xref: /openbmc/linux/kernel/fork.c (revision d623f60d)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/sched/autogroup.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/coredump.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/numa_balancing.h>
20 #include <linux/sched/stat.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/task_stack.h>
23 #include <linux/sched/cputime.h>
24 #include <linux/rtmutex.h>
25 #include <linux/init.h>
26 #include <linux/unistd.h>
27 #include <linux/module.h>
28 #include <linux/vmalloc.h>
29 #include <linux/completion.h>
30 #include <linux/personality.h>
31 #include <linux/mempolicy.h>
32 #include <linux/sem.h>
33 #include <linux/file.h>
34 #include <linux/fdtable.h>
35 #include <linux/iocontext.h>
36 #include <linux/key.h>
37 #include <linux/binfmts.h>
38 #include <linux/mman.h>
39 #include <linux/mmu_notifier.h>
40 #include <linux/hmm.h>
41 #include <linux/fs.h>
42 #include <linux/mm.h>
43 #include <linux/vmacache.h>
44 #include <linux/nsproxy.h>
45 #include <linux/capability.h>
46 #include <linux/cpu.h>
47 #include <linux/cgroup.h>
48 #include <linux/security.h>
49 #include <linux/hugetlb.h>
50 #include <linux/seccomp.h>
51 #include <linux/swap.h>
52 #include <linux/syscalls.h>
53 #include <linux/jiffies.h>
54 #include <linux/futex.h>
55 #include <linux/compat.h>
56 #include <linux/kthread.h>
57 #include <linux/task_io_accounting_ops.h>
58 #include <linux/rcupdate.h>
59 #include <linux/ptrace.h>
60 #include <linux/mount.h>
61 #include <linux/audit.h>
62 #include <linux/memcontrol.h>
63 #include <linux/ftrace.h>
64 #include <linux/proc_fs.h>
65 #include <linux/profile.h>
66 #include <linux/rmap.h>
67 #include <linux/ksm.h>
68 #include <linux/acct.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/tsacct_kern.h>
71 #include <linux/cn_proc.h>
72 #include <linux/freezer.h>
73 #include <linux/delayacct.h>
74 #include <linux/taskstats_kern.h>
75 #include <linux/random.h>
76 #include <linux/tty.h>
77 #include <linux/blkdev.h>
78 #include <linux/fs_struct.h>
79 #include <linux/magic.h>
80 #include <linux/sched/mm.h>
81 #include <linux/perf_event.h>
82 #include <linux/posix-timers.h>
83 #include <linux/user-return-notifier.h>
84 #include <linux/oom.h>
85 #include <linux/khugepaged.h>
86 #include <linux/signalfd.h>
87 #include <linux/uprobes.h>
88 #include <linux/aio.h>
89 #include <linux/compiler.h>
90 #include <linux/sysctl.h>
91 #include <linux/kcov.h>
92 #include <linux/livepatch.h>
93 #include <linux/thread_info.h>
94 
95 #include <asm/pgtable.h>
96 #include <asm/pgalloc.h>
97 #include <linux/uaccess.h>
98 #include <asm/mmu_context.h>
99 #include <asm/cacheflush.h>
100 #include <asm/tlbflush.h>
101 
102 #include <trace/events/sched.h>
103 
104 #define CREATE_TRACE_POINTS
105 #include <trace/events/task.h>
106 
107 /*
108  * Minimum number of threads to boot the kernel
109  */
110 #define MIN_THREADS 20
111 
112 /*
113  * Maximum number of threads
114  */
115 #define MAX_THREADS FUTEX_TID_MASK
116 
117 /*
118  * Protected counters by write_lock_irq(&tasklist_lock)
119  */
120 unsigned long total_forks;	/* Handle normal Linux uptimes. */
121 int nr_threads;			/* The idle threads do not count.. */
122 
123 int max_threads;		/* tunable limit on nr_threads */
124 
125 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
126 
127 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
128 
129 #ifdef CONFIG_PROVE_RCU
130 int lockdep_tasklist_lock_is_held(void)
131 {
132 	return lockdep_is_held(&tasklist_lock);
133 }
134 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
135 #endif /* #ifdef CONFIG_PROVE_RCU */
136 
137 int nr_processes(void)
138 {
139 	int cpu;
140 	int total = 0;
141 
142 	for_each_possible_cpu(cpu)
143 		total += per_cpu(process_counts, cpu);
144 
145 	return total;
146 }
147 
148 void __weak arch_release_task_struct(struct task_struct *tsk)
149 {
150 }
151 
152 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
153 static struct kmem_cache *task_struct_cachep;
154 
155 static inline struct task_struct *alloc_task_struct_node(int node)
156 {
157 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
158 }
159 
160 static inline void free_task_struct(struct task_struct *tsk)
161 {
162 	kmem_cache_free(task_struct_cachep, tsk);
163 }
164 #endif
165 
166 void __weak arch_release_thread_stack(unsigned long *stack)
167 {
168 }
169 
170 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
171 
172 /*
173  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
174  * kmemcache based allocator.
175  */
176 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
177 
178 #ifdef CONFIG_VMAP_STACK
179 /*
180  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
181  * flush.  Try to minimize the number of calls by caching stacks.
182  */
183 #define NR_CACHED_STACKS 2
184 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
185 
186 static int free_vm_stack_cache(unsigned int cpu)
187 {
188 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
189 	int i;
190 
191 	for (i = 0; i < NR_CACHED_STACKS; i++) {
192 		struct vm_struct *vm_stack = cached_vm_stacks[i];
193 
194 		if (!vm_stack)
195 			continue;
196 
197 		vfree(vm_stack->addr);
198 		cached_vm_stacks[i] = NULL;
199 	}
200 
201 	return 0;
202 }
203 #endif
204 
205 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
206 {
207 #ifdef CONFIG_VMAP_STACK
208 	void *stack;
209 	int i;
210 
211 	for (i = 0; i < NR_CACHED_STACKS; i++) {
212 		struct vm_struct *s;
213 
214 		s = this_cpu_xchg(cached_stacks[i], NULL);
215 
216 		if (!s)
217 			continue;
218 
219 		/* Clear stale pointers from reused stack. */
220 		memset(s->addr, 0, THREAD_SIZE);
221 
222 		tsk->stack_vm_area = s;
223 		return s->addr;
224 	}
225 
226 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
227 				     VMALLOC_START, VMALLOC_END,
228 				     THREADINFO_GFP,
229 				     PAGE_KERNEL,
230 				     0, node, __builtin_return_address(0));
231 
232 	/*
233 	 * We can't call find_vm_area() in interrupt context, and
234 	 * free_thread_stack() can be called in interrupt context,
235 	 * so cache the vm_struct.
236 	 */
237 	if (stack)
238 		tsk->stack_vm_area = find_vm_area(stack);
239 	return stack;
240 #else
241 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
242 					     THREAD_SIZE_ORDER);
243 
244 	return page ? page_address(page) : NULL;
245 #endif
246 }
247 
248 static inline void free_thread_stack(struct task_struct *tsk)
249 {
250 #ifdef CONFIG_VMAP_STACK
251 	if (task_stack_vm_area(tsk)) {
252 		int i;
253 
254 		for (i = 0; i < NR_CACHED_STACKS; i++) {
255 			if (this_cpu_cmpxchg(cached_stacks[i],
256 					NULL, tsk->stack_vm_area) != NULL)
257 				continue;
258 
259 			return;
260 		}
261 
262 		vfree_atomic(tsk->stack);
263 		return;
264 	}
265 #endif
266 
267 	__free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
268 }
269 # else
270 static struct kmem_cache *thread_stack_cache;
271 
272 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
273 						  int node)
274 {
275 	return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
276 }
277 
278 static void free_thread_stack(struct task_struct *tsk)
279 {
280 	kmem_cache_free(thread_stack_cache, tsk->stack);
281 }
282 
283 void thread_stack_cache_init(void)
284 {
285 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
286 					THREAD_SIZE, THREAD_SIZE, 0, 0,
287 					THREAD_SIZE, NULL);
288 	BUG_ON(thread_stack_cache == NULL);
289 }
290 # endif
291 #endif
292 
293 /* SLAB cache for signal_struct structures (tsk->signal) */
294 static struct kmem_cache *signal_cachep;
295 
296 /* SLAB cache for sighand_struct structures (tsk->sighand) */
297 struct kmem_cache *sighand_cachep;
298 
299 /* SLAB cache for files_struct structures (tsk->files) */
300 struct kmem_cache *files_cachep;
301 
302 /* SLAB cache for fs_struct structures (tsk->fs) */
303 struct kmem_cache *fs_cachep;
304 
305 /* SLAB cache for vm_area_struct structures */
306 struct kmem_cache *vm_area_cachep;
307 
308 /* SLAB cache for mm_struct structures (tsk->mm) */
309 static struct kmem_cache *mm_cachep;
310 
311 static void account_kernel_stack(struct task_struct *tsk, int account)
312 {
313 	void *stack = task_stack_page(tsk);
314 	struct vm_struct *vm = task_stack_vm_area(tsk);
315 
316 	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
317 
318 	if (vm) {
319 		int i;
320 
321 		BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
322 
323 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
324 			mod_zone_page_state(page_zone(vm->pages[i]),
325 					    NR_KERNEL_STACK_KB,
326 					    PAGE_SIZE / 1024 * account);
327 		}
328 
329 		/* All stack pages belong to the same memcg. */
330 		mod_memcg_page_state(vm->pages[0], MEMCG_KERNEL_STACK_KB,
331 				     account * (THREAD_SIZE / 1024));
332 	} else {
333 		/*
334 		 * All stack pages are in the same zone and belong to the
335 		 * same memcg.
