xref: /openbmc/linux/kernel/fork.c (revision df202b452fe6c6d6f1351bad485e2367ef1e644e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14 
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/binfmts.h>
41 #include <linux/mman.h>
42 #include <linux/mmu_notifier.h>
43 #include <linux/fs.h>
44 #include <linux/mm.h>
45 #include <linux/mm_inline.h>
46 #include <linux/vmacache.h>
47 #include <linux/nsproxy.h>
48 #include <linux/capability.h>
49 #include <linux/cpu.h>
50 #include <linux/cgroup.h>
51 #include <linux/security.h>
52 #include <linux/hugetlb.h>
53 #include <linux/seccomp.h>
54 #include <linux/swap.h>
55 #include <linux/syscalls.h>
56 #include <linux/jiffies.h>
57 #include <linux/futex.h>
58 #include <linux/compat.h>
59 #include <linux/kthread.h>
60 #include <linux/task_io_accounting_ops.h>
61 #include <linux/rcupdate.h>
62 #include <linux/ptrace.h>
63 #include <linux/mount.h>
64 #include <linux/audit.h>
65 #include <linux/memcontrol.h>
66 #include <linux/ftrace.h>
67 #include <linux/proc_fs.h>
68 #include <linux/profile.h>
69 #include <linux/rmap.h>
70 #include <linux/ksm.h>
71 #include <linux/acct.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/tsacct_kern.h>
74 #include <linux/cn_proc.h>
75 #include <linux/freezer.h>
76 #include <linux/delayacct.h>
77 #include <linux/taskstats_kern.h>
78 #include <linux/random.h>
79 #include <linux/tty.h>
80 #include <linux/fs_struct.h>
81 #include <linux/magic.h>
82 #include <linux/perf_event.h>
83 #include <linux/posix-timers.h>
84 #include <linux/user-return-notifier.h>
85 #include <linux/oom.h>
86 #include <linux/khugepaged.h>
87 #include <linux/signalfd.h>
88 #include <linux/uprobes.h>
89 #include <linux/aio.h>
90 #include <linux/compiler.h>
91 #include <linux/sysctl.h>
92 #include <linux/kcov.h>
93 #include <linux/livepatch.h>
94 #include <linux/thread_info.h>
95 #include <linux/stackleak.h>
96 #include <linux/kasan.h>
97 #include <linux/scs.h>
98 #include <linux/io_uring.h>
99 #include <linux/bpf.h>
100 #include <linux/sched/mm.h>
101 
102 #include <asm/pgalloc.h>
103 #include <linux/uaccess.h>
104 #include <asm/mmu_context.h>
105 #include <asm/cacheflush.h>
106 #include <asm/tlbflush.h>
107 
108 #include <trace/events/sched.h>
109 
110 #define CREATE_TRACE_POINTS
111 #include <trace/events/task.h>
112 
113 /*
114  * Minimum number of threads to boot the kernel
115  */
116 #define MIN_THREADS 20
117 
118 /*
119  * Maximum number of threads
120  */
121 #define MAX_THREADS FUTEX_TID_MASK
122 
123 /*
124  * Protected counters by write_lock_irq(&tasklist_lock)
125  */
126 unsigned long total_forks;	/* Handle normal Linux uptimes. */
127 int nr_threads;			/* The idle threads do not count.. */
128 
129 static int max_threads;		/* tunable limit on nr_threads */
130 
131 #define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
132 
133 static const char * const resident_page_types[] = {
134 	NAMED_ARRAY_INDEX(MM_FILEPAGES),
135 	NAMED_ARRAY_INDEX(MM_ANONPAGES),
136 	NAMED_ARRAY_INDEX(MM_SWAPENTS),
137 	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
138 };
139 
140 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
141 
142 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
143 
144 #ifdef CONFIG_PROVE_RCU
145 int lockdep_tasklist_lock_is_held(void)
146 {
147 	return lockdep_is_held(&tasklist_lock);
148 }
149 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
150 #endif /* #ifdef CONFIG_PROVE_RCU */
151 
152 int nr_processes(void)
153 {
154 	int cpu;
155 	int total = 0;
156 
157 	for_each_possible_cpu(cpu)
158 		total += per_cpu(process_counts, cpu);
159 
160 	return total;
161 }
162 
163 void __weak arch_release_task_struct(struct task_struct *tsk)
164 {
165 }
166 
167 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
168 static struct kmem_cache *task_struct_cachep;
169 
170 static inline struct task_struct *alloc_task_struct_node(int node)
171 {
172 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
173 }
174 
175 static inline void free_task_struct(struct task_struct *tsk)
176 {
177 	kmem_cache_free(task_struct_cachep, tsk);
178 }
179 #endif
180 
181 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
182 
183 /*
184  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
185  * kmemcache based allocator.
186  */
187 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
188 
189 #  ifdef CONFIG_VMAP_STACK
190 /*
191  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
192  * flush.  Try to minimize the number of calls by caching stacks.
193  */
194 #define NR_CACHED_STACKS 2
195 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
196 
197 struct vm_stack {
198 	struct rcu_head rcu;
199 	struct vm_struct *stack_vm_area;
200 };
201 
202 static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
203 {
204 	unsigned int i;
205 
206 	for (i = 0; i < NR_CACHED_STACKS; i++) {
207 		if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL)
208 			continue;
209 		return true;
210 	}
211 	return false;
212 }
213 
214 static void thread_stack_free_rcu(struct rcu_head *rh)
215 {
216 	struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
217 
218 	if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
219 		return;
220 
221 	vfree(vm_stack);
222 }
223 
224 static void thread_stack_delayed_free(struct task_struct *tsk)
225 {
226 	struct vm_stack *vm_stack = tsk->stack;
227 
228 	vm_stack->stack_vm_area = tsk->stack_vm_area;
229 	call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
230 }
231 
232 static int free_vm_stack_cache(unsigned int cpu)
233 {
234 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
235 	int i;
236 
237 	for (i = 0; i < NR_CACHED_STACKS; i++) {
238 		struct vm_struct *vm_stack = cached_vm_stacks[i];
239 
240 		if (!vm_stack)
241 			continue;
242 
243 		vfree(vm_stack->addr);
244 		cached_vm_stacks[i] = NULL;
245 	}
246 
247 	return 0;
248 }
249 
250 static int memcg_charge_kernel_stack(struct vm_struct *vm)
251 {
252 	int i;
253 	int ret;
254 
255 	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
256 	BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
257 
258 	for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
259 		ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
260 		if (ret)
261 			goto err;
262 	}
263 	return 0;
264 err:
265 	/*
266 	 * If memcg_kmem_charge_page() fails, page's memory cgroup pointer is
267 	 * NULL, and memcg_kmem_uncharge_page() in free_thread_stack() will
268 	 * ignore this page.
269 	 */
270 	for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
271 		memcg_kmem_uncharge_page(vm->pages[i], 0);
272 	return ret;
273 }
274 
275 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
276 {
277 	struct vm_struct *vm;
278 	void *stack;
279 	int i;
280 
281 	for (i = 0; i < NR_CACHED_STACKS; i++) {
282 		struct vm_struct *s;
283 
284 		s = this_cpu_xchg(cached_stacks[i], NULL);
285 
286 		if (!s)
287 			continue;
288 
289 		/* Reset stack metadata. */
290 		kasan_unpoison_range(s->addr, THREAD_SIZE);
291 
292 		stack = kasan_reset_tag(s->addr);
293 
294 		/* Clear stale pointers from reused stack. */
295 		memset(stack, 0, THREAD_SIZE);
296 
297 		if (memcg_charge_kernel_stack(s)) {
298 			vfree(s->addr);
299 			return -ENOMEM;
300 		}
301 
302 		tsk->stack_vm_area = s;
303 		tsk->stack = stack;
304 		return 0;
305 	}
306 
307 	/*
308 	 * Allocated stacks are cached and later reused by new threads,
309 	 * so memcg accounting is performed manually on assigning/releasing
310 	 * stacks to tasks. Drop __GFP_ACCOUNT.
311 	 */
312 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
313 				     VMALLOC_START, VMALLOC_END,
314 				     THREADINFO_GFP & ~__GFP_ACCOUNT,
315 				     PAGE_KERNEL,
316 				     0, node, __builtin_return_address(0));
317 	if (!stack)
318 		return -ENOMEM;
319 
320 	vm = find_vm_area(stack);
321 	if (memcg_charge_kernel_stack(vm)) {
322 		vfree(stack);
323 		return -ENOMEM;
324 	}
325 	/*
326 	 * We can't call find_vm_area() in interrupt context, and
327 	 * free_thread_stack() can be called in interrupt context,
328 	 * so cache the vm_struct.
329 	 */
330 	tsk->stack_vm_area = vm;
331 	stack = kasan_reset_tag(stack);
332 	tsk->stack = stack;
333 	return 0;
334 }
335 
336 static void free_thread_stack(struct task_struct *tsk)
337 {
338 	if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
339 		thread_stack_delayed_free(tsk);
340 
341 	tsk->stack = NULL;
342 	tsk->stack_vm_area = NULL;
343 }
344 
345 #  else /* !CONFIG_VMAP_STACK */
346 
347 static void thread_stack_free_rcu(struct rcu_head *rh)
348 {
349 	__free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
350 }
351 
352 static void thread_stack_delayed_free(struct task_struct *tsk)
353 {
354 	struct rcu_head *rh = tsk->stack;
355 
356 	call_rcu(rh, thread_stack_free_rcu);
357 }
358 
359 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
360 {
361 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
362 					     THREAD_SIZE_ORDER);
363 
364 	if (likely(page)) {
365 		tsk->stack = kasan_reset_tag(page_address(page));
366 		return 0;
367 	}
368 	return -ENOMEM;
369 }
370 
371 static void free_thread_stack(struct task_struct *tsk)
372 {
373 	thread_stack_delayed_free(tsk);
374 	tsk->stack = NULL;
375 }
376 
377 #  endif /* CONFIG_VMAP_STACK */
378 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
379 
380 static struct kmem_cache *thread_stack_cache;
381 
382 static void thread_stack_free_rcu(struct rcu_head *rh)
383 {
384 	kmem_cache_free(thread_stack_cache, rh);
385 }
386 
387 static void thread_stack_delayed_free(struct task_struct *tsk)
388 {
389 	struct rcu_head *rh = tsk->stack;
390 
391 	call_rcu(rh, thread_stack_free_rcu);
392 }
393 
394 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
395 {
396 	unsigned long *stack;
397 	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
398 	stack = kasan_reset_tag(stack);
399 	tsk->stack = stack;
400 	return stack ? 0 : -ENOMEM;
401 }
402 
403 static void free_thread_stack(struct task_struct *tsk)
404 {
405 	thread_stack_delayed_free(tsk);
406 	tsk->stack = NULL;
407 }
408 
409 void thread_stack_cache_init(void)
410 {
411 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
412 					THREAD_SIZE, THREAD_SIZE, 0, 0,
413 					THREAD_SIZE, NULL);
414 	BUG_ON(thread_stack_cache == NULL);
415 }
416 
417 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
418 #else /* CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
419 
420 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
421 {
422 	unsigned long *stack;
423 
424 	stack = arch_alloc_thread_stack_node(tsk, node);
425 	tsk->stack = stack;
426 	return stack ? 0 : -ENOMEM;
427 }
428 
429 static void free_thread_stack(struct task_struct *tsk)
430 {
431 	arch_free_thread_stack(tsk);
432 	tsk->stack = NULL;
433 }
434 
435 #endif /* !CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
436 
437 /* SLAB cache for signal_struct structures (tsk->signal) */
438 static struct kmem_cache *signal_cachep;
439 
440 /* SLAB cache for sighand_struct structures (tsk->sighand) */
441 struct kmem_cache *sighand_cachep;
442 
443 /* SLAB cache for files_struct structures (tsk->files) */
444 struct kmem_cache *files_cachep;
445 
446 /* SLAB cache for fs_struct structures (tsk->fs) */
447 struct kmem_cache *fs_cachep;
448 
449 /* SLAB cache for vm_area_struct structures */
450 static struct kmem_cache *vm_area_cachep;
451 
452 /* SLAB cache for mm_struct structures (tsk->mm) */
453 static struct kmem_cache *mm_cachep;
454 
455 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
456 {
457 	struct vm_area_struct *vma;
458 
459 	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
460 	if (vma)
461 		vma_init(vma, mm);
462 	return vma;
463 }
464 
465 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
466 {
467 	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
468 
469 	if (new) {
470 		ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
471 		ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
472 		/*
473 		 * orig->shared.rb may be modified concurrently, but the clone
474 		 * will be reinitialized.
