2316 uprobe_copy_process(p, clone_flags); 2317 2318 copy_oom_score_adj(clone_flags, p); 2319 2320 return p; 2321 2322 bad_fork_cancel_cgroup: 2323 spin_unlock(¤t->sighand->siglock); 2324 write_unlock_irq(&tasklist_lock); 2325 cgroup_cancel_fork(p, args); 2326 bad_fork_put_pidfd: 2327 if (clone_flags & CLONE_PIDFD) { 2328 fput(pidfile); 2329 put_unused_fd(pidfd); 2330 } 2331 bad_fork_free_pid: 2332 if (pid != &init_struct_pid) 2333 free_pid(pid); 2334 bad_fork_cleanup_thread: 2335 exit_thread(p); 2336 bad_fork_cleanup_io: 2337 if (p->io_context) 2338 exit_io_context(p); 2339 bad_fork_cleanup_namespaces: 2340 exit_task_namespaces(p); 2341 bad_fork_cleanup_mm: 2342 if (p->mm) { 2343 mm_clear_owner(p->mm, p); 2344 mmput(p->mm); 2345 } 2346 bad_fork_cleanup_signal: 2347 if (!(clone_flags & CLONE_THREAD)) 2348 free_signal_struct(p->signal); 2349 bad_fork_cleanup_sighand: 2350 __cleanup_sighand(p->sighand); 2351 bad_fork_cleanup_fs: 2352 exit_fs(p); /* blocking */ 2353 bad_fork_cleanup_files: 2354 exit_files(p); /* blocking */ 2355 bad_fork_cleanup_semundo: 2356 exit_sem(p); 2357 bad_fork_cleanup_security: 2358 security_task_free(p); 2359 bad_fork_cleanup_audit: 2360 audit_free(p); 2361 bad_fork_cleanup_perf: 2362 perf_event_free_task(p); 2363 bad_fork_cleanup_policy: 2364 lockdep_free_task(p); 2365 #ifdef CONFIG_NUMA 2366 mpol_put(p->mempolicy); 2367 bad_fork_cleanup_threadgroup_lock: 2368 #endif 2369 delayacct_tsk_free(p); 2370 bad_fork_cleanup_count: 2371 atomic_dec(&p->cred->user->processes); 2372 exit_creds(p); 2373 bad_fork_free: 2374 p->state = TASK_DEAD; 2375 put_task_stack(p); 2376 delayed_free_task(p); 2377 fork_out: 2378 spin_lock_irq(¤t->sighand->siglock); 2379 hlist_del_init(&delayed.node); 2380 spin_unlock_irq(¤t->sighand->siglock); 2381 return ERR_PTR(retval); 2382 } 2383 2384 static inline void init_idle_pids(struct task_struct *idle) 2385 { 2386 enum pid_type type; 2387 2388 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2389 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2390 init_task_pid(idle, type, &init_struct_pid); 2391 } 2392 } 2393 2394 struct task_struct *fork_idle(int cpu) 2395 { 2396 struct task_struct *task; 2397 struct kernel_clone_args args = { 2398 .flags = CLONE_VM, 2399 }; 2400 2401 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); 2402 if (!IS_ERR(task)) { 2403 init_idle_pids(task); 2404 init_idle(task, cpu); 2405 } 2406 2407 return task; 2408 } 2409 2410 struct mm_struct *copy_init_mm(void) 2411 { 2412 return dup_mm(NULL, &init_mm); 2413 } 2414 2415 /* 2416 * Ok, this is the main fork-routine. 2417 * 2418 * It copies the process, and if successful kick-starts 2419 * it and waits for it to finish using the VM if required. 2420 * 2421 * args->exit_signal is expected to be checked for sanity by the caller. 2422 */ 2423 pid_t kernel_clone(struct kernel_clone_args *args) 2424 { 2425 u64 clone_flags = args->flags; 2426 struct completion vfork; 2427 struct pid *pid; 2428 struct task_struct *p; 2429 int trace = 0; 2430 pid_t nr; 2431 2432 /* 2433 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument 2434 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are 2435 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate 2436 * field in struct clone_args and it still doesn't make sense to have 2437 * them both point at the same memory location. Performing this check 2438 * here has the advantage that we don't need to have a separate helper 2439 * to check for legacy clone(). 