xref: /openbmc/linux/kernel/fork.c (revision dd093fb0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14 
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/kmsan.h>
41 #include <linux/binfmts.h>
42 #include <linux/mman.h>
43 #include <linux/mmu_notifier.h>
44 #include <linux/fs.h>
45 #include <linux/mm.h>
46 #include <linux/mm_inline.h>
47 #include <linux/nsproxy.h>
48 #include <linux/capability.h>
49 #include <linux/cpu.h>
50 #include <linux/cgroup.h>
51 #include <linux/security.h>
52 #include <linux/hugetlb.h>
53 #include <linux/seccomp.h>
54 #include <linux/swap.h>
55 #include <linux/syscalls.h>
56 #include <linux/jiffies.h>
57 #include <linux/futex.h>
58 #include <linux/compat.h>
59 #include <linux/kthread.h>
60 #include <linux/task_io_accounting_ops.h>
61 #include <linux/rcupdate.h>
62 #include <linux/ptrace.h>
63 #include <linux/mount.h>
64 #include <linux/audit.h>
65 #include <linux/memcontrol.h>
66 #include <linux/ftrace.h>
67 #include <linux/proc_fs.h>
68 #include <linux/profile.h>
69 #include <linux/rmap.h>
70 #include <linux/ksm.h>
71 #include <linux/acct.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/tsacct_kern.h>
74 #include <linux/cn_proc.h>
75 #include <linux/freezer.h>
76 #include <linux/delayacct.h>
77 #include <linux/taskstats_kern.h>
78 #include <linux/tty.h>
79 #include <linux/fs_struct.h>
80 #include <linux/magic.h>
81 #include <linux/perf_event.h>
82 #include <linux/posix-timers.h>
83 #include <linux/user-return-notifier.h>
84 #include <linux/oom.h>
85 #include <linux/khugepaged.h>
86 #include <linux/signalfd.h>
87 #include <linux/uprobes.h>
88 #include <linux/aio.h>
89 #include <linux/compiler.h>
90 #include <linux/sysctl.h>
91 #include <linux/kcov.h>
92 #include <linux/livepatch.h>
93 #include <linux/thread_info.h>
94 #include <linux/stackleak.h>
95 #include <linux/kasan.h>
96 #include <linux/scs.h>
97 #include <linux/io_uring.h>
98 #include <linux/bpf.h>
99 #include <linux/stackprotector.h>
100 
101 #include <asm/pgalloc.h>
102 #include <linux/uaccess.h>
103 #include <asm/mmu_context.h>
104 #include <asm/cacheflush.h>
105 #include <asm/tlbflush.h>
106 
107 #include <trace/events/sched.h>
108 
109 #define CREATE_TRACE_POINTS
110 #include <trace/events/task.h>
111 
112 /*
113  * Minimum number of threads to boot the kernel
114  */
115 #define MIN_THREADS 20
116 
117 /*
118  * Maximum number of threads
119  */
120 #define MAX_THREADS FUTEX_TID_MASK
121 
122 /*
123  * Protected counters by write_lock_irq(&tasklist_lock)
124  */
125 unsigned long total_forks;	/* Handle normal Linux uptimes. */
126 int nr_threads;			/* The idle threads do not count.. */
127 
128 static int max_threads;		/* tunable limit on nr_threads */
129 
130 #define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
131 
132 static const char * const resident_page_types[] = {
133 	NAMED_ARRAY_INDEX(MM_FILEPAGES),
134 	NAMED_ARRAY_INDEX(MM_ANONPAGES),
135 	NAMED_ARRAY_INDEX(MM_SWAPENTS),
136 	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
137 };
138 
139 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
140 
141 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
142 
143 #ifdef CONFIG_PROVE_RCU
144 int lockdep_tasklist_lock_is_held(void)
145 {
146 	return lockdep_is_held(&tasklist_lock);
147 }
148 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
149 #endif /* #ifdef CONFIG_PROVE_RCU */
150 
151 int nr_processes(void)
152 {
153 	int cpu;
154 	int total = 0;
155 
156 	for_each_possible_cpu(cpu)
157 		total += per_cpu(process_counts, cpu);
158 
159 	return total;
160 }
161 
162 void __weak arch_release_task_struct(struct task_struct *tsk)
163 {
164 }
165 
166 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
167 static struct kmem_cache *task_struct_cachep;
168 
169 static inline struct task_struct *alloc_task_struct_node(int node)
170 {
171 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
172 }
173 
174 static inline void free_task_struct(struct task_struct *tsk)
175 {
176 	kmem_cache_free(task_struct_cachep, tsk);
177 }
178 #endif
179 
180 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
181 
182 /*
183  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
184  * kmemcache based allocator.
185  */
186 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
187 
188 #  ifdef CONFIG_VMAP_STACK
189 /*
190  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
191  * flush.  Try to minimize the number of calls by caching stacks.
192  */
193 #define NR_CACHED_STACKS 2
194 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
195 
196 struct vm_stack {
197 	struct rcu_head rcu;
198 	struct vm_struct *stack_vm_area;
199 };
200 
201 static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
202 {
203 	unsigned int i;
204 
205 	for (i = 0; i < NR_CACHED_STACKS; i++) {
206 		if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL)
207 			continue;
208 		return true;
209 	}
210 	return false;
211 }
212 
213 static void thread_stack_free_rcu(struct rcu_head *rh)
214 {
215 	struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
216 
217 	if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
218 		return;
219 
220 	vfree(vm_stack);
221 }
222 
223 static void thread_stack_delayed_free(struct task_struct *tsk)
224 {
225 	struct vm_stack *vm_stack = tsk->stack;
226 
227 	vm_stack->stack_vm_area = tsk->stack_vm_area;
228 	call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
229 }
230 
231 static int free_vm_stack_cache(unsigned int cpu)
232 {
233 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
234 	int i;
235 
236 	for (i = 0; i < NR_CACHED_STACKS; i++) {
237 		struct vm_struct *vm_stack = cached_vm_stacks[i];
238 
239 		if (!vm_stack)
240 			continue;
241 
242 		vfree(vm_stack->addr);
243 		cached_vm_stacks[i] = NULL;
244 	}
245 
246 	return 0;
247 }
248 
249 static int memcg_charge_kernel_stack(struct vm_struct *vm)
250 {
251 	int i;
252 	int ret;
253 
254 	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
255 	BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
256 
257 	for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
258 		ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
259 		if (ret)
260 			goto err;
261 	}
262 	return 0;
263 err:
264 	/*
265 	 * If memcg_kmem_charge_page() fails, page's memory cgroup pointer is
266 	 * NULL, and memcg_kmem_uncharge_page() in free_thread_stack() will
267 	 * ignore this page.
268 	 */
269 	for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
270 		memcg_kmem_uncharge_page(vm->pages[i], 0);
271 	return ret;
272 }
273 
274 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
275 {
276 	struct vm_struct *vm;
277 	void *stack;
278 	int i;
279 
280 	for (i = 0; i < NR_CACHED_STACKS; i++) {
281 		struct vm_struct *s;
282 
283 		s = this_cpu_xchg(cached_stacks[i], NULL);
284 
285 		if (!s)
286 			continue;
287 
288 		/* Reset stack metadata. */
289 		kasan_unpoison_range(s->addr, THREAD_SIZE);
290 
291 		stack = kasan_reset_tag(s->addr);
292 
293 		/* Clear stale pointers from reused stack. */
294 		memset(stack, 0, THREAD_SIZE);
295 
296 		if (memcg_charge_kernel_stack(s)) {
297 			vfree(s->addr);
298 			return -ENOMEM;
299 		}
300 
301 		tsk->stack_vm_area = s;
302 		tsk->stack = stack;
303 		return 0;
304 	}
305 
306 	/*
307 	 * Allocated stacks are cached and later reused by new threads,
308 	 * so memcg accounting is performed manually on assigning/releasing
309 	 * stacks to tasks. Drop __GFP_ACCOUNT.
310 	 */
311 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
312 				     VMALLOC_START, VMALLOC_END,
313 				     THREADINFO_GFP & ~__GFP_ACCOUNT,
314 				     PAGE_KERNEL,
315 				     0, node, __builtin_return_address(0));
316 	if (!stack)
317 		return -ENOMEM;
318 
319 	vm = find_vm_area(stack);
320 	if (memcg_charge_kernel_stack(vm)) {
321 		vfree(stack);
322 		return -ENOMEM;
323 	}
324 	/*
325 	 * We can't call find_vm_area() in interrupt context, and
326 	 * free_thread_stack() can be called in interrupt context,
327 	 * so cache the vm_struct.
328 	 */
329 	tsk->stack_vm_area = vm;
330 	stack = kasan_reset_tag(stack);
331 	tsk->stack = stack;
332 	return 0;
333 }
334 
335 static void free_thread_stack(struct task_struct *tsk)
336 {
337 	if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
338 		thread_stack_delayed_free(tsk);
339 
340 	tsk->stack = NULL;
341 	tsk->stack_vm_area = NULL;
342 }
343 
344 #  else /* !CONFIG_VMAP_STACK */
345 
346 static void thread_stack_free_rcu(struct rcu_head *rh)
347 {
348 	__free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
349 }
350 
351 static void thread_stack_delayed_free(struct task_struct *tsk)
352 {
353 	struct rcu_head *rh = tsk->stack;
354 
355 	call_rcu(rh, thread_stack_free_rcu);
356 }
357 
358 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
359 {
360 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
361 					     THREAD_SIZE_ORDER);
362 
363 	if (likely(page)) {
364 		tsk->stack = kasan_reset_tag(page_address(page));
365 		return 0;
366 	}
367 	return -ENOMEM;
368 }
369 
370 static void free_thread_stack(struct task_struct *tsk)
371 {
372 	thread_stack_delayed_free(tsk);
373 	tsk->stack = NULL;
374 }
375 
376 #  endif /* CONFIG_VMAP_STACK */
377 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
378 
379 static struct kmem_cache *thread_stack_cache;
380 
381 static void thread_stack_free_rcu(struct rcu_head *rh)
382 {
383 	kmem_cache_free(thread_stack_cache, rh);
384 }
385 
386 static void thread_stack_delayed_free(struct task_struct *tsk)
387 {
388 	struct rcu_head *rh = tsk->stack;
389 
390 	call_rcu(rh, thread_stack_free_rcu);
391 }
392 
393 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
394 {
395 	unsigned long *stack;
396 	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
397 	stack = kasan_reset_tag(stack);
398 	tsk->stack = stack;
399 	return stack ? 0 : -ENOMEM;
400 }
401 
402 static void free_thread_stack(struct task_struct *tsk)
403 {
404 	thread_stack_delayed_free(tsk);
405 	tsk->stack = NULL;
406 }
407 
408 void thread_stack_cache_init(void)
409 {
410 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
411 					THREAD_SIZE, THREAD_SIZE, 0, 0,
412 					THREAD_SIZE, NULL);
413 	BUG_ON(thread_stack_cache == NULL);
414 }
415 
416 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
417 #else /* CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
418 
419 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
420 {
421 	unsigned long *stack;
422 
423 	stack = arch_alloc_thread_stack_node(tsk, node);
424 	tsk->stack = stack;
425 	return stack ? 0 : -ENOMEM;
426 }
427 
428 static void free_thread_stack(struct task_struct *tsk)
429 {
430 	arch_free_thread_stack(tsk);
431 	tsk->stack = NULL;
432 }
433 
434 #endif /* !CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
435 
436 /* SLAB cache for signal_struct structures (tsk->signal) */
437 static struct kmem_cache *signal_cachep;
438 
439 /* SLAB cache for sighand_struct structures (tsk->sighand) */
440 struct kmem_cache *sighand_cachep;
441 
442 /* SLAB cache for files_struct structures (tsk->files) */
443 struct kmem_cache *files_cachep;
444 
445 /* SLAB cache for fs_struct structures (tsk->fs) */
446 struct kmem_cache *fs_cachep;
447 
448 /* SLAB cache for vm_area_struct structures */
449 static struct kmem_cache *vm_area_cachep;
450 
451 /* SLAB cache for mm_struct structures (tsk->mm) */
452 static struct kmem_cache *mm_cachep;
453 
454 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
455 {
456 	struct vm_area_struct *vma;
457 
458 	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
459 	if (vma)
460 		vma_init(vma, mm);
461 	return vma;
462 }
463 
464 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
465 {
466 	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
467 
468 	if (new) {
469 		ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
470 		ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
471 		/*
472 		 * orig->shared.rb may be modified concurrently, but the clone
473 		 * will be reinitialized.