336 		 */
337 		struct page *first_page = virt_to_page(stack);
338 
339 		mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
340 				    THREAD_SIZE / 1024 * account);
341 
342 		mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB,
343 				     account * (THREAD_SIZE / 1024));
344 	}
345 }
346 
347 static void release_task_stack(struct task_struct *tsk)
348 {
349 	if (WARN_ON(tsk->state != TASK_DEAD))
350 		return;  /* Better to leak the stack than to free prematurely */
351 
352 	account_kernel_stack(tsk, -1);
353 	arch_release_thread_stack(tsk->stack);
354 	free_thread_stack(tsk);
355 	tsk->stack = NULL;
356 #ifdef CONFIG_VMAP_STACK
357 	tsk->stack_vm_area = NULL;
358 #endif
359 }
360 
361 #ifdef CONFIG_THREAD_INFO_IN_TASK
362 void put_task_stack(struct task_struct *tsk)
363 {
364 	if (atomic_dec_and_test(&tsk->stack_refcount))
365 		release_task_stack(tsk);
366 }
367 #endif
368 
369 void free_task(struct task_struct *tsk)
370 {
371 #ifndef CONFIG_THREAD_INFO_IN_TASK
372 	/*
373 	 * The task is finally done with both the stack and thread_info,
374 	 * so free both.
375 	 */
376 	release_task_stack(tsk);
377 #else
378 	/*
379 	 * If the task had a separate stack allocation, it should be gone
380 	 * by now.
381 	 */
382 	WARN_ON_ONCE(atomic_read(&tsk->stack_refcount) != 0);
383 #endif
384 	rt_mutex_debug_task_free(tsk);
385 	ftrace_graph_exit_task(tsk);
386 	put_seccomp_filter(tsk);
387 	arch_release_task_struct(tsk);
388 	if (tsk->flags & PF_KTHREAD)
389 		free_kthread_struct(tsk);
390 	free_task_struct(tsk);
391 }
392 EXPORT_SYMBOL(free_task);
393 
394 #ifdef CONFIG_MMU
395 static __latent_entropy int dup_mmap(struct mm_struct *mm,
396 					struct mm_struct *oldmm)
397 {
398 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
399 	struct rb_node **rb_link, *rb_parent;
400 	int retval;
401 	unsigned long charge;
402 	LIST_HEAD(uf);
403 
404 	uprobe_start_dup_mmap();
405 	if (down_write_killable(&oldmm->mmap_sem)) {
406 		retval = -EINTR;
407 		goto fail_uprobe_end;
408 	}
409 	flush_cache_dup_mm(oldmm);
410 	uprobe_dup_mmap(oldmm, mm);
411 	/*
412 	 * Not linked in yet - no deadlock potential:
413 	 */
414 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
415 
416 	/* No ordering required: file already has been exposed. */
417 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
418 
419 	mm->total_vm = oldmm->total_vm;
420 	mm->data_vm = oldmm->data_vm;
421 	mm->exec_vm = oldmm->exec_vm;
422 	mm->stack_vm = oldmm->stack_vm;
423 
424 	rb_link = &mm->mm_rb.rb_node;
425 	rb_parent = NULL;
426 	pprev = &mm->mmap;
427 	retval = ksm_fork(mm, oldmm);
428 	if (retval)
429 		goto out;
430 	retval = khugepaged_fork(mm, oldmm);
431 	if (retval)
432 		goto out;
433 
434 	prev = NULL;
435 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
436 		struct file *file;
437 
438 		if (mpnt->vm_flags & VM_DONTCOPY) {
439 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
440 			continue;
441 		}
442 		charge = 0;
443 		/*
444 		 * Don't duplicate many vmas if we've been oom-killed (for
445 		 * example)
446 		 */
447 		if (fatal_signal_pending(current)) {
448 			retval = -EINTR;
449 			goto out;
450 		}
451 		if (mpnt->vm_flags & VM_ACCOUNT) {
452 			unsigned long len = vma_pages(mpnt);
453 
454 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
455 				goto fail_nomem;
456 			charge = len;
457 		}
458 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
459 		if (!tmp)
460 			goto fail_nomem;
461 		*tmp = *mpnt;
462 		INIT_LIST_HEAD(&tmp->anon_vma_chain);
463 		retval = vma_dup_policy(mpnt, tmp);
464 		if (retval)
465 			goto fail_nomem_policy;
466 		tmp->vm_mm = mm;
467 		retval = dup_userfaultfd(tmp, &uf);
468 		if (retval)
469 			goto fail_nomem_anon_vma_fork;
470 		if (tmp->vm_flags & VM_WIPEONFORK) {
471 			/* VM_WIPEONFORK gets a clean slate in the child. */
472 			tmp->anon_vma = NULL;
473 			if (anon_vma_prepare(tmp))
474 				goto fail_nomem_anon_vma_fork;
475 		} else if (anon_vma_fork(tmp, mpnt))
476 			goto fail_nomem_anon_vma_fork;
477 		tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
478 		tmp->vm_next = tmp->vm_prev = NULL;
479 		file = tmp->vm_file;
480 		if (file) {
481 			struct inode *inode = file_inode(file);
482 			struct address_space *mapping = file->f_mapping;
483 
484 			get_file(file);
485 			if (tmp->vm_flags & VM_DENYWRITE)
486 				atomic_dec(&inode->i_writecount);
487 			i_mmap_lock_write(mapping);
488 			if (tmp->vm_flags & VM_SHARED)
489 				atomic_inc(&mapping->i_mmap_writable);
490 			flush_dcache_mmap_lock(mapping);
491 			/* insert tmp into the share list, just after mpnt */
492 			vma_interval_tree_insert_after(tmp, mpnt,
493 					&mapping->i_mmap);
494 			flush_dcache_mmap_unlock(mapping);
495 			i_mmap_unlock_write(mapping);
496 		}
497 
498 		/*
499 		 * Clear hugetlb-related page reserves for children. This only
500 		 * affects MAP_PRIVATE mappings. Faults generated by the child
501 		 * are not guaranteed to succeed, even if read-only
502 		 */
503 		if (is_vm_hugetlb_page(tmp))
504 			reset_vma_resv_huge_pages(tmp);
505 
506 		/*
507 		 * Link in the new vma and copy the page table entries.
508 		 */
509 		*pprev = tmp;
510 		pprev = &tmp->vm_next;
511 		tmp->vm_prev = prev;
512 		prev = tmp;
513 
514 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
515 		rb_link = &tmp->vm_rb.rb_right;
516 		rb_parent = &tmp->vm_rb;
517 
518 		mm->map_count++;
519 		if (!(tmp->vm_flags & VM_WIPEONFORK))
520 			retval = copy_page_range(mm, oldmm, mpnt);
521 
522 		if (tmp->vm_ops && tmp->vm_ops->open)
523 			tmp->vm_ops->open(tmp);
524 
525 		if (retval)
526 			goto out;
527 	}
528 	/* a new mm has just been created */
529 	arch_dup_mmap(oldmm, mm);
530 	retval = 0;
531 out:
532 	up_write(&mm->mmap_sem);
533 	flush_tlb_mm(oldmm);
534 	up_write(&oldmm->mmap_sem);
535 	dup_userfaultfd_complete(&uf);
536 fail_uprobe_end:
537 	uprobe_end_dup_mmap();
538 	return retval;
539 fail_nomem_anon_vma_fork:
540 	mpol_put(vma_policy(tmp));
541 fail_nomem_policy:
542 	kmem_cache_free(vm_area_cachep, tmp);
543 fail_nomem:
544 	retval = -ENOMEM;
545 	vm_unacct_memory(charge);
546 	goto out;
547 }
548 
549 static inline int mm_alloc_pgd(struct mm_struct *mm)
550 {
551 	mm->pgd = pgd_alloc(mm);
552 	if (unlikely(!mm->pgd))
553 		return -ENOMEM;
554 	return 0;
555 }
556 
557 static inline void mm_free_pgd(struct mm_struct *mm)
558 {
559 	pgd_free(mm, mm->pgd);
560 }
561 #else
562 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
563 {
564 	down_write(&oldmm->mmap_sem);
565 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
566 	up_write(&oldmm->mmap_sem);
567 	return 0;
568 }
569 #define mm_alloc_pgd(mm)	(0)
570 #define mm_free_pgd(mm)
571 #endif /* CONFIG_MMU */
572 
573 static void check_mm(struct mm_struct *mm)
574 {
575 	int i;
576 
577 	for (i = 0; i < NR_MM_COUNTERS; i++) {
578 		long x = atomic_long_read(&mm->rss_stat.count[i]);
579 
580 		if (unlikely(x))
581 			printk(KERN_ALERT "BUG: Bad rss-counter state "
582 					  "mm:%p idx:%d val:%ld\n", mm, i, x);
583 	}
584 
585 	if (mm_pgtables_bytes(mm))
586 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
587 				mm_pgtables_bytes(mm));
588 
589 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
590 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
591 #endif
592 }
593 
594 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
595 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
596 
597 /*
598  * Called when the last reference to the mm
599  * is dropped: either by a lazy thread or by
600  * mmput. Free the page directory and the mm.
601  */
602 void __mmdrop(struct mm_struct *mm)
603 {
604 	BUG_ON(mm == &init_mm);
605 	WARN_ON_ONCE(mm == current->mm);
606 	WARN_ON_ONCE(mm == current->active_mm);
607 	mm_free_pgd(mm);
608 	destroy_context(mm);
609 	hmm_mm_destroy(mm);
610 	mmu_notifier_mm_destroy(mm);
611 	check_mm(mm);
612 	put_user_ns(mm->user_ns);
613 	free_mm(mm);
614 }
615 EXPORT_SYMBOL_GPL(__mmdrop);
616 
617 static void mmdrop_async_fn(struct work_struct *work)
618 {
619 	struct mm_struct *mm;
620 
621 	mm = container_of(work, struct mm_struct, async_put_work);
622 	__mmdrop(mm);
623 }
624 
625 static void mmdrop_async(struct mm_struct *mm)
626 {
627 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
628 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
629 		schedule_work(&mm->async_put_work);
630 	}
631 }
632 
633 static inline void free_signal_struct(struct signal_struct *sig)
634 {
635 	taskstats_tgid_free(sig);
636 	sched_autogroup_exit(sig);
637 	/*
638 	 * __mmdrop is not safe to call from softirq context on x86 due to
639 	 * pgd_dtor so postpone it to the async context
640 	 */
641 	if (sig->oom_mm)
642 		mmdrop_async(sig->oom_mm);
643 	kmem_cache_free(signal_cachep, sig);
644 }
645 
646 static inline void put_signal_struct(struct signal_struct *sig)
647 {
648 	if (atomic_dec_and_test(&sig->sigcnt))
649 		free_signal_struct(sig);
650 }
651 
652 void __put_task_struct(struct task_struct *tsk)
653 {
654 	WARN_ON(!tsk->exit_state);
655 	WARN_ON(atomic_read(&tsk->usage));
656 	WARN_ON(tsk == current);
657 
658 	cgroup_free(tsk);
659 	task_numa_free(tsk);
660 	security_task_free(tsk);
661 	exit_creds(tsk);
662 	delayacct_tsk_free(tsk);
663 	put_signal_struct(tsk->signal);
664 
665 	if (!profile_handoff_task(tsk))
666 		free_task(tsk);
667 }
668 EXPORT_SYMBOL_GPL(__put_task_struct);
669 
670 void __init __weak arch_task_cache_init(void) { }
671 
672 /*
673  * set_max_threads
674  */
675 static void set_max_threads(unsigned int max_threads_suggested)
676 {
677 	u64 threads;
678 
679 	/*
680 	 * The number of threads shall be limited such that the thread
681 	 * structures may only consume a small part of the available memory.