475 		 */
476 		*new = data_race(*orig);
477 		INIT_LIST_HEAD(&new->anon_vma_chain);
478 		new->vm_next = new->vm_prev = NULL;
479 		dup_anon_vma_name(orig, new);
480 	}
481 	return new;
482 }
483 
484 void vm_area_free(struct vm_area_struct *vma)
485 {
486 	free_anon_vma_name(vma);
487 	kmem_cache_free(vm_area_cachep, vma);
488 }
489 
490 static void account_kernel_stack(struct task_struct *tsk, int account)
491 {
492 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
493 		struct vm_struct *vm = task_stack_vm_area(tsk);
494 		int i;
495 
496 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
497 			mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
498 					      account * (PAGE_SIZE / 1024));
499 	} else {
500 		void *stack = task_stack_page(tsk);
501 
502 		/* All stack pages are in the same node. */
503 		mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
504 				      account * (THREAD_SIZE / 1024));
505 	}
506 }
507 
508 void exit_task_stack_account(struct task_struct *tsk)
509 {
510 	account_kernel_stack(tsk, -1);
511 
512 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
513 		struct vm_struct *vm;
514 		int i;
515 
516 		vm = task_stack_vm_area(tsk);
517 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
518 			memcg_kmem_uncharge_page(vm->pages[i], 0);
519 	}
520 }
521 
522 static void release_task_stack(struct task_struct *tsk)
523 {
524 	if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
525 		return;  /* Better to leak the stack than to free prematurely */
526 
527 	free_thread_stack(tsk);
528 }
529 
530 #ifdef CONFIG_THREAD_INFO_IN_TASK
531 void put_task_stack(struct task_struct *tsk)
532 {
533 	if (refcount_dec_and_test(&tsk->stack_refcount))
534 		release_task_stack(tsk);
535 }
536 #endif
537 
538 void free_task(struct task_struct *tsk)
539 {
540 	release_user_cpus_ptr(tsk);
541 	scs_release(tsk);
542 
543 #ifndef CONFIG_THREAD_INFO_IN_TASK
544 	/*
545 	 * The task is finally done with both the stack and thread_info,
546 	 * so free both.
547 	 */
548 	release_task_stack(tsk);
549 #else
550 	/*
551 	 * If the task had a separate stack allocation, it should be gone
552 	 * by now.
553 	 */
554 	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
555 #endif
556 	rt_mutex_debug_task_free(tsk);
557 	ftrace_graph_exit_task(tsk);
558 	arch_release_task_struct(tsk);
559 	if (tsk->flags & PF_KTHREAD)
560 		free_kthread_struct(tsk);
561 	free_task_struct(tsk);
562 }
563 EXPORT_SYMBOL(free_task);
564 
565 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
566 {
567 	struct file *exe_file;
568 
569 	exe_file = get_mm_exe_file(oldmm);
570 	RCU_INIT_POINTER(mm->exe_file, exe_file);
571 	/*
572 	 * We depend on the oldmm having properly denied write access to the
573 	 * exe_file already.
574 	 */
575 	if (exe_file && deny_write_access(exe_file))
576 		pr_warn_once("deny_write_access() failed in %s\n", __func__);
577 }
578 
579 #ifdef CONFIG_MMU
580 static __latent_entropy int dup_mmap(struct mm_struct *mm,
581 					struct mm_struct *oldmm)
582 {
583 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
584 	struct rb_node **rb_link, *rb_parent;
585 	int retval;
586 	unsigned long charge;
587 	LIST_HEAD(uf);
588 
589 	uprobe_start_dup_mmap();
590 	if (mmap_write_lock_killable(oldmm)) {
591 		retval = -EINTR;
592 		goto fail_uprobe_end;
593 	}
594 	flush_cache_dup_mm(oldmm);
595 	uprobe_dup_mmap(oldmm, mm);
596 	/*
597 	 * Not linked in yet - no deadlock potential:
598 	 */
599 	mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
600 
601 	/* No ordering required: file already has been exposed. */
602 	dup_mm_exe_file(mm, oldmm);
603 
604 	mm->total_vm = oldmm->total_vm;
605 	mm->data_vm = oldmm->data_vm;
606 	mm->exec_vm = oldmm->exec_vm;
607 	mm->stack_vm = oldmm->stack_vm;
608 
609 	rb_link = &mm->mm_rb.rb_node;
610 	rb_parent = NULL;
611 	pprev = &mm->mmap;
612 	retval = ksm_fork(mm, oldmm);
613 	if (retval)
614 		goto out;
615 	retval = khugepaged_fork(mm, oldmm);
616 	if (retval)
617 		goto out;
618 
619 	prev = NULL;
620 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
621 		struct file *file;
622 
623 		if (mpnt->vm_flags & VM_DONTCOPY) {
624 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
625 			continue;
626 		}
627 		charge = 0;
628 		/*
629 		 * Don't duplicate many vmas if we've been oom-killed (for
630 		 * example)
631 		 */
632 		if (fatal_signal_pending(current)) {
633 			retval = -EINTR;
634 			goto out;
635 		}
636 		if (mpnt->vm_flags & VM_ACCOUNT) {
637 			unsigned long len = vma_pages(mpnt);
638 
639 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
640 				goto fail_nomem;
641 			charge = len;
642 		}
643 		tmp = vm_area_dup(mpnt);
644 		if (!tmp)
645 			goto fail_nomem;
646 		retval = vma_dup_policy(mpnt, tmp);
647 		if (retval)
648 			goto fail_nomem_policy;
649 		tmp->vm_mm = mm;
650 		retval = dup_userfaultfd(tmp, &uf);
651 		if (retval)
652 			goto fail_nomem_anon_vma_fork;
653 		if (tmp->vm_flags & VM_WIPEONFORK) {
654 			/*
655 			 * VM_WIPEONFORK gets a clean slate in the child.
656 			 * Don't prepare anon_vma until fault since we don't
657 			 * copy page for current vma.
658 			 */
659 			tmp->anon_vma = NULL;
660 		} else if (anon_vma_fork(tmp, mpnt))
661 			goto fail_nomem_anon_vma_fork;
662 		tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
663 		file = tmp->vm_file;
664 		if (file) {
665 			struct address_space *mapping = file->f_mapping;
666 
667 			get_file(file);
668 			i_mmap_lock_write(mapping);
669 			if (tmp->vm_flags & VM_SHARED)
670 				mapping_allow_writable(mapping);
671 			flush_dcache_mmap_lock(mapping);
672 			/* insert tmp into the share list, just after mpnt */
673 			vma_interval_tree_insert_after(tmp, mpnt,
674 					&mapping->i_mmap);
675 			flush_dcache_mmap_unlock(mapping);
676 			i_mmap_unlock_write(mapping);
677 		}
678 
679 		/*
680 		 * Clear hugetlb-related page reserves for children. This only
681 		 * affects MAP_PRIVATE mappings. Faults generated by the child
682 		 * are not guaranteed to succeed, even if read-only
683 		 */
684 		if (is_vm_hugetlb_page(tmp))
685 			reset_vma_resv_huge_pages(tmp);
686 
687 		/*
688 		 * Link in the new vma and copy the page table entries.
689 		 */
690 		*pprev = tmp;
691 		pprev = &tmp->vm_next;
692 		tmp->vm_prev = prev;
693 		prev = tmp;
694 
695 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
696 		rb_link = &tmp->vm_rb.rb_right;
697 		rb_parent = &tmp->vm_rb;
698 
699 		mm->map_count++;
700 		if (!(tmp->vm_flags & VM_WIPEONFORK))
701 			retval = copy_page_range(tmp, mpnt);
702 
703 		if (tmp->vm_ops && tmp->vm_ops->open)
704 			tmp->vm_ops->open(tmp);
705 
706 		if (retval)
707 			goto out;
708 	}
709 	/* a new mm has just been created */
710 	retval = arch_dup_mmap(oldmm, mm);
711 out:
712 	mmap_write_unlock(mm);
713 	flush_tlb_mm(oldmm);
714 	mmap_write_unlock(oldmm);
715 	dup_userfaultfd_complete(&uf);
716 fail_uprobe_end:
717 	uprobe_end_dup_mmap();
718 	return retval;
719 fail_nomem_anon_vma_fork:
720 	mpol_put(vma_policy(tmp));
721 fail_nomem_policy:
722 	vm_area_free(tmp);
723 fail_nomem:
724 	retval = -ENOMEM;
725 	vm_unacct_memory(charge);
726 	goto out;
727 }
728 
729 static inline int mm_alloc_pgd(struct mm_struct *mm)
730 {
731 	mm->pgd = pgd_alloc(mm);
732 	if (unlikely(!mm->pgd))
733 		return -ENOMEM;
734 	return 0;
735 }
736 
737 static inline void mm_free_pgd(struct mm_struct *mm)
738 {
739 	pgd_free(mm, mm->pgd);
740 }
741 #else
742 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
743 {
744 	mmap_write_lock(oldmm);
745 	dup_mm_exe_file(mm, oldmm);
746 	mmap_write_unlock(oldmm);
747 	return 0;
748 }
749 #define mm_alloc_pgd(mm)	(0)
750 #define mm_free_pgd(mm)
751 #endif /* CONFIG_MMU */
752 
753 static void check_mm(struct mm_struct *mm)
754 {
755 	int i;
756 
757 	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
758 			 "Please make sure 'struct resident_page_types[]' is updated as well");
759 
760 	for (i = 0; i < NR_MM_COUNTERS; i++) {
761 		long x = atomic_long_read(&mm->rss_stat.count[i]);
762 
763 		if (unlikely(x))
764 			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
765 				 mm, resident_page_types[i], x);
766 	}
767 
768 	if (mm_pgtables_bytes(mm))
769 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
770 				mm_pgtables_bytes(mm));
771 
772 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
773 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
774 #endif
775 }
776 
777 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
778 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
779 
780 /*
781  * Called when the last reference to the mm
782  * is dropped: either by a lazy thread or by
783  * mmput. Free the page directory and the mm.
784  */
785 void __mmdrop(struct mm_struct *mm)
786 {
787 	BUG_ON(mm == &init_mm);
788 	WARN_ON_ONCE(mm == current->mm);
789 	WARN_ON_ONCE(mm == current->active_mm);
790 	mm_free_pgd(mm);
791 	destroy_context(mm);
792 	mmu_notifier_subscriptions_destroy(mm);
793 	check_mm(mm);
794 	put_user_ns(mm->user_ns);
795 	mm_pasid_drop(mm);
796 	free_mm(mm);
797 }
798 EXPORT_SYMBOL_GPL(__mmdrop);
799 
800 static void mmdrop_async_fn(struct work_struct *work)
801 {
802 	struct mm_struct *mm;
803 
804 	mm = container_of(work, struct mm_struct, async_put_work);
805 	__mmdrop(mm);
806 }
807 
808 static void mmdrop_async(struct mm_struct *mm)
809 {
810 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
811 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
812 		schedule_work(&mm->async_put_work);
813 	}
814 }
815 
816 static inline void free_signal_struct(struct signal_struct *sig)
817 {
818 	taskstats_tgid_free(sig);
819 	sched_autogroup_exit(sig);
820 	/*
821 	 * __mmdrop is not safe to call from softirq context on x86 due to
822 	 * pgd_dtor so postpone it to the async context
823 	 */
824 	if (sig->oom_mm)
825 		mmdrop_async(sig->oom_mm);
826 	kmem_cache_free(signal_cachep, sig);
827 }
828 
829 static inline void put_signal_struct(struct signal_struct *sig)
830 {
831 	if (refcount_dec_and_test(&sig->sigcnt))
832 		free_signal_struct(sig);
833 }
834 
835 void __put_task_struct(struct task_struct *tsk)
836 {
837 	WARN_ON(!tsk->exit_state);
838 	WARN_ON(refcount_read(&tsk->usage));
839 	WARN_ON(tsk == current);
840 
841 	io_uring_free(tsk);
842 	cgroup_free(tsk);
843 	task_numa_free(tsk, true);
844 	security_task_free(tsk);
845 	bpf_task_storage_free(tsk);
846 	exit_creds(tsk);
847 	delayacct_tsk_free(tsk);
848 	put_signal_struct(tsk->signal);
849 	sched_core_free(tsk);
850 	free_task(tsk);
851 }
852 EXPORT_SYMBOL_GPL(__put_task_struct);
853 
854 void __init __weak arch_task_cache_init(void) { }
855 
856 /*
857  * set_max_threads
858  */
859 static void set_max_threads(unsigned int max_threads_suggested)
860 {
861 	u64 threads;
862 	unsigned long nr_pages = totalram_pages();
863 
864 	/*
865 	 * The number of threads shall be limited such that the thread
866 	 * structures may only consume a small part of the available memory.
867 	 */
868 	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
869 		threads = MAX_THREADS;
870 	else
871 		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
872 				    (u64) THREAD_SIZE * 8UL);
873 
874 	if (threads > max_threads_suggested)
875 		threads = max_threads_suggested;
876 
877 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
878 }
879 
880 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
881 /* Initialized by the architecture: */
882 int arch_task_struct_size __read_mostly;
883 #endif
884 
885 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
886 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
887 {
888 	/* Fetch thread_struct whitelist for the architecture. */
889 	arch_thread_struct_whitelist(offset, size);
890 
891 	/*
892 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
893 	 * adjust offset to position of thread_struct in task_struct.