474 		 */
475 		*new = data_race(*orig);
476 		INIT_LIST_HEAD(&new->anon_vma_chain);
477 		dup_anon_vma_name(orig, new);
478 	}
479 	return new;
480 }
481 
482 void vm_area_free(struct vm_area_struct *vma)
483 {
484 	free_anon_vma_name(vma);
485 	kmem_cache_free(vm_area_cachep, vma);
486 }
487 
488 static void account_kernel_stack(struct task_struct *tsk, int account)
489 {
490 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
491 		struct vm_struct *vm = task_stack_vm_area(tsk);
492 		int i;
493 
494 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
495 			mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
496 					      account * (PAGE_SIZE / 1024));
497 	} else {
498 		void *stack = task_stack_page(tsk);
499 
500 		/* All stack pages are in the same node. */
501 		mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
502 				      account * (THREAD_SIZE / 1024));
503 	}
504 }
505 
506 void exit_task_stack_account(struct task_struct *tsk)
507 {
508 	account_kernel_stack(tsk, -1);
509 
510 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
511 		struct vm_struct *vm;
512 		int i;
513 
514 		vm = task_stack_vm_area(tsk);
515 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
516 			memcg_kmem_uncharge_page(vm->pages[i], 0);
517 	}
518 }
519 
520 static void release_task_stack(struct task_struct *tsk)
521 {
522 	if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
523 		return;  /* Better to leak the stack than to free prematurely */
524 
525 	free_thread_stack(tsk);
526 }
527 
528 #ifdef CONFIG_THREAD_INFO_IN_TASK
529 void put_task_stack(struct task_struct *tsk)
530 {
531 	if (refcount_dec_and_test(&tsk->stack_refcount))
532 		release_task_stack(tsk);
533 }
534 #endif
535 
536 void free_task(struct task_struct *tsk)
537 {
538 #ifdef CONFIG_SECCOMP
539 	WARN_ON_ONCE(tsk->seccomp.filter);
540 #endif
541 	release_user_cpus_ptr(tsk);
542 	scs_release(tsk);
543 
544 #ifndef CONFIG_THREAD_INFO_IN_TASK
545 	/*
546 	 * The task is finally done with both the stack and thread_info,
547 	 * so free both.
548 	 */
549 	release_task_stack(tsk);
550 #else
551 	/*
552 	 * If the task had a separate stack allocation, it should be gone
553 	 * by now.
554 	 */
555 	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
556 #endif
557 	rt_mutex_debug_task_free(tsk);
558 	ftrace_graph_exit_task(tsk);
559 	arch_release_task_struct(tsk);
560 	if (tsk->flags & PF_KTHREAD)
561 		free_kthread_struct(tsk);
562 	free_task_struct(tsk);
563 }
564 EXPORT_SYMBOL(free_task);
565 
566 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
567 {
568 	struct file *exe_file;
569 
570 	exe_file = get_mm_exe_file(oldmm);
571 	RCU_INIT_POINTER(mm->exe_file, exe_file);
572 	/*
573 	 * We depend on the oldmm having properly denied write access to the
574 	 * exe_file already.
575 	 */
576 	if (exe_file && deny_write_access(exe_file))
577 		pr_warn_once("deny_write_access() failed in %s\n", __func__);
578 }
579 
580 #ifdef CONFIG_MMU
581 static __latent_entropy int dup_mmap(struct mm_struct *mm,
582 					struct mm_struct *oldmm)
583 {
584 	struct vm_area_struct *mpnt, *tmp;
585 	int retval;
586 	unsigned long charge = 0;
587 	LIST_HEAD(uf);
588 	MA_STATE(old_mas, &oldmm->mm_mt, 0, 0);
589 	MA_STATE(mas, &mm->mm_mt, 0, 0);
590 
591 	uprobe_start_dup_mmap();
592 	if (mmap_write_lock_killable(oldmm)) {
593 		retval = -EINTR;
594 		goto fail_uprobe_end;
595 	}
596 	flush_cache_dup_mm(oldmm);
597 	uprobe_dup_mmap(oldmm, mm);
598 	/*
599 	 * Not linked in yet - no deadlock potential:
600 	 */
601 	mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
602 
603 	/* No ordering required: file already has been exposed. */
604 	dup_mm_exe_file(mm, oldmm);
605 
606 	mm->total_vm = oldmm->total_vm;
607 	mm->data_vm = oldmm->data_vm;
608 	mm->exec_vm = oldmm->exec_vm;
609 	mm->stack_vm = oldmm->stack_vm;
610 
611 	retval = ksm_fork(mm, oldmm);
612 	if (retval)
613 		goto out;
614 	khugepaged_fork(mm, oldmm);
615 
616 	retval = mas_expected_entries(&mas, oldmm->map_count);
617 	if (retval)
618 		goto out;
619 
620 	mas_for_each(&old_mas, mpnt, ULONG_MAX) {
621 		struct file *file;
622 
623 		if (mpnt->vm_flags & VM_DONTCOPY) {
624 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
625 			continue;
626 		}
627 		charge = 0;
628 		/*
629 		 * Don't duplicate many vmas if we've been oom-killed (for
630 		 * example)
631 		 */
632 		if (fatal_signal_pending(current)) {
633 			retval = -EINTR;
634 			goto loop_out;
635 		}
636 		if (mpnt->vm_flags & VM_ACCOUNT) {
637 			unsigned long len = vma_pages(mpnt);
638 
639 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
640 				goto fail_nomem;
641 			charge = len;
642 		}
643 		tmp = vm_area_dup(mpnt);
644 		if (!tmp)
645 			goto fail_nomem;
646 		retval = vma_dup_policy(mpnt, tmp);
647 		if (retval)
648 			goto fail_nomem_policy;
649 		tmp->vm_mm = mm;
650 		retval = dup_userfaultfd(tmp, &uf);
651 		if (retval)
652 			goto fail_nomem_anon_vma_fork;
653 		if (tmp->vm_flags & VM_WIPEONFORK) {
654 			/*
655 			 * VM_WIPEONFORK gets a clean slate in the child.
656 			 * Don't prepare anon_vma until fault since we don't
657 			 * copy page for current vma.
658 			 */
659 			tmp->anon_vma = NULL;
660 		} else if (anon_vma_fork(tmp, mpnt))
661 			goto fail_nomem_anon_vma_fork;
662 		tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
663 		file = tmp->vm_file;
664 		if (file) {
665 			struct address_space *mapping = file->f_mapping;
666 
667 			get_file(file);
668 			i_mmap_lock_write(mapping);
669 			if (tmp->vm_flags & VM_SHARED)
670 				mapping_allow_writable(mapping);
671 			flush_dcache_mmap_lock(mapping);
672 			/* insert tmp into the share list, just after mpnt */
673 			vma_interval_tree_insert_after(tmp, mpnt,
674 					&mapping->i_mmap);
675 			flush_dcache_mmap_unlock(mapping);
676 			i_mmap_unlock_write(mapping);
677 		}
678 
679 		/*
680 		 * Copy/update hugetlb private vma information.
681 		 */
682 		if (is_vm_hugetlb_page(tmp))
683 			hugetlb_dup_vma_private(tmp);
684 
685 		/* Link the vma into the MT */
686 		mas.index = tmp->vm_start;
687 		mas.last = tmp->vm_end - 1;
688 		mas_store(&mas, tmp);
689 		if (mas_is_err(&mas))
690 			goto fail_nomem_mas_store;
691 
692 		mm->map_count++;
693 		if (!(tmp->vm_flags & VM_WIPEONFORK))
694 			retval = copy_page_range(tmp, mpnt);
695 
696 		if (tmp->vm_ops && tmp->vm_ops->open)
697 			tmp->vm_ops->open(tmp);
698 
699 		if (retval)
700 			goto loop_out;
701 	}
702 	/* a new mm has just been created */
703 	retval = arch_dup_mmap(oldmm, mm);
704 loop_out:
705 	mas_destroy(&mas);
706 out:
707 	mmap_write_unlock(mm);
708 	flush_tlb_mm(oldmm);
709 	mmap_write_unlock(oldmm);
710 	dup_userfaultfd_complete(&uf);
711 fail_uprobe_end:
712 	uprobe_end_dup_mmap();
713 	return retval;
714 
715 fail_nomem_mas_store:
716 	unlink_anon_vmas(tmp);
717 fail_nomem_anon_vma_fork:
718 	mpol_put(vma_policy(tmp));
719 fail_nomem_policy:
720 	vm_area_free(tmp);
721 fail_nomem:
722 	retval = -ENOMEM;
723 	vm_unacct_memory(charge);
724 	goto loop_out;
725 }
726 
727 static inline int mm_alloc_pgd(struct mm_struct *mm)
728 {
729 	mm->pgd = pgd_alloc(mm);
730 	if (unlikely(!mm->pgd))
731 		return -ENOMEM;
732 	return 0;
733 }
734 
735 static inline void mm_free_pgd(struct mm_struct *mm)
736 {
737 	pgd_free(mm, mm->pgd);
738 }
739 #else
740 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
741 {
742 	mmap_write_lock(oldmm);
743 	dup_mm_exe_file(mm, oldmm);
744 	mmap_write_unlock(oldmm);
745 	return 0;
746 }
747 #define mm_alloc_pgd(mm)	(0)
748 #define mm_free_pgd(mm)
749 #endif /* CONFIG_MMU */
750 
751 static void check_mm(struct mm_struct *mm)
752 {
753 	int i;
754 
755 	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
756 			 "Please make sure 'struct resident_page_types[]' is updated as well");
757 
758 	for (i = 0; i < NR_MM_COUNTERS; i++) {
759 		long x = percpu_counter_sum(&mm->rss_stat[i]);
760 
761 		if (likely(!x))
762 			continue;
763 
764 		/* Making sure this is not due to race with CPU offlining. */
765 		x = percpu_counter_sum_all(&mm->rss_stat[i]);
766 		if (unlikely(x))
767 			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
768 				 mm, resident_page_types[i], x);
769 	}
770 
771 	if (mm_pgtables_bytes(mm))
772 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
773 				mm_pgtables_bytes(mm));
774 
775 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
776 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
777 #endif
778 }
779 
780 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
781 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
782 
783 /*
784  * Called when the last reference to the mm
785  * is dropped: either by a lazy thread or by
786  * mmput. Free the page directory and the mm.
787  */
788 void __mmdrop(struct mm_struct *mm)
789 {
790 	int i;
791 
792 	BUG_ON(mm == &init_mm);
793 	WARN_ON_ONCE(mm == current->mm);
794 	WARN_ON_ONCE(mm == current->active_mm);
795 	mm_free_pgd(mm);
796 	destroy_context(mm);
797 	mmu_notifier_subscriptions_destroy(mm);
798 	check_mm(mm);
799 	put_user_ns(mm->user_ns);
800 	mm_pasid_drop(mm);
801 
802 	for (i = 0; i < NR_MM_COUNTERS; i++)
803 		percpu_counter_destroy(&mm->rss_stat[i]);
804 	free_mm(mm);
805 }
806 EXPORT_SYMBOL_GPL(__mmdrop);
807 
808 static void mmdrop_async_fn(struct work_struct *work)
809 {
810 	struct mm_struct *mm;
811 
812 	mm = container_of(work, struct mm_struct, async_put_work);
813 	__mmdrop(mm);
814 }
815 
816 static void mmdrop_async(struct mm_struct *mm)
817 {
818 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
819 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
820 		schedule_work(&mm->async_put_work);
821 	}
822 }
823 
824 static inline void free_signal_struct(struct signal_struct *sig)
825 {
826 	taskstats_tgid_free(sig);
827 	sched_autogroup_exit(sig);
828 	/*
829 	 * __mmdrop is not safe to call from softirq context on x86 due to
830 	 * pgd_dtor so postpone it to the async context
831 	 */
832 	if (sig->oom_mm)
833 		mmdrop_async(sig->oom_mm);
834 	kmem_cache_free(signal_cachep, sig);
835 }
836 
837 static inline void put_signal_struct(struct signal_struct *sig)
838 {
839 	if (refcount_dec_and_test(&sig->sigcnt))
840 		free_signal_struct(sig);
841 }
842 
843 void __put_task_struct(struct task_struct *tsk)
844 {
845 	WARN_ON(!tsk->exit_state);
846 	WARN_ON(refcount_read(&tsk->usage));
847 	WARN_ON(tsk == current);
848 
849 	io_uring_free(tsk);
850 	cgroup_free(tsk);
851 	task_numa_free(tsk, true);
852 	security_task_free(tsk);
853 	bpf_task_storage_free(tsk);
854 	exit_creds(tsk);
855 	delayacct_tsk_free(tsk);
856 	put_signal_struct(tsk->signal);
857 	sched_core_free(tsk);
858 	free_task(tsk);
859 }
860 EXPORT_SYMBOL_GPL(__put_task_struct);
861 
862 void __init __weak arch_task_cache_init(void) { }
863 
864 /*
865  * set_max_threads
866  */
867 static void set_max_threads(unsigned int max_threads_suggested)
868 {
869 	u64 threads;
870 	unsigned long nr_pages = totalram_pages();
871 
872 	/*
873 	 * The number of threads shall be limited such that the thread
874 	 * structures may only consume a small part of the available memory.
875 	 */
876 	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
877 		threads = MAX_THREADS;
878 	else
879 		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
880 				    (u64) THREAD_SIZE * 8UL);
881 
882 	if (threads > max_threads_suggested)
883 		threads = max_threads_suggested;
884 
885 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
886 }
887 
888 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
889 /* Initialized by the architecture: */
890 int arch_task_struct_size __read_mostly;
891 #endif
892 
893 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
894 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
895 {
896 	/* Fetch thread_struct whitelist for the architecture. */
897 	arch_thread_struct_whitelist(offset, size);
898 
899 	/*
900 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
901 	 * adjust offset to position of thread_struct in task_struct.