682 	 */
683 	if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
684 		threads = MAX_THREADS;
685 	else
686 		threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
687 				    (u64) THREAD_SIZE * 8UL);
688 
689 	if (threads > max_threads_suggested)
690 		threads = max_threads_suggested;
691 
692 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
693 }
694 
695 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
696 /* Initialized by the architecture: */
697 int arch_task_struct_size __read_mostly;
698 #endif
699 
700 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
701 {
702 	/* Fetch thread_struct whitelist for the architecture. */
703 	arch_thread_struct_whitelist(offset, size);
704 
705 	/*
706 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
707 	 * adjust offset to position of thread_struct in task_struct.
708 	 */
709 	if (unlikely(*size == 0))
710 		*offset = 0;
711 	else
712 		*offset += offsetof(struct task_struct, thread);
713 }
714 
715 void __init fork_init(void)
716 {
717 	int i;
718 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
719 #ifndef ARCH_MIN_TASKALIGN
720 #define ARCH_MIN_TASKALIGN	0
721 #endif
722 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
723 	unsigned long useroffset, usersize;
724 
725 	/* create a slab on which task_structs can be allocated */
726 	task_struct_whitelist(&useroffset, &usersize);
727 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
728 			arch_task_struct_size, align,
729 			SLAB_PANIC|SLAB_ACCOUNT,
730 			useroffset, usersize, NULL);
731 #endif
732 
733 	/* do the arch specific task caches init */
734 	arch_task_cache_init();
735 
736 	set_max_threads(MAX_THREADS);
737 
738 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
739 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
740 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
741 		init_task.signal->rlim[RLIMIT_NPROC];
742 
743 	for (i = 0; i < UCOUNT_COUNTS; i++) {
744 		init_user_ns.ucount_max[i] = max_threads/2;
745 	}
746 
747 #ifdef CONFIG_VMAP_STACK
748 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
749 			  NULL, free_vm_stack_cache);
750 #endif
751 
752 	lockdep_init_task(&init_task);
753 }
754 
755 int __weak arch_dup_task_struct(struct task_struct *dst,
756 					       struct task_struct *src)
757 {
758 	*dst = *src;
759 	return 0;
760 }
761 
762 void set_task_stack_end_magic(struct task_struct *tsk)
763 {
764 	unsigned long *stackend;
765 
766 	stackend = end_of_stack(tsk);
767 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
768 }
769 
770 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
771 {
772 	struct task_struct *tsk;
773 	unsigned long *stack;
774 	struct vm_struct *stack_vm_area;
775 	int err;
776 
777 	if (node == NUMA_NO_NODE)
778 		node = tsk_fork_get_node(orig);
779 	tsk = alloc_task_struct_node(node);
780 	if (!tsk)
781 		return NULL;
782 
783 	stack = alloc_thread_stack_node(tsk, node);
784 	if (!stack)
785 		goto free_tsk;
786 
787 	stack_vm_area = task_stack_vm_area(tsk);
788 
789 	err = arch_dup_task_struct(tsk, orig);
790 
791 	/*
792 	 * arch_dup_task_struct() clobbers the stack-related fields.  Make
793 	 * sure they're properly initialized before using any stack-related
794 	 * functions again.
795 	 */
796 	tsk->stack = stack;
797 #ifdef CONFIG_VMAP_STACK
798 	tsk->stack_vm_area = stack_vm_area;
799 #endif
800 #ifdef CONFIG_THREAD_INFO_IN_TASK
801 	atomic_set(&tsk->stack_refcount, 1);
802 #endif
803 
804 	if (err)
805 		goto free_stack;
806 
807 #ifdef CONFIG_SECCOMP
808 	/*
809 	 * We must handle setting up seccomp filters once we're under
810 	 * the sighand lock in case orig has changed between now and
811 	 * then. Until then, filter must be NULL to avoid messing up
812 	 * the usage counts on the error path calling free_task.
813 	 */
814 	tsk->seccomp.filter = NULL;
815 #endif
816 
817 	setup_thread_stack(tsk, orig);
818 	clear_user_return_notifier(tsk);
819 	clear_tsk_need_resched(tsk);
820 	set_task_stack_end_magic(tsk);
821 
822 #ifdef CONFIG_STACKPROTECTOR
823 	tsk->stack_canary = get_random_canary();
824 #endif
825 
826 	/*
827 	 * One for us, one for whoever does the "release_task()" (usually
828 	 * parent)
829 	 */
830 	atomic_set(&tsk->usage, 2);
831 #ifdef CONFIG_BLK_DEV_IO_TRACE
832 	tsk->btrace_seq = 0;
833 #endif
834 	tsk->splice_pipe = NULL;
835 	tsk->task_frag.page = NULL;
836 	tsk->wake_q.next = NULL;
837 
838 	account_kernel_stack(tsk, 1);
839 
840 	kcov_task_init(tsk);
841 
842 #ifdef CONFIG_FAULT_INJECTION
843 	tsk->fail_nth = 0;
844 #endif
845 
846 	return tsk;
847 
848 free_stack:
849 	free_thread_stack(tsk);
850 free_tsk:
851 	free_task_struct(tsk);
852 	return NULL;
853 }
854 
855 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
856 
857 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
858 
859 static int __init coredump_filter_setup(char *s)
860 {
861 	default_dump_filter =
862 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
863 		MMF_DUMP_FILTER_MASK;
864 	return 1;
865 }
866 
867 __setup("coredump_filter=", coredump_filter_setup);
868 
869 #include <linux/init_task.h>
870 
871 static void mm_init_aio(struct mm_struct *mm)
872 {
873 #ifdef CONFIG_AIO
874 	spin_lock_init(&mm->ioctx_lock);
875 	mm->ioctx_table = NULL;
876 #endif
877 }
878 
879 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
880 {
881 #ifdef CONFIG_MEMCG
882 	mm->owner = p;
883 #endif
884 }
885 
886 static void mm_init_uprobes_state(struct mm_struct *mm)
887 {
888 #ifdef CONFIG_UPROBES
889 	mm->uprobes_state.xol_area = NULL;
890 #endif
891 }
892 
893 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
894 	struct user_namespace *user_ns)
895 {
896 	mm->mmap = NULL;
897 	mm->mm_rb = RB_ROOT;
898 	mm->vmacache_seqnum = 0;
899 	atomic_set(&mm->mm_users, 1);
900 	atomic_set(&mm->mm_count, 1);
901 	init_rwsem(&mm->mmap_sem);
902 	INIT_LIST_HEAD(&mm->mmlist);
903 	mm->core_state = NULL;
904 	mm_pgtables_bytes_init(mm);
905 	mm->map_count = 0;
906 	mm->locked_vm = 0;
907 	mm->pinned_vm = 0;
908 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
909 	spin_lock_init(&mm->page_table_lock);
910 	spin_lock_init(&mm->arg_lock);
911 	mm_init_cpumask(mm);
912 	mm_init_aio(mm);
913 	mm_init_owner(mm, p);
914 	RCU_INIT_POINTER(mm->exe_file, NULL);
915 	mmu_notifier_mm_init(mm);
916 	hmm_mm_init(mm);
917 	init_tlb_flush_pending(mm);
918 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
919 	mm->pmd_huge_pte = NULL;
920 #endif
921 	mm_init_uprobes_state(mm);
922 
923 	if (current->mm) {
924 		mm->flags = current->mm->flags & MMF_INIT_MASK;
925 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
926 	} else {
927 		mm->flags = default_dump_filter;
928 		mm->def_flags = 0;
929 	}
930 
931 	if (mm_alloc_pgd(mm))
932 		goto fail_nopgd;
933 
934 	if (init_new_context(p, mm))
935 		goto fail_nocontext;
936 
937 	mm->user_ns = get_user_ns(user_ns);
938 	return mm;
939 
940 fail_nocontext:
941 	mm_free_pgd(mm);
942 fail_nopgd:
943 	free_mm(mm);
944 	return NULL;
945 }
946 
947 /*
948  * Allocate and initialize an mm_struct.
949  */
950 struct mm_struct *mm_alloc(void)
951 {
952 	struct mm_struct *mm;
953 
954 	mm = allocate_mm();
955 	if (!mm)
956 		return NULL;
957 
958 	memset(mm, 0, sizeof(*mm));
959 	return mm_init(mm, current, current_user_ns());
960 }
961 
962 static inline void __mmput(struct mm_struct *mm)
963 {
964 	VM_BUG_ON(atomic_read(&mm->mm_users));
965 
966 	uprobe_clear_state(mm);
967 	exit_aio(mm);
968 	ksm_exit(mm);
969 	khugepaged_exit(mm); /* must run before exit_mmap */
970 	exit_mmap(mm);
971 	mm_put_huge_zero_page(mm);
972 	set_mm_exe_file(mm, NULL);
973 	if (!list_empty(&mm->mmlist)) {
974 		spin_lock(&mmlist_lock);
975 		list_del(&mm->mmlist);
976 		spin_unlock(&mmlist_lock);
977 	}
978 	if (mm->binfmt)
979 		module_put(mm->binfmt->module);
980 	mmdrop(mm);
981 }
982 
983 /*
984  * Decrement the use count and release all resources for an mm.