894 	 */
895 	if (unlikely(*size == 0))
896 		*offset = 0;
897 	else
898 		*offset += offsetof(struct task_struct, thread);
899 }
900 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
901 
902 void __init fork_init(void)
903 {
904 	int i;
905 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
906 #ifndef ARCH_MIN_TASKALIGN
907 #define ARCH_MIN_TASKALIGN	0
908 #endif
909 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
910 	unsigned long useroffset, usersize;
911 
912 	/* create a slab on which task_structs can be allocated */
913 	task_struct_whitelist(&useroffset, &usersize);
914 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
915 			arch_task_struct_size, align,
916 			SLAB_PANIC|SLAB_ACCOUNT,
917 			useroffset, usersize, NULL);
918 #endif
919 
920 	/* do the arch specific task caches init */
921 	arch_task_cache_init();
922 
923 	set_max_threads(MAX_THREADS);
924 
925 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
926 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
927 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
928 		init_task.signal->rlim[RLIMIT_NPROC];
929 
930 	for (i = 0; i < MAX_PER_NAMESPACE_UCOUNTS; i++)
931 		init_user_ns.ucount_max[i] = max_threads/2;
932 
933 	set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_NPROC,      RLIM_INFINITY);
934 	set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE,   RLIM_INFINITY);
935 	set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
936 	set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK,    RLIM_INFINITY);
937 
938 #ifdef CONFIG_VMAP_STACK
939 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
940 			  NULL, free_vm_stack_cache);
941 #endif
942 
943 	scs_init();
944 
945 	lockdep_init_task(&init_task);
946 	uprobes_init();
947 }
948 
949 int __weak arch_dup_task_struct(struct task_struct *dst,
950 					       struct task_struct *src)
951 {
952 	*dst = *src;
953 	return 0;
954 }
955 
956 void set_task_stack_end_magic(struct task_struct *tsk)
957 {
958 	unsigned long *stackend;
959 
960 	stackend = end_of_stack(tsk);
961 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
962 }
963 
964 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
965 {
966 	struct task_struct *tsk;
967 	int err;
968 
969 	if (node == NUMA_NO_NODE)
970 		node = tsk_fork_get_node(orig);
971 	tsk = alloc_task_struct_node(node);
972 	if (!tsk)
973 		return NULL;
974 
975 	err = arch_dup_task_struct(tsk, orig);
976 	if (err)
977 		goto free_tsk;
978 
979 	err = alloc_thread_stack_node(tsk, node);
980 	if (err)
981 		goto free_tsk;
982 
983 #ifdef CONFIG_THREAD_INFO_IN_TASK
984 	refcount_set(&tsk->stack_refcount, 1);
985 #endif
986 	account_kernel_stack(tsk, 1);
987 
988 	err = scs_prepare(tsk, node);
989 	if (err)
990 		goto free_stack;
991 
992 #ifdef CONFIG_SECCOMP
993 	/*
994 	 * We must handle setting up seccomp filters once we're under
995 	 * the sighand lock in case orig has changed between now and
996 	 * then. Until then, filter must be NULL to avoid messing up
997 	 * the usage counts on the error path calling free_task.
998 	 */
999 	tsk->seccomp.filter = NULL;
1000 #endif
1001 
1002 	setup_thread_stack(tsk, orig);
1003 	clear_user_return_notifier(tsk);
1004 	clear_tsk_need_resched(tsk);
1005 	set_task_stack_end_magic(tsk);
1006 	clear_syscall_work_syscall_user_dispatch(tsk);
1007 
1008 #ifdef CONFIG_STACKPROTECTOR
1009 	tsk->stack_canary = get_random_canary();
1010 #endif
1011 	if (orig->cpus_ptr == &orig->cpus_mask)
1012 		tsk->cpus_ptr = &tsk->cpus_mask;
1013 	dup_user_cpus_ptr(tsk, orig, node);
1014 
1015 	/*
1016 	 * One for the user space visible state that goes away when reaped.
1017 	 * One for the scheduler.
1018 	 */
1019 	refcount_set(&tsk->rcu_users, 2);
1020 	/* One for the rcu users */
1021 	refcount_set(&tsk->usage, 1);
1022 #ifdef CONFIG_BLK_DEV_IO_TRACE
1023 	tsk->btrace_seq = 0;
1024 #endif
1025 	tsk->splice_pipe = NULL;
1026 	tsk->task_frag.page = NULL;
1027 	tsk->wake_q.next = NULL;
1028 	tsk->worker_private = NULL;
1029 
1030 	kcov_task_init(tsk);
1031 	kmap_local_fork(tsk);
1032 
1033 #ifdef CONFIG_FAULT_INJECTION
1034 	tsk->fail_nth = 0;
1035 #endif
1036 
1037 #ifdef CONFIG_BLK_CGROUP
1038 	tsk->throttle_queue = NULL;
1039 	tsk->use_memdelay = 0;
1040 #endif
1041 
1042 #ifdef CONFIG_IOMMU_SVA
1043 	tsk->pasid_activated = 0;
1044 #endif
1045 
1046 #ifdef CONFIG_MEMCG
1047 	tsk->active_memcg = NULL;
1048 #endif
1049 
1050 #ifdef CONFIG_CPU_SUP_INTEL
1051 	tsk->reported_split_lock = 0;
1052 #endif
1053 
1054 	return tsk;
1055 
1056 free_stack:
1057 	exit_task_stack_account(tsk);
1058 	free_thread_stack(tsk);
1059 free_tsk:
1060 	free_task_struct(tsk);
1061 	return NULL;
1062 }
1063 
1064 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1065 
1066 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1067 
1068 static int __init coredump_filter_setup(char *s)
1069 {
1070 	default_dump_filter =
1071 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1072 		MMF_DUMP_FILTER_MASK;
1073 	return 1;
1074 }
1075 
1076 __setup("coredump_filter=", coredump_filter_setup);
1077 
1078 #include <linux/init_task.h>
1079 
1080 static void mm_init_aio(struct mm_struct *mm)
1081 {
1082 #ifdef CONFIG_AIO
1083 	spin_lock_init(&mm->ioctx_lock);
1084 	mm->ioctx_table = NULL;
1085 #endif
1086 }
1087 
1088 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1089 					   struct task_struct *p)
1090 {
1091 #ifdef CONFIG_MEMCG
1092 	if (mm->owner == p)
1093 		WRITE_ONCE(mm->owner, NULL);
1094 #endif
1095 }
1096 
1097 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1098 {
1099 #ifdef CONFIG_MEMCG
1100 	mm->owner = p;
1101 #endif
1102 }
1103 
1104 static void mm_init_uprobes_state(struct mm_struct *mm)
1105 {
1106 #ifdef CONFIG_UPROBES
1107 	mm->uprobes_state.xol_area = NULL;
1108 #endif
1109 }
1110 
1111 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1112 	struct user_namespace *user_ns)
1113 {
1114 	mm->mmap = NULL;
1115 	mm->mm_rb = RB_ROOT;
1116 	mm->vmacache_seqnum = 0;
1117 	atomic_set(&mm->mm_users, 1);
1118 	atomic_set(&mm->mm_count, 1);
1119 	seqcount_init(&mm->write_protect_seq);
1120 	mmap_init_lock(mm);
1121 	INIT_LIST_HEAD(&mm->mmlist);
1122 	mm_pgtables_bytes_init(mm);
1123 	mm->map_count = 0;
1124 	mm->locked_vm = 0;
1125 	atomic64_set(&mm->pinned_vm, 0);
1126 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1127 	spin_lock_init(&mm->page_table_lock);
1128 	spin_lock_init(&mm->arg_lock);
1129 	mm_init_cpumask(mm);
1130 	mm_init_aio(mm);
1131 	mm_init_owner(mm, p);
1132 	mm_pasid_init(mm);
1133 	RCU_INIT_POINTER(mm->exe_file, NULL);
1134 	mmu_notifier_subscriptions_init(mm);
1135 	init_tlb_flush_pending(mm);
1136 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1137 	mm->pmd_huge_pte = NULL;
1138 #endif
1139 	mm_init_uprobes_state(mm);
1140 	hugetlb_count_init(mm);
1141 
1142 	if (current->mm) {
1143 		mm->flags = current->mm->flags & MMF_INIT_MASK;
1144 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1145 	} else {
1146 		mm->flags = default_dump_filter;
1147 		mm->def_flags = 0;
1148 	}
1149 
1150 	if (mm_alloc_pgd(mm))
1151 		goto fail_nopgd;
1152 
1153 	if (init_new_context(p, mm))
1154 		goto fail_nocontext;
1155 
1156 	mm->user_ns = get_user_ns(user_ns);
1157 	return mm;
1158 
1159 fail_nocontext:
1160 	mm_free_pgd(mm);
1161 fail_nopgd:
1162 	free_mm(mm);
1163 	return NULL;
1164 }
1165 
1166 /*
1167  * Allocate and initialize an mm_struct.
1168  */
1169 struct mm_struct *mm_alloc(void)
1170 {
1171 	struct mm_struct *mm;
1172 
1173 	mm = allocate_mm();
1174 	if (!mm)
1175 		return NULL;
1176 
1177 	memset(mm, 0, sizeof(*mm));
1178 	return mm_init(mm, current, current_user_ns());
1179 }
1180 
1181 static inline void __mmput(struct mm_struct *mm)
1182 {
1183 	VM_BUG_ON(atomic_read(&mm->mm_users));
1184 
1185 	uprobe_clear_state(mm);
1186 	exit_aio(mm);
1187 	ksm_exit(mm);
1188 	khugepaged_exit(mm); /* must run before exit_mmap */
1189 	exit_mmap(mm);
1190 	mm_put_huge_zero_page(mm);
1191 	set_mm_exe_file(mm, NULL);
1192 	if (!list_empty(&mm->mmlist)) {
1193 		spin_lock(&mmlist_lock);
1194 		list_del(&mm->mmlist);
1195 		spin_unlock(&mmlist_lock);
1196 	}
1197 	if (mm->binfmt)
1198 		module_put(mm->binfmt->module);
1199 	mmdrop(mm);
1200 }
1201 
1202 /*
1203  * Decrement the use count and release all resources for an mm.
1204  */
1205 void mmput(struct mm_struct *mm)
1206 {
1207 	might_sleep();
1208 
1209 	if (atomic_dec_and_test(&mm->mm_users))
1210 		__mmput(mm);
1211 }
1212 EXPORT_SYMBOL_GPL(mmput);
1213 
1214 #ifdef CONFIG_MMU
1215 static void mmput_async_fn(struct work_struct *work)
1216 {
1217 	struct mm_struct *mm = container_of(work, struct mm_struct,
1218 					    async_put_work);
1219 
1220 	__mmput(mm);
1221 }
1222 
1223 void mmput_async(struct mm_struct *mm)
1224 {
1225 	if (atomic_dec_and_test(&mm->mm_users)) {
1226 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1227 		schedule_work(&mm->async_put_work);
1228 	}
1229 }
1230 #endif
1231 
1232 /**
1233  * set_mm_exe_file - change a reference to the mm's executable file
1234  *
1235  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1236  *
1237  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1238  * invocations: in mmput() nobody alive left, in execve task is single
1239  * threaded.
1240  *
1241  * Can only fail if new_exe_file != NULL.
1242  */
1243 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1244 {
1245 	struct file *old_exe_file;
1246 
1247 	/*
1248 	 * It is safe to dereference the exe_file without RCU as
1249 	 * this function is only called if nobody else can access
1250 	 * this mm -- see comment above for justification.
1251 	 */
1252 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1253 
1254 	if (new_exe_file) {
1255 		/*
1256 		 * We expect the caller (i.e., sys_execve) to already denied
1257 		 * write access, so this is unlikely to fail.
1258 		 */
1259 		if (unlikely(deny_write_access(new_exe_file)))
1260 			return -EACCES;
1261 		get_file(new_exe_file);
1262 	}
1263 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1264 	if (old_exe_file) {
1265 		allow_write_access(old_exe_file);
1266 		fput(old_exe_file);
1267 	}
1268 	return 0;
1269 }
1270 
1271 /**
1272  * replace_mm_exe_file - replace a reference to the mm's executable file
1273  *
1274  * This changes mm's executable file (shown as symlink /proc/[pid]/exe),
1275  * dealing with concurrent invocation and without grabbing the mmap lock in
1276  * write mode.
1277  *
1278  * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1279  */
1280 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1281 {
1282 	struct vm_area_struct *vma;
1283 	struct file *old_exe_file;
1284 	int ret = 0;
1285 
1286 	/* Forbid mm->exe_file change if old file still mapped. */
1287 	old_exe_file = get_mm_exe_file(mm);
1288 	if (old_exe_file) {
1289 		mmap_read_lock(mm);
1290 		for (vma = mm->mmap; vma && !ret; vma = vma->vm_next) {
1291 			if (!vma->vm_file)
1292 				continue;
1293 			if (path_equal(&vma->vm_file->f_path,
1294 				       &old_exe_file->f_path))
1295 				ret = -EBUSY;
1296 		}
1297 		mmap_read_unlock(mm);
1298 		fput(old_exe_file);
1299 		if (ret)
1300 			return ret;
1301 	}
1302 
1303 	/* set the new file, lockless */
1304 	ret = deny_write_access(new_exe_file);
1305 	if (ret)
1306 		return -EACCES;
1307 	get_file(new_exe_file);
1308 
1309 	old_exe_file = xchg(&mm->exe_file, new_exe_file);
1310 	if (old_exe_file) {
1311 		/*
1312 		 * Don't race with dup_mmap() getting the file and disallowing
1313 		 * write access while someone might open the file writable.