902 	 */
903 	if (unlikely(*size == 0))
904 		*offset = 0;
905 	else
906 		*offset += offsetof(struct task_struct, thread);
907 }
908 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
909 
910 void __init fork_init(void)
911 {
912 	int i;
913 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
914 #ifndef ARCH_MIN_TASKALIGN
915 #define ARCH_MIN_TASKALIGN	0
916 #endif
917 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
918 	unsigned long useroffset, usersize;
919 
920 	/* create a slab on which task_structs can be allocated */
921 	task_struct_whitelist(&useroffset, &usersize);
922 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
923 			arch_task_struct_size, align,
924 			SLAB_PANIC|SLAB_ACCOUNT,
925 			useroffset, usersize, NULL);
926 #endif
927 
928 	/* do the arch specific task caches init */
929 	arch_task_cache_init();
930 
931 	set_max_threads(MAX_THREADS);
932 
933 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
934 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
935 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
936 		init_task.signal->rlim[RLIMIT_NPROC];
937 
938 	for (i = 0; i < UCOUNT_COUNTS; i++)
939 		init_user_ns.ucount_max[i] = max_threads/2;
940 
941 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC,      RLIM_INFINITY);
942 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE,   RLIM_INFINITY);
943 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
944 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK,    RLIM_INFINITY);
945 
946 #ifdef CONFIG_VMAP_STACK
947 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
948 			  NULL, free_vm_stack_cache);
949 #endif
950 
951 	scs_init();
952 
953 	lockdep_init_task(&init_task);
954 	uprobes_init();
955 }
956 
957 int __weak arch_dup_task_struct(struct task_struct *dst,
958 					       struct task_struct *src)
959 {
960 	*dst = *src;
961 	return 0;
962 }
963 
964 void set_task_stack_end_magic(struct task_struct *tsk)
965 {
966 	unsigned long *stackend;
967 
968 	stackend = end_of_stack(tsk);
969 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
970 }
971 
972 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
973 {
974 	struct task_struct *tsk;
975 	int err;
976 
977 	if (node == NUMA_NO_NODE)
978 		node = tsk_fork_get_node(orig);
979 	tsk = alloc_task_struct_node(node);
980 	if (!tsk)
981 		return NULL;
982 
983 	err = arch_dup_task_struct(tsk, orig);
984 	if (err)
985 		goto free_tsk;
986 
987 	err = alloc_thread_stack_node(tsk, node);
988 	if (err)
989 		goto free_tsk;
990 
991 #ifdef CONFIG_THREAD_INFO_IN_TASK
992 	refcount_set(&tsk->stack_refcount, 1);
993 #endif
994 	account_kernel_stack(tsk, 1);
995 
996 	err = scs_prepare(tsk, node);
997 	if (err)
998 		goto free_stack;
999 
1000 #ifdef CONFIG_SECCOMP
1001 	/*
1002 	 * We must handle setting up seccomp filters once we're under
1003 	 * the sighand lock in case orig has changed between now and
1004 	 * then. Until then, filter must be NULL to avoid messing up
1005 	 * the usage counts on the error path calling free_task.
1006 	 */
1007 	tsk->seccomp.filter = NULL;
1008 #endif
1009 
1010 	setup_thread_stack(tsk, orig);
1011 	clear_user_return_notifier(tsk);
1012 	clear_tsk_need_resched(tsk);
1013 	set_task_stack_end_magic(tsk);
1014 	clear_syscall_work_syscall_user_dispatch(tsk);
1015 
1016 #ifdef CONFIG_STACKPROTECTOR
1017 	tsk->stack_canary = get_random_canary();
1018 #endif
1019 	if (orig->cpus_ptr == &orig->cpus_mask)
1020 		tsk->cpus_ptr = &tsk->cpus_mask;
1021 	dup_user_cpus_ptr(tsk, orig, node);
1022 
1023 	/*
1024 	 * One for the user space visible state that goes away when reaped.
1025 	 * One for the scheduler.
1026 	 */
1027 	refcount_set(&tsk->rcu_users, 2);
1028 	/* One for the rcu users */
1029 	refcount_set(&tsk->usage, 1);
1030 #ifdef CONFIG_BLK_DEV_IO_TRACE
1031 	tsk->btrace_seq = 0;
1032 #endif
1033 	tsk->splice_pipe = NULL;
1034 	tsk->task_frag.page = NULL;
1035 	tsk->wake_q.next = NULL;
1036 	tsk->worker_private = NULL;
1037 
1038 	kcov_task_init(tsk);
1039 	kmsan_task_create(tsk);
1040 	kmap_local_fork(tsk);
1041 
1042 #ifdef CONFIG_FAULT_INJECTION
1043 	tsk->fail_nth = 0;
1044 #endif
1045 
1046 #ifdef CONFIG_BLK_CGROUP
1047 	tsk->throttle_disk = NULL;
1048 	tsk->use_memdelay = 0;
1049 #endif
1050 
1051 #ifdef CONFIG_IOMMU_SVA
1052 	tsk->pasid_activated = 0;
1053 #endif
1054 
1055 #ifdef CONFIG_MEMCG
1056 	tsk->active_memcg = NULL;
1057 #endif
1058 
1059 #ifdef CONFIG_CPU_SUP_INTEL
1060 	tsk->reported_split_lock = 0;
1061 #endif
1062 
1063 #ifdef CONFIG_SCHED_MM_CID
1064 	tsk->mm_cid = -1;
1065 	tsk->mm_cid_active = 0;
1066 #endif
1067 	return tsk;
1068 
1069 free_stack:
1070 	exit_task_stack_account(tsk);
1071 	free_thread_stack(tsk);
1072 free_tsk:
1073 	free_task_struct(tsk);
1074 	return NULL;
1075 }
1076 
1077 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1078 
1079 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1080 
1081 static int __init coredump_filter_setup(char *s)
1082 {
1083 	default_dump_filter =
1084 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1085 		MMF_DUMP_FILTER_MASK;
1086 	return 1;
1087 }
1088 
1089 __setup("coredump_filter=", coredump_filter_setup);
1090 
1091 #include <linux/init_task.h>
1092 
1093 static void mm_init_aio(struct mm_struct *mm)
1094 {
1095 #ifdef CONFIG_AIO
1096 	spin_lock_init(&mm->ioctx_lock);
1097 	mm->ioctx_table = NULL;
1098 #endif
1099 }
1100 
1101 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1102 					   struct task_struct *p)
1103 {
1104 #ifdef CONFIG_MEMCG
1105 	if (mm->owner == p)
1106 		WRITE_ONCE(mm->owner, NULL);
1107 #endif
1108 }
1109 
1110 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1111 {
1112 #ifdef CONFIG_MEMCG
1113 	mm->owner = p;
1114 #endif
1115 }
1116 
1117 static void mm_init_uprobes_state(struct mm_struct *mm)
1118 {
1119 #ifdef CONFIG_UPROBES
1120 	mm->uprobes_state.xol_area = NULL;
1121 #endif
1122 }
1123 
1124 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1125 	struct user_namespace *user_ns)
1126 {
1127 	int i;
1128 
1129 	mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1130 	mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1131 	atomic_set(&mm->mm_users, 1);
1132 	atomic_set(&mm->mm_count, 1);
1133 	seqcount_init(&mm->write_protect_seq);
1134 	mmap_init_lock(mm);
1135 	INIT_LIST_HEAD(&mm->mmlist);
1136 	mm_pgtables_bytes_init(mm);
1137 	mm->map_count = 0;
1138 	mm->locked_vm = 0;
1139 	atomic64_set(&mm->pinned_vm, 0);
1140 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1141 	spin_lock_init(&mm->page_table_lock);
1142 	spin_lock_init(&mm->arg_lock);
1143 	mm_init_cpumask(mm);
1144 	mm_init_aio(mm);
1145 	mm_init_owner(mm, p);
1146 	mm_pasid_init(mm);
1147 	RCU_INIT_POINTER(mm->exe_file, NULL);
1148 	mmu_notifier_subscriptions_init(mm);
1149 	init_tlb_flush_pending(mm);
1150 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1151 	mm->pmd_huge_pte = NULL;
1152 #endif
1153 	mm_init_uprobes_state(mm);
1154 	hugetlb_count_init(mm);
1155 
1156 	if (current->mm) {
1157 		mm->flags = current->mm->flags & MMF_INIT_MASK;
1158 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1159 	} else {
1160 		mm->flags = default_dump_filter;
1161 		mm->def_flags = 0;
1162 	}
1163 
1164 	if (mm_alloc_pgd(mm))
1165 		goto fail_nopgd;
1166 
1167 	if (init_new_context(p, mm))
1168 		goto fail_nocontext;
1169 
1170 	for (i = 0; i < NR_MM_COUNTERS; i++)
1171 		if (percpu_counter_init(&mm->rss_stat[i], 0, GFP_KERNEL_ACCOUNT))
1172 			goto fail_pcpu;
1173 
1174 	mm->user_ns = get_user_ns(user_ns);
1175 	lru_gen_init_mm(mm);
1176 	mm_init_cid(mm);
1177 	return mm;
1178 
1179 fail_pcpu:
1180 	while (i > 0)
1181 		percpu_counter_destroy(&mm->rss_stat[--i]);
1182 fail_nocontext:
1183 	mm_free_pgd(mm);
1184 fail_nopgd:
1185 	free_mm(mm);
1186 	return NULL;
1187 }
1188 
1189 /*
1190  * Allocate and initialize an mm_struct.
1191  */
1192 struct mm_struct *mm_alloc(void)
1193 {
1194 	struct mm_struct *mm;
1195 
1196 	mm = allocate_mm();
1197 	if (!mm)
1198 		return NULL;
1199 
1200 	memset(mm, 0, sizeof(*mm));
1201 	return mm_init(mm, current, current_user_ns());
1202 }
1203 
1204 static inline void __mmput(struct mm_struct *mm)
1205 {
1206 	VM_BUG_ON(atomic_read(&mm->mm_users));
1207 
1208 	uprobe_clear_state(mm);
1209 	exit_aio(mm);
1210 	ksm_exit(mm);
1211 	khugepaged_exit(mm); /* must run before exit_mmap */
1212 	exit_mmap(mm);
1213 	mm_put_huge_zero_page(mm);
1214 	set_mm_exe_file(mm, NULL);
1215 	if (!list_empty(&mm->mmlist)) {
1216 		spin_lock(&mmlist_lock);
1217 		list_del(&mm->mmlist);
1218 		spin_unlock(&mmlist_lock);
1219 	}
1220 	if (mm->binfmt)
1221 		module_put(mm->binfmt->module);
1222 	lru_gen_del_mm(mm);
1223 	mmdrop(mm);
1224 }
1225 
1226 /*
1227  * Decrement the use count and release all resources for an mm.
1228  */
1229 void mmput(struct mm_struct *mm)
1230 {
1231 	might_sleep();
1232 
1233 	if (atomic_dec_and_test(&mm->mm_users))
1234 		__mmput(mm);
1235 }
1236 EXPORT_SYMBOL_GPL(mmput);
1237 
1238 #ifdef CONFIG_MMU
1239 static void mmput_async_fn(struct work_struct *work)
1240 {
1241 	struct mm_struct *mm = container_of(work, struct mm_struct,
1242 					    async_put_work);
1243 
1244 	__mmput(mm);
1245 }
1246 
1247 void mmput_async(struct mm_struct *mm)
1248 {
1249 	if (atomic_dec_and_test(&mm->mm_users)) {
1250 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1251 		schedule_work(&mm->async_put_work);
1252 	}
1253 }
1254 EXPORT_SYMBOL_GPL(mmput_async);
1255 #endif
1256 
1257 /**
1258  * set_mm_exe_file - change a reference to the mm's executable file
1259  *
1260  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1261  *
1262  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1263  * invocations: in mmput() nobody alive left, in execve task is single
1264  * threaded.
1265  *
1266  * Can only fail if new_exe_file != NULL.
1267  */
1268 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1269 {
1270 	struct file *old_exe_file;
1271 
1272 	/*
1273 	 * It is safe to dereference the exe_file without RCU as
1274 	 * this function is only called if nobody else can access
1275 	 * this mm -- see comment above for justification.
1276 	 */
1277 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1278 
1279 	if (new_exe_file) {
1280 		/*
1281 		 * We expect the caller (i.e., sys_execve) to already denied
1282 		 * write access, so this is unlikely to fail.
1283 		 */
1284 		if (unlikely(deny_write_access(new_exe_file)))
1285 			return -EACCES;
1286 		get_file(new_exe_file);
1287 	}
1288 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1289 	if (old_exe_file) {
1290 		allow_write_access(old_exe_file);
1291 		fput(old_exe_file);
1292 	}
1293 	return 0;
1294 }
1295 
1296 /**
1297  * replace_mm_exe_file - replace a reference to the mm's executable file
1298  *
1299  * This changes mm's executable file (shown as symlink /proc/[pid]/exe),
1300  * dealing with concurrent invocation and without grabbing the mmap lock in
1301  * write mode.