985  */
986 void mmput(struct mm_struct *mm)
987 {
988 	might_sleep();
989 
990 	if (atomic_dec_and_test(&mm->mm_users))
991 		__mmput(mm);
992 }
993 EXPORT_SYMBOL_GPL(mmput);
994 
995 #ifdef CONFIG_MMU
996 static void mmput_async_fn(struct work_struct *work)
997 {
998 	struct mm_struct *mm = container_of(work, struct mm_struct,
999 					    async_put_work);
1000 
1001 	__mmput(mm);
1002 }
1003 
1004 void mmput_async(struct mm_struct *mm)
1005 {
1006 	if (atomic_dec_and_test(&mm->mm_users)) {
1007 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1008 		schedule_work(&mm->async_put_work);
1009 	}
1010 }
1011 #endif
1012 
1013 /**
1014  * set_mm_exe_file - change a reference to the mm's executable file
1015  *
1016  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1017  *
1018  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1019  * invocations: in mmput() nobody alive left, in execve task is single
1020  * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1021  * mm->exe_file, but does so without using set_mm_exe_file() in order
1022  * to do avoid the need for any locks.
1023  */
1024 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1025 {
1026 	struct file *old_exe_file;
1027 
1028 	/*
1029 	 * It is safe to dereference the exe_file without RCU as
1030 	 * this function is only called if nobody else can access
1031 	 * this mm -- see comment above for justification.
1032 	 */
1033 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1034 
1035 	if (new_exe_file)
1036 		get_file(new_exe_file);
1037 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1038 	if (old_exe_file)
1039 		fput(old_exe_file);
1040 }
1041 
1042 /**
1043  * get_mm_exe_file - acquire a reference to the mm's executable file
1044  *
1045  * Returns %NULL if mm has no associated executable file.
1046  * User must release file via fput().
1047  */
1048 struct file *get_mm_exe_file(struct mm_struct *mm)
1049 {
1050 	struct file *exe_file;
1051 
1052 	rcu_read_lock();
1053 	exe_file = rcu_dereference(mm->exe_file);
1054 	if (exe_file && !get_file_rcu(exe_file))
1055 		exe_file = NULL;
1056 	rcu_read_unlock();
1057 	return exe_file;
1058 }
1059 EXPORT_SYMBOL(get_mm_exe_file);
1060 
1061 /**
1062  * get_task_exe_file - acquire a reference to the task's executable file
1063  *
1064  * Returns %NULL if task's mm (if any) has no associated executable file or
1065  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1066  * User must release file via fput().
1067  */
1068 struct file *get_task_exe_file(struct task_struct *task)
1069 {
1070 	struct file *exe_file = NULL;
1071 	struct mm_struct *mm;
1072 
1073 	task_lock(task);
1074 	mm = task->mm;
1075 	if (mm) {
1076 		if (!(task->flags & PF_KTHREAD))
1077 			exe_file = get_mm_exe_file(mm);
1078 	}
1079 	task_unlock(task);
1080 	return exe_file;
1081 }
1082 EXPORT_SYMBOL(get_task_exe_file);
1083 
1084 /**
1085  * get_task_mm - acquire a reference to the task's mm
1086  *
1087  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1088  * this kernel workthread has transiently adopted a user mm with use_mm,
1089  * to do its AIO) is not set and if so returns a reference to it, after
1090  * bumping up the use count.  User must release the mm via mmput()
1091  * after use.  Typically used by /proc and ptrace.
1092  */
1093 struct mm_struct *get_task_mm(struct task_struct *task)
1094 {
1095 	struct mm_struct *mm;
1096 
1097 	task_lock(task);
1098 	mm = task->mm;
1099 	if (mm) {
1100 		if (task->flags & PF_KTHREAD)
1101 			mm = NULL;
1102 		else
1103 			mmget(mm);
1104 	}
1105 	task_unlock(task);
1106 	return mm;
1107 }
1108 EXPORT_SYMBOL_GPL(get_task_mm);
1109 
1110 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1111 {
1112 	struct mm_struct *mm;
1113 	int err;
1114 
1115 	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
1116 	if (err)
1117 		return ERR_PTR(err);
1118 
1119 	mm = get_task_mm(task);
1120 	if (mm && mm != current->mm &&
1121 			!ptrace_may_access(task, mode)) {
1122 		mmput(mm);
1123 		mm = ERR_PTR(-EACCES);
1124 	}
1125 	mutex_unlock(&task->signal->cred_guard_mutex);
1126 
1127 	return mm;
1128 }
1129 
1130 static void complete_vfork_done(struct task_struct *tsk)
1131 {
1132 	struct completion *vfork;
1133 
1134 	task_lock(tsk);
1135 	vfork = tsk->vfork_done;
1136 	if (likely(vfork)) {
1137 		tsk->vfork_done = NULL;
1138 		complete(vfork);
1139 	}
1140 	task_unlock(tsk);
1141 }
1142 
1143 static int wait_for_vfork_done(struct task_struct *child,
1144 				struct completion *vfork)
1145 {
1146 	int killed;
1147 
1148 	freezer_do_not_count();
1149 	killed = wait_for_completion_killable(vfork);
1150 	freezer_count();
1151 
1152 	if (killed) {
1153 		task_lock(child);
1154 		child->vfork_done = NULL;
1155 		task_unlock(child);
1156 	}
1157 
1158 	put_task_struct(child);
1159 	return killed;
1160 }
1161 
1162 /* Please note the differences between mmput and mm_release.
1163  * mmput is called whenever we stop holding onto a mm_struct,
1164  * error success whatever.
1165  *
1166  * mm_release is called after a mm_struct has been removed
1167  * from the current process.
1168  *
1169  * This difference is important for error handling, when we
1170  * only half set up a mm_struct for a new process and need to restore
1171  * the old one.  Because we mmput the new mm_struct before
1172  * restoring the old one. . .
1173  * Eric Biederman 10 January 1998
1174  */
1175 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1176 {
1177 	/* Get rid of any futexes when releasing the mm */
1178 #ifdef CONFIG_FUTEX
1179 	if (unlikely(tsk->robust_list)) {
1180 		exit_robust_list(tsk);
1181 		tsk->robust_list = NULL;
1182 	}
1183 #ifdef CONFIG_COMPAT
1184 	if (unlikely(tsk->compat_robust_list)) {
1185 		compat_exit_robust_list(tsk);
1186 		tsk->compat_robust_list = NULL;
1187 	}
1188 #endif
1189 	if (unlikely(!list_empty(&tsk->pi_state_list)))
1190 		exit_pi_state_list(tsk);
1191 #endif
1192 
1193 	uprobe_free_utask(tsk);
1194 
1195 	/* Get rid of any cached register state */
1196 	deactivate_mm(tsk, mm);
1197 
1198 	/*
1199 	 * Signal userspace if we're not exiting with a core dump
1200 	 * because we want to leave the value intact for debugging
1201 	 * purposes.
1202 	 */
1203 	if (tsk->clear_child_tid) {
1204 		if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1205 		    atomic_read(&mm->mm_users) > 1) {
1206 			/*
1207 			 * We don't check the error code - if userspace has
1208 			 * not set up a proper pointer then tough luck.
1209 			 */
1210 			put_user(0, tsk->clear_child_tid);
1211 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1212 					1, NULL, NULL, 0, 0);
1213 		}
1214 		tsk->clear_child_tid = NULL;
1215 	}
1216 
1217 	/*
1218 	 * All done, finally we can wake up parent and return this mm to him.
1219 	 * Also kthread_stop() uses this completion for synchronization.
1220 	 */
1221 	if (tsk->vfork_done)
1222 		complete_vfork_done(tsk);
1223 }
1224 
1225 /*
1226  * Allocate a new mm structure and copy contents from the
1227  * mm structure of the passed in task structure.
1228  */
1229 static struct mm_struct *dup_mm(struct task_struct *tsk)
1230 {
1231 	struct mm_struct *mm, *oldmm = current->mm;
1232 	int err;
1233 
1234 	mm = allocate_mm();
1235 	if (!mm)
1236 		goto fail_nomem;
1237 
1238 	memcpy(mm, oldmm, sizeof(*mm));
1239 
1240 	if (!mm_init(mm, tsk, mm->user_ns))
1241 		goto fail_nomem;
1242 
1243 	err = dup_mmap(mm, oldmm);
1244 	if (err)
1245 		goto free_pt;
1246 
1247 	mm->hiwater_rss = get_mm_rss(mm);
1248 	mm->hiwater_vm = mm->total_vm;
1249 
1250 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1251 		goto free_pt;
1252 
1253 	return mm;
1254 
1255 free_pt:
1256 	/* don't put binfmt in mmput, we haven't got module yet */
1257 	mm->binfmt = NULL;
1258 	mmput(mm);
1259 
1260 fail_nomem:
1261 	return NULL;
1262 }
1263 
1264 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1265 {
1266 	struct mm_struct *mm, *oldmm;
1267 	int retval;
1268 
1269 	tsk->min_flt = tsk->maj_flt = 0;
1270 	tsk->nvcsw = tsk->nivcsw = 0;
1271 #ifdef CONFIG_DETECT_HUNG_TASK
1272 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1273 #endif
1274 
1275 	tsk->mm = NULL;
1276 	tsk->active_mm = NULL;
1277 
1278 	/*
1279 	 * Are we cloning a kernel thread?
1280 	 *
1281 	 * We need to steal a active VM for that..
1282 	 */
1283 	oldmm = current->mm;
1284 	if (!oldmm)
1285 		return 0;
1286 
1287 	/* initialize the new vmacache entries */
1288 	vmacache_flush(tsk);
1289 
1290 	if (clone_flags & CLONE_VM) {
1291 		mmget(oldmm);
1292 		mm = oldmm;
1293 		goto good_mm;
1294 	}
1295 
1296 	retval = -ENOMEM;
1297 	mm = dup_mm(tsk);
1298 	if (!mm)
1299 		goto fail_nomem;
1300 
1301 good_mm:
1302 	tsk->mm = mm;
1303 	tsk->active_mm = mm;
1304 	return 0;
1305 
1306 fail_nomem:
1307 	return retval;
1308 }
1309 
1310 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1311 {
1312 	struct fs_struct *fs = current->fs;
1313 	if (clone_flags & CLONE_FS) {
1314 		/* tsk->fs is already what we want */
1315 		spin_lock(&fs->lock);
1316 		if (fs->in_exec) {
1317 			spin_unlock(&fs->lock);
1318 			return -EAGAIN;
1319 		}
1320 		fs->users++;
1321 		spin_unlock(&fs->lock);
1322 		return 0;
1323 	}
1324 	tsk->fs = copy_fs_struct(fs);
1325 	if (!tsk->fs)
1326 		return -ENOMEM;
1327 	return 0;
1328 }
1329 
1330 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1331 {
1332 	struct files_struct *oldf, *newf;
1333 	int error = 0;
1334 
1335 	/*
1336 	 * A background process may not have any files ...