2440 */ 2441 if ((args->flags & CLONE_PIDFD) && 2442 (args->flags & CLONE_PARENT_SETTID) && 2443 (args->pidfd == args->parent_tid)) 2444 return -EINVAL; 2445 2446 /* 2447 * Determine whether and which event to report to ptracer. When 2448 * called from kernel_thread or CLONE_UNTRACED is explicitly 2449 * requested, no event is reported; otherwise, report if the event 2450 * for the type of forking is enabled. 2451 */ 2452 if (!(clone_flags & CLONE_UNTRACED)) { 2453 if (clone_flags & CLONE_VFORK) 2454 trace = PTRACE_EVENT_VFORK; 2455 else if (args->exit_signal != SIGCHLD) 2456 trace = PTRACE_EVENT_CLONE; 2457 else 2458 trace = PTRACE_EVENT_FORK; 2459 2460 if (likely(!ptrace_event_enabled(current, trace))) 2461 trace = 0; 2462 } 2463 2464 p = copy_process(NULL, trace, NUMA_NO_NODE, args); 2465 add_latent_entropy(); 2466 2467 if (IS_ERR(p)) 2468 return PTR_ERR(p); 2469 2470 /* 2471 * Do this prior waking up the new thread - the thread pointer 2472 * might get invalid after that point, if the thread exits quickly. 2473 */ 2474 trace_sched_process_fork(current, p); 2475 2476 pid = get_task_pid(p, PIDTYPE_PID); 2477 nr = pid_vnr(pid); 2478 2479 if (clone_flags & CLONE_PARENT_SETTID) 2480 put_user(nr, args->parent_tid); 2481 2482 if (clone_flags & CLONE_VFORK) { 2483 p->vfork_done = &vfork; 2484 init_completion(&vfork); 2485 get_task_struct(p); 2486 } 2487 2488 wake_up_new_task(p); 2489 2490 /* forking complete and child started to run, tell ptracer */ 2491 if (unlikely(trace)) 2492 ptrace_event_pid(trace, pid); 2493 2494 if (clone_flags & CLONE_VFORK) { 2495 if (!wait_for_vfork_done(p, &vfork)) 2496 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2497 } 2498 2499 put_pid(pid); 2500 return nr; 2501 } 2502 2503 /* 2504 * Create a kernel thread. 2505 */ 2506 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) 2507 { 2508 struct kernel_clone_args args = { 2509 .flags = ((lower_32_bits(flags) | CLONE_VM | 2510 CLONE_UNTRACED) & ~CSIGNAL), 2511 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2512 .stack = (unsigned long)fn, 2513 .stack_size = (unsigned long)arg, 2514 }; 2515 2516 return kernel_clone(&args); 2517 } 2518 2519 #ifdef __ARCH_WANT_SYS_FORK 2520 SYSCALL_DEFINE0(fork) 2521 { 2522 #ifdef CONFIG_MMU 2523 struct kernel_clone_args args = { 2524 .exit_signal = SIGCHLD, 2525 }; 2526 2527 return kernel_clone(&args); 2528 #else 2529 /* can not support in nommu mode */ 2530 return -EINVAL; 2531 #endif 2532 } 2533 #endif 2534 2535 #ifdef __ARCH_WANT_SYS_VFORK 2536 SYSCALL_DEFINE0(vfork) 2537 { 2538 struct kernel_clone_args args = { 2539 .flags = CLONE_VFORK | CLONE_VM, 2540 .exit_signal = SIGCHLD, 2541 }; 2542 2543 return kernel_clone(&args); 2544 } 2545 #endif 2546 2547 #ifdef __ARCH_WANT_SYS_CLONE 2548 #ifdef CONFIG_CLONE_BACKWARDS 2549 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2550 int __user *, parent_tidptr, 2551 unsigned long, tls, 2552 int __user *, child_tidptr) 2553 #elif defined(CONFIG_CLONE_BACKWARDS2) 2554 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 2555 int __user *, parent_tidptr, 2556 int __user *, child_tidptr, 2557 unsigned long, tls) 2558 #elif defined(CONFIG_CLONE_BACKWARDS3) 2559 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 2560 int, stack_size, 2561 int __user *, parent_tidptr, 2562 int __user *, child_tidptr, 2563 unsigned long, tls) 2564 #else 2565 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2566 int __user *, parent_tidptr, 2567 