1302  *
1303  * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1304  */
1305 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1306 {
1307 	struct vm_area_struct *vma;
1308 	struct file *old_exe_file;
1309 	int ret = 0;
1310 
1311 	/* Forbid mm->exe_file change if old file still mapped. */
1312 	old_exe_file = get_mm_exe_file(mm);
1313 	if (old_exe_file) {
1314 		VMA_ITERATOR(vmi, mm, 0);
1315 		mmap_read_lock(mm);
1316 		for_each_vma(vmi, vma) {
1317 			if (!vma->vm_file)
1318 				continue;
1319 			if (path_equal(&vma->vm_file->f_path,
1320 				       &old_exe_file->f_path)) {
1321 				ret = -EBUSY;
1322 				break;
1323 			}
1324 		}
1325 		mmap_read_unlock(mm);
1326 		fput(old_exe_file);
1327 		if (ret)
1328 			return ret;
1329 	}
1330 
1331 	/* set the new file, lockless */
1332 	ret = deny_write_access(new_exe_file);
1333 	if (ret)
1334 		return -EACCES;
1335 	get_file(new_exe_file);
1336 
1337 	old_exe_file = xchg(&mm->exe_file, new_exe_file);
1338 	if (old_exe_file) {
1339 		/*
1340 		 * Don't race with dup_mmap() getting the file and disallowing
1341 		 * write access while someone might open the file writable.
1342 		 */
1343 		mmap_read_lock(mm);
1344 		allow_write_access(old_exe_file);
1345 		fput(old_exe_file);
1346 		mmap_read_unlock(mm);
1347 	}
1348 	return 0;
1349 }
1350 
1351 /**
1352  * get_mm_exe_file - acquire a reference to the mm's executable file
1353  *
1354  * Returns %NULL if mm has no associated executable file.
1355  * User must release file via fput().
1356  */
1357 struct file *get_mm_exe_file(struct mm_struct *mm)
1358 {
1359 	struct file *exe_file;
1360 
1361 	rcu_read_lock();
1362 	exe_file = rcu_dereference(mm->exe_file);
1363 	if (exe_file && !get_file_rcu(exe_file))
1364 		exe_file = NULL;
1365 	rcu_read_unlock();
1366 	return exe_file;
1367 }
1368 
1369 /**
1370  * get_task_exe_file - acquire a reference to the task's executable file
1371  *
1372  * Returns %NULL if task's mm (if any) has no associated executable file or
1373  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1374  * User must release file via fput().
1375  */
1376 struct file *get_task_exe_file(struct task_struct *task)
1377 {
1378 	struct file *exe_file = NULL;
1379 	struct mm_struct *mm;
1380 
1381 	task_lock(task);
1382 	mm = task->mm;
1383 	if (mm) {
1384 		if (!(task->flags & PF_KTHREAD))
1385 			exe_file = get_mm_exe_file(mm);
1386 	}
1387 	task_unlock(task);
1388 	return exe_file;
1389 }
1390 
1391 /**
1392  * get_task_mm - acquire a reference to the task's mm
1393  *
1394  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1395  * this kernel workthread has transiently adopted a user mm with use_mm,
1396  * to do its AIO) is not set and if so returns a reference to it, after
1397  * bumping up the use count.  User must release the mm via mmput()
1398  * after use.  Typically used by /proc and ptrace.
1399  */
1400 struct mm_struct *get_task_mm(struct task_struct *task)
1401 {
1402 	struct mm_struct *mm;
1403 
1404 	task_lock(task);
1405 	mm = task->mm;
1406 	if (mm) {
1407 		if (task->flags & PF_KTHREAD)
1408 			mm = NULL;
1409 		else
1410 			mmget(mm);
1411 	}
1412 	task_unlock(task);
1413 	return mm;
1414 }
1415 EXPORT_SYMBOL_GPL(get_task_mm);
1416 
1417 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1418 {
1419 	struct mm_struct *mm;
1420 	int err;
1421 
1422 	err =  down_read_killable(&task->signal->exec_update_lock);
1423 	if (err)
1424 		return ERR_PTR(err);
1425 
1426 	mm = get_task_mm(task);
1427 	if (mm && mm != current->mm &&
1428 			!ptrace_may_access(task, mode)) {
1429 		mmput(mm);
1430 		mm = ERR_PTR(-EACCES);
1431 	}
1432 	up_read(&task->signal->exec_update_lock);
1433 
1434 	return mm;
1435 }
1436 
1437 static void complete_vfork_done(struct task_struct *tsk)
1438 {
1439 	struct completion *vfork;
1440 
1441 	task_lock(tsk);
1442 	vfork = tsk->vfork_done;
1443 	if (likely(vfork)) {
1444 		tsk->vfork_done = NULL;
1445 		complete(vfork);
1446 	}
1447 	task_unlock(tsk);
1448 }
1449 
1450 static int wait_for_vfork_done(struct task_struct *child,
1451 				struct completion *vfork)
1452 {
1453 	unsigned int state = TASK_UNINTERRUPTIBLE|TASK_KILLABLE|TASK_FREEZABLE;
1454 	int killed;
1455 
1456 	cgroup_enter_frozen();
1457 	killed = wait_for_completion_state(vfork, state);
1458 	cgroup_leave_frozen(false);
1459 
1460 	if (killed) {
1461 		task_lock(child);
1462 		child->vfork_done = NULL;
1463 		task_unlock(child);
1464 	}
1465 
1466 	put_task_struct(child);
1467 	return killed;
1468 }
1469 
1470 /* Please note the differences between mmput and mm_release.
1471  * mmput is called whenever we stop holding onto a mm_struct,
1472  * error success whatever.
1473  *
1474  * mm_release is called after a mm_struct has been removed
1475  * from the current process.
1476  *
1477  * This difference is important for error handling, when we
1478  * only half set up a mm_struct for a new process and need to restore
1479  * the old one.  Because we mmput the new mm_struct before
1480  * restoring the old one. . .
1481  * Eric Biederman 10 January 1998
1482  */
1483 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1484 {
1485 	uprobe_free_utask(tsk);
1486 
1487 	/* Get rid of any cached register state */
1488 	deactivate_mm(tsk, mm);
1489 
1490 	/*
1491 	 * Signal userspace if we're not exiting with a core dump
1492 	 * because we want to leave the value intact for debugging
1493 	 * purposes.
1494 	 */
1495 	if (tsk->clear_child_tid) {
1496 		if (atomic_read(&mm->mm_users) > 1) {
1497 			/*
1498 			 * We don't check the error code - if userspace has
1499 			 * not set up a proper pointer then tough luck.
1500 			 */
1501 			put_user(0, tsk->clear_child_tid);
1502 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1503 					1, NULL, NULL, 0, 0);
1504 		}
1505 		tsk->clear_child_tid = NULL;
1506 	}
1507 
1508 	/*
1509 	 * All done, finally we can wake up parent and return this mm to him.
1510 	 * Also kthread_stop() uses this completion for synchronization.
1511 	 */
1512 	if (tsk->vfork_done)
1513 		complete_vfork_done(tsk);
1514 }
1515 
1516 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1517 {
1518 	futex_exit_release(tsk);
1519 	mm_release(tsk, mm);
1520 }
1521 
1522 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1523 {
1524 	futex_exec_release(tsk);
1525 	mm_release(tsk, mm);
1526 }
1527 
1528 /**
1529  * dup_mm() - duplicates an existing mm structure
1530  * @tsk: the task_struct with which the new mm will be associated.
1531  * @oldmm: the mm to duplicate.
1532  *
1533  * Allocates a new mm structure and duplicates the provided @oldmm structure
1534  * content into it.
1535  *
1536  * Return: the duplicated mm or NULL on failure.
1537  */
1538 static struct mm_struct *dup_mm(struct task_struct *tsk,
1539 				struct mm_struct *oldmm)
1540 {
1541 	struct mm_struct *mm;
1542 	int err;
1543 
1544 	mm = allocate_mm();
1545 	if (!mm)
1546 		goto fail_nomem;
1547 
1548 	memcpy(mm, oldmm, sizeof(*mm));
1549 
1550 	if (!mm_init(mm, tsk, mm->user_ns))
1551 		goto fail_nomem;
1552 
1553 	err = dup_mmap(mm, oldmm);
1554 	if (err)
1555 		goto free_pt;
1556 
1557 	mm->hiwater_rss = get_mm_rss(mm);
1558 	mm->hiwater_vm = mm->total_vm;
1559 
1560 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1561 		goto free_pt;
1562 
1563 	return mm;
1564 
1565 free_pt:
1566 	/* don't put binfmt in mmput, we haven't got module yet */
1567 	mm->binfmt = NULL;
1568 	mm_init_owner(mm, NULL);
1569 	mmput(mm);
1570 
1571 fail_nomem:
1572 	return NULL;
1573 }
1574 
1575 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1576 {
1577 	struct mm_struct *mm, *oldmm;
1578 
1579 	tsk->min_flt = tsk->maj_flt = 0;
1580 	tsk->nvcsw = tsk->nivcsw = 0;
1581 #ifdef CONFIG_DETECT_HUNG_TASK
1582 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1583 	tsk->last_switch_time = 0;
1584 #endif
1585 
1586 	tsk->mm = NULL;
1587 	tsk->active_mm = NULL;
1588 
1589 	/*
1590 	 * Are we cloning a kernel thread?
1591 	 *
1592 	 * We need to steal a active VM for that..
1593 	 */
1594 	oldmm = current->mm;
1595 	if (!oldmm)
1596 		return 0;
1597 
1598 	if (clone_flags & CLONE_VM) {
1599 		mmget(oldmm);
1600 		mm = oldmm;
1601 	} else {
1602 		mm = dup_mm(tsk, current->mm);
1603 		if (!mm)
1604 			return -ENOMEM;
1605 	}
1606 
1607 	tsk->mm = mm;
1608 	tsk->active_mm = mm;
1609 	sched_mm_cid_fork(tsk);
1610 	return 0;
1611 }
1612 
1613 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1614 {
1615 	struct fs_struct *fs = current->fs;
1616 	if (clone_flags & CLONE_FS) {
1617 		/* tsk->fs is already what we want */
1618 		spin_lock(&fs->lock);
1619 		if (fs->in_exec) {
1620 			spin_unlock(&fs->lock);
1621 			return -EAGAIN;
1622 		}
1623 		fs->users++;
1624 		spin_unlock(&fs->lock);
1625 		return 0;
1626 	}
1627 	tsk->fs = copy_fs_struct(fs);
1628 	if (!tsk->fs)
1629 		return -ENOMEM;
1630 	return 0;
1631 }
1632 
1633 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1634 {
1635 	struct files_struct *oldf, *newf;
1636 	int error = 0;
1637 
1638 	/*
1639 	 * A background process may not have any files ...
1640 	 */
1641 	oldf = current->files;
1642 	if (!oldf)
1643 		goto out;
1644 
1645 	if (clone_flags & CLONE_FILES) {
1646 		atomic_inc(&oldf->count);
1647 		goto out;
1648 	}
1649 
1650 	newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1651 	if (!newf)
1652 		goto out;
1653 
1654 	tsk->files = newf;
1655 	error = 0;
1656 out:
1657 	return error;
1658 }
1659 
1660 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1661 {
1662 	struct sighand_struct *sig;
1663 
1664 	if (clone_flags & CLONE_SIGHAND) {
1665 		refcount_inc(&current->sighand->count);
1666 		return 0;
1667 	}
1668 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1669 	RCU_INIT_POINTER(tsk->sighand, sig);
1670 	if (!sig)
1671 		return -ENOMEM;
1672 
1673 	refcount_set(&sig->count, 1);
1674 	spin_lock_irq(&current->sighand->siglock);
1675 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1676 	spin_unlock_irq(&current->sighand->siglock);
1677 
1678 	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1679 	if (clone_flags & CLONE_CLEAR_SIGHAND)
1680 		flush_signal_handlers(tsk, 0);
1681 
1682 	return 0;
1683 }
1684 
1685 void __cleanup_sighand(struct sighand_struct *sighand)
1686 {
1687 	if (refcount_dec_and_test(&sighand->count)) {
1688 		signalfd_cleanup(sighand);
1689 		/*
1690 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1691 		 * without an RCU grace period, see __lock_task_sighand().
1692 		 */
1693 		kmem_cache_free(sighand_cachep, sighand);
1694 	}
1695 }
1696 
1697 /*
1698  * Initialize POSIX timer handling for a thread group.
1699  */
1700 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1701 {
1702 	struct posix_cputimers *pct = &sig->posix_cputimers;
1703 	unsigned long cpu_limit;
1704 
1705 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1706 	posix_cputimers_group_init(pct, cpu_limit);
1707 }
1708 
1709 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1710 {
1711 	struct signal_struct *sig;
1712 
1713 	if (clone_flags & CLONE_THREAD)
1714 		return 0;
1715 
1716 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1717 	tsk->signal = sig;
1718 	if (!sig)
1719 		return -ENOMEM;
1720 
1721 	sig->nr_threads = 1;
1722 	sig->quick_threads = 1;
1723 	atomic_set(&sig->live, 1);
1724 	refcount_set(&sig->sigcnt, 1);
1725 
1726 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1727 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1728 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1729 
1730 	init_waitqueue_head(&sig->wait_chldexit);
1731 	sig->curr_target = tsk;
1732 	init_sigpending(&sig->shared_pending);
1733 	INIT_HLIST_HEAD(&sig->multiprocess);
1734 	seqlock_init(&sig->stats_lock);
1735 	prev_cputime_init(&sig->prev_cputime);
1736 
1737 #ifdef CONFIG_POSIX_TIMERS
1738 	INIT_LIST_HEAD(&sig->posix_timers);
1739 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1740 	sig->real_timer.function = it_real_fn;
1741 #endif
1742 
1743 	task_lock(current->group_leader);
1744 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1745 	task_unlock(current->group_leader);
1746 
1747 	posix_cpu_timers_init_group(sig);
1748 
1749 	tty_audit_fork(sig);
1750 	sched_autogroup_fork(sig);
1751 
1752 	sig->oom_score_adj = current->signal->oom_score_adj;
1753 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1754 
1755 	mutex_init(&sig->cred_guard_mutex);
1756 	init_rwsem(&sig->exec_update_lock);
1757 
1758 	return 0;
1759 }
1760 
1761 static void copy_seccomp(struct task_struct *p)
1762 {
1763 #ifdef CONFIG_SECCOMP
1764 	/*
1765 	 * Must be called with sighand->lock held, which is common to
1766 	 * all threads in the group. Holding cred_guard_mutex is not
1767 	 * needed because this new task is not yet running and cannot
1768 	 * be racing exec.