1314 		 */
1315 		mmap_read_lock(mm);
1316 		allow_write_access(old_exe_file);
1317 		fput(old_exe_file);
1318 		mmap_read_unlock(mm);
1319 	}
1320 	return 0;
1321 }
1322 
1323 /**
1324  * get_mm_exe_file - acquire a reference to the mm's executable file
1325  *
1326  * Returns %NULL if mm has no associated executable file.
1327  * User must release file via fput().
1328  */
1329 struct file *get_mm_exe_file(struct mm_struct *mm)
1330 {
1331 	struct file *exe_file;
1332 
1333 	rcu_read_lock();
1334 	exe_file = rcu_dereference(mm->exe_file);
1335 	if (exe_file && !get_file_rcu(exe_file))
1336 		exe_file = NULL;
1337 	rcu_read_unlock();
1338 	return exe_file;
1339 }
1340 
1341 /**
1342  * get_task_exe_file - acquire a reference to the task's executable file
1343  *
1344  * Returns %NULL if task's mm (if any) has no associated executable file or
1345  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1346  * User must release file via fput().
1347  */
1348 struct file *get_task_exe_file(struct task_struct *task)
1349 {
1350 	struct file *exe_file = NULL;
1351 	struct mm_struct *mm;
1352 
1353 	task_lock(task);
1354 	mm = task->mm;
1355 	if (mm) {
1356 		if (!(task->flags & PF_KTHREAD))
1357 			exe_file = get_mm_exe_file(mm);
1358 	}
1359 	task_unlock(task);
1360 	return exe_file;
1361 }
1362 
1363 /**
1364  * get_task_mm - acquire a reference to the task's mm
1365  *
1366  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1367  * this kernel workthread has transiently adopted a user mm with use_mm,
1368  * to do its AIO) is not set and if so returns a reference to it, after
1369  * bumping up the use count.  User must release the mm via mmput()
1370  * after use.  Typically used by /proc and ptrace.
1371  */
1372 struct mm_struct *get_task_mm(struct task_struct *task)
1373 {
1374 	struct mm_struct *mm;
1375 
1376 	task_lock(task);
1377 	mm = task->mm;
1378 	if (mm) {
1379 		if (task->flags & PF_KTHREAD)
1380 			mm = NULL;
1381 		else
1382 			mmget(mm);
1383 	}
1384 	task_unlock(task);
1385 	return mm;
1386 }
1387 EXPORT_SYMBOL_GPL(get_task_mm);
1388 
1389 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1390 {
1391 	struct mm_struct *mm;
1392 	int err;
1393 
1394 	err =  down_read_killable(&task->signal->exec_update_lock);
1395 	if (err)
1396 		return ERR_PTR(err);
1397 
1398 	mm = get_task_mm(task);
1399 	if (mm && mm != current->mm &&
1400 			!ptrace_may_access(task, mode)) {
1401 		mmput(mm);
1402 		mm = ERR_PTR(-EACCES);
1403 	}
1404 	up_read(&task->signal->exec_update_lock);
1405 
1406 	return mm;
1407 }
1408 
1409 static void complete_vfork_done(struct task_struct *tsk)
1410 {
1411 	struct completion *vfork;
1412 
1413 	task_lock(tsk);
1414 	vfork = tsk->vfork_done;
1415 	if (likely(vfork)) {
1416 		tsk->vfork_done = NULL;
1417 		complete(vfork);
1418 	}
1419 	task_unlock(tsk);
1420 }
1421 
1422 static int wait_for_vfork_done(struct task_struct *child,
1423 				struct completion *vfork)
1424 {
1425 	int killed;
1426 
1427 	freezer_do_not_count();
1428 	cgroup_enter_frozen();
1429 	killed = wait_for_completion_killable(vfork);
1430 	cgroup_leave_frozen(false);
1431 	freezer_count();
1432 
1433 	if (killed) {
1434 		task_lock(child);
1435 		child->vfork_done = NULL;
1436 		task_unlock(child);
1437 	}
1438 
1439 	put_task_struct(child);
1440 	return killed;
1441 }
1442 
1443 /* Please note the differences between mmput and mm_release.
1444  * mmput is called whenever we stop holding onto a mm_struct,
1445  * error success whatever.
1446  *
1447  * mm_release is called after a mm_struct has been removed
1448  * from the current process.
1449  *
1450  * This difference is important for error handling, when we
1451  * only half set up a mm_struct for a new process and need to restore
1452  * the old one.  Because we mmput the new mm_struct before
1453  * restoring the old one. . .
1454  * Eric Biederman 10 January 1998
1455  */
1456 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1457 {
1458 	uprobe_free_utask(tsk);
1459 
1460 	/* Get rid of any cached register state */
1461 	deactivate_mm(tsk, mm);
1462 
1463 	/*
1464 	 * Signal userspace if we're not exiting with a core dump
1465 	 * because we want to leave the value intact for debugging
1466 	 * purposes.
1467 	 */
1468 	if (tsk->clear_child_tid) {
1469 		if (atomic_read(&mm->mm_users) > 1) {
1470 			/*
1471 			 * We don't check the error code - if userspace has
1472 			 * not set up a proper pointer then tough luck.
1473 			 */
1474 			put_user(0, tsk->clear_child_tid);
1475 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1476 					1, NULL, NULL, 0, 0);
1477 		}
1478 		tsk->clear_child_tid = NULL;
1479 	}
1480 
1481 	/*
1482 	 * All done, finally we can wake up parent and return this mm to him.
1483 	 * Also kthread_stop() uses this completion for synchronization.
1484 	 */
1485 	if (tsk->vfork_done)
1486 		complete_vfork_done(tsk);
1487 }
1488 
1489 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1490 {
1491 	futex_exit_release(tsk);
1492 	mm_release(tsk, mm);
1493 }
1494 
1495 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1496 {
1497 	futex_exec_release(tsk);
1498 	mm_release(tsk, mm);
1499 }
1500 
1501 /**
1502  * dup_mm() - duplicates an existing mm structure
1503  * @tsk: the task_struct with which the new mm will be associated.
1504  * @oldmm: the mm to duplicate.
1505  *
1506  * Allocates a new mm structure and duplicates the provided @oldmm structure
1507  * content into it.
1508  *
1509  * Return: the duplicated mm or NULL on failure.
1510  */
1511 static struct mm_struct *dup_mm(struct task_struct *tsk,
1512 				struct mm_struct *oldmm)
1513 {
1514 	struct mm_struct *mm;
1515 	int err;
1516 
1517 	mm = allocate_mm();
1518 	if (!mm)
1519 		goto fail_nomem;
1520 
1521 	memcpy(mm, oldmm, sizeof(*mm));
1522 
1523 	if (!mm_init(mm, tsk, mm->user_ns))
1524 		goto fail_nomem;
1525 
1526 	err = dup_mmap(mm, oldmm);
1527 	if (err)
1528 		goto free_pt;
1529 
1530 	mm->hiwater_rss = get_mm_rss(mm);
1531 	mm->hiwater_vm = mm->total_vm;
1532 
1533 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1534 		goto free_pt;
1535 
1536 	return mm;
1537 
1538 free_pt:
1539 	/* don't put binfmt in mmput, we haven't got module yet */
1540 	mm->binfmt = NULL;
1541 	mm_init_owner(mm, NULL);
1542 	mmput(mm);
1543 
1544 fail_nomem:
1545 	return NULL;
1546 }
1547 
1548 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1549 {
1550 	struct mm_struct *mm, *oldmm;
1551 
1552 	tsk->min_flt = tsk->maj_flt = 0;
1553 	tsk->nvcsw = tsk->nivcsw = 0;
1554 #ifdef CONFIG_DETECT_HUNG_TASK
1555 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1556 	tsk->last_switch_time = 0;
1557 #endif
1558 
1559 	tsk->mm = NULL;
1560 	tsk->active_mm = NULL;
1561 
1562 	/*
1563 	 * Are we cloning a kernel thread?
1564 	 *
1565 	 * We need to steal a active VM for that..
1566 	 */
1567 	oldmm = current->mm;
1568 	if (!oldmm)
1569 		return 0;
1570 
1571 	/* initialize the new vmacache entries */
1572 	vmacache_flush(tsk);
1573 
1574 	if (clone_flags & CLONE_VM) {
1575 		mmget(oldmm);
1576 		mm = oldmm;
1577 	} else {
1578 		mm = dup_mm(tsk, current->mm);
1579 		if (!mm)
1580 			return -ENOMEM;
1581 	}
1582 
1583 	tsk->mm = mm;
1584 	tsk->active_mm = mm;
1585 	return 0;
1586 }
1587 
1588 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1589 {
1590 	struct fs_struct *fs = current->fs;
1591 	if (clone_flags & CLONE_FS) {
1592 		/* tsk->fs is already what we want */
1593 		spin_lock(&fs->lock);
1594 		if (fs->in_exec) {
1595 			spin_unlock(&fs->lock);
1596 			return -EAGAIN;
1597 		}
1598 		fs->users++;
1599 		spin_unlock(&fs->lock);
1600 		return 0;
1601 	}
1602 	tsk->fs = copy_fs_struct(fs);
1603 	if (!tsk->fs)
1604 		return -ENOMEM;
1605 	return 0;
1606 }
1607 
1608 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1609 {
1610 	struct files_struct *oldf, *newf;
1611 	int error = 0;
1612 
1613 	/*
1614 	 * A background process may not have any files ...
1615 	 */
1616 	oldf = current->files;
1617 	if (!oldf)
1618 		goto out;
1619 
1620 	if (clone_flags & CLONE_FILES) {
1621 		atomic_inc(&oldf->count);
1622 		goto out;
1623 	}
1624 
1625 	newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1626 	if (!newf)
1627 		goto out;
1628 
1629 	tsk->files = newf;
1630 	error = 0;
1631 out:
1632 	return error;
1633 }
1634 
1635 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1636 {
1637 	struct sighand_struct *sig;
1638 
1639 	if (clone_flags & CLONE_SIGHAND) {
1640 		refcount_inc(&current->sighand->count);
1641 		return 0;
1642 	}
1643 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1644 	RCU_INIT_POINTER(tsk->sighand, sig);
1645 	if (!sig)
1646 		return -ENOMEM;
1647 
1648 	refcount_set(&sig->count, 1);
1649 	spin_lock_irq(&current->sighand->siglock);
1650 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1651 	spin_unlock_irq(&current->sighand->siglock);
1652 
1653 	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1654 	if (clone_flags & CLONE_CLEAR_SIGHAND)
1655 		flush_signal_handlers(tsk, 0);
1656 
1657 	return 0;
1658 }
1659 
1660 void __cleanup_sighand(struct sighand_struct *sighand)
1661 {
1662 	if (refcount_dec_and_test(&sighand->count)) {
1663 		signalfd_cleanup(sighand);
1664 		/*
1665 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1666 		 * without an RCU grace period, see __lock_task_sighand().
1667 		 */
1668 		kmem_cache_free(sighand_cachep, sighand);
1669 	}
1670 }
1671 
1672 /*
1673  * Initialize POSIX timer handling for a thread group.
1674  */
1675 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1676 {
1677 	struct posix_cputimers *pct = &sig->posix_cputimers;
1678 	unsigned long cpu_limit;
1679 
1680 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1681 	posix_cputimers_group_init(pct, cpu_limit);
1682 }
1683 
1684 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1685 {
1686 	struct signal_struct *sig;
1687 
1688 	if (clone_flags & CLONE_THREAD)
1689 		return 0;
1690 
1691 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1692 	tsk->signal = sig;
1693 	if (!sig)
1694 		return -ENOMEM;
1695 
1696 	sig->nr_threads = 1;
1697 	atomic_set(&sig->live, 1);
1698 	refcount_set(&sig->sigcnt, 1);
1699 
1700 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1701 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1702 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1703 
1704 	init_waitqueue_head(&sig->wait_chldexit);
1705 	sig->curr_target = tsk;
1706 	init_sigpending(&sig->shared_pending);
1707 	INIT_HLIST_HEAD(&sig->multiprocess);
1708 	seqlock_init(&sig->stats_lock);
1709 	prev_cputime_init(&sig->prev_cputime);
1710 
1711 #ifdef CONFIG_POSIX_TIMERS
1712 	INIT_LIST_HEAD(&sig->posix_timers);
1713 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1714 	sig->real_timer.function = it_real_fn;
1715 #endif
1716 
1717 	task_lock(current->group_leader);
1718 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1719 	task_unlock(current->group_leader);
1720 
1721 	posix_cpu_timers_init_group(sig);
1722 
1723 	tty_audit_fork(sig);
1724 	sched_autogroup_fork(sig);
1725 
1726 	sig->oom_score_adj = current->signal->oom_score_adj;
1727 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1728 
1729 	mutex_init(&sig->cred_guard_mutex);
1730 	init_rwsem(&sig->exec_update_lock);
1731 
1732 	return 0;
1733 }
1734 
1735 static void copy_seccomp(struct task_struct *p)
1736 {
1737 #ifdef CONFIG_SECCOMP
1738 	/*
1739 	 * Must be called with sighand->lock held, which is common to
1740 	 * all threads in the group. Holding cred_guard_mutex is not
1741 	 * needed because this new task is not yet running and cannot
1742 	 * be racing exec.