1337 	 */
1338 	oldf = current->files;
1339 	if (!oldf)
1340 		goto out;
1341 
1342 	if (clone_flags & CLONE_FILES) {
1343 		atomic_inc(&oldf->count);
1344 		goto out;
1345 	}
1346 
1347 	newf = dup_fd(oldf, &error);
1348 	if (!newf)
1349 		goto out;
1350 
1351 	tsk->files = newf;
1352 	error = 0;
1353 out:
1354 	return error;
1355 }
1356 
1357 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1358 {
1359 #ifdef CONFIG_BLOCK
1360 	struct io_context *ioc = current->io_context;
1361 	struct io_context *new_ioc;
1362 
1363 	if (!ioc)
1364 		return 0;
1365 	/*
1366 	 * Share io context with parent, if CLONE_IO is set
1367 	 */
1368 	if (clone_flags & CLONE_IO) {
1369 		ioc_task_link(ioc);
1370 		tsk->io_context = ioc;
1371 	} else if (ioprio_valid(ioc->ioprio)) {
1372 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1373 		if (unlikely(!new_ioc))
1374 			return -ENOMEM;
1375 
1376 		new_ioc->ioprio = ioc->ioprio;
1377 		put_io_context(new_ioc);
1378 	}
1379 #endif
1380 	return 0;
1381 }
1382 
1383 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1384 {
1385 	struct sighand_struct *sig;
1386 
1387 	if (clone_flags & CLONE_SIGHAND) {
1388 		atomic_inc(&current->sighand->count);
1389 		return 0;
1390 	}
1391 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1392 	rcu_assign_pointer(tsk->sighand, sig);
1393 	if (!sig)
1394 		return -ENOMEM;
1395 
1396 	atomic_set(&sig->count, 1);
1397 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1398 	return 0;
1399 }
1400 
1401 void __cleanup_sighand(struct sighand_struct *sighand)
1402 {
1403 	if (atomic_dec_and_test(&sighand->count)) {
1404 		signalfd_cleanup(sighand);
1405 		/*
1406 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1407 		 * without an RCU grace period, see __lock_task_sighand().
1408 		 */
1409 		kmem_cache_free(sighand_cachep, sighand);
1410 	}
1411 }
1412 
1413 #ifdef CONFIG_POSIX_TIMERS
1414 /*
1415  * Initialize POSIX timer handling for a thread group.
1416  */
1417 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1418 {
1419 	unsigned long cpu_limit;
1420 
1421 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1422 	if (cpu_limit != RLIM_INFINITY) {
1423 		sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC;
1424 		sig->cputimer.running = true;
1425 	}
1426 
1427 	/* The timer lists. */
1428 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
1429 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
1430 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
1431 }
1432 #else
1433 static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { }
1434 #endif
1435 
1436 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1437 {
1438 	struct signal_struct *sig;
1439 
1440 	if (clone_flags & CLONE_THREAD)
1441 		return 0;
1442 
1443 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1444 	tsk->signal = sig;
1445 	if (!sig)
1446 		return -ENOMEM;
1447 
1448 	sig->nr_threads = 1;
1449 	atomic_set(&sig->live, 1);
1450 	atomic_set(&sig->sigcnt, 1);
1451 
1452 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1453 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1454 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1455 
1456 	init_waitqueue_head(&sig->wait_chldexit);
1457 	sig->curr_target = tsk;
1458 	init_sigpending(&sig->shared_pending);
1459 	seqlock_init(&sig->stats_lock);
1460 	prev_cputime_init(&sig->prev_cputime);
1461 
1462 #ifdef CONFIG_POSIX_TIMERS
1463 	INIT_LIST_HEAD(&sig->posix_timers);
1464 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1465 	sig->real_timer.function = it_real_fn;
1466 #endif
1467 
1468 	task_lock(current->group_leader);
1469 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1470 	task_unlock(current->group_leader);
1471 
1472 	posix_cpu_timers_init_group(sig);
1473 
1474 	tty_audit_fork(sig);
1475 	sched_autogroup_fork(sig);
1476 
1477 	sig->oom_score_adj = current->signal->oom_score_adj;
1478 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1479 
1480 	mutex_init(&sig->cred_guard_mutex);
1481 
1482 	return 0;
1483 }
1484 
1485 static void copy_seccomp(struct task_struct *p)
1486 {
1487 #ifdef CONFIG_SECCOMP
1488 	/*
1489 	 * Must be called with sighand->lock held, which is common to
1490 	 * all threads in the group. Holding cred_guard_mutex is not
1491 	 * needed because this new task is not yet running and cannot
1492 	 * be racing exec.
1493 	 */
1494 	assert_spin_locked(&current->sighand->siglock);
1495 
1496 	/* Ref-count the new filter user, and assign it. */
1497 	get_seccomp_filter(current);
1498 	p->seccomp = current->seccomp;
1499 
1500 	/*
1501 	 * Explicitly enable no_new_privs here in case it got set
1502 	 * between the task_struct being duplicated and holding the
1503 	 * sighand lock. The seccomp state and nnp must be in sync.
1504 	 */
1505 	if (task_no_new_privs(current))
1506 		task_set_no_new_privs(p);
1507 
1508 	/*
1509 	 * If the parent gained a seccomp mode after copying thread
1510 	 * flags and between before we held the sighand lock, we have
1511 	 * to manually enable the seccomp thread flag here.
1512 	 */
1513 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1514 		set_tsk_thread_flag(p, TIF_SECCOMP);
1515 #endif
1516 }
1517 
1518 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1519 {
1520 	current->clear_child_tid = tidptr;
1521 
1522 	return task_pid_vnr(current);
1523 }
1524 
1525 static void rt_mutex_init_task(struct task_struct *p)
1526 {
1527 	raw_spin_lock_init(&p->pi_lock);
1528 #ifdef CONFIG_RT_MUTEXES
1529 	p->pi_waiters = RB_ROOT_CACHED;
1530 	p->pi_top_task = NULL;
1531 	p->pi_blocked_on = NULL;
1532 #endif
1533 }
1534 
1535 #ifdef CONFIG_POSIX_TIMERS
1536 /*
1537  * Initialize POSIX timer handling for a single task.
1538  */
1539 static void posix_cpu_timers_init(struct task_struct *tsk)
1540 {
1541 	tsk->cputime_expires.prof_exp = 0;
1542 	tsk->cputime_expires.virt_exp = 0;
1543 	tsk->cputime_expires.sched_exp = 0;
1544 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1545 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1546 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1547 }
1548 #else
1549 static inline void posix_cpu_timers_init(struct task_struct *tsk) { }
1550 #endif
1551 
1552 static inline void
1553 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1554 {
1555 	 task->pids[type].pid = pid;
1556 }
1557 
1558 static inline void rcu_copy_process(struct task_struct *p)
1559 {
1560 #ifdef CONFIG_PREEMPT_RCU
1561 	p->rcu_read_lock_nesting = 0;
1562 	p->rcu_read_unlock_special.s = 0;
1563 	p->rcu_blocked_node = NULL;
1564 	INIT_LIST_HEAD(&p->rcu_node_entry);
1565 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1566 #ifdef CONFIG_TASKS_RCU
1567 	p->rcu_tasks_holdout = false;
1568 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1569 	p->rcu_tasks_idle_cpu = -1;
1570 #endif /* #ifdef CONFIG_TASKS_RCU */
1571 }
1572 
1573 /*
1574  * This creates a new process as a copy of the old one,
1575  * but does not actually start it yet.
1576  *
1577  * It copies the registers, and all the appropriate
1578  * parts of the process environment (as per the clone
1579  * flags). The actual kick-off is left to the caller.
1580  */
1581 static __latent_entropy struct task_struct *copy_process(
1582 					unsigned long clone_flags,
1583 					unsigned long stack_start,
1584 					unsigned long stack_size,
1585 					int __user *child_tidptr,
1586 					struct pid *pid,
1587 					int trace,
1588 					unsigned long tls,
1589 					int node)
1590 {
1591 	int retval;
1592 	struct task_struct *p;
1593 
1594 	/*
1595 	 * Don't allow sharing the root directory with processes in a different
1596 	 * namespace
1597 	 */
1598 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1599 		return ERR_PTR(-EINVAL);
1600 
1601 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1602 		return ERR_PTR(-EINVAL);
1603 
1604 	/*
1605 	 * Thread groups must share signals as well, and detached threads
1606 	 * can only be started up within the thread group.
1607 	 */
1608 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1609 		return ERR_PTR(-EINVAL);
1610 
1611 	/*
1612 	 * Shared signal handlers imply shared VM. By way of the above,
1613 	 * thread groups also imply shared VM. Blocking this case allows
1614 	 * for various simplifications in other code.
1615 	 */
1616 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1617 		return ERR_PTR(-EINVAL);
1618 
1619 	/*
1620 	 * Siblings of global init remain as zombies on exit since they are
1621 	 * not reaped by their parent (swapper). To solve this and to avoid
1622 	 * multi-rooted process trees, prevent global and container-inits
1623 	 * from creating siblings.
1624 	 */
1625 	if ((clone_flags & CLONE_PARENT) &&
1626 				current->signal->flags & SIGNAL_UNKILLABLE)
1627 		return ERR_PTR(-EINVAL);
1628 
1629 	/*
1630 	 * If the new process will be in a different pid or user namespace
1631 	 * do not allow it to share a thread group with the forking task.
1632 	 */
1633 	if (clone_flags & CLONE_THREAD) {
1634 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1635 		    (task_active_pid_ns(current) !=
1636 				current->nsproxy->pid_ns_for_children))
1637 			return ERR_PTR(-EINVAL);
1638 	}
1639 
1640 	retval = -ENOMEM;
1641 	p = dup_task_struct(current, node);
1642 	if (!p)
1643 		goto fork_out;
1644 
1645 	/*
1646 	 * This _must_ happen before we call free_task(), i.e. before we jump
1647 	 * to any of the bad_fork_* labels. This is to avoid freeing
1648 	 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1649 	 * kernel threads (PF_KTHREAD).