1769 	 */
1770 	assert_spin_locked(&current->sighand->siglock);
1771 
1772 	/* Ref-count the new filter user, and assign it. */
1773 	get_seccomp_filter(current);
1774 	p->seccomp = current->seccomp;
1775 
1776 	/*
1777 	 * Explicitly enable no_new_privs here in case it got set
1778 	 * between the task_struct being duplicated and holding the
1779 	 * sighand lock. The seccomp state and nnp must be in sync.
1780 	 */
1781 	if (task_no_new_privs(current))
1782 		task_set_no_new_privs(p);
1783 
1784 	/*
1785 	 * If the parent gained a seccomp mode after copying thread
1786 	 * flags and between before we held the sighand lock, we have
1787 	 * to manually enable the seccomp thread flag here.
1788 	 */
1789 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1790 		set_task_syscall_work(p, SECCOMP);
1791 #endif
1792 }
1793 
1794 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1795 {
1796 	current->clear_child_tid = tidptr;
1797 
1798 	return task_pid_vnr(current);
1799 }
1800 
1801 static void rt_mutex_init_task(struct task_struct *p)
1802 {
1803 	raw_spin_lock_init(&p->pi_lock);
1804 #ifdef CONFIG_RT_MUTEXES
1805 	p->pi_waiters = RB_ROOT_CACHED;
1806 	p->pi_top_task = NULL;
1807 	p->pi_blocked_on = NULL;
1808 #endif
1809 }
1810 
1811 static inline void init_task_pid_links(struct task_struct *task)
1812 {
1813 	enum pid_type type;
1814 
1815 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1816 		INIT_HLIST_NODE(&task->pid_links[type]);
1817 }
1818 
1819 static inline void
1820 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1821 {
1822 	if (type == PIDTYPE_PID)
1823 		task->thread_pid = pid;
1824 	else
1825 		task->signal->pids[type] = pid;
1826 }
1827 
1828 static inline void rcu_copy_process(struct task_struct *p)
1829 {
1830 #ifdef CONFIG_PREEMPT_RCU
1831 	p->rcu_read_lock_nesting = 0;
1832 	p->rcu_read_unlock_special.s = 0;
1833 	p->rcu_blocked_node = NULL;
1834 	INIT_LIST_HEAD(&p->rcu_node_entry);
1835 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1836 #ifdef CONFIG_TASKS_RCU
1837 	p->rcu_tasks_holdout = false;
1838 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1839 	p->rcu_tasks_idle_cpu = -1;
1840 #endif /* #ifdef CONFIG_TASKS_RCU */
1841 #ifdef CONFIG_TASKS_TRACE_RCU
1842 	p->trc_reader_nesting = 0;
1843 	p->trc_reader_special.s = 0;
1844 	INIT_LIST_HEAD(&p->trc_holdout_list);
1845 	INIT_LIST_HEAD(&p->trc_blkd_node);
1846 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1847 }
1848 
1849 struct pid *pidfd_pid(const struct file *file)
1850 {
1851 	if (file->f_op == &pidfd_fops)
1852 		return file->private_data;
1853 
1854 	return ERR_PTR(-EBADF);
1855 }
1856 
1857 static int pidfd_release(struct inode *inode, struct file *file)
1858 {
1859 	struct pid *pid = file->private_data;
1860 
1861 	file->private_data = NULL;
1862 	put_pid(pid);
1863 	return 0;
1864 }
1865 
1866 #ifdef CONFIG_PROC_FS
1867 /**
1868  * pidfd_show_fdinfo - print information about a pidfd
1869  * @m: proc fdinfo file
1870  * @f: file referencing a pidfd
1871  *
1872  * Pid:
1873  * This function will print the pid that a given pidfd refers to in the
1874  * pid namespace of the procfs instance.
1875  * If the pid namespace of the process is not a descendant of the pid
1876  * namespace of the procfs instance 0 will be shown as its pid. This is
1877  * similar to calling getppid() on a process whose parent is outside of
1878  * its pid namespace.
1879  *
1880  * NSpid:
1881  * If pid namespaces are supported then this function will also print
1882  * the pid of a given pidfd refers to for all descendant pid namespaces
1883  * starting from the current pid namespace of the instance, i.e. the
1884  * Pid field and the first entry in the NSpid field will be identical.
1885  * If the pid namespace of the process is not a descendant of the pid
1886  * namespace of the procfs instance 0 will be shown as its first NSpid
1887  * entry and no others will be shown.
1888  * Note that this differs from the Pid and NSpid fields in
1889  * /proc/<pid>/status where Pid and NSpid are always shown relative to
1890  * the  pid namespace of the procfs instance. The difference becomes
1891  * obvious when sending around a pidfd between pid namespaces from a
1892  * different branch of the tree, i.e. where no ancestral relation is
1893  * present between the pid namespaces:
1894  * - create two new pid namespaces ns1 and ns2 in the initial pid
1895  *   namespace (also take care to create new mount namespaces in the
1896  *   new pid namespace and mount procfs)
1897  * - create a process with a pidfd in ns1
1898  * - send pidfd from ns1 to ns2
1899  * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1900  *   have exactly one entry, which is 0
1901  */
1902 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1903 {
1904 	struct pid *pid = f->private_data;
1905 	struct pid_namespace *ns;
1906 	pid_t nr = -1;
1907 
1908 	if (likely(pid_has_task(pid, PIDTYPE_PID))) {
1909 		ns = proc_pid_ns(file_inode(m->file)->i_sb);
1910 		nr = pid_nr_ns(pid, ns);
1911 	}
1912 
1913 	seq_put_decimal_ll(m, "Pid:\t", nr);
1914 
1915 #ifdef CONFIG_PID_NS
1916 	seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1917 	if (nr > 0) {
1918 		int i;
1919 
1920 		/* If nr is non-zero it means that 'pid' is valid and that
1921 		 * ns, i.e. the pid namespace associated with the procfs
1922 		 * instance, is in the pid namespace hierarchy of pid.
1923 		 * Start at one below the already printed level.
1924 		 */
1925 		for (i = ns->level + 1; i <= pid->level; i++)
1926 			seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
1927 	}
1928 #endif
1929 	seq_putc(m, '\n');
1930 }
1931 #endif
1932 
1933 /*
1934  * Poll support for process exit notification.
1935  */
1936 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1937 {
1938 	struct pid *pid = file->private_data;
1939 	__poll_t poll_flags = 0;
1940 
1941 	poll_wait(file, &pid->wait_pidfd, pts);
1942 
1943 	/*
1944 	 * Inform pollers only when the whole thread group exits.
1945 	 * If the thread group leader exits before all other threads in the
1946 	 * group, then poll(2) should block, similar to the wait(2) family.
1947 	 */
1948 	if (thread_group_exited(pid))
1949 		poll_flags = EPOLLIN | EPOLLRDNORM;
1950 
1951 	return poll_flags;
1952 }
1953 
1954 const struct file_operations pidfd_fops = {
1955 	.release = pidfd_release,
1956 	.poll = pidfd_poll,
1957 #ifdef CONFIG_PROC_FS
1958 	.show_fdinfo = pidfd_show_fdinfo,
1959 #endif
1960 };
1961 
1962 static void __delayed_free_task(struct rcu_head *rhp)
1963 {
1964 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1965 
1966 	free_task(tsk);
1967 }
1968 
1969 static __always_inline void delayed_free_task(struct task_struct *tsk)
1970 {
1971 	if (IS_ENABLED(CONFIG_MEMCG))
1972 		call_rcu(&tsk->rcu, __delayed_free_task);
1973 	else
1974 		free_task(tsk);
1975 }
1976 
1977 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
1978 {
1979 	/* Skip if kernel thread */
1980 	if (!tsk->mm)
1981 		return;
1982 
1983 	/* Skip if spawning a thread or using vfork */
1984 	if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
1985 		return;
1986 
1987 	/* We need to synchronize with __set_oom_adj */
1988 	mutex_lock(&oom_adj_mutex);
1989 	set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
1990 	/* Update the values in case they were changed after copy_signal */
1991 	tsk->signal->oom_score_adj = current->signal->oom_score_adj;
1992 	tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
1993 	mutex_unlock(&oom_adj_mutex);
1994 }
1995 
1996 #ifdef CONFIG_RV
1997 static void rv_task_fork(struct task_struct *p)
1998 {
1999 	int i;
2000 
2001 	for (i = 0; i < RV_PER_TASK_MONITORS; i++)
2002 		p->rv[i].da_mon.monitoring = false;
2003 }
2004 #else
2005 #define rv_task_fork(p) do {} while (0)
2006 #endif
2007 
2008 /*
2009  * This creates a new process as a copy of the old one,
2010  * but does not actually start it yet.
2011  *
2012  * It copies the registers, and all the appropriate
2013  * parts of the process environment (as per the clone
2014  * flags). The actual kick-off is left to the caller.
2015  */
2016 static __latent_entropy struct task_struct *copy_process(
2017 					struct pid *pid,
2018 					int trace,
2019 					int node,
2020 					struct kernel_clone_args *args)
2021 {
2022 	int pidfd = -1, retval;
2023 	struct task_struct *p;
2024 	struct multiprocess_signals delayed;
2025 	struct file *pidfile = NULL;
2026 	const u64 clone_flags = args->flags;
2027 	struct nsproxy *nsp = current->nsproxy;
2028 
2029 	/*
2030 	 * Don't allow sharing the root directory with processes in a different
2031 	 * namespace
2032 	 */
2033 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
2034 		return ERR_PTR(-EINVAL);
2035 
2036 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
2037 		return ERR_PTR(-EINVAL);
2038 
2039 	/*
2040 	 * Thread groups must share signals as well, and detached threads
2041 	 * can only be started up within the thread group.
2042 	 */
2043 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2044 		return ERR_PTR(-EINVAL);
2045 
2046 	/*
2047 	 * Shared signal handlers imply shared VM. By way of the above,
2048 	 * thread groups also imply shared VM. Blocking this case allows
2049 	 * for various simplifications in other code.
2050 	 */
2051 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2052 		return ERR_PTR(-EINVAL);
2053 
2054 	/*
2055 	 * Siblings of global init remain as zombies on exit since they are
2056 	 * not reaped by their parent (swapper). To solve this and to avoid
2057 	 * multi-rooted process trees, prevent global and container-inits
2058 	 * from creating siblings.
2059 	 */
2060 	if ((clone_flags & CLONE_PARENT) &&
2061 				current->signal->flags & SIGNAL_UNKILLABLE)
2062 		return ERR_PTR(-EINVAL);
2063 
2064 	/*
2065 	 * If the new process will be in a different pid or user namespace
2066 	 * do not allow it to share a thread group with the forking task.
2067 	 */
2068 	if (clone_flags & CLONE_THREAD) {
2069 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
2070 		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2071 			return ERR_PTR(-EINVAL);
2072 	}
2073 
2074 	if (clone_flags & CLONE_PIDFD) {
2075 		/*
2076 		 * - CLONE_DETACHED is blocked so that we can potentially
2077 		 *   reuse it later for CLONE_PIDFD.
2078 		 * - CLONE_THREAD is blocked until someone really needs it.
2079 		 */
2080 		if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
2081 			return ERR_PTR(-EINVAL);
2082 	}
2083 
2084 	/*
2085 	 * Force any signals received before this point to be delivered
2086 	 * before the fork happens.  Collect up signals sent to multiple
2087 	 * processes that happen during the fork and delay them so that
2088 	 * they appear to happen after the fork.
2089 	 */
2090 	sigemptyset(&delayed.signal);
2091 	INIT_HLIST_NODE(&delayed.node);
2092 
2093 	spin_lock_irq(&current->sighand->siglock);
2094 	if (!(clone_flags & CLONE_THREAD))
2095 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
2096 	recalc_sigpending();
2097 	spin_unlock_irq(&current->sighand->siglock);
2098 	retval = -ERESTARTNOINTR;
2099 	if (task_sigpending(current))
2100 		goto fork_out;
2101 
2102 	retval = -ENOMEM;
2103 	p = dup_task_struct(current, node);
2104 	if (!p)
2105 		goto fork_out;
2106 	p->flags &= ~PF_KTHREAD;
2107 	if (args->kthread)
2108 		p->flags |= PF_KTHREAD;
2109 	if (args->io_thread) {
2110 		/*
2111 		 * Mark us an IO worker, and block any signal that isn't
2112 		 * fatal or STOP
2113 		 */
2114 		p->flags |= PF_IO_WORKER;
2115 		siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2116 	}
2117 
2118 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2119 	/*
2120 	 * Clear TID on mm_release()?