1743 	 */
1744 	assert_spin_locked(&current->sighand->siglock);
1745 
1746 	/* Ref-count the new filter user, and assign it. */
1747 	get_seccomp_filter(current);
1748 	p->seccomp = current->seccomp;
1749 
1750 	/*
1751 	 * Explicitly enable no_new_privs here in case it got set
1752 	 * between the task_struct being duplicated and holding the
1753 	 * sighand lock. The seccomp state and nnp must be in sync.
1754 	 */
1755 	if (task_no_new_privs(current))
1756 		task_set_no_new_privs(p);
1757 
1758 	/*
1759 	 * If the parent gained a seccomp mode after copying thread
1760 	 * flags and between before we held the sighand lock, we have
1761 	 * to manually enable the seccomp thread flag here.
1762 	 */
1763 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1764 		set_task_syscall_work(p, SECCOMP);
1765 #endif
1766 }
1767 
1768 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1769 {
1770 	current->clear_child_tid = tidptr;
1771 
1772 	return task_pid_vnr(current);
1773 }
1774 
1775 static void rt_mutex_init_task(struct task_struct *p)
1776 {
1777 	raw_spin_lock_init(&p->pi_lock);
1778 #ifdef CONFIG_RT_MUTEXES
1779 	p->pi_waiters = RB_ROOT_CACHED;
1780 	p->pi_top_task = NULL;
1781 	p->pi_blocked_on = NULL;
1782 #endif
1783 }
1784 
1785 static inline void init_task_pid_links(struct task_struct *task)
1786 {
1787 	enum pid_type type;
1788 
1789 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1790 		INIT_HLIST_NODE(&task->pid_links[type]);
1791 }
1792 
1793 static inline void
1794 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1795 {
1796 	if (type == PIDTYPE_PID)
1797 		task->thread_pid = pid;
1798 	else
1799 		task->signal->pids[type] = pid;
1800 }
1801 
1802 static inline void rcu_copy_process(struct task_struct *p)
1803 {
1804 #ifdef CONFIG_PREEMPT_RCU
1805 	p->rcu_read_lock_nesting = 0;
1806 	p->rcu_read_unlock_special.s = 0;
1807 	p->rcu_blocked_node = NULL;
1808 	INIT_LIST_HEAD(&p->rcu_node_entry);
1809 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1810 #ifdef CONFIG_TASKS_RCU
1811 	p->rcu_tasks_holdout = false;
1812 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1813 	p->rcu_tasks_idle_cpu = -1;
1814 #endif /* #ifdef CONFIG_TASKS_RCU */
1815 #ifdef CONFIG_TASKS_TRACE_RCU
1816 	p->trc_reader_nesting = 0;
1817 	p->trc_reader_special.s = 0;
1818 	INIT_LIST_HEAD(&p->trc_holdout_list);
1819 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1820 }
1821 
1822 struct pid *pidfd_pid(const struct file *file)
1823 {
1824 	if (file->f_op == &pidfd_fops)
1825 		return file->private_data;
1826 
1827 	return ERR_PTR(-EBADF);
1828 }
1829 
1830 static int pidfd_release(struct inode *inode, struct file *file)
1831 {
1832 	struct pid *pid = file->private_data;
1833 
1834 	file->private_data = NULL;
1835 	put_pid(pid);
1836 	return 0;
1837 }
1838 
1839 #ifdef CONFIG_PROC_FS
1840 /**
1841  * pidfd_show_fdinfo - print information about a pidfd
1842  * @m: proc fdinfo file
1843  * @f: file referencing a pidfd
1844  *
1845  * Pid:
1846  * This function will print the pid that a given pidfd refers to in the
1847  * pid namespace of the procfs instance.
1848  * If the pid namespace of the process is not a descendant of the pid
1849  * namespace of the procfs instance 0 will be shown as its pid. This is
1850  * similar to calling getppid() on a process whose parent is outside of
1851  * its pid namespace.
1852  *
1853  * NSpid:
1854  * If pid namespaces are supported then this function will also print
1855  * the pid of a given pidfd refers to for all descendant pid namespaces
1856  * starting from the current pid namespace of the instance, i.e. the
1857  * Pid field and the first entry in the NSpid field will be identical.
1858  * If the pid namespace of the process is not a descendant of the pid
1859  * namespace of the procfs instance 0 will be shown as its first NSpid
1860  * entry and no others will be shown.
1861  * Note that this differs from the Pid and NSpid fields in
1862  * /proc/<pid>/status where Pid and NSpid are always shown relative to
1863  * the  pid namespace of the procfs instance. The difference becomes
1864  * obvious when sending around a pidfd between pid namespaces from a
1865  * different branch of the tree, i.e. where no ancestral relation is
1866  * present between the pid namespaces:
1867  * - create two new pid namespaces ns1 and ns2 in the initial pid
1868  *   namespace (also take care to create new mount namespaces in the
1869  *   new pid namespace and mount procfs)
1870  * - create a process with a pidfd in ns1
1871  * - send pidfd from ns1 to ns2
1872  * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1873  *   have exactly one entry, which is 0
1874  */
1875 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1876 {
1877 	struct pid *pid = f->private_data;
1878 	struct pid_namespace *ns;
1879 	pid_t nr = -1;
1880 
1881 	if (likely(pid_has_task(pid, PIDTYPE_PID))) {
1882 		ns = proc_pid_ns(file_inode(m->file)->i_sb);
1883 		nr = pid_nr_ns(pid, ns);
1884 	}
1885 
1886 	seq_put_decimal_ll(m, "Pid:\t", nr);
1887 
1888 #ifdef CONFIG_PID_NS
1889 	seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1890 	if (nr > 0) {
1891 		int i;
1892 
1893 		/* If nr is non-zero it means that 'pid' is valid and that
1894 		 * ns, i.e. the pid namespace associated with the procfs
1895 		 * instance, is in the pid namespace hierarchy of pid.
1896 		 * Start at one below the already printed level.
1897 		 */
1898 		for (i = ns->level + 1; i <= pid->level; i++)
1899 			seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
1900 	}
1901 #endif
1902 	seq_putc(m, '\n');
1903 }
1904 #endif
1905 
1906 /*
1907  * Poll support for process exit notification.
1908  */
1909 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1910 {
1911 	struct pid *pid = file->private_data;
1912 	__poll_t poll_flags = 0;
1913 
1914 	poll_wait(file, &pid->wait_pidfd, pts);
1915 
1916 	/*
1917 	 * Inform pollers only when the whole thread group exits.
1918 	 * If the thread group leader exits before all other threads in the
1919 	 * group, then poll(2) should block, similar to the wait(2) family.
1920 	 */
1921 	if (thread_group_exited(pid))
1922 		poll_flags = EPOLLIN | EPOLLRDNORM;
1923 
1924 	return poll_flags;
1925 }
1926 
1927 const struct file_operations pidfd_fops = {
1928 	.release = pidfd_release,
1929 	.poll = pidfd_poll,
1930 #ifdef CONFIG_PROC_FS
1931 	.show_fdinfo = pidfd_show_fdinfo,
1932 #endif
1933 };
1934 
1935 static void __delayed_free_task(struct rcu_head *rhp)
1936 {
1937 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1938 
1939 	free_task(tsk);
1940 }
1941 
1942 static __always_inline void delayed_free_task(struct task_struct *tsk)
1943 {
1944 	if (IS_ENABLED(CONFIG_MEMCG))
1945 		call_rcu(&tsk->rcu, __delayed_free_task);
1946 	else
1947 		free_task(tsk);
1948 }
1949 
1950 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
1951 {
1952 	/* Skip if kernel thread */
1953 	if (!tsk->mm)
1954 		return;
1955 
1956 	/* Skip if spawning a thread or using vfork */
1957 	if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
1958 		return;
1959 
1960 	/* We need to synchronize with __set_oom_adj */
1961 	mutex_lock(&oom_adj_mutex);
1962 	set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
1963 	/* Update the values in case they were changed after copy_signal */
1964 	tsk->signal->oom_score_adj = current->signal->oom_score_adj;
1965 	tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
1966 	mutex_unlock(&oom_adj_mutex);
1967 }
1968 
1969 /*
1970  * This creates a new process as a copy of the old one,
1971  * but does not actually start it yet.
1972  *
1973  * It copies the registers, and all the appropriate
1974  * parts of the process environment (as per the clone
1975  * flags). The actual kick-off is left to the caller.
1976  */
1977 static __latent_entropy struct task_struct *copy_process(
1978 					struct pid *pid,
1979 					int trace,
1980 					int node,
1981 					struct kernel_clone_args *args)
1982 {
1983 	int pidfd = -1, retval;
1984 	struct task_struct *p;
1985 	struct multiprocess_signals delayed;
1986 	struct file *pidfile = NULL;
1987 	u64 clone_flags = args->flags;
1988 	struct nsproxy *nsp = current->nsproxy;
1989 
1990 	/*
1991 	 * Don't allow sharing the root directory with processes in a different
1992 	 * namespace
1993 	 */
1994 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1995 		return ERR_PTR(-EINVAL);
1996 
1997 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1998 		return ERR_PTR(-EINVAL);
1999 
2000 	/*
2001 	 * Thread groups must share signals as well, and detached threads
2002 	 * can only be started up within the thread group.
2003 	 */
2004 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2005 		return ERR_PTR(-EINVAL);
2006 
2007 	/*
2008 	 * Shared signal handlers imply shared VM. By way of the above,
2009 	 * thread groups also imply shared VM. Blocking this case allows
2010 	 * for various simplifications in other code.
2011 	 */
2012 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2013 		return ERR_PTR(-EINVAL);
2014 
2015 	/*
2016 	 * Siblings of global init remain as zombies on exit since they are
2017 	 * not reaped by their parent (swapper). To solve this and to avoid
2018 	 * multi-rooted process trees, prevent global and container-inits
2019 	 * from creating siblings.
2020 	 */
2021 	if ((clone_flags & CLONE_PARENT) &&
2022 				current->signal->flags & SIGNAL_UNKILLABLE)
2023 		return ERR_PTR(-EINVAL);
2024 
2025 	/*
2026 	 * If the new process will be in a different pid or user namespace
2027 	 * do not allow it to share a thread group with the forking task.
2028 	 */
2029 	if (clone_flags & CLONE_THREAD) {
2030 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
2031 		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2032 			return ERR_PTR(-EINVAL);
2033 	}
2034 
2035 	/*
2036 	 * If the new process will be in a different time namespace
2037 	 * do not allow it to share VM or a thread group with the forking task.
2038 	 */
2039 	if (clone_flags & (CLONE_THREAD | CLONE_VM)) {
2040 		if (nsp->time_ns != nsp->time_ns_for_children)
2041 			return ERR_PTR(-EINVAL);
2042 	}
2043 
2044 	if (clone_flags & CLONE_PIDFD) {
2045 		/*
2046 		 * - CLONE_DETACHED is blocked so that we can potentially
2047 		 *   reuse it later for CLONE_PIDFD.
2048 		 * - CLONE_THREAD is blocked until someone really needs it.
2049 		 */
2050 		if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
2051 			return ERR_PTR(-EINVAL);
2052 	}
2053 
2054 	/*
2055 	 * Force any signals received before this point to be delivered
2056 	 * before the fork happens.  Collect up signals sent to multiple
2057 	 * processes that happen during the fork and delay them so that
2058 	 * they appear to happen after the fork.
2059 	 */
2060 	sigemptyset(&delayed.signal);
2061 	INIT_HLIST_NODE(&delayed.node);
2062 
2063 	spin_lock_irq(&current->sighand->siglock);
2064 	if (!(clone_flags & CLONE_THREAD))
2065 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
2066 	recalc_sigpending();
2067 	spin_unlock_irq(&current->sighand->siglock);
2068 	retval = -ERESTARTNOINTR;
2069 	if (task_sigpending(current))
2070 		goto fork_out;
2071 
2072 	retval = -ENOMEM;
2073 	p = dup_task_struct(current, node);
2074 	if (!p)
2075 		goto fork_out;
2076 	if (args->io_thread) {
2077 		/*
2078 		 * Mark us an IO worker, and block any signal that isn't
2079 		 * fatal or STOP
2080 		 */
2081 		p->flags |= PF_IO_WORKER;
2082 		siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2083 	}
2084 
2085 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2086 	/*
2087 	 * Clear TID on mm_release()?