1650 	 */
1651 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1652 	/*
1653 	 * Clear TID on mm_release()?
1654 	 */
1655 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1656 
1657 	ftrace_graph_init_task(p);
1658 
1659 	rt_mutex_init_task(p);
1660 
1661 #ifdef CONFIG_PROVE_LOCKING
1662 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1663 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1664 #endif
1665 	retval = -EAGAIN;
1666 	if (atomic_read(&p->real_cred->user->processes) >=
1667 			task_rlimit(p, RLIMIT_NPROC)) {
1668 		if (p->real_cred->user != INIT_USER &&
1669 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1670 			goto bad_fork_free;
1671 	}
1672 	current->flags &= ~PF_NPROC_EXCEEDED;
1673 
1674 	retval = copy_creds(p, clone_flags);
1675 	if (retval < 0)
1676 		goto bad_fork_free;
1677 
1678 	/*
1679 	 * If multiple threads are within copy_process(), then this check
1680 	 * triggers too late. This doesn't hurt, the check is only there
1681 	 * to stop root fork bombs.
1682 	 */
1683 	retval = -EAGAIN;
1684 	if (nr_threads >= max_threads)
1685 		goto bad_fork_cleanup_count;
1686 
1687 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1688 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1689 	p->flags |= PF_FORKNOEXEC;
1690 	INIT_LIST_HEAD(&p->children);
1691 	INIT_LIST_HEAD(&p->sibling);
1692 	rcu_copy_process(p);
1693 	p->vfork_done = NULL;
1694 	spin_lock_init(&p->alloc_lock);
1695 
1696 	init_sigpending(&p->pending);
1697 
1698 	p->utime = p->stime = p->gtime = 0;
1699 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1700 	p->utimescaled = p->stimescaled = 0;
1701 #endif
1702 	prev_cputime_init(&p->prev_cputime);
1703 
1704 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1705 	seqcount_init(&p->vtime.seqcount);
1706 	p->vtime.starttime = 0;
1707 	p->vtime.state = VTIME_INACTIVE;
1708 #endif
1709 
1710 #if defined(SPLIT_RSS_COUNTING)
1711 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1712 #endif
1713 
1714 	p->default_timer_slack_ns = current->timer_slack_ns;
1715 
1716 	task_io_accounting_init(&p->ioac);
1717 	acct_clear_integrals(p);
1718 
1719 	posix_cpu_timers_init(p);
1720 
1721 	p->start_time = ktime_get_ns();
1722 	p->real_start_time = ktime_get_boot_ns();
1723 	p->io_context = NULL;
1724 	audit_set_context(p, NULL);
1725 	cgroup_fork(p);
1726 #ifdef CONFIG_NUMA
1727 	p->mempolicy = mpol_dup(p->mempolicy);
1728 	if (IS_ERR(p->mempolicy)) {
1729 		retval = PTR_ERR(p->mempolicy);
1730 		p->mempolicy = NULL;
1731 		goto bad_fork_cleanup_threadgroup_lock;
1732 	}
1733 #endif
1734 #ifdef CONFIG_CPUSETS
1735 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1736 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1737 	seqcount_init(&p->mems_allowed_seq);
1738 #endif
1739 #ifdef CONFIG_TRACE_IRQFLAGS
1740 	p->irq_events = 0;
1741 	p->hardirqs_enabled = 0;
1742 	p->hardirq_enable_ip = 0;
1743 	p->hardirq_enable_event = 0;
1744 	p->hardirq_disable_ip = _THIS_IP_;
1745 	p->hardirq_disable_event = 0;
1746 	p->softirqs_enabled = 1;
1747 	p->softirq_enable_ip = _THIS_IP_;
1748 	p->softirq_enable_event = 0;
1749 	p->softirq_disable_ip = 0;
1750 	p->softirq_disable_event = 0;
1751 	p->hardirq_context = 0;
1752 	p->softirq_context = 0;
1753 #endif
1754 
1755 	p->pagefault_disabled = 0;
1756 
1757 #ifdef CONFIG_LOCKDEP
1758 	p->lockdep_depth = 0; /* no locks held yet */
1759 	p->curr_chain_key = 0;
1760 	p->lockdep_recursion = 0;
1761 	lockdep_init_task(p);
1762 #endif
1763 
1764 #ifdef CONFIG_DEBUG_MUTEXES
1765 	p->blocked_on = NULL; /* not blocked yet */
1766 #endif
1767 #ifdef CONFIG_BCACHE
1768 	p->sequential_io	= 0;
1769 	p->sequential_io_avg	= 0;
1770 #endif
1771 
1772 	/* Perform scheduler related setup. Assign this task to a CPU. */
1773 	retval = sched_fork(clone_flags, p);
1774 	if (retval)
1775 		goto bad_fork_cleanup_policy;
1776 
1777 	retval = perf_event_init_task(p);
1778 	if (retval)
1779 		goto bad_fork_cleanup_policy;
1780 	retval = audit_alloc(p);
1781 	if (retval)
1782 		goto bad_fork_cleanup_perf;
1783 	/* copy all the process information */
1784 	shm_init_task(p);
1785 	retval = security_task_alloc(p, clone_flags);
1786 	if (retval)
1787 		goto bad_fork_cleanup_audit;
1788 	retval = copy_semundo(clone_flags, p);
1789 	if (retval)
1790 		goto bad_fork_cleanup_security;
1791 	retval = copy_files(clone_flags, p);
1792 	if (retval)
1793 		goto bad_fork_cleanup_semundo;
1794 	retval = copy_fs(clone_flags, p);
1795 	if (retval)
1796 		goto bad_fork_cleanup_files;
1797 	retval = copy_sighand(clone_flags, p);
1798 	if (retval)
1799 		goto bad_fork_cleanup_fs;
1800 	retval = copy_signal(clone_flags, p);
1801 	if (retval)
1802 		goto bad_fork_cleanup_sighand;
1803 	retval = copy_mm(clone_flags, p);
1804 	if (retval)
1805 		goto bad_fork_cleanup_signal;
1806 	retval = copy_namespaces(clone_flags, p);
1807 	if (retval)
1808 		goto bad_fork_cleanup_mm;
1809 	retval = copy_io(clone_flags, p);
1810 	if (retval)
1811 		goto bad_fork_cleanup_namespaces;
1812 	retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1813 	if (retval)
1814 		goto bad_fork_cleanup_io;
1815 
1816 	if (pid != &init_struct_pid) {
1817 		pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1818 		if (IS_ERR(pid)) {
1819 			retval = PTR_ERR(pid);
1820 			goto bad_fork_cleanup_thread;
1821 		}
1822 	}
1823 
1824 #ifdef CONFIG_BLOCK
1825 	p->plug = NULL;
1826 #endif
1827 #ifdef CONFIG_FUTEX
1828 	p->robust_list = NULL;
1829 #ifdef CONFIG_COMPAT
1830 	p->compat_robust_list = NULL;
1831 #endif
1832 	INIT_LIST_HEAD(&p->pi_state_list);
1833 	p->pi_state_cache = NULL;
1834 #endif
1835 	/*
1836 	 * sigaltstack should be cleared when sharing the same VM
1837 	 */
1838 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1839 		sas_ss_reset(p);
1840 
1841 	/*
1842 	 * Syscall tracing and stepping should be turned off in the
1843 	 * child regardless of CLONE_PTRACE.
1844 	 */
1845 	user_disable_single_step(p);
1846 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1847 #ifdef TIF_SYSCALL_EMU
1848 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1849 #endif
1850 	clear_all_latency_tracing(p);
1851 
1852 	/* ok, now we should be set up.. */
1853 	p->pid = pid_nr(pid);
1854 	if (clone_flags & CLONE_THREAD) {
1855 		p->exit_signal = -1;
1856 		p->group_leader = current->group_leader;
1857 		p->tgid = current->tgid;
1858 	} else {
1859 		if (clone_flags & CLONE_PARENT)
1860 			p->exit_signal = current->group_leader->exit_signal;
1861 		else
1862 			p->exit_signal = (clone_flags & CSIGNAL);
1863 		p->group_leader = p;
1864 		p->tgid = p->pid;
1865 	}
1866 
1867 	p->nr_dirtied = 0;
1868 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1869 	p->dirty_paused_when = 0;
1870 
1871 	p->pdeath_signal = 0;
1872 	INIT_LIST_HEAD(&p->thread_group);
1873 	p->task_works = NULL;
1874 
1875 	cgroup_threadgroup_change_begin(current);
1876 	/*
1877 	 * Ensure that the cgroup subsystem policies allow the new process to be
1878 	 * forked. It should be noted the the new process's css_set can be changed
1879 	 * between here and cgroup_post_fork() if an organisation operation is in
1880 	 * progress.
1881 	 */
1882 	retval = cgroup_can_fork(p);
1883 	if (retval)
1884 		goto bad_fork_free_pid;
1885 
1886 	/*
1887 	 * Make it visible to the rest of the system, but dont wake it up yet.
1888 	 * Need tasklist lock for parent etc handling!
1889 	 */
1890 	write_lock_irq(&tasklist_lock);
1891 
1892 	/* CLONE_PARENT re-uses the old parent */
1893 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1894 		p->real_parent = current->real_parent;
1895 		p->parent_exec_id = current->parent_exec_id;
1896 	} else {
1897 		p->real_parent = current;
1898 		p->parent_exec_id = current->self_exec_id;
1899 	}
1900 
1901 	klp_copy_process(p);
1902 
1903 	spin_lock(&current->sighand->siglock);
1904 
1905 	/*
1906 	 * Copy seccomp details explicitly here, in case they were changed
1907 	 * before holding sighand lock.
1908 	 */
1909 	copy_seccomp(p);
1910 
1911 	rseq_fork(p, clone_flags);
1912 
1913 	/*
1914 	 * Process group and session signals need to be delivered to just the
1915 	 * parent before the fork or both the parent and the child after the
1916 	 * fork. Restart if a signal comes in before we add the new process to
1917 	 * it's process group.