int __user *, child_tidptr, 2568 unsigned long, tls) 2569 #endif 2570 { 2571 struct kernel_clone_args args = { 2572 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), 2573 .pidfd = parent_tidptr, 2574 .child_tid = child_tidptr, 2575 .parent_tid = parent_tidptr, 2576 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), 2577 .stack = newsp, 2578 .tls = tls, 2579 }; 2580 2581 return kernel_clone(&args); 2582 } 2583 #endif 2584 2585 #ifdef __ARCH_WANT_SYS_CLONE3 2586 2587 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs, 2588 struct clone_args __user *uargs, 2589 size_t usize) 2590 { 2591 int err; 2592 struct clone_args args; 2593 pid_t *kset_tid = kargs->set_tid; 2594 2595 BUILD_BUG_ON(offsetofend(struct clone_args, tls) != 2596 CLONE_ARGS_SIZE_VER0); 2597 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) != 2598 CLONE_ARGS_SIZE_VER1); 2599 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) != 2600 CLONE_ARGS_SIZE_VER2); 2601 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2); 2602 2603 if (unlikely(usize > PAGE_SIZE)) 2604 return -E2BIG; 2605 if (unlikely(usize < CLONE_ARGS_SIZE_VER0)) 2606 return -EINVAL; 2607 2608 err = copy_struct_from_user(&args, sizeof(args), uargs, usize); 2609 if (err) 2610 return err; 2611 2612 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL)) 2613 return -EINVAL; 2614 2615 if (unlikely(!args.set_tid && args.set_tid_size > 0)) 2616 return -EINVAL; 2617 2618 if (unlikely(args.set_tid && args.set_tid_size == 0)) 2619 return -EINVAL; 2620 2621 /* 2622 * Verify that higher 32bits of exit_signal are unset and that 2623 * it is a valid signal 2624 */ 2625 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || 2626 !valid_signal(args.exit_signal))) 2627 return -EINVAL; 2628 2629 if ((args.flags & CLONE_INTO_CGROUP) && 2630 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2)) 2631 return -EINVAL; 2632 2633 *kargs = (struct kernel_clone_args){ 2634 .flags = args.flags, 2635 .pidfd = u64_to_user_ptr(args.pidfd), 2636 .child_tid = u64_to_user_ptr(args.child_tid), 2637 .parent_tid = u64_to_user_ptr(args.parent_tid), 2638 .exit_signal = args.exit_signal, 2639 .stack = args.stack, 2640 .stack_size = args.stack_size, 2641 .tls = args.tls, 2642 .set_tid_size = args.set_tid_size, 2643 .cgroup = args.cgroup, 2644 }; 2645 2646 if (args.set_tid && 2647 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid), 2648 (kargs->set_tid_size * sizeof(pid_t)))) 2649 return -EFAULT; 2650 2651 kargs->set_tid = kset_tid; 2652 2653 return 0; 2654 } 2655 2656 /** 2657 * clone3_stack_valid - check and prepare stack 2658 * @kargs: kernel clone args 2659 * 2660 * Verify that the stack arguments userspace gave us are sane. 2661 * In addition, set the stack direction for userspace since it's easy for us to 2662 * determine. 2663 */ 2664 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs) 2665 { 2666 if (kargs->stack == 0) { 2667 if (kargs->stack_size > 0) 2668 return false; 2669 } else { 2670 if (kargs->stack_size == 0) 2671 return false; 2672 2673 if (!access_ok((void __user *)kargs->stack, kargs->stack_size)) 2674 return false; 2675 2676 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64) 2677 kargs->stack += kargs->stack_size; 2678 #endif 2679 } 2680 2681 return true; 2682 } 2683 2684 static bool clone3_args_valid(struct kernel_clone_args *kargs) 2685 { 2686 /* Verify that no unknown flags are passed along. */ 2687 if (kargs->flags & 2688 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP)) 