2088 	 */
2089 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2090 
2091 	ftrace_graph_init_task(p);
2092 
2093 	rt_mutex_init_task(p);
2094 
2095 	lockdep_assert_irqs_enabled();
2096 #ifdef CONFIG_PROVE_LOCKING
2097 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2098 #endif
2099 	retval = copy_creds(p, clone_flags);
2100 	if (retval < 0)
2101 		goto bad_fork_free;
2102 
2103 	retval = -EAGAIN;
2104 	if (is_ucounts_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2105 		if (p->real_cred->user != INIT_USER &&
2106 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2107 			goto bad_fork_cleanup_count;
2108 	}
2109 	current->flags &= ~PF_NPROC_EXCEEDED;
2110 
2111 	/*
2112 	 * If multiple threads are within copy_process(), then this check
2113 	 * triggers too late. This doesn't hurt, the check is only there
2114 	 * to stop root fork bombs.
2115 	 */
2116 	retval = -EAGAIN;
2117 	if (data_race(nr_threads >= max_threads))
2118 		goto bad_fork_cleanup_count;
2119 
2120 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
2121 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2122 	p->flags |= PF_FORKNOEXEC;
2123 	INIT_LIST_HEAD(&p->children);
2124 	INIT_LIST_HEAD(&p->sibling);
2125 	rcu_copy_process(p);
2126 	p->vfork_done = NULL;
2127 	spin_lock_init(&p->alloc_lock);
2128 
2129 	init_sigpending(&p->pending);
2130 
2131 	p->utime = p->stime = p->gtime = 0;
2132 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2133 	p->utimescaled = p->stimescaled = 0;
2134 #endif
2135 	prev_cputime_init(&p->prev_cputime);
2136 
2137 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2138 	seqcount_init(&p->vtime.seqcount);
2139 	p->vtime.starttime = 0;
2140 	p->vtime.state = VTIME_INACTIVE;
2141 #endif
2142 
2143 #ifdef CONFIG_IO_URING
2144 	p->io_uring = NULL;
2145 #endif
2146 
2147 #if defined(SPLIT_RSS_COUNTING)
2148 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2149 #endif
2150 
2151 	p->default_timer_slack_ns = current->timer_slack_ns;
2152 
2153 #ifdef CONFIG_PSI
2154 	p->psi_flags = 0;
2155 #endif
2156 
2157 	task_io_accounting_init(&p->ioac);
2158 	acct_clear_integrals(p);
2159 
2160 	posix_cputimers_init(&p->posix_cputimers);
2161 
2162 	p->io_context = NULL;
2163 	audit_set_context(p, NULL);
2164 	cgroup_fork(p);
2165 	if (p->flags & PF_KTHREAD) {
2166 		if (!set_kthread_struct(p))
2167 			goto bad_fork_cleanup_delayacct;
2168 	}
2169 #ifdef CONFIG_NUMA
2170 	p->mempolicy = mpol_dup(p->mempolicy);
2171 	if (IS_ERR(p->mempolicy)) {
2172 		retval = PTR_ERR(p->mempolicy);
2173 		p->mempolicy = NULL;
2174 		goto bad_fork_cleanup_delayacct;
2175 	}
2176 #endif
2177 #ifdef CONFIG_CPUSETS
2178 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2179 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2180 	seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2181 #endif
2182 #ifdef CONFIG_TRACE_IRQFLAGS
2183 	memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2184 	p->irqtrace.hardirq_disable_ip	= _THIS_IP_;
2185 	p->irqtrace.softirq_enable_ip	= _THIS_IP_;
2186 	p->softirqs_enabled		= 1;
2187 	p->softirq_context		= 0;
2188 #endif
2189 
2190 	p->pagefault_disabled = 0;
2191 
2192 #ifdef CONFIG_LOCKDEP
2193 	lockdep_init_task(p);
2194 #endif
2195 
2196 #ifdef CONFIG_DEBUG_MUTEXES
2197 	p->blocked_on = NULL; /* not blocked yet */
2198 #endif
2199 #ifdef CONFIG_BCACHE
2200 	p->sequential_io	= 0;
2201 	p->sequential_io_avg	= 0;
2202 #endif
2203 #ifdef CONFIG_BPF_SYSCALL
2204 	RCU_INIT_POINTER(p->bpf_storage, NULL);
2205 	p->bpf_ctx = NULL;
2206 #endif
2207 
2208 	/* Perform scheduler related setup. Assign this task to a CPU. */
2209 	retval = sched_fork(clone_flags, p);
2210 	if (retval)
2211 		goto bad_fork_cleanup_policy;
2212 
2213 	retval = perf_event_init_task(p, clone_flags);
2214 	if (retval)
2215 		goto bad_fork_cleanup_policy;
2216 	retval = audit_alloc(p);
2217 	if (retval)
2218 		goto bad_fork_cleanup_perf;
2219 	/* copy all the process information */
2220 	shm_init_task(p);
2221 	retval = security_task_alloc(p, clone_flags);
2222 	if (retval)
2223 		goto bad_fork_cleanup_audit;
2224 	retval = copy_semundo(clone_flags, p);
2225 	if (retval)
2226 		goto bad_fork_cleanup_security;
2227 	retval = copy_files(clone_flags, p);
2228 	if (retval)
2229 		goto bad_fork_cleanup_semundo;
2230 	retval = copy_fs(clone_flags, p);
2231 	if (retval)
2232 		goto bad_fork_cleanup_files;
2233 	retval = copy_sighand(clone_flags, p);
2234 	if (retval)
2235 		goto bad_fork_cleanup_fs;
2236 	retval = copy_signal(clone_flags, p);
2237 	if (retval)
2238 		goto bad_fork_cleanup_sighand;
2239 	retval = copy_mm(clone_flags, p);
2240 	if (retval)
2241 		goto bad_fork_cleanup_signal;
2242 	retval = copy_namespaces(clone_flags, p);
2243 	if (retval)
2244 		goto bad_fork_cleanup_mm;
2245 	retval = copy_io(clone_flags, p);
2246 	if (retval)
2247 		goto bad_fork_cleanup_namespaces;
2248 	retval = copy_thread(clone_flags, args->stack, args->stack_size, p, args->tls);
2249 	if (retval)
2250 		goto bad_fork_cleanup_io;
2251 
2252 	stackleak_task_init(p);
2253 
2254 	if (pid != &init_struct_pid) {
2255 		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2256 				args->set_tid_size);
2257 		if (IS_ERR(pid)) {
2258 			retval = PTR_ERR(pid);
2259 			goto bad_fork_cleanup_thread;
2260 		}
2261 	}
2262 
2263 	/*
2264 	 * This has to happen after we've potentially unshared the file
2265 	 * descriptor table (so that the pidfd doesn't leak into the child
2266 	 * if the fd table isn't shared).
2267 	 */
2268 	if (clone_flags & CLONE_PIDFD) {
2269 		retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2270 		if (retval < 0)
2271 			goto bad_fork_free_pid;
2272 
2273 		pidfd = retval;
2274 
2275 		pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2276 					      O_RDWR | O_CLOEXEC);
2277 		if (IS_ERR(pidfile)) {
2278 			put_unused_fd(pidfd);
2279 			retval = PTR_ERR(pidfile);
2280 			goto bad_fork_free_pid;
2281 		}
2282 		get_pid(pid);	/* held by pidfile now */
2283 
2284 		retval = put_user(pidfd, args->pidfd);
2285 		if (retval)
2286 			goto bad_fork_put_pidfd;
2287 	}
2288 
2289 #ifdef CONFIG_BLOCK
2290 	p->plug = NULL;
2291 #endif
2292 	futex_init_task(p);
2293 
2294 	/*
2295 	 * sigaltstack should be cleared when sharing the same VM
2296 	 */
2297 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2298 		sas_ss_reset(p);
2299 
2300 	/*
2301 	 * Syscall tracing and stepping should be turned off in the
2302 	 * child regardless of CLONE_PTRACE.
2303 	 */
2304 	user_disable_single_step(p);
2305 	clear_task_syscall_work(p, SYSCALL_TRACE);
2306 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2307 	clear_task_syscall_work(p, SYSCALL_EMU);
2308 #endif
2309 	clear_tsk_latency_tracing(p);
2310 
2311 	/* ok, now we should be set up.. */
2312 	p->pid = pid_nr(pid);
2313 	if (clone_flags & CLONE_THREAD) {
2314 		p->group_leader = current->group_leader;
2315 		p->tgid = current->tgid;
2316 	} else {
2317 		p->group_leader = p;
2318 		p->tgid = p->pid;
2319 	}
2320 
2321 	p->nr_dirtied = 0;
2322 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2323 	p->dirty_paused_when = 0;
2324 
2325 	p->pdeath_signal = 0;
2326 	INIT_LIST_HEAD(&p->thread_group);
2327 	p->task_works = NULL;
2328 	clear_posix_cputimers_work(p);
2329 
2330 #ifdef CONFIG_KRETPROBES
2331 	p->kretprobe_instances.first = NULL;
2332 #endif
2333 #ifdef CONFIG_RETHOOK
2334 	p->rethooks.first = NULL;
2335 #endif
2336 
2337 	/*
2338 	 * Ensure that the cgroup subsystem policies allow the new process to be
2339 	 * forked. It should be noted that the new process's css_set can be changed
2340 	 * between here and cgroup_post_fork() if an organisation operation is in
2341 	 * progress.
2342 	 */
2343 	retval = cgroup_can_fork(p, args);
2344 	if (retval)
2345 		goto bad_fork_put_pidfd;
2346 
2347 	/*
2348 	 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2349 	 * the new task on the correct runqueue. All this *before* the task
2350 	 * becomes visible.
2351 	 *
2352 	 * This isn't part of ->can_fork() because while the re-cloning is
2353 	 * cgroup specific, it unconditionally needs to place the task on a
2354 	 * runqueue.
2355 	 */
2356 	sched_cgroup_fork(p, args);
2357 
2358 	/*
2359 	 * From this point on we must avoid any synchronous user-space
2360 	 * communication until we take the tasklist-lock. In particular, we do
2361 	 * not want user-space to be able to predict the process start-time by
2362 	 * stalling fork(2) after we recorded the start_time but before it is
2363 	 * visible to the system.
2364 	 */
2365 
2366 	p->start_time = ktime_get_ns();
2367 	p->start_boottime = ktime_get_boottime_ns();
2368 
2369 	/*
2370 	 * Make it visible to the rest of the system, but dont wake it up yet.
2371 	 * Need tasklist lock for parent etc handling!
2372 	 */
2373 	write_lock_irq(&tasklist_lock);
2374 
2375 	/* CLONE_PARENT re-uses the old parent */
2376 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2377 		p->real_parent = current->real_parent;
2378 		p->parent_exec_id = current->parent_exec_id;
2379 		if (clone_flags & CLONE_THREAD)
2380 			p->exit_signal = -1;
2381 		else
2382 			p->exit_signal = current->group_leader->exit_signal;
2383 	} else {
2384 		p->real_parent = current;
2385 		p->parent_exec_id = current->self_exec_id;
2386 		p->exit_signal = args->exit_signal;
2387 	}
2388 
2389 	klp_copy_process(p);
2390 
2391 	sched_core_fork(p);
2392 
2393 	spin_lock(&current->sighand->siglock);
2394 
2395 	/*
2396 	 * Copy seccomp details explicitly here, in case they were changed
2397 	 * before holding sighand lock.
2398 	 */
2399 	copy_seccomp(p);
2400 
2401 	rseq_fork(p, clone_flags);
2402 
2403 	/* Don't start children in a dying pid namespace */
2404 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2405 		retval = -ENOMEM;
2406 		goto bad_fork_cancel_cgroup;
2407 	}
2408 
2409 	/* Let kill terminate clone/fork in the middle */
2410 	if (fatal_signal_pending(current)) {
2411 		retval = -EINTR;
2412 		goto bad_fork_cancel_cgroup;
2413 	}
2414 
2415 	init_task_pid_links(p);
2416 	if (likely(p->pid)) {
2417 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2418 
2419 		init_task_pid(p, PIDTYPE_PID, pid);
2420 		if (thread_group_leader(p)) {
2421 			init_task_pid(p, PIDTYPE_TGID, pid);
2422 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2423 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2424 
2425 			if (is_child_reaper(pid)) {
2426 				ns_of_pid(pid)->child_reaper = p;
2427 				p->signal->flags |= SIGNAL_UNKILLABLE;
2428 			}
2429 			p->signal->shared_pending.signal = delayed.signal;
2430 			p->signal->tty = tty_kref_get(current->signal->tty);
2431 			/*
2432 			 * Inherit has_child_subreaper flag under the same
2433 			 * tasklist_lock with adding child to the process tree
2434 			 * for propagate_has_child_subreaper optimization.