1918 	 * A fatal signal pending means that current will exit, so the new
1919 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1920 	*/
1921 	recalc_sigpending();
1922 	if (signal_pending(current)) {
1923 		retval = -ERESTARTNOINTR;
1924 		goto bad_fork_cancel_cgroup;
1925 	}
1926 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
1927 		retval = -ENOMEM;
1928 		goto bad_fork_cancel_cgroup;
1929 	}
1930 
1931 	if (likely(p->pid)) {
1932 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1933 
1934 		init_task_pid(p, PIDTYPE_PID, pid);
1935 		if (thread_group_leader(p)) {
1936 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1937 			init_task_pid(p, PIDTYPE_SID, task_session(current));
1938 
1939 			if (is_child_reaper(pid)) {
1940 				ns_of_pid(pid)->child_reaper = p;
1941 				p->signal->flags |= SIGNAL_UNKILLABLE;
1942 			}
1943 
1944 			p->signal->leader_pid = pid;
1945 			p->signal->tty = tty_kref_get(current->signal->tty);
1946 			/*
1947 			 * Inherit has_child_subreaper flag under the same
1948 			 * tasklist_lock with adding child to the process tree
1949 			 * for propagate_has_child_subreaper optimization.
1950 			 */
1951 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
1952 							 p->real_parent->signal->is_child_subreaper;
1953 			list_add_tail(&p->sibling, &p->real_parent->children);
1954 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1955 			attach_pid(p, PIDTYPE_PGID);
1956 			attach_pid(p, PIDTYPE_SID);
1957 			__this_cpu_inc(process_counts);
1958 		} else {
1959 			current->signal->nr_threads++;
1960 			atomic_inc(&current->signal->live);
1961 			atomic_inc(&current->signal->sigcnt);
1962 			list_add_tail_rcu(&p->thread_group,
1963 					  &p->group_leader->thread_group);
1964 			list_add_tail_rcu(&p->thread_node,
1965 					  &p->signal->thread_head);
1966 		}
1967 		attach_pid(p, PIDTYPE_PID);
1968 		nr_threads++;
1969 	}
1970 
1971 	total_forks++;
1972 	spin_unlock(&current->sighand->siglock);
1973 	syscall_tracepoint_update(p);
1974 	write_unlock_irq(&tasklist_lock);
1975 
1976 	proc_fork_connector(p);
1977 	cgroup_post_fork(p);
1978 	cgroup_threadgroup_change_end(current);
1979 	perf_event_fork(p);
1980 
1981 	trace_task_newtask(p, clone_flags);
1982 	uprobe_copy_process(p, clone_flags);
1983 
1984 	return p;
1985 
1986 bad_fork_cancel_cgroup:
1987 	spin_unlock(&current->sighand->siglock);
1988 	write_unlock_irq(&tasklist_lock);
1989 	cgroup_cancel_fork(p);
1990 bad_fork_free_pid:
1991 	cgroup_threadgroup_change_end(current);
1992 	if (pid != &init_struct_pid)
1993 		free_pid(pid);
1994 bad_fork_cleanup_thread:
1995 	exit_thread(p);
1996 bad_fork_cleanup_io:
1997 	if (p->io_context)
1998 		exit_io_context(p);
1999 bad_fork_cleanup_namespaces:
2000 	exit_task_namespaces(p);
2001 bad_fork_cleanup_mm:
2002 	if (p->mm)
2003 		mmput(p->mm);
2004 bad_fork_cleanup_signal:
2005 	if (!(clone_flags & CLONE_THREAD))
2006 		free_signal_struct(p->signal);
2007 bad_fork_cleanup_sighand:
2008 	__cleanup_sighand(p->sighand);
2009 bad_fork_cleanup_fs:
2010 	exit_fs(p); /* blocking */
2011 bad_fork_cleanup_files:
2012 	exit_files(p); /* blocking */
2013 bad_fork_cleanup_semundo:
2014 	exit_sem(p);
2015 bad_fork_cleanup_security:
2016 	security_task_free(p);
2017 bad_fork_cleanup_audit:
2018 	audit_free(p);
2019 bad_fork_cleanup_perf:
2020 	perf_event_free_task(p);
2021 bad_fork_cleanup_policy:
2022 	lockdep_free_task(p);
2023 #ifdef CONFIG_NUMA
2024 	mpol_put(p->mempolicy);
2025 bad_fork_cleanup_threadgroup_lock:
2026 #endif
2027 	delayacct_tsk_free(p);
2028 bad_fork_cleanup_count:
2029 	atomic_dec(&p->cred->user->processes);
2030 	exit_creds(p);
2031 bad_fork_free:
2032 	p->state = TASK_DEAD;
2033 	put_task_stack(p);
2034 	free_task(p);
2035 fork_out:
2036 	return ERR_PTR(retval);
2037 }
2038 
2039 static inline void init_idle_pids(struct pid_link *links)
2040 {
2041 	enum pid_type type;
2042 
2043 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2044 		INIT_HLIST_NODE(&links[type].node); /* not really needed */
2045 		links[type].pid = &init_struct_pid;
2046 	}
2047 }
2048 
2049 struct task_struct *fork_idle(int cpu)
2050 {
2051 	struct task_struct *task;
2052 	task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
2053 			    cpu_to_node(cpu));
2054 	if (!IS_ERR(task)) {
2055 		init_idle_pids(task->pids);
2056 		init_idle(task, cpu);
2057 	}
2058 
2059 	return task;
2060 }
2061 
2062 /*
2063  *  Ok, this is the main fork-routine.
2064  *
2065  * It copies the process, and if successful kick-starts
2066  * it and waits for it to finish using the VM if required.
2067  */
2068 long _do_fork(unsigned long clone_flags,
2069 	      unsigned long stack_start,
2070 	      unsigned long stack_size,
2071 	      int __user *parent_tidptr,
2072 	      int __user *child_tidptr,
2073 	      unsigned long tls)
2074 {
2075 	struct completion vfork;
2076 	struct pid *pid;
2077 	struct task_struct *p;
2078 	int trace = 0;
2079 	long nr;
2080 
2081 	/*
2082 	 * Determine whether and which event to report to ptracer.  When
2083 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2084 	 * requested, no event is reported; otherwise, report if the event
2085 	 * for the type of forking is enabled.
2086 	 */
2087 	if (!(clone_flags & CLONE_UNTRACED)) {
2088 		if (clone_flags & CLONE_VFORK)
2089 			trace = PTRACE_EVENT_VFORK;
2090 		else if ((clone_flags & CSIGNAL) != SIGCHLD)
2091 			trace = PTRACE_EVENT_CLONE;
2092 		else
2093 			trace = PTRACE_EVENT_FORK;
2094 
2095 		if (likely(!ptrace_event_enabled(current, trace)))
2096 			trace = 0;
2097 	}
2098 
2099 	p = copy_process(clone_flags, stack_start, stack_size,
2100 			 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
2101 	add_latent_entropy();
2102 
2103 	if (IS_ERR(p))
2104 		return PTR_ERR(p);
2105 
2106 	/*
2107 	 * Do this prior waking up the new thread - the thread pointer
2108 	 * might get invalid after that point, if the thread exits quickly.
2109 	 */
2110 	trace_sched_process_fork(current, p);
2111 
2112 	pid = get_task_pid(p, PIDTYPE_PID);
2113 	nr = pid_vnr(pid);
2114 
2115 	if (clone_flags & CLONE_PARENT_SETTID)
2116 		put_user(nr, parent_tidptr);
2117 
2118 	if (clone_flags & CLONE_VFORK) {
2119 		p->vfork_done = &vfork;
2120 		init_completion(&vfork);
2121 		get_task_struct(p);
2122 	}
2123 
2124 	wake_up_new_task(p);
2125 
2126 	/* forking complete and child started to run, tell ptracer */
2127 	if (unlikely(trace))
2128 		ptrace_event_pid(trace, pid);
2129 
2130 	if (clone_flags & CLONE_VFORK) {
2131 		if (!wait_for_vfork_done(p, &vfork))
2132 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2133 	}
2134 
2135 	put_pid(pid);
2136 	return nr;
2137 }
2138 
2139 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2140 /* For compatibility with architectures that call do_fork directly rather than
2141  * using the syscall entry points below. */
2142 long do_fork(unsigned long clone_flags,
2143 	      unsigned long stack_start,
2144 	      unsigned long stack_size,
2145 	      int __user *parent_tidptr,
2146 	      int __user *child_tidptr)
2147 {
2148 	return _do_fork(clone_flags, stack_start, stack_size,
2149 			parent_tidptr, child_tidptr, 0);
2150 }
2151 #endif
2152 
2153 /*
2154  * Create a kernel thread.