2689 return false; 2690 2691 /* 2692 * - make the CLONE_DETACHED bit reuseable for clone3 2693 * - make the CSIGNAL bits reuseable for clone3 2694 */ 2695 if (kargs->flags & (CLONE_DETACHED | CSIGNAL)) 2696 return false; 2697 2698 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) == 2699 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) 2700 return false; 2701 2702 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && 2703 kargs->exit_signal) 2704 return false; 2705 2706 if (!clone3_stack_valid(kargs)) 2707 return false; 2708 2709 return true; 2710 } 2711 2712 /** 2713 * clone3 - create a new process with specific properties 2714 * @uargs: argument structure 2715 * @size: size of @uargs 2716 * 2717 * clone3() is the extensible successor to clone()/clone2(). 2718 * It takes a struct as argument that is versioned by its size. 2719 * 2720 * Return: On success, a positive PID for the child process. 2721 * On error, a negative errno number. 2722 */ 2723 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) 2724 { 2725 int err; 2726 2727 struct kernel_clone_args kargs; 2728 pid_t set_tid[MAX_PID_NS_LEVEL]; 2729 2730 kargs.set_tid = set_tid; 2731 2732 err = copy_clone_args_from_user(&kargs, uargs, size); 2733 if (err) 2734 return err; 2735 2736 if (!clone3_args_valid(&kargs)) 2737 return -EINVAL; 2738 2739 return kernel_clone(&kargs); 2740 } 2741 #endif 2742 2743 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 2744 { 2745 struct task_struct *leader, *parent, *child; 2746 int res; 2747 2748 read_lock(&tasklist_lock); 2749 leader = top = top->group_leader; 2750 down: 2751 for_each_thread(leader, parent) { 2752 list_for_each_entry(child, &parent->children, sibling) { 2753 res = visitor(child, data); 2754 if (res) { 2755 if (res < 0) 2756 goto out; 2757 leader = child; 2758 goto down; 2759 } 2760 up: 2761 ; 2762 } 2763 } 2764 2765 if (leader != top) { 2766 child = leader; 2767 parent = child->real_parent; 2768 leader = parent->group_leader; 2769 goto up; 2770 } 2771 out: 2772 read_unlock(&tasklist_lock); 2773 } 2774 2775 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 2776 #define ARCH_MIN_MMSTRUCT_ALIGN 0 2777 #endif 2778 2779 static void sighand_ctor(void *data) 2780 { 2781 struct sighand_struct *sighand = data; 2782 2783 spin_lock_init(&sighand->siglock); 2784 init_waitqueue_head(&sighand->signalfd_wqh); 2785 } 2786 2787 void __init proc_caches_init(void) 2788 { 2789 unsigned int mm_size; 2790 2791 sighand_cachep = kmem_cache_create("sighand_cache", 2792 sizeof(struct sighand_struct), 0, 2793 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 2794 SLAB_ACCOUNT, sighand_ctor); 2795 signal_cachep = kmem_cache_create("signal_cache", 2796 sizeof(struct signal_struct), 0, 2797 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2798 NULL); 2799 files_cachep = kmem_cache_create("files_cache", 2800 sizeof(struct files_struct), 0, 2801 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2802 NULL); 2803 fs_cachep = kmem_cache_create("fs_cache", 2804 sizeof(struct fs_struct), 0, 2805 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2806 NULL); 2807 2808 /* 2809 * The mm_cpumask is located at the end of mm_struct, and is 2810 * dynamically sized based on the maximum CPU number this system 2811 * can have, taking hotplug into account (nr_cpu_ids). 