2121 	 */
2122 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2123 
2124 	ftrace_graph_init_task(p);
2125 
2126 	rt_mutex_init_task(p);
2127 
2128 	lockdep_assert_irqs_enabled();
2129 #ifdef CONFIG_PROVE_LOCKING
2130 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2131 #endif
2132 	retval = copy_creds(p, clone_flags);
2133 	if (retval < 0)
2134 		goto bad_fork_free;
2135 
2136 	retval = -EAGAIN;
2137 	if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2138 		if (p->real_cred->user != INIT_USER &&
2139 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2140 			goto bad_fork_cleanup_count;
2141 	}
2142 	current->flags &= ~PF_NPROC_EXCEEDED;
2143 
2144 	/*
2145 	 * If multiple threads are within copy_process(), then this check
2146 	 * triggers too late. This doesn't hurt, the check is only there
2147 	 * to stop root fork bombs.
2148 	 */
2149 	retval = -EAGAIN;
2150 	if (data_race(nr_threads >= max_threads))
2151 		goto bad_fork_cleanup_count;
2152 
2153 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
2154 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2155 	p->flags |= PF_FORKNOEXEC;
2156 	INIT_LIST_HEAD(&p->children);
2157 	INIT_LIST_HEAD(&p->sibling);
2158 	rcu_copy_process(p);
2159 	p->vfork_done = NULL;
2160 	spin_lock_init(&p->alloc_lock);
2161 
2162 	init_sigpending(&p->pending);
2163 
2164 	p->utime = p->stime = p->gtime = 0;
2165 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2166 	p->utimescaled = p->stimescaled = 0;
2167 #endif
2168 	prev_cputime_init(&p->prev_cputime);
2169 
2170 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2171 	seqcount_init(&p->vtime.seqcount);
2172 	p->vtime.starttime = 0;
2173 	p->vtime.state = VTIME_INACTIVE;
2174 #endif
2175 
2176 #ifdef CONFIG_IO_URING
2177 	p->io_uring = NULL;
2178 #endif
2179 
2180 #if defined(SPLIT_RSS_COUNTING)
2181 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2182 #endif
2183 
2184 	p->default_timer_slack_ns = current->timer_slack_ns;
2185 
2186 #ifdef CONFIG_PSI
2187 	p->psi_flags = 0;
2188 #endif
2189 
2190 	task_io_accounting_init(&p->ioac);
2191 	acct_clear_integrals(p);
2192 
2193 	posix_cputimers_init(&p->posix_cputimers);
2194 
2195 	p->io_context = NULL;
2196 	audit_set_context(p, NULL);
2197 	cgroup_fork(p);
2198 	if (args->kthread) {
2199 		if (!set_kthread_struct(p))
2200 			goto bad_fork_cleanup_delayacct;
2201 	}
2202 #ifdef CONFIG_NUMA
2203 	p->mempolicy = mpol_dup(p->mempolicy);
2204 	if (IS_ERR(p->mempolicy)) {
2205 		retval = PTR_ERR(p->mempolicy);
2206 		p->mempolicy = NULL;
2207 		goto bad_fork_cleanup_delayacct;
2208 	}
2209 #endif
2210 #ifdef CONFIG_CPUSETS
2211 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2212 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2213 	seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2214 #endif
2215 #ifdef CONFIG_TRACE_IRQFLAGS
2216 	memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2217 	p->irqtrace.hardirq_disable_ip	= _THIS_IP_;
2218 	p->irqtrace.softirq_enable_ip	= _THIS_IP_;
2219 	p->softirqs_enabled		= 1;
2220 	p->softirq_context		= 0;
2221 #endif
2222 
2223 	p->pagefault_disabled = 0;
2224 
2225 #ifdef CONFIG_LOCKDEP
2226 	lockdep_init_task(p);
2227 #endif
2228 
2229 #ifdef CONFIG_DEBUG_MUTEXES
2230 	p->blocked_on = NULL; /* not blocked yet */
2231 #endif
2232 #ifdef CONFIG_BCACHE
2233 	p->sequential_io	= 0;
2234 	p->sequential_io_avg	= 0;
2235 #endif
2236 #ifdef CONFIG_BPF_SYSCALL
2237 	RCU_INIT_POINTER(p->bpf_storage, NULL);
2238 	p->bpf_ctx = NULL;
2239 #endif
2240 
2241 	/* Perform scheduler related setup. Assign this task to a CPU. */
2242 	retval = sched_fork(clone_flags, p);
2243 	if (retval)
2244 		goto bad_fork_cleanup_policy;
2245 
2246 	retval = perf_event_init_task(p, clone_flags);
2247 	if (retval)
2248 		goto bad_fork_cleanup_policy;
2249 	retval = audit_alloc(p);
2250 	if (retval)
2251 		goto bad_fork_cleanup_perf;
2252 	/* copy all the process information */
2253 	shm_init_task(p);
2254 	retval = security_task_alloc(p, clone_flags);
2255 	if (retval)
2256 		goto bad_fork_cleanup_audit;
2257 	retval = copy_semundo(clone_flags, p);
2258 	if (retval)
2259 		goto bad_fork_cleanup_security;
2260 	retval = copy_files(clone_flags, p);
2261 	if (retval)
2262 		goto bad_fork_cleanup_semundo;
2263 	retval = copy_fs(clone_flags, p);
2264 	if (retval)
2265 		goto bad_fork_cleanup_files;
2266 	retval = copy_sighand(clone_flags, p);
2267 	if (retval)
2268 		goto bad_fork_cleanup_fs;
2269 	retval = copy_signal(clone_flags, p);
2270 	if (retval)
2271 		goto bad_fork_cleanup_sighand;
2272 	retval = copy_mm(clone_flags, p);
2273 	if (retval)
2274 		goto bad_fork_cleanup_signal;
2275 	retval = copy_namespaces(clone_flags, p);
2276 	if (retval)
2277 		goto bad_fork_cleanup_mm;
2278 	retval = copy_io(clone_flags, p);
2279 	if (retval)
2280 		goto bad_fork_cleanup_namespaces;
2281 	retval = copy_thread(p, args);
2282 	if (retval)
2283 		goto bad_fork_cleanup_io;
2284 
2285 	stackleak_task_init(p);
2286 
2287 	if (pid != &init_struct_pid) {
2288 		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2289 				args->set_tid_size);
2290 		if (IS_ERR(pid)) {
2291 			retval = PTR_ERR(pid);
2292 			goto bad_fork_cleanup_thread;
2293 		}
2294 	}
2295 
2296 	/*
2297 	 * This has to happen after we've potentially unshared the file
2298 	 * descriptor table (so that the pidfd doesn't leak into the child
2299 	 * if the fd table isn't shared).
2300 	 */
2301 	if (clone_flags & CLONE_PIDFD) {
2302 		retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2303 		if (retval < 0)
2304 			goto bad_fork_free_pid;
2305 
2306 		pidfd = retval;
2307 
2308 		pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2309 					      O_RDWR | O_CLOEXEC);
2310 		if (IS_ERR(pidfile)) {
2311 			put_unused_fd(pidfd);
2312 			retval = PTR_ERR(pidfile);
2313 			goto bad_fork_free_pid;
2314 		}
2315 		get_pid(pid);	/* held by pidfile now */
2316 
2317 		retval = put_user(pidfd, args->pidfd);
2318 		if (retval)
2319 			goto bad_fork_put_pidfd;
2320 	}
2321 
2322 #ifdef CONFIG_BLOCK
2323 	p->plug = NULL;
2324 #endif
2325 	futex_init_task(p);
2326 
2327 	/*
2328 	 * sigaltstack should be cleared when sharing the same VM
2329 	 */
2330 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2331 		sas_ss_reset(p);
2332 
2333 	/*
2334 	 * Syscall tracing and stepping should be turned off in the
2335 	 * child regardless of CLONE_PTRACE.
2336 	 */
2337 	user_disable_single_step(p);
2338 	clear_task_syscall_work(p, SYSCALL_TRACE);
2339 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2340 	clear_task_syscall_work(p, SYSCALL_EMU);
2341 #endif
2342 	clear_tsk_latency_tracing(p);
2343 
2344 	/* ok, now we should be set up.. */
2345 	p->pid = pid_nr(pid);
2346 	if (clone_flags & CLONE_THREAD) {
2347 		p->group_leader = current->group_leader;
2348 		p->tgid = current->tgid;
2349 	} else {
2350 		p->group_leader = p;
2351 		p->tgid = p->pid;
2352 	}
2353 
2354 	p->nr_dirtied = 0;
2355 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2356 	p->dirty_paused_when = 0;
2357 
2358 	p->pdeath_signal = 0;
2359 	INIT_LIST_HEAD(&p->thread_group);
2360 	p->task_works = NULL;
2361 	clear_posix_cputimers_work(p);
2362 
2363 #ifdef CONFIG_KRETPROBES
2364 	p->kretprobe_instances.first = NULL;
2365 #endif
2366 #ifdef CONFIG_RETHOOK
2367 	p->rethooks.first = NULL;
2368 #endif
2369 
2370 	/*
2371 	 * Ensure that the cgroup subsystem policies allow the new process to be
2372 	 * forked. It should be noted that the new process's css_set can be changed
2373 	 * between here and cgroup_post_fork() if an organisation operation is in
2374 	 * progress.
2375 	 */
2376 	retval = cgroup_can_fork(p, args);
2377 	if (retval)
2378 		goto bad_fork_put_pidfd;
2379 
2380 	/*
2381 	 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2382 	 * the new task on the correct runqueue. All this *before* the task
2383 	 * becomes visible.
2384 	 *
2385 	 * This isn't part of ->can_fork() because while the re-cloning is
2386 	 * cgroup specific, it unconditionally needs to place the task on a
2387 	 * runqueue.
2388 	 */
2389 	sched_cgroup_fork(p, args);
2390 
2391 	/*
2392 	 * From this point on we must avoid any synchronous user-space
2393 	 * communication until we take the tasklist-lock. In particular, we do
2394 	 * not want user-space to be able to predict the process start-time by
2395 	 * stalling fork(2) after we recorded the start_time but before it is
2396 	 * visible to the system.
2397 	 */
2398 
2399 	p->start_time = ktime_get_ns();
2400 	p->start_boottime = ktime_get_boottime_ns();
2401 
2402 	/*
2403 	 * Make it visible to the rest of the system, but dont wake it up yet.
2404 	 * Need tasklist lock for parent etc handling!
2405 	 */
2406 	write_lock_irq(&tasklist_lock);
2407 
2408 	/* CLONE_PARENT re-uses the old parent */
2409 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2410 		p->real_parent = current->real_parent;
2411 		p->parent_exec_id = current->parent_exec_id;
2412 		if (clone_flags & CLONE_THREAD)
2413 			p->exit_signal = -1;
2414 		else
2415 			p->exit_signal = current->group_leader->exit_signal;
2416 	} else {
2417 		p->real_parent = current;
2418 		p->parent_exec_id = current->self_exec_id;
2419 		p->exit_signal = args->exit_signal;
2420 	}
2421 
2422 	klp_copy_process(p);
2423 
2424 	sched_core_fork(p);
2425 
2426 	spin_lock(&current->sighand->siglock);
2427 
2428 	rv_task_fork(p);
2429 
2430 	rseq_fork(p, clone_flags);
2431 
2432 	/* Don't start children in a dying pid namespace */
2433 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2434 		retval = -ENOMEM;
2435 		goto bad_fork_cancel_cgroup;
2436 	}
2437 
2438 	/* Let kill terminate clone/fork in the middle */
2439 	if (fatal_signal_pending(current)) {
2440 		retval = -EINTR;
2441 		goto bad_fork_cancel_cgroup;
2442 	}
2443 
2444 	/* No more failure paths after this point. */
2445 
2446 	/*
2447 	 * Copy seccomp details explicitly here, in case they were changed
2448 	 * before holding sighand lock.
2449 	 */
2450 	copy_seccomp(p);
2451 
2452 	init_task_pid_links(p);
2453 	if (likely(p->pid)) {
2454 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2455 
2456 		init_task_pid(p, PIDTYPE_PID, pid);
2457 		if (thread_group_leader(p)) {
2458 			init_task_pid(p, PIDTYPE_TGID, pid);
2459 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2460 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2461 
2462 			if (is_child_reaper(pid)) {
2463 				ns_of_pid(pid)->child_reaper = p;
2464 				p->signal->flags |= SIGNAL_UNKILLABLE;
2465 			}
2466 			p->signal->shared_pending.signal = delayed.signal;
2467 			p->signal->tty = tty_kref_get(current->signal->tty);
2468 			/*
2469 			 * Inherit has_child_subreaper flag under the same
2470 			 * tasklist_lock with adding child to the process tree
2471 			 * for propagate_has_child_subreaper optimization.