2155  */
2156 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2157 {
2158 	return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
2159 		(unsigned long)arg, NULL, NULL, 0);
2160 }
2161 
2162 #ifdef __ARCH_WANT_SYS_FORK
2163 SYSCALL_DEFINE0(fork)
2164 {
2165 #ifdef CONFIG_MMU
2166 	return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
2167 #else
2168 	/* can not support in nommu mode */
2169 	return -EINVAL;
2170 #endif
2171 }
2172 #endif
2173 
2174 #ifdef __ARCH_WANT_SYS_VFORK
2175 SYSCALL_DEFINE0(vfork)
2176 {
2177 	return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
2178 			0, NULL, NULL, 0);
2179 }
2180 #endif
2181 
2182 #ifdef __ARCH_WANT_SYS_CLONE
2183 #ifdef CONFIG_CLONE_BACKWARDS
2184 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2185 		 int __user *, parent_tidptr,
2186 		 unsigned long, tls,
2187 		 int __user *, child_tidptr)
2188 #elif defined(CONFIG_CLONE_BACKWARDS2)
2189 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2190 		 int __user *, parent_tidptr,
2191 		 int __user *, child_tidptr,
2192 		 unsigned long, tls)
2193 #elif defined(CONFIG_CLONE_BACKWARDS3)
2194 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2195 		int, stack_size,
2196 		int __user *, parent_tidptr,
2197 		int __user *, child_tidptr,
2198 		unsigned long, tls)
2199 #else
2200 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2201 		 int __user *, parent_tidptr,
2202 		 int __user *, child_tidptr,
2203 		 unsigned long, tls)
2204 #endif
2205 {
2206 	return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
2207 }
2208 #endif
2209 
2210 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2211 {
2212 	struct task_struct *leader, *parent, *child;
2213 	int res;
2214 
2215 	read_lock(&tasklist_lock);
2216 	leader = top = top->group_leader;
2217 down:
2218 	for_each_thread(leader, parent) {
2219 		list_for_each_entry(child, &parent->children, sibling) {
2220 			res = visitor(child, data);
2221 			if (res) {
2222 				if (res < 0)
2223 					goto out;
2224 				leader = child;
2225 				goto down;
2226 			}
2227 up:
2228 			;
2229 		}
2230 	}
2231 
2232 	if (leader != top) {
2233 		child = leader;
2234 		parent = child->real_parent;
2235 		leader = parent->group_leader;
2236 		goto up;
2237 	}
2238 out:
2239 	read_unlock(&tasklist_lock);
2240 }
2241 
2242 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2243 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2244 #endif
2245 
2246 static void sighand_ctor(void *data)
2247 {
2248 	struct sighand_struct *sighand = data;
2249 
2250 	spin_lock_init(&sighand->siglock);
2251 	init_waitqueue_head(&sighand->signalfd_wqh);
2252 }
2253 
2254 void __init proc_caches_init(void)
2255 {
2256 	sighand_cachep = kmem_cache_create("sighand_cache",
2257 			sizeof(struct sighand_struct), 0,
2258 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2259 			SLAB_ACCOUNT, sighand_ctor);
2260 	signal_cachep = kmem_cache_create("signal_cache",
2261 			sizeof(struct signal_struct), 0,
2262 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2263 			NULL);
2264 	files_cachep = kmem_cache_create("files_cache",
2265 			sizeof(struct files_struct), 0,
2266 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2267 			NULL);
2268 	fs_cachep = kmem_cache_create("fs_cache",
2269 			sizeof(struct fs_struct), 0,
2270 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2271 			NULL);
2272 	/*
2273 	 * FIXME! The "sizeof(struct mm_struct)" currently includes the
2274 	 * whole struct cpumask for the OFFSTACK case. We could change
2275 	 * this to *only* allocate as much of it as required by the
2276 	 * maximum number of CPU's we can ever have.  The cpumask_allocation
2277 	 * is at the end of the structure, exactly for that reason.
2278 	 */
2279 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
2280 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
2281 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2282 			offsetof(struct mm_struct, saved_auxv),
2283 			sizeof_field(struct mm_struct, saved_auxv),
2284 			NULL);
2285 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2286 	mmap_init();
2287 	nsproxy_cache_init();
2288 }
2289 
2290 /*
2291  * Check constraints on flags passed to the unshare system call.
2292  */
2293 static int check_unshare_flags(unsigned long unshare_flags)
2294 {
2295 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2296 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2297 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2298 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2299 		return -EINVAL;
2300 	/*
2301 	 * Not implemented, but pretend it works if there is nothing
2302 	 * to unshare.  Note that unsharing the address space or the
2303 	 * signal handlers also need to unshare the signal queues (aka
2304 	 * CLONE_THREAD).
2305 	 */
2306 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2307 		if (!thread_group_empty(current))
2308 			return -EINVAL;
2309 	}
2310 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2311 		if (atomic_read(&current->sighand->count) > 1)
2312 			return -EINVAL;
2313 	}
2314 	if (unshare_flags & CLONE_VM) {
2315 		if (!current_is_single_threaded())
2316 			return -EINVAL;
2317 	}
2318 
2319 	return 0;
2320 }
2321 
2322 /*
2323  * Unshare the filesystem structure if it is being shared
2324  */
2325 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2326 {
2327 	struct fs_struct *fs = current->fs;
2328 
2329 	if (!(unshare_flags & CLONE_FS) || !fs)
2330 		return 0;
2331 
2332 	/* don't need lock here; in the worst case we'll do useless copy */
2333 	if (fs->users == 1)
2334 		return 0;
2335 
2336 	*new_fsp = copy_fs_struct(fs);
2337 	if (!*new_fsp)
2338 		return -ENOMEM;
2339 
2340 	return 0;
2341 }
2342 
2343 /*
2344  * Unshare file descriptor table if it is being shared
2345  */
2346 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2347 {
2348 	struct files_struct *fd = current->files;
2349 	int error = 0;
2350 
2351 	if ((unshare_flags & CLONE_FILES) &&
2352 	    (fd && atomic_read(&fd->count) > 1)) {
2353 		*new_fdp = dup_fd(fd, &error);
2354 		if (!*new_fdp)
2355 			return error;
2356 	}
2357 
2358 	return 0;
2359 }
2360 
2361 /*
2362  * unshare allows a process to 'unshare' part of the process
2363  * context which was originally shared using clone.  copy_*
2364  * functions used by do_fork() cannot be used here directly
2365  * because they modify an inactive task_struct that is being
2366  * constructed. Here we are modifying the current, active,
2367  * task_struct.
2368  */
2369 int ksys_unshare(unsigned long unshare_flags)
2370 {
2371 	struct fs_struct *fs, *new_fs = NULL;
2372 	struct files_struct *fd, *new_fd = NULL;
2373 	struct cred *new_cred = NULL;
2374 	struct nsproxy *new_nsproxy = NULL;
2375 	int do_sysvsem = 0;
2376 	int err;
2377 
2378 	/*
2379 	 * If unsharing a user namespace must also unshare the thread group
2380 	 * and unshare the filesystem root and working directories.
2381 	 */
2382 	if (unshare_flags & CLONE_NEWUSER)
2383 		unshare_flags |= CLONE_THREAD | CLONE_FS;
2384 	/*
2385 	 * If unsharing vm, must also unshare signal handlers.
2386 	 */
2387 	if (unshare_flags & CLONE_VM)
2388 		unshare_flags |= CLONE_SIGHAND;
2389 	/*
2390 	 * If unsharing a signal handlers, must also unshare the signal queues.
2391 	 */
2392 	if (unshare_flags & CLONE_SIGHAND)
2393 		unshare_flags |= CLONE_THREAD;
2394 	/*
2395 	 * If unsharing namespace, must also unshare filesystem information.
2396 	 */
2397 	if (unshare_flags & CLONE_NEWNS)
2398 		unshare_flags |= CLONE_FS;
2399 
2400 	err = check_unshare_flags(unshare_flags);
2401 	if (err)
2402 		goto bad_unshare_out;
2403 	/*
2404 	 * CLONE_NEWIPC must also detach from the undolist: after switching
2405 	 * to a new ipc namespace, the semaphore arrays from the old
2406 	 * namespace are unreachable.
2407 	 */
2408 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2409 		do_sysvsem = 1;
2410 	err = unshare_fs(unshare_flags, &new_fs);
2411 	if (err)
2412 		goto bad_unshare_out;
2413 	err = unshare_fd(unshare_flags, &new_fd);
2414 	if (err)
2415 		goto bad_unshare_cleanup_fs;
2416 	err = unshare_userns(unshare_flags, &new_cred);
2417 	if (err)
2418 		goto bad_unshare_cleanup_fd;
2419 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2420 					 new_cred, new_fs);
2421 	if (err)
2422 		goto bad_unshare_cleanup_cred;
2423 
2424 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2425 		if (do_sysvsem) {
2426 			/*
2427 			 * CLONE_SYSVSEM is equivalent to sys_exit().
2428 			 */
2429 			exit_sem(current);
2430 		}
2431 		if (unshare_flags & CLONE_NEWIPC) {
2432 			/* Orphan segments in old ns (see sem above). */
2433 			exit_shm(current);
2434 			shm_init_task(current);
2435 		}
2436 
2437 		if (new_nsproxy)
2438 			switch_task_namespaces(current, new_nsproxy);
2439 
2440 		task_lock(current);
2441 
2442 		if (new_fs) {
2443 			fs = current->fs;
2444 			spin_lock(&fs->lock);
2445 			current->fs = new_fs;
2446 			if (--fs->users)
2447 				new_fs = NULL;
2448 			else
2449 				new_fs = fs;
2450 			spin_unlock(&fs->lock);
2451 		}
2452 
2453 		if (new_fd) {
2454 			fd = current->files;
2455 			current->files = new_fd;
2456 			new_fd = fd;
2457 		}
2458 
2459 		task_unlock(current);
2460 
2461 		if (new_cred) {
2462 			/* Install the new user namespace */
2463 			commit_creds(new_cred);
2464 			new_cred = NULL;
2465 		}
2466 	}
2467 
2468 	perf_event_namespaces(current);
2469 
2470 bad_unshare_cleanup_cred:
2471 	if (new_cred)
2472 		put_cred(new_cred);
2473 bad_unshare_cleanup_fd:
2474 	if (new_fd)
2475 		put_files_struct(new_fd);
2476 
2477 bad_unshare_cleanup_fs:
2478 	if (new_fs)
2479 		free_fs_struct(new_fs);
2480 
2481 bad_unshare_out:
2482 	return err;
2483 }
2484 
2485 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2486 {
2487 	return ksys_unshare(unshare_flags);
2488 }
2489 
2490 /*
2491  *	Helper to unshare the files of the current task.
2492  *	We don't want to expose copy_files internals to
2493  *	the exec layer of the kernel.
2494  */
2495 
2496 int unshare_files(struct files_struct **displaced)
2497 {
2498 	struct task_struct *task = current;
2499 	struct files_struct *copy = NULL;
2500 	int error;
2501 
2502 	error = unshare_fd(CLONE_FILES, &copy);
2503 	if (error || !copy) {
2504 		*displaced = NULL;
2505 		return error;
2506 	}
2507 	*displaced = task->files;
2508 	task_lock(task);
2509 	task->files = copy;
2510 	task_unlock(task);
2511 	return 0;
2512 }
2513 
2514 int sysctl_max_threads(struct ctl_table *table, int write,
2515 		       void __user *buffer, size_t *lenp, loff_t *ppos)
2516 {
2517 	struct ctl_table t;
2518 	int ret;
2519 	int threads = max_threads;
2520 	int min = MIN_THREADS;
2521 	int max = MAX_THREADS;
2522 
2523 	t = *table;
2524 	t.data = &threads;
2525 	t.extra1 = &min;
2526 	t.extra2 = &max;
2527 
2528 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2529 	if (ret || !write)
2530 		return ret;
2531 
2532 	set_max_threads(threads);
2533 
2534 	return 0;
2535 }
2536