2812 */ 2813 mm_size = sizeof(struct mm_struct) + cpumask_size(); 2814 2815 mm_cachep = kmem_cache_create_usercopy("mm_struct", 2816 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 2817 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2818 offsetof(struct mm_struct, saved_auxv), 2819 sizeof_field(struct mm_struct, saved_auxv), 2820 NULL); 2821 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT); 2822 mmap_init(); 2823 nsproxy_cache_init(); 2824 } 2825 2826 /* 2827 * Check constraints on flags passed to the unshare system call. 2828 */ 2829 static int check_unshare_flags(unsigned long unshare_flags) 2830 { 2831 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 2832 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 2833 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 2834 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP| 2835 CLONE_NEWTIME)) 2836 return -EINVAL; 2837 /* 2838 * Not implemented, but pretend it works if there is nothing 2839 * to unshare. Note that unsharing the address space or the 2840 * signal handlers also need to unshare the signal queues (aka 2841 * CLONE_THREAD). 2842 */ 2843 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 2844 if (!thread_group_empty(current)) 2845 return -EINVAL; 2846 } 2847 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 2848 if (refcount_read(¤t->sighand->count) > 1) 2849 return -EINVAL; 2850 } 2851 if (unshare_flags & CLONE_VM) { 2852 if (!current_is_single_threaded()) 2853 return -EINVAL; 2854 } 2855 2856 return 0; 2857 } 2858 2859 /* 2860 * Unshare the filesystem structure if it is being shared 2861 */ 2862 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 2863 { 2864 struct fs_struct *fs = current->fs; 2865 2866 if (!(unshare_flags & CLONE_FS) || !fs) 2867 return 0; 2868 2869 /* don't need lock here; in the worst case we'll do useless copy */ 2870 if (fs->users == 1) 2871 return 0; 2872 2873 *new_fsp = copy_fs_struct(fs); 2874 if (!*new_fsp) 2875 return -ENOMEM; 2876 2877 return 0; 2878 } 2879 2880 /* 2881 * Unshare file descriptor table if it is being shared 2882 */ 2883 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds, 2884 struct files_struct **new_fdp) 2885 { 2886 struct files_struct *fd = current->files; 2887 int error = 0; 2888 2889 if ((unshare_flags & CLONE_FILES) && 2890 (fd && atomic_read(&fd->count) > 1)) { 2891 *new_fdp = dup_fd(fd, max_fds, &error); 2892 if (!*new_fdp) 2893 return error; 2894 } 2895 2896 return 0; 2897 } 2898 2899 /* 2900 * unshare allows a process to 'unshare' part of the process 2901 * context which was originally shared using clone. copy_* 2902 * functions used by kernel_clone() cannot be used here directly 2903 * because they modify an inactive task_struct that is being 2904 * constructed. Here we are modifying the current, active, 2905 * task_struct. 2906 */ 2907 int ksys_unshare(unsigned long unshare_flags) 2908 { 2909 struct fs_struct *fs, *new_fs = NULL; 2910 struct files_struct *fd, *new_fd = NULL; 2911 struct cred *new_cred = NULL; 2912 struct nsproxy *new_nsproxy = NULL; 2913 int do_sysvsem = 0; 2914 int err; 2915 2916 /* 2917 * If unsharing a user namespace must also unshare the thread group 2918 * and unshare the filesystem root and working directories. 2919 */ 2920 if (unshare_flags & CLONE_NEWUSER) 2921 unshare_flags |= CLONE_THREAD | CLONE_FS; 2922 /* 2923 * If unsharing vm, must also unshare signal handlers. 2924 */ 2925 if (unshare_flags & CLONE_VM) 2926 unshare_flags |= CLONE_SIGHAND; 2927 /* 2928 * If unsharing a signal handlers, must also unshare the signal queues. 