2435 			 */
2436 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2437 							 p->real_parent->signal->is_child_subreaper;
2438 			list_add_tail(&p->sibling, &p->real_parent->children);
2439 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2440 			attach_pid(p, PIDTYPE_TGID);
2441 			attach_pid(p, PIDTYPE_PGID);
2442 			attach_pid(p, PIDTYPE_SID);
2443 			__this_cpu_inc(process_counts);
2444 		} else {
2445 			current->signal->nr_threads++;
2446 			atomic_inc(&current->signal->live);
2447 			refcount_inc(&current->signal->sigcnt);
2448 			task_join_group_stop(p);
2449 			list_add_tail_rcu(&p->thread_group,
2450 					  &p->group_leader->thread_group);
2451 			list_add_tail_rcu(&p->thread_node,
2452 					  &p->signal->thread_head);
2453 		}
2454 		attach_pid(p, PIDTYPE_PID);
2455 		nr_threads++;
2456 	}
2457 	total_forks++;
2458 	hlist_del_init(&delayed.node);
2459 	spin_unlock(&current->sighand->siglock);
2460 	syscall_tracepoint_update(p);
2461 	write_unlock_irq(&tasklist_lock);
2462 
2463 	if (pidfile)
2464 		fd_install(pidfd, pidfile);
2465 
2466 	proc_fork_connector(p);
2467 	sched_post_fork(p);
2468 	cgroup_post_fork(p, args);
2469 	perf_event_fork(p);
2470 
2471 	trace_task_newtask(p, clone_flags);
2472 	uprobe_copy_process(p, clone_flags);
2473 
2474 	copy_oom_score_adj(clone_flags, p);
2475 
2476 	return p;
2477 
2478 bad_fork_cancel_cgroup:
2479 	sched_core_free(p);
2480 	spin_unlock(&current->sighand->siglock);
2481 	write_unlock_irq(&tasklist_lock);
2482 	cgroup_cancel_fork(p, args);
2483 bad_fork_put_pidfd:
2484 	if (clone_flags & CLONE_PIDFD) {
2485 		fput(pidfile);
2486 		put_unused_fd(pidfd);
2487 	}
2488 bad_fork_free_pid:
2489 	if (pid != &init_struct_pid)
2490 		free_pid(pid);
2491 bad_fork_cleanup_thread:
2492 	exit_thread(p);
2493 bad_fork_cleanup_io:
2494 	if (p->io_context)
2495 		exit_io_context(p);
2496 bad_fork_cleanup_namespaces:
2497 	exit_task_namespaces(p);
2498 bad_fork_cleanup_mm:
2499 	if (p->mm) {
2500 		mm_clear_owner(p->mm, p);
2501 		mmput(p->mm);
2502 	}
2503 bad_fork_cleanup_signal:
2504 	if (!(clone_flags & CLONE_THREAD))
2505 		free_signal_struct(p->signal);
2506 bad_fork_cleanup_sighand:
2507 	__cleanup_sighand(p->sighand);
2508 bad_fork_cleanup_fs:
2509 	exit_fs(p); /* blocking */
2510 bad_fork_cleanup_files:
2511 	exit_files(p); /* blocking */
2512 bad_fork_cleanup_semundo:
2513 	exit_sem(p);
2514 bad_fork_cleanup_security:
2515 	security_task_free(p);
2516 bad_fork_cleanup_audit:
2517 	audit_free(p);
2518 bad_fork_cleanup_perf:
2519 	perf_event_free_task(p);
2520 bad_fork_cleanup_policy:
2521 	lockdep_free_task(p);
2522 #ifdef CONFIG_NUMA
2523 	mpol_put(p->mempolicy);
2524 #endif
2525 bad_fork_cleanup_delayacct:
2526 	delayacct_tsk_free(p);
2527 bad_fork_cleanup_count:
2528 	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2529 	exit_creds(p);
2530 bad_fork_free:
2531 	WRITE_ONCE(p->__state, TASK_DEAD);
2532 	exit_task_stack_account(p);
2533 	put_task_stack(p);
2534 	delayed_free_task(p);
2535 fork_out:
2536 	spin_lock_irq(&current->sighand->siglock);
2537 	hlist_del_init(&delayed.node);
2538 	spin_unlock_irq(&current->sighand->siglock);
2539 	return ERR_PTR(retval);
2540 }
2541 
2542 static inline void init_idle_pids(struct task_struct *idle)
2543 {
2544 	enum pid_type type;
2545 
2546 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2547 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2548 		init_task_pid(idle, type, &init_struct_pid);
2549 	}
2550 }
2551 
2552 struct task_struct * __init fork_idle(int cpu)
2553 {
2554 	struct task_struct *task;
2555 	struct kernel_clone_args args = {
2556 		.flags = CLONE_VM,
2557 	};
2558 
2559 	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2560 	if (!IS_ERR(task)) {
2561 		init_idle_pids(task);
2562 		init_idle(task, cpu);
2563 	}
2564 
2565 	return task;
2566 }
2567 
2568 struct mm_struct *copy_init_mm(void)
2569 {
2570 	return dup_mm(NULL, &init_mm);
2571 }
2572 
2573 /*
2574  * This is like kernel_clone(), but shaved down and tailored to just
2575  * creating io_uring workers. It returns a created task, or an error pointer.
2576  * The returned task is inactive, and the caller must fire it up through
2577  * wake_up_new_task(p). All signals are blocked in the created task.
2578  */
2579 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2580 {
2581 	unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2582 				CLONE_IO;
2583 	struct kernel_clone_args args = {
2584 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2585 				    CLONE_UNTRACED) & ~CSIGNAL),
2586 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2587 		.stack		= (unsigned long)fn,
2588 		.stack_size	= (unsigned long)arg,
2589 		.io_thread	= 1,
2590 	};
2591 
2592 	return copy_process(NULL, 0, node, &args);
2593 }
2594 
2595 /*
2596  *  Ok, this is the main fork-routine.
2597  *
2598  * It copies the process, and if successful kick-starts
2599  * it and waits for it to finish using the VM if required.
2600  *
2601  * args->exit_signal is expected to be checked for sanity by the caller.
2602  */
2603 pid_t kernel_clone(struct kernel_clone_args *args)
2604 {
2605 	u64 clone_flags = args->flags;
2606 	struct completion vfork;
2607 	struct pid *pid;
2608 	struct task_struct *p;
2609 	int trace = 0;
2610 	pid_t nr;
2611 
2612 	/*
2613 	 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2614 	 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2615 	 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2616 	 * field in struct clone_args and it still doesn't make sense to have
2617 	 * them both point at the same memory location. Performing this check
2618 	 * here has the advantage that we don't need to have a separate helper
2619 	 * to check for legacy clone().
2620 	 */
2621 	if ((args->flags & CLONE_PIDFD) &&
2622 	    (args->flags & CLONE_PARENT_SETTID) &&
2623 	    (args->pidfd == args->parent_tid))
2624 		return -EINVAL;
2625 
2626 	/*
2627 	 * Determine whether and which event to report to ptracer.  When
2628 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2629 	 * requested, no event is reported; otherwise, report if the event
2630 	 * for the type of forking is enabled.
2631 	 */
2632 	if (!(clone_flags & CLONE_UNTRACED)) {
2633 		if (clone_flags & CLONE_VFORK)
2634 			trace = PTRACE_EVENT_VFORK;
2635 		else if (args->exit_signal != SIGCHLD)
2636 			trace = PTRACE_EVENT_CLONE;
2637 		else
2638 			trace = PTRACE_EVENT_FORK;
2639 
2640 		if (likely(!ptrace_event_enabled(current, trace)))
2641 			trace = 0;
2642 	}
2643 
2644 	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2645 	add_latent_entropy();
2646 
2647 	if (IS_ERR(p))
2648 		return PTR_ERR(p);
2649 
2650 	/*
2651 	 * Do this prior waking up the new thread - the thread pointer
2652 	 * might get invalid after that point, if the thread exits quickly.
2653 	 */
2654 	trace_sched_process_fork(current, p);
2655 
2656 	pid = get_task_pid(p, PIDTYPE_PID);
2657 	nr = pid_vnr(pid);
2658 
2659 	if (clone_flags & CLONE_PARENT_SETTID)
2660 		put_user(nr, args->parent_tid);
2661 
2662 	if (clone_flags & CLONE_VFORK) {
2663 		p->vfork_done = &vfork;
2664 		init_completion(&vfork);
2665 		get_task_struct(p);
2666 	}
2667 
2668 	wake_up_new_task(p);
2669 
2670 	/* forking complete and child started to run, tell ptracer */
2671 	if (unlikely(trace))
2672 		ptrace_event_pid(trace, pid);
2673 
2674 	if (clone_flags & CLONE_VFORK) {
2675 		if (!wait_for_vfork_done(p, &vfork))
2676 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2677 	}
2678 
2679 	put_pid(pid);
2680 	return nr;
2681 }
2682 
2683 /*
2684  * Create a kernel thread.
2685  */
2686 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2687 {
2688 	struct kernel_clone_args args = {
2689 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2690 				    CLONE_UNTRACED) & ~CSIGNAL),
2691 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2692 		.stack		= (unsigned long)fn,
2693 		.stack_size	= (unsigned long)arg,
2694 	};
2695 
2696 	return kernel_clone(&args);
2697 }
2698 
2699 #ifdef __ARCH_WANT_SYS_FORK
2700 SYSCALL_DEFINE0(fork)
2701 {
2702 #ifdef CONFIG_MMU
2703 	struct kernel_clone_args args = {
2704 		.exit_signal = SIGCHLD,
2705 	};
2706 
2707 	return kernel_clone(&args);
2708 #else
2709 	/* can not support in nommu mode */
2710 	return -EINVAL;
2711 #endif
2712 }
2713 #endif
2714 
2715 #ifdef __ARCH_WANT_SYS_VFORK
2716 SYSCALL_DEFINE0(vfork)
2717 {
2718 	struct kernel_clone_args args = {
2719 		.flags		= CLONE_VFORK | CLONE_VM,
2720 		.exit_signal	= SIGCHLD,
2721 	};
2722 
2723 	return kernel_clone(&args);
2724 }
2725 #endif
2726 
2727 #ifdef __ARCH_WANT_SYS_CLONE
2728 #ifdef CONFIG_CLONE_BACKWARDS
2729 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2730 		 int __user *, parent_tidptr,
2731 		 unsigned long, tls,
2732 		 int __user *, child_tidptr)
2733 #elif defined(CONFIG_CLONE_BACKWARDS2)
2734 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2735 		 int __user *, parent_tidptr,
2736 		 int __user *, child_tidptr,
2737 		 unsigned long, tls)
2738 #elif defined(CONFIG_CLONE_BACKWARDS3)
2739 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2740 		int, stack_size,
2741 		int __user *, parent_tidptr,
2742 		int __user *, child_tidptr,
2743 		unsigned long, tls)
2744 #else
2745 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2746 		 int __user *, parent_tidptr,
2747 		 int __user *, child_tidptr,
2748 		 unsigned long, tls)
2749 #endif
2750 {
2751 	struct kernel_clone_args args = {
2752 		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
2753 		.pidfd		= parent_tidptr,
2754 		.child_tid	= child_tidptr,
2755 		.parent_tid	= parent_tidptr,
2756 		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
2757 		.stack		= newsp,
2758 		.tls		= tls,
2759 	};
2760 
2761 	return kernel_clone(&args);
2762 }
2763 #endif
2764 
2765 #ifdef __ARCH_WANT_SYS_CLONE3
2766 
2767 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2768 					      struct clone_args __user *uargs,
2769 					      size_t usize)
2770 {
2771 	int err;
2772 	struct clone_args args;
2773 	pid_t *kset_tid = kargs->set_tid;
2774 
2775 	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2776 		     CLONE_ARGS_SIZE_VER0);
2777 	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2778 		     CLONE_ARGS_SIZE_VER1);
2779 	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2780 		     CLONE_ARGS_SIZE_VER2);
2781 	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2782 
2783 	if (unlikely(usize > PAGE_SIZE))
2784 		return -E2BIG;
2785 	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2786 		return -EINVAL;
2787 
2788 	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2789 	if (err)
2790 		return err;
2791 
2792 	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2793 		return -EINVAL;
2794 
2795 	if (unlikely(!args.set_tid && args.set_tid_size > 0))
2796 		return -EINVAL;
2797 
2798 	if (unlikely(args.set_tid && args.set_tid_size == 0))
2799 		return -EINVAL;
2800 
2801 	/*
2802 	 * Verify that higher 32bits of exit_signal are unset and that
2803 	 * it is a valid signal
2804 	 */
2805 	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2806 		     !valid_signal(args.exit_signal)))
2807 		return -EINVAL;
2808 
2809 	if ((args.flags & CLONE_INTO_CGROUP) &&
2810 	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2811 		return -EINVAL;
2812 
2813 	*kargs = (struct kernel_clone_args){
2814 		.flags		= args.flags,
2815 		.pidfd		= u64_to_user_ptr(args.pidfd),
2816 		.child_tid	= u64_to_user_ptr(args.child_tid),
2817 		.parent_tid	= u64_to_user_ptr(args.parent_tid),
2818 		.exit_signal	= args.exit_signal,
2819 		.stack		= args.stack,
2820 		.stack_size	= args.stack_size,
2821 		.tls		= args.tls,
2822 		.set_tid_size	= args.set_tid_size,
2823 		.cgroup		= args.cgroup,
2824 	};
2825 
2826 	if (args.set_tid &&
2827 		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2828 			(kargs->set_tid_size * sizeof(pid_t))))
2829 		return -EFAULT;
2830 
2831 	kargs->set_tid = kset_tid;
2832 
2833 	return 0;
2834 }
2835 
2836 /**
2837  * clone3_stack_valid - check and prepare stack
2838  * @kargs: kernel clone args
2839  *
2840  * Verify that the stack arguments userspace gave us are sane.