2472 			 */
2473 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2474 							 p->real_parent->signal->is_child_subreaper;
2475 			list_add_tail(&p->sibling, &p->real_parent->children);
2476 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2477 			attach_pid(p, PIDTYPE_TGID);
2478 			attach_pid(p, PIDTYPE_PGID);
2479 			attach_pid(p, PIDTYPE_SID);
2480 			__this_cpu_inc(process_counts);
2481 		} else {
2482 			current->signal->nr_threads++;
2483 			current->signal->quick_threads++;
2484 			atomic_inc(&current->signal->live);
2485 			refcount_inc(&current->signal->sigcnt);
2486 			task_join_group_stop(p);
2487 			list_add_tail_rcu(&p->thread_group,
2488 					  &p->group_leader->thread_group);
2489 			list_add_tail_rcu(&p->thread_node,
2490 					  &p->signal->thread_head);
2491 		}
2492 		attach_pid(p, PIDTYPE_PID);
2493 		nr_threads++;
2494 	}
2495 	total_forks++;
2496 	hlist_del_init(&delayed.node);
2497 	spin_unlock(&current->sighand->siglock);
2498 	syscall_tracepoint_update(p);
2499 	write_unlock_irq(&tasklist_lock);
2500 
2501 	if (pidfile)
2502 		fd_install(pidfd, pidfile);
2503 
2504 	proc_fork_connector(p);
2505 	sched_post_fork(p);
2506 	cgroup_post_fork(p, args);
2507 	perf_event_fork(p);
2508 
2509 	trace_task_newtask(p, clone_flags);
2510 	uprobe_copy_process(p, clone_flags);
2511 
2512 	copy_oom_score_adj(clone_flags, p);
2513 
2514 	return p;
2515 
2516 bad_fork_cancel_cgroup:
2517 	sched_core_free(p);
2518 	spin_unlock(&current->sighand->siglock);
2519 	write_unlock_irq(&tasklist_lock);
2520 	cgroup_cancel_fork(p, args);
2521 bad_fork_put_pidfd:
2522 	if (clone_flags & CLONE_PIDFD) {
2523 		fput(pidfile);
2524 		put_unused_fd(pidfd);
2525 	}
2526 bad_fork_free_pid:
2527 	if (pid != &init_struct_pid)
2528 		free_pid(pid);
2529 bad_fork_cleanup_thread:
2530 	exit_thread(p);
2531 bad_fork_cleanup_io:
2532 	if (p->io_context)
2533 		exit_io_context(p);
2534 bad_fork_cleanup_namespaces:
2535 	exit_task_namespaces(p);
2536 bad_fork_cleanup_mm:
2537 	if (p->mm) {
2538 		mm_clear_owner(p->mm, p);
2539 		mmput(p->mm);
2540 	}
2541 bad_fork_cleanup_signal:
2542 	if (!(clone_flags & CLONE_THREAD))
2543 		free_signal_struct(p->signal);
2544 bad_fork_cleanup_sighand:
2545 	__cleanup_sighand(p->sighand);
2546 bad_fork_cleanup_fs:
2547 	exit_fs(p); /* blocking */
2548 bad_fork_cleanup_files:
2549 	exit_files(p); /* blocking */
2550 bad_fork_cleanup_semundo:
2551 	exit_sem(p);
2552 bad_fork_cleanup_security:
2553 	security_task_free(p);
2554 bad_fork_cleanup_audit:
2555 	audit_free(p);
2556 bad_fork_cleanup_perf:
2557 	perf_event_free_task(p);
2558 bad_fork_cleanup_policy:
2559 	lockdep_free_task(p);
2560 #ifdef CONFIG_NUMA
2561 	mpol_put(p->mempolicy);
2562 #endif
2563 bad_fork_cleanup_delayacct:
2564 	delayacct_tsk_free(p);
2565 bad_fork_cleanup_count:
2566 	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2567 	exit_creds(p);
2568 bad_fork_free:
2569 	WRITE_ONCE(p->__state, TASK_DEAD);
2570 	exit_task_stack_account(p);
2571 	put_task_stack(p);
2572 	delayed_free_task(p);
2573 fork_out:
2574 	spin_lock_irq(&current->sighand->siglock);
2575 	hlist_del_init(&delayed.node);
2576 	spin_unlock_irq(&current->sighand->siglock);
2577 	return ERR_PTR(retval);
2578 }
2579 
2580 static inline void init_idle_pids(struct task_struct *idle)
2581 {
2582 	enum pid_type type;
2583 
2584 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2585 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2586 		init_task_pid(idle, type, &init_struct_pid);
2587 	}
2588 }
2589 
2590 static int idle_dummy(void *dummy)
2591 {
2592 	/* This function is never called */
2593 	return 0;
2594 }
2595 
2596 struct task_struct * __init fork_idle(int cpu)
2597 {
2598 	struct task_struct *task;
2599 	struct kernel_clone_args args = {
2600 		.flags		= CLONE_VM,
2601 		.fn		= &idle_dummy,
2602 		.fn_arg		= NULL,
2603 		.kthread	= 1,
2604 		.idle		= 1,
2605 	};
2606 
2607 	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2608 	if (!IS_ERR(task)) {
2609 		init_idle_pids(task);
2610 		init_idle(task, cpu);
2611 	}
2612 
2613 	return task;
2614 }
2615 
2616 /*
2617  * This is like kernel_clone(), but shaved down and tailored to just
2618  * creating io_uring workers. It returns a created task, or an error pointer.
2619  * The returned task is inactive, and the caller must fire it up through
2620  * wake_up_new_task(p). All signals are blocked in the created task.
2621  */
2622 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2623 {
2624 	unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2625 				CLONE_IO;
2626 	struct kernel_clone_args args = {
2627 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2628 				    CLONE_UNTRACED) & ~CSIGNAL),
2629 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2630 		.fn		= fn,
2631 		.fn_arg		= arg,
2632 		.io_thread	= 1,
2633 	};
2634 
2635 	return copy_process(NULL, 0, node, &args);
2636 }
2637 
2638 /*
2639  *  Ok, this is the main fork-routine.
2640  *
2641  * It copies the process, and if successful kick-starts
2642  * it and waits for it to finish using the VM if required.
2643  *
2644  * args->exit_signal is expected to be checked for sanity by the caller.
2645  */
2646 pid_t kernel_clone(struct kernel_clone_args *args)
2647 {
2648 	u64 clone_flags = args->flags;
2649 	struct completion vfork;
2650 	struct pid *pid;
2651 	struct task_struct *p;
2652 	int trace = 0;
2653 	pid_t nr;
2654 
2655 	/*
2656 	 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2657 	 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2658 	 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2659 	 * field in struct clone_args and it still doesn't make sense to have
2660 	 * them both point at the same memory location. Performing this check
2661 	 * here has the advantage that we don't need to have a separate helper
2662 	 * to check for legacy clone().
2663 	 */
2664 	if ((args->flags & CLONE_PIDFD) &&
2665 	    (args->flags & CLONE_PARENT_SETTID) &&
2666 	    (args->pidfd == args->parent_tid))
2667 		return -EINVAL;
2668 
2669 	/*
2670 	 * Determine whether and which event to report to ptracer.  When
2671 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2672 	 * requested, no event is reported; otherwise, report if the event
2673 	 * for the type of forking is enabled.
2674 	 */
2675 	if (!(clone_flags & CLONE_UNTRACED)) {
2676 		if (clone_flags & CLONE_VFORK)
2677 			trace = PTRACE_EVENT_VFORK;
2678 		else if (args->exit_signal != SIGCHLD)
2679 			trace = PTRACE_EVENT_CLONE;
2680 		else
2681 			trace = PTRACE_EVENT_FORK;
2682 
2683 		if (likely(!ptrace_event_enabled(current, trace)))
2684 			trace = 0;
2685 	}
2686 
2687 	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2688 	add_latent_entropy();
2689 
2690 	if (IS_ERR(p))
2691 		return PTR_ERR(p);
2692 
2693 	/*
2694 	 * Do this prior waking up the new thread - the thread pointer
2695 	 * might get invalid after that point, if the thread exits quickly.
2696 	 */
2697 	trace_sched_process_fork(current, p);
2698 
2699 	pid = get_task_pid(p, PIDTYPE_PID);
2700 	nr = pid_vnr(pid);
2701 
2702 	if (clone_flags & CLONE_PARENT_SETTID)
2703 		put_user(nr, args->parent_tid);
2704 
2705 	if (clone_flags & CLONE_VFORK) {
2706 		p->vfork_done = &vfork;
2707 		init_completion(&vfork);
2708 		get_task_struct(p);
2709 	}
2710 
2711 	if (IS_ENABLED(CONFIG_LRU_GEN) && !(clone_flags & CLONE_VM)) {
2712 		/* lock the task to synchronize with memcg migration */
2713 		task_lock(p);
2714 		lru_gen_add_mm(p->mm);
2715 		task_unlock(p);
2716 	}
2717 
2718 	wake_up_new_task(p);
2719 
2720 	/* forking complete and child started to run, tell ptracer */
2721 	if (unlikely(trace))
2722 		ptrace_event_pid(trace, pid);
2723 
2724 	if (clone_flags & CLONE_VFORK) {
2725 		if (!wait_for_vfork_done(p, &vfork))
2726 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2727 	}
2728 
2729 	put_pid(pid);
2730 	return nr;
2731 }
2732 
2733 /*
2734  * Create a kernel thread.
2735  */
2736 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2737 {
2738 	struct kernel_clone_args args = {
2739 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2740 				    CLONE_UNTRACED) & ~CSIGNAL),
2741 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2742 		.fn		= fn,
2743 		.fn_arg		= arg,
2744 		.kthread	= 1,
2745 	};
2746 
2747 	return kernel_clone(&args);
2748 }
2749 
2750 /*
2751  * Create a user mode thread.
2752  */
2753 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2754 {
2755 	struct kernel_clone_args args = {
2756 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2757 				    CLONE_UNTRACED) & ~CSIGNAL),
2758 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2759 		.fn		= fn,
2760 		.fn_arg		= arg,
2761 	};
2762 
2763 	return kernel_clone(&args);
2764 }
2765 
2766 #ifdef __ARCH_WANT_SYS_FORK
2767 SYSCALL_DEFINE0(fork)
2768 {
2769 #ifdef CONFIG_MMU
2770 	struct kernel_clone_args args = {
2771 		.exit_signal = SIGCHLD,
2772 	};
2773 
2774 	return kernel_clone(&args);
2775 #else
2776 	/* can not support in nommu mode */
2777 	return -EINVAL;
2778 #endif
2779 }
2780 #endif
2781 
2782 #ifdef __ARCH_WANT_SYS_VFORK
2783 SYSCALL_DEFINE0(vfork)
2784 {
2785 	struct kernel_clone_args args = {
2786 		.flags		= CLONE_VFORK | CLONE_VM,
2787 		.exit_signal	= SIGCHLD,
2788 	};
2789 
2790 	return kernel_clone(&args);
2791 }
2792 #endif
2793 
2794 #ifdef __ARCH_WANT_SYS_CLONE
2795 #ifdef CONFIG_CLONE_BACKWARDS
2796 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2797 		 int __user *, parent_tidptr,
2798 		 unsigned long, tls,
2799 		 int __user *, child_tidptr)
2800 #elif defined(CONFIG_CLONE_BACKWARDS2)
2801 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2802 		 int __user *, parent_tidptr,
2803 		 int __user *, child_tidptr,
2804 		 unsigned long, tls)
2805 #elif defined(CONFIG_CLONE_BACKWARDS3)
2806 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2807 		int, stack_size,
2808 		int __user *, parent_tidptr,
2809 		int __user *, child_tidptr,
2810 		unsigned long, tls)
2811 #else
2812 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2813 		 int __user *, parent_tidptr,
2814 		 int __user *, child_tidptr,
2815 		 unsigned long, tls)
2816 #endif
2817 {
2818 	struct kernel_clone_args args = {
2819 		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
2820 		.pidfd		= parent_tidptr,
2821 		.child_tid	= child_tidptr,
2822 		.parent_tid	= parent_tidptr,
2823 		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
2824 		.stack		= newsp,
2825 		.tls		= tls,
2826 	};
2827 
2828 	return kernel_clone(&args);
2829 }
2830 #endif
2831 
2832 #ifdef __ARCH_WANT_SYS_CLONE3
2833 
2834 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2835 					      struct clone_args __user *uargs,
2836 					      size_t usize)
2837 {
2838 	int err;
2839 	struct clone_args args;
2840 	pid_t *kset_tid = kargs->set_tid;
2841 
2842 	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2843 		     CLONE_ARGS_SIZE_VER0);
2844 	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2845 		     CLONE_ARGS_SIZE_VER1);
2846 	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2847 		     CLONE_ARGS_SIZE_VER2);
2848 	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2849 
2850 	if (unlikely(usize > PAGE_SIZE))
2851 		return -E2BIG;
2852 	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2853 		return -EINVAL;
2854 
2855 	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2856 	if (err)
2857 		return err;
2858 
2859 	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2860 		return -EINVAL;
2861 
2862 	if (unlikely(!args.set_tid && args.set_tid_size > 0))
2863 		return -EINVAL;
2864 
2865 	if (unlikely(args.set_tid && args.set_tid_size == 0))
2866 		return -EINVAL;
2867 
2868 	/*
2869 	 * Verify that higher 32bits of exit_signal are unset and that
2870 	 * it is a valid signal
2871 	 */
2872 	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2873 		     !valid_signal(args.exit_signal)))
2874 		return -EINVAL;
2875 
2876 	if ((args.flags & CLONE_INTO_CGROUP) &&
2877 	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2878 		return -EINVAL;
2879 
2880 	*kargs = (struct kernel_clone_args){
2881 		.flags		= args.flags,
2882 		.pidfd		= u64_to_user_ptr(args.pidfd),
2883 		.child_tid	= u64_to_user_ptr(args.child_tid),
2884 		.parent_tid	= u64_to_user_ptr(args.parent_tid),
2885 		.exit_signal	= args.exit_signal,
2886 		.stack		= args.stack,
2887 		.stack_size	= args.stack_size,
2888 		.tls		= args.tls,
2889 		.set_tid_size	= args.set_tid_size,
2890 		.cgroup		= args.cgroup,
2891 	};
2892 
2893 	if (args.set_tid &&
2894 		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2895 			(kargs->set_tid_size * sizeof(pid_t))))
2896 		return -EFAULT;
2897 
2898 	kargs->set_tid = kset_tid;
2899 
2900 	return 0;
2901 }
2902 
2903 /**
2904  * clone3_stack_valid - check and prepare stack
2905  * @kargs: kernel clone args
2906  *
2907  * Verify that the stack arguments userspace gave us are sane.