2929 */ 2930 if (unshare_flags & CLONE_SIGHAND) 2931 unshare_flags |= CLONE_THREAD; 2932 /* 2933 * If unsharing namespace, must also unshare filesystem information. 2934 */ 2935 if (unshare_flags & CLONE_NEWNS) 2936 unshare_flags |= CLONE_FS; 2937 2938 err = check_unshare_flags(unshare_flags); 2939 if (err) 2940 goto bad_unshare_out; 2941 /* 2942 * CLONE_NEWIPC must also detach from the undolist: after switching 2943 * to a new ipc namespace, the semaphore arrays from the old 2944 * namespace are unreachable. 2945 */ 2946 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 2947 do_sysvsem = 1; 2948 err = unshare_fs(unshare_flags, &new_fs); 2949 if (err) 2950 goto bad_unshare_out; 2951 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd); 2952 if (err) 2953 goto bad_unshare_cleanup_fs; 2954 err = unshare_userns(unshare_flags, &new_cred); 2955 if (err) 2956 goto bad_unshare_cleanup_fd; 2957 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 2958 new_cred, new_fs); 2959 if (err) 2960 goto bad_unshare_cleanup_cred; 2961 2962 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 2963 if (do_sysvsem) { 2964 /* 2965 * CLONE_SYSVSEM is equivalent to sys_exit(). 2966 */ 2967 exit_sem(current); 2968 } 2969 if (unshare_flags & CLONE_NEWIPC) { 2970 /* Orphan segments in old ns (see sem above). */ 2971 exit_shm(current); 2972 shm_init_task(current); 2973 } 2974 2975 if (new_nsproxy) 2976 switch_task_namespaces(current, new_nsproxy); 2977 2978 task_lock(current); 2979 2980 if (new_fs) { 2981 fs = current->fs; 2982 spin_lock(&fs->lock); 2983 current->fs = new_fs; 2984 if (--fs->users) 2985 new_fs = NULL; 2986 else 2987 new_fs = fs; 2988 spin_unlock(&fs->lock); 2989 } 2990 2991 if (new_fd) { 2992 fd = current->files; 2993 current->files = new_fd; 2994 new_fd = fd; 2995 } 2996 2997 task_unlock(current); 2998 2999 if (new_cred) { 3000 /* Install the new user namespace */ 3001 commit_creds(new_cred); 3002 new_cred = NULL; 3003 } 3004 } 3005 3006 perf_event_namespaces(current); 3007 3008 bad_unshare_cleanup_cred: 3009 if (new_cred) 3010 put_cred(new_cred); 3011 bad_unshare_cleanup_fd: 3012 if (new_fd) 3013 put_files_struct(new_fd); 3014 3015 bad_unshare_cleanup_fs: 3016 if (new_fs) 3017 free_fs_struct(new_fs); 3018 3019 bad_unshare_out: 3020 return err; 3021 } 3022 3023 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 3024 { 3025 return ksys_unshare(unshare_flags); 3026 } 3027 3028 /* 3029 * Helper to unshare the files of the current task. 3030 * We don't want to expose copy_files internals to 3031 * the exec layer of the kernel. 3032 */ 3033 3034 int unshare_files(void) 3035 { 3036 struct task_struct *task = current; 3037 struct files_struct *old, *copy = NULL; 3038 int error; 3039 3040 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, ©); 3041 if (error || !copy) 3042 return error; 3043 3044 old = task->files; 3045 task_lock(task); 3046 task->files = copy; 3047 task_unlock(task); 3048 put_files_struct(old); 3049 return 0; 3050 } 3051 3052 int sysctl_max_threads(struct ctl_table *table, int write, 3053 void *buffer, size_t *lenp, loff_t *ppos) 3054 { 3055 struct ctl_table t; 3056 int ret; 3057 int threads = max_threads; 3058 int min = 1; 3059 int max = MAX_THREADS; 3060 3061 t = *table; 3062 t.data = &threads; 3063 t.extra1 = &min; 3064 t.extra2 = &max; 3065 3066 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3067 if (ret || !write) 3068 return ret; 3069 3070 max_threads = threads; 3071 3072 return 0; 3073 } 3074