2841  * In addition, set the stack direction for userspace since it's easy for us to
2842  * determine.
2843  */
2844 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2845 {
2846 	if (kargs->stack == 0) {
2847 		if (kargs->stack_size > 0)
2848 			return false;
2849 	} else {
2850 		if (kargs->stack_size == 0)
2851 			return false;
2852 
2853 		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2854 			return false;
2855 
2856 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2857 		kargs->stack += kargs->stack_size;
2858 #endif
2859 	}
2860 
2861 	return true;
2862 }
2863 
2864 static bool clone3_args_valid(struct kernel_clone_args *kargs)
2865 {
2866 	/* Verify that no unknown flags are passed along. */
2867 	if (kargs->flags &
2868 	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
2869 		return false;
2870 
2871 	/*
2872 	 * - make the CLONE_DETACHED bit reusable for clone3
2873 	 * - make the CSIGNAL bits reusable for clone3
2874 	 */
2875 	if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2876 		return false;
2877 
2878 	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2879 	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2880 		return false;
2881 
2882 	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2883 	    kargs->exit_signal)
2884 		return false;
2885 
2886 	if (!clone3_stack_valid(kargs))
2887 		return false;
2888 
2889 	return true;
2890 }
2891 
2892 /**
2893  * clone3 - create a new process with specific properties
2894  * @uargs: argument structure
2895  * @size:  size of @uargs
2896  *
2897  * clone3() is the extensible successor to clone()/clone2().
2898  * It takes a struct as argument that is versioned by its size.
2899  *
2900  * Return: On success, a positive PID for the child process.
2901  *         On error, a negative errno number.
2902  */
2903 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2904 {
2905 	int err;
2906 
2907 	struct kernel_clone_args kargs;
2908 	pid_t set_tid[MAX_PID_NS_LEVEL];
2909 
2910 	kargs.set_tid = set_tid;
2911 
2912 	err = copy_clone_args_from_user(&kargs, uargs, size);
2913 	if (err)
2914 		return err;
2915 
2916 	if (!clone3_args_valid(&kargs))
2917 		return -EINVAL;
2918 
2919 	return kernel_clone(&kargs);
2920 }
2921 #endif
2922 
2923 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2924 {
2925 	struct task_struct *leader, *parent, *child;
2926 	int res;
2927 
2928 	read_lock(&tasklist_lock);
2929 	leader = top = top->group_leader;
2930 down:
2931 	for_each_thread(leader, parent) {
2932 		list_for_each_entry(child, &parent->children, sibling) {
2933 			res = visitor(child, data);
2934 			if (res) {
2935 				if (res < 0)
2936 					goto out;
2937 				leader = child;
2938 				goto down;
2939 			}
2940 up:
2941 			;
2942 		}
2943 	}
2944 
2945 	if (leader != top) {
2946 		child = leader;
2947 		parent = child->real_parent;
2948 		leader = parent->group_leader;
2949 		goto up;
2950 	}
2951 out:
2952 	read_unlock(&tasklist_lock);
2953 }
2954 
2955 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2956 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2957 #endif
2958 
2959 static void sighand_ctor(void *data)
2960 {
2961 	struct sighand_struct *sighand = data;
2962 
2963 	spin_lock_init(&sighand->siglock);
2964 	init_waitqueue_head(&sighand->signalfd_wqh);
2965 }
2966 
2967 void __init proc_caches_init(void)
2968 {
2969 	unsigned int mm_size;
2970 
2971 	sighand_cachep = kmem_cache_create("sighand_cache",
2972 			sizeof(struct sighand_struct), 0,
2973 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2974 			SLAB_ACCOUNT, sighand_ctor);
2975 	signal_cachep = kmem_cache_create("signal_cache",
2976 			sizeof(struct signal_struct), 0,
2977 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2978 			NULL);
2979 	files_cachep = kmem_cache_create("files_cache",
2980 			sizeof(struct files_struct), 0,
2981 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2982 			NULL);
2983 	fs_cachep = kmem_cache_create("fs_cache",
2984 			sizeof(struct fs_struct), 0,
2985 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2986 			NULL);
2987 
2988 	/*
2989 	 * The mm_cpumask is located at the end of mm_struct, and is
2990 	 * dynamically sized based on the maximum CPU number this system
2991 	 * can have, taking hotplug into account (nr_cpu_ids).
2992 	 */
2993 	mm_size = sizeof(struct mm_struct) + cpumask_size();
2994 
2995 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
2996 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2997 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2998 			offsetof(struct mm_struct, saved_auxv),
2999 			sizeof_field(struct mm_struct, saved_auxv),
3000 			NULL);
3001 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
3002 	mmap_init();
3003 	nsproxy_cache_init();
3004 }
3005 
3006 /*
3007  * Check constraints on flags passed to the unshare system call.
3008  */
3009 static int check_unshare_flags(unsigned long unshare_flags)
3010 {
3011 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3012 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3013 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3014 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3015 				CLONE_NEWTIME))
3016 		return -EINVAL;
3017 	/*
3018 	 * Not implemented, but pretend it works if there is nothing
3019 	 * to unshare.  Note that unsharing the address space or the
3020 	 * signal handlers also need to unshare the signal queues (aka
3021 	 * CLONE_THREAD).
3022 	 */
3023 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3024 		if (!thread_group_empty(current))
3025 			return -EINVAL;
3026 	}
3027 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3028 		if (refcount_read(&current->sighand->count) > 1)
3029 			return -EINVAL;
3030 	}
3031 	if (unshare_flags & CLONE_VM) {
3032 		if (!current_is_single_threaded())
3033 			return -EINVAL;
3034 	}
3035 
3036 	return 0;
3037 }
3038 
3039 /*
3040  * Unshare the filesystem structure if it is being shared
3041  */
3042 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3043 {
3044 	struct fs_struct *fs = current->fs;
3045 
3046 	if (!(unshare_flags & CLONE_FS) || !fs)
3047 		return 0;
3048 
3049 	/* don't need lock here; in the worst case we'll do useless copy */
3050 	if (fs->users == 1)
3051 		return 0;
3052 
3053 	*new_fsp = copy_fs_struct(fs);
3054 	if (!*new_fsp)
3055 		return -ENOMEM;
3056 
3057 	return 0;
3058 }
3059 
3060 /*
3061  * Unshare file descriptor table if it is being shared
3062  */
3063 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
3064 	       struct files_struct **new_fdp)
3065 {
3066 	struct files_struct *fd = current->files;
3067 	int error = 0;
3068 
3069 	if ((unshare_flags & CLONE_FILES) &&
3070 	    (fd && atomic_read(&fd->count) > 1)) {
3071 		*new_fdp = dup_fd(fd, max_fds, &error);
3072 		if (!*new_fdp)
3073 			return error;
3074 	}
3075 
3076 	return 0;
3077 }
3078 
3079 /*
3080  * unshare allows a process to 'unshare' part of the process
3081  * context which was originally shared using clone.  copy_*
3082  * functions used by kernel_clone() cannot be used here directly
3083  * because they modify an inactive task_struct that is being
3084  * constructed. Here we are modifying the current, active,
3085  * task_struct.
3086  */
3087 int ksys_unshare(unsigned long unshare_flags)
3088 {
3089 	struct fs_struct *fs, *new_fs = NULL;
3090 	struct files_struct *new_fd = NULL;
3091 	struct cred *new_cred = NULL;
3092 	struct nsproxy *new_nsproxy = NULL;
3093 	int do_sysvsem = 0;
3094 	int err;
3095 
3096 	/*
3097 	 * If unsharing a user namespace must also unshare the thread group
3098 	 * and unshare the filesystem root and working directories.
3099 	 */
3100 	if (unshare_flags & CLONE_NEWUSER)
3101 		unshare_flags |= CLONE_THREAD | CLONE_FS;
3102 	/*
3103 	 * If unsharing vm, must also unshare signal handlers.
3104 	 */
3105 	if (unshare_flags & CLONE_VM)
3106 		unshare_flags |= CLONE_SIGHAND;
3107 	/*
3108 	 * If unsharing a signal handlers, must also unshare the signal queues.
3109 	 */
3110 	if (unshare_flags & CLONE_SIGHAND)
3111 		unshare_flags |= CLONE_THREAD;
3112 	/*
3113 	 * If unsharing namespace, must also unshare filesystem information.
3114 	 */
3115 	if (unshare_flags & CLONE_NEWNS)
3116 		unshare_flags |= CLONE_FS;
3117 
3118 	err = check_unshare_flags(unshare_flags);
3119 	if (err)
3120 		goto bad_unshare_out;
3121 	/*
3122 	 * CLONE_NEWIPC must also detach from the undolist: after switching
3123 	 * to a new ipc namespace, the semaphore arrays from the old
3124 	 * namespace are unreachable.
3125 	 */
3126 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3127 		do_sysvsem = 1;
3128 	err = unshare_fs(unshare_flags, &new_fs);
3129 	if (err)
3130 		goto bad_unshare_out;
3131 	err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
3132 	if (err)
3133 		goto bad_unshare_cleanup_fs;
3134 	err = unshare_userns(unshare_flags, &new_cred);
3135 	if (err)
3136 		goto bad_unshare_cleanup_fd;
3137 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3138 					 new_cred, new_fs);
3139 	if (err)
3140 		goto bad_unshare_cleanup_cred;
3141 
3142 	if (new_cred) {
3143 		err = set_cred_ucounts(new_cred);
3144 		if (err)
3145 			goto bad_unshare_cleanup_cred;
3146 	}
3147 
3148 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3149 		if (do_sysvsem) {
3150 			/*
3151 			 * CLONE_SYSVSEM is equivalent to sys_exit().
3152 			 */
3153 			exit_sem(current);
3154 		}
3155 		if (unshare_flags & CLONE_NEWIPC) {
3156 			/* Orphan segments in old ns (see sem above). */
3157 			exit_shm(current);
3158 			shm_init_task(current);
3159 		}
3160 
3161 		if (new_nsproxy)
3162 			switch_task_namespaces(current, new_nsproxy);
3163 
3164 		task_lock(current);
3165 
3166 		if (new_fs) {
3167 			fs = current->fs;
3168 			spin_lock(&fs->lock);
3169 			current->fs = new_fs;
3170 			if (--fs->users)
3171 				new_fs = NULL;
3172 			else
3173 				new_fs = fs;
3174 			spin_unlock(&fs->lock);
3175 		}
3176 
3177 		if (new_fd)
3178 			swap(current->files, new_fd);
3179 
3180 		task_unlock(current);
3181 
3182 		if (new_cred) {
3183 			/* Install the new user namespace */
3184 			commit_creds(new_cred);
3185 			new_cred = NULL;
3186 		}
3187 	}
3188 
3189 	perf_event_namespaces(current);
3190 
3191 bad_unshare_cleanup_cred:
3192 	if (new_cred)
3193 		put_cred(new_cred);
3194 bad_unshare_cleanup_fd:
3195 	if (new_fd)
3196 		put_files_struct(new_fd);
3197 
3198 bad_unshare_cleanup_fs:
3199 	if (new_fs)
3200 		free_fs_struct(new_fs);
3201 
3202 bad_unshare_out:
3203 	return err;
3204 }
3205 
3206 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3207 {
3208 	return ksys_unshare(unshare_flags);
3209 }
3210 
3211 /*
3212  *	Helper to unshare the files of the current task.
3213  *	We don't want to expose copy_files internals to
3214  *	the exec layer of the kernel.
3215  */
3216 
3217 int unshare_files(void)
3218 {
3219 	struct task_struct *task = current;
3220 	struct files_struct *old, *copy = NULL;
3221 	int error;
3222 
3223 	error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
3224 	if (error || !copy)
3225 		return error;
3226 
3227 	old = task->files;
3228 	task_lock(task);
3229 	task->files = copy;
3230 	task_unlock(task);
3231 	put_files_struct(old);
3232 	return 0;
3233 }
3234 
3235 int sysctl_max_threads(struct ctl_table *table, int write,
3236 		       void *buffer, size_t *lenp, loff_t *ppos)
3237 {
3238 	struct ctl_table t;
3239 	int ret;
3240 	int threads = max_threads;
3241 	int min = 1;
3242 	int max = MAX_THREADS;
3243 
3244 	t = *table;
3245 	t.data = &threads;
3246 	t.extra1 = &min;
3247 	t.extra2 = &max;
3248 
3249 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3250 	if (ret || !write)
3251 		return ret;
3252 
3253 	max_threads = threads;
3254 
3255 	return 0;
3256 }
3257