2908  * In addition, set the stack direction for userspace since it's easy for us to
2909  * determine.
2910  */
2911 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2912 {
2913 	if (kargs->stack == 0) {
2914 		if (kargs->stack_size > 0)
2915 			return false;
2916 	} else {
2917 		if (kargs->stack_size == 0)
2918 			return false;
2919 
2920 		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2921 			return false;
2922 
2923 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2924 		kargs->stack += kargs->stack_size;
2925 #endif
2926 	}
2927 
2928 	return true;
2929 }
2930 
2931 static bool clone3_args_valid(struct kernel_clone_args *kargs)
2932 {
2933 	/* Verify that no unknown flags are passed along. */
2934 	if (kargs->flags &
2935 	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
2936 		return false;
2937 
2938 	/*
2939 	 * - make the CLONE_DETACHED bit reusable for clone3
2940 	 * - make the CSIGNAL bits reusable for clone3
2941 	 */
2942 	if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2943 		return false;
2944 
2945 	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2946 	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2947 		return false;
2948 
2949 	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2950 	    kargs->exit_signal)
2951 		return false;
2952 
2953 	if (!clone3_stack_valid(kargs))
2954 		return false;
2955 
2956 	return true;
2957 }
2958 
2959 /**
2960  * clone3 - create a new process with specific properties
2961  * @uargs: argument structure
2962  * @size:  size of @uargs
2963  *
2964  * clone3() is the extensible successor to clone()/clone2().
2965  * It takes a struct as argument that is versioned by its size.
2966  *
2967  * Return: On success, a positive PID for the child process.
2968  *         On error, a negative errno number.
2969  */
2970 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2971 {
2972 	int err;
2973 
2974 	struct kernel_clone_args kargs;
2975 	pid_t set_tid[MAX_PID_NS_LEVEL];
2976 
2977 	kargs.set_tid = set_tid;
2978 
2979 	err = copy_clone_args_from_user(&kargs, uargs, size);
2980 	if (err)
2981 		return err;
2982 
2983 	if (!clone3_args_valid(&kargs))
2984 		return -EINVAL;
2985 
2986 	return kernel_clone(&kargs);
2987 }
2988 #endif
2989 
2990 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2991 {
2992 	struct task_struct *leader, *parent, *child;
2993 	int res;
2994 
2995 	read_lock(&tasklist_lock);
2996 	leader = top = top->group_leader;
2997 down:
2998 	for_each_thread(leader, parent) {
2999 		list_for_each_entry(child, &parent->children, sibling) {
3000 			res = visitor(child, data);
3001 			if (res) {
3002 				if (res < 0)
3003 					goto out;
3004 				leader = child;
3005 				goto down;
3006 			}
3007 up:
3008 			;
3009 		}
3010 	}
3011 
3012 	if (leader != top) {
3013 		child = leader;
3014 		parent = child->real_parent;
3015 		leader = parent->group_leader;
3016 		goto up;
3017 	}
3018 out:
3019 	read_unlock(&tasklist_lock);
3020 }
3021 
3022 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
3023 #define ARCH_MIN_MMSTRUCT_ALIGN 0
3024 #endif
3025 
3026 static void sighand_ctor(void *data)
3027 {
3028 	struct sighand_struct *sighand = data;
3029 
3030 	spin_lock_init(&sighand->siglock);
3031 	init_waitqueue_head(&sighand->signalfd_wqh);
3032 }
3033 
3034 void __init mm_cache_init(void)
3035 {
3036 	unsigned int mm_size;
3037 
3038 	/*
3039 	 * The mm_cpumask is located at the end of mm_struct, and is
3040 	 * dynamically sized based on the maximum CPU number this system
3041 	 * can have, taking hotplug into account (nr_cpu_ids).
3042 	 */
3043 	mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size();
3044 
3045 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
3046 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3047 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3048 			offsetof(struct mm_struct, saved_auxv),
3049 			sizeof_field(struct mm_struct, saved_auxv),
3050 			NULL);
3051 }
3052 
3053 void __init proc_caches_init(void)
3054 {
3055 	sighand_cachep = kmem_cache_create("sighand_cache",
3056 			sizeof(struct sighand_struct), 0,
3057 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
3058 			SLAB_ACCOUNT, sighand_ctor);
3059 	signal_cachep = kmem_cache_create("signal_cache",
3060 			sizeof(struct signal_struct), 0,
3061 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3062 			NULL);
3063 	files_cachep = kmem_cache_create("files_cache",
3064 			sizeof(struct files_struct), 0,
3065 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3066 			NULL);
3067 	fs_cachep = kmem_cache_create("fs_cache",
3068 			sizeof(struct fs_struct), 0,
3069 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3070 			NULL);
3071 
3072 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
3073 	mmap_init();
3074 	nsproxy_cache_init();
3075 }
3076 
3077 /*
3078  * Check constraints on flags passed to the unshare system call.
3079  */
3080 static int check_unshare_flags(unsigned long unshare_flags)
3081 {
3082 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3083 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3084 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3085 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3086 				CLONE_NEWTIME))
3087 		return -EINVAL;
3088 	/*
3089 	 * Not implemented, but pretend it works if there is nothing
3090 	 * to unshare.  Note that unsharing the address space or the
3091 	 * signal handlers also need to unshare the signal queues (aka
3092 	 * CLONE_THREAD).
3093 	 */
3094 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3095 		if (!thread_group_empty(current))
3096 			return -EINVAL;
3097 	}
3098 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3099 		if (refcount_read(&current->sighand->count) > 1)
3100 			return -EINVAL;
3101 	}
3102 	if (unshare_flags & CLONE_VM) {
3103 		if (!current_is_single_threaded())
3104 			return -EINVAL;
3105 	}
3106 
3107 	return 0;
3108 }
3109 
3110 /*
3111  * Unshare the filesystem structure if it is being shared
3112  */
3113 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3114 {
3115 	struct fs_struct *fs = current->fs;
3116 
3117 	if (!(unshare_flags & CLONE_FS) || !fs)
3118 		return 0;
3119 
3120 	/* don't need lock here; in the worst case we'll do useless copy */
3121 	if (fs->users == 1)
3122 		return 0;
3123 
3124 	*new_fsp = copy_fs_struct(fs);
3125 	if (!*new_fsp)
3126 		return -ENOMEM;
3127 
3128 	return 0;
3129 }
3130 
3131 /*
3132  * Unshare file descriptor table if it is being shared
3133  */
3134 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
3135 	       struct files_struct **new_fdp)
3136 {
3137 	struct files_struct *fd = current->files;
3138 	int error = 0;
3139 
3140 	if ((unshare_flags & CLONE_FILES) &&
3141 	    (fd && atomic_read(&fd->count) > 1)) {
3142 		*new_fdp = dup_fd(fd, max_fds, &error);
3143 		if (!*new_fdp)
3144 			return error;
3145 	}
3146 
3147 	return 0;
3148 }
3149 
3150 /*
3151  * unshare allows a process to 'unshare' part of the process
3152  * context which was originally shared using clone.  copy_*
3153  * functions used by kernel_clone() cannot be used here directly
3154  * because they modify an inactive task_struct that is being
3155  * constructed. Here we are modifying the current, active,
3156  * task_struct.
3157  */
3158 int ksys_unshare(unsigned long unshare_flags)
3159 {
3160 	struct fs_struct *fs, *new_fs = NULL;
3161 	struct files_struct *new_fd = NULL;
3162 	struct cred *new_cred = NULL;
3163 	struct nsproxy *new_nsproxy = NULL;
3164 	int do_sysvsem = 0;
3165 	int err;
3166 
3167 	/*
3168 	 * If unsharing a user namespace must also unshare the thread group
3169 	 * and unshare the filesystem root and working directories.
3170 	 */
3171 	if (unshare_flags & CLONE_NEWUSER)
3172 		unshare_flags |= CLONE_THREAD | CLONE_FS;
3173 	/*
3174 	 * If unsharing vm, must also unshare signal handlers.
3175 	 */
3176 	if (unshare_flags & CLONE_VM)
3177 		unshare_flags |= CLONE_SIGHAND;
3178 	/*
3179 	 * If unsharing a signal handlers, must also unshare the signal queues.
3180 	 */
3181 	if (unshare_flags & CLONE_SIGHAND)
3182 		unshare_flags |= CLONE_THREAD;
3183 	/*
3184 	 * If unsharing namespace, must also unshare filesystem information.
3185 	 */
3186 	if (unshare_flags & CLONE_NEWNS)
3187 		unshare_flags |= CLONE_FS;
3188 
3189 	err = check_unshare_flags(unshare_flags);
3190 	if (err)
3191 		goto bad_unshare_out;
3192 	/*
3193 	 * CLONE_NEWIPC must also detach from the undolist: after switching
3194 	 * to a new ipc namespace, the semaphore arrays from the old
3195 	 * namespace are unreachable.
3196 	 */
3197 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3198 		do_sysvsem = 1;
3199 	err = unshare_fs(unshare_flags, &new_fs);
3200 	if (err)
3201 		goto bad_unshare_out;
3202 	err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
3203 	if (err)
3204 		goto bad_unshare_cleanup_fs;
3205 	err = unshare_userns(unshare_flags, &new_cred);
3206 	if (err)
3207 		goto bad_unshare_cleanup_fd;
3208 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3209 					 new_cred, new_fs);
3210 	if (err)
3211 		goto bad_unshare_cleanup_cred;
3212 
3213 	if (new_cred) {
3214 		err = set_cred_ucounts(new_cred);
3215 		if (err)
3216 			goto bad_unshare_cleanup_cred;
3217 	}
3218 
3219 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3220 		if (do_sysvsem) {
3221 			/*
3222 			 * CLONE_SYSVSEM is equivalent to sys_exit().
3223 			 */
3224 			exit_sem(current);
3225 		}
3226 		if (unshare_flags & CLONE_NEWIPC) {
3227 			/* Orphan segments in old ns (see sem above). */
3228 			exit_shm(current);
3229 			shm_init_task(current);
3230 		}
3231 
3232 		if (new_nsproxy)
3233 			switch_task_namespaces(current, new_nsproxy);
3234 
3235 		task_lock(current);
3236 
3237 		if (new_fs) {
3238 			fs = current->fs;
3239 			spin_lock(&fs->lock);
3240 			current->fs = new_fs;
3241 			if (--fs->users)
3242 				new_fs = NULL;
3243 			else
3244 				new_fs = fs;
3245 			spin_unlock(&fs->lock);
3246 		}
3247 
3248 		if (new_fd)
3249 			swap(current->files, new_fd);
3250 
3251 		task_unlock(current);
3252 
3253 		if (new_cred) {
3254 			/* Install the new user namespace */
3255 			commit_creds(new_cred);
3256 			new_cred = NULL;
3257 		}
3258 	}
3259 
3260 	perf_event_namespaces(current);
3261 
3262 bad_unshare_cleanup_cred:
3263 	if (new_cred)
3264 		put_cred(new_cred);
3265 bad_unshare_cleanup_fd:
3266 	if (new_fd)
3267 		put_files_struct(new_fd);
3268 
3269 bad_unshare_cleanup_fs:
3270 	if (new_fs)
3271 		free_fs_struct(new_fs);
3272 
3273 bad_unshare_out:
3274 	return err;
3275 }
3276 
3277 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3278 {
3279 	return ksys_unshare(unshare_flags);
3280 }
3281 
3282 /*
3283  *	Helper to unshare the files of the current task.
3284  *	We don't want to expose copy_files internals to
3285  *	the exec layer of the kernel.
3286  */
3287 
3288 int unshare_files(void)
3289 {
3290 	struct task_struct *task = current;
3291 	struct files_struct *old, *copy = NULL;
3292 	int error;
3293 
3294 	error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
3295 	if (error || !copy)
3296 		return error;
3297 
3298 	old = task->files;
3299 	task_lock(task);
3300 	task->files = copy;
3301 	task_unlock(task);
3302 	put_files_struct(old);
3303 	return 0;
3304 }
3305 
3306 int sysctl_max_threads(struct ctl_table *table, int write,
3307 		       void *buffer, size_t *lenp, loff_t *ppos)
3308 {
3309 	struct ctl_table t;
3310 	int ret;
3311 	int threads = max_threads;
3312 	int min = 1;
3313 	int max = MAX_THREADS;
3314 
3315 	t = *table;
3316 	t.data = &threads;
3317 	t.extra1 = &min;
3318 	t.extra2 = &max;
3319 
3320 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3321 	if (ret || !write)
3322 		return ret;
3323 
3324 	max_threads = threads;
3325 
3326 	return 0;
